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Abstract—In a variety of network applications, there exists significant amount of shared data between two end hosts. Examples
include data synchronization services that replicate data from one node to another. Given that shared data may have high correlation
with new data to transmit, we question how such shared data can be best utilized to improve the efficiency of data transmission. To
answer this, we develop an inter-data encoding technique, SyncCoding, that effectively replaces bit sequences of the data to be
transmitted with the pointers to their matching bit sequences in the shared data so called references. By doing so, SyncCoding can
reduce data traffic, speed up data transmission, and save energy consumption for transmission. Our evaluations of SyncCoding
implemented in Linux show that it outperforms existing popular encoding techniques, Brotli, LZMA, Deflate, and Deduplication. The
gains of SyncCoding over those techniques in the perspective of data size after compression in a cloud storage scenario are about
12.5%, 20.8%, 30.1%, and 66.1%, and are about 78.4%, 80.3%, 84.3%, and 94.3% in a web browsing scenario, respectively.

Index Terms—Source coding; Data compression; Encoding; Data synchronization; Shared data; Reference selection

1 INTRODUCTION

URING the last decade, cloud-based data synchroniza-
D tion services for end-users such as Dropbox, OneDrive,
and Google Drive have attracted a huge number of sub-
scribers. These new services now become indispensable and
occupy a large portion of Internet bandwidth. Given the
rise of data synchronization services in which significant
amount of shared data exists between servers and clients
(i.e., end hosts), we raise the following question: “how can
the previously synchronized data between the end hosts be best
exploited for the delivery of new data between them?”

We find that this question is not only important to
synchronization services but also to general network appli-
cations including web browsing and data streaming because
data transfer between servers and clients essentially lets
them have the same synchronized data in the end. Unfor-
tunately, this question has been only partially addressed in
the literature and in practical systems.

Index coding [1] first suggested the concept of encoding
blocks of data to be broadcasted most efficiently to a group
of receivers holding different sets of blocks. The problem
setting of Index coding is related to ours, but it focuses
on mixing blocks for optimal broadcasting by mostly using
XOR operations and does not pay attention to exploiting
the similarity among the blocks. Deduplication (dedup) [2]
and RE (redundancy elimination) [3], which have been studied
and developed intensively for storage and network systems,
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are capable of exploiting previously stored or delivered
data for storing or transmitting new data. However, they
mostly work at the level of files or chunks of a fixed
size (e.g., 4MB in Dropbox, 8kB in Neptune [4]), which
significantly limit the potential of synchronized data. Even
with state-of-the-art deduplication techniques that can find
chunk boundaries in a flexible manner from using CDC
(contents-defined chunking) techniques [4], [5], [6], [7], the
synchronized data is not fully exploited due to their chunk-
to-chunk operations. There exist many computation accel-
eration techniques for deduplication and RE such as bloom
filter [8], stream-informed locality [9], rolling hash [10], and
hardware accelerators [11], but these do not improve the
efficiency of encoding (i.e., the size of encoded data).

In this paper, we try to answer the question by proposing
an inter-data encoding technique called SyncCoding that is
a new framework of exploiting shared data for encoding
in two steps: 1) given data to encode, selecting references
for encoding which hold high similarity with the data to
encode from the pool of previously synchronized data, 2)
encoding the data with the chosen references, which allows
bit sequences of flexible lengths in the data to encode to be
referenced efficiently from multiple references. This frame-
work enables a long matching bit sequence much larger than
the size of a chunk in a reference to be referred by a single
pointer (i.e., the position in the reference and the matching
length) and enables a group of short matching bit sequences
toward multiple references to be referred from multiple
references instead of them being simply delta-coded over
a certain chunk.

While deduplication and RE for chunk-level redundancy
elimination are known to be effective in leveraging the series
of files originated from a single source file, which are mostly
the same and only partially different, SyncCoding can po-
tentially benefit from more diverse files (e.g., including data
that are created on similar topics, by similar authoring



styles, or in similar formats), irrespective of whether they
are originated from a file or not.

How to most efficiently realize these two steps in Sync-
Coding is not straightforward to answer and is an open
problem. In this paper, we start tackling the problem by
providing an initial implementation of SyncCoding utilizing
1) modified cosine similarity for selecting references and 2)
modified LZMA (Lempel-Ziv-Markov chain algorithm) [12]
for efficient bit-sequence referencing from multiple refer-
ences. We find it especially interesting that a non-trivial
portion of data in network applications such as documents
or program codes stored in cloud storages or web servers
fall into the category where the current implementation of
SyncCoding is highly effective. Nonetheless, we note that
the framework of SyncCoding is not limited to a specific
reference selection or a compression algorithm. This frame-
work can be easily extended to use other similarity measures
for ensuring more efficient applicability to general files (e.g.,
images, videos) and to use more advanced compression
algorithms such as PAQ [13] and AV1 [14] for improving
the efficiency.

In order to design, validate, and evaluate the initial
implementation of SyncCoding, we take the following steps.

1) We revisit the algorithm of LZMA, the core of 7-zip
compression format [15] that is known as one of the
most popular data encoding techniques and reveal
how it works in detail.

2) We design the framework of SyncCoding with
LZMA and provide a way for LZMA to encode data
using references.

3) We analyze the conditions under which SyncCoding
outperforms the original LZMA with no reference
in the size of compressed data and suggest prac-
tical heuristic algorithms to select references from
the pool of synchronized data (i.e., reference candi-
dates) in order to meet the conditions.

4) We implement SyncCoding in a Linux system and
evaluate its compression characteristics. We also
implement it in an Android system and study
its energy consumption characteristics. We further
demonstrate the benefits of using SyncCoding in
realistic use cases of cloud data sharing and web
browsing.

5) We study the performance of SyncCoding for en-
crypted data and discuss an implementation guide-
line for SyncCoding.

Our evaluation of SyncCoding in the cloud data sharing
scenario with a dataset of RFC (Request For Comments)
technical documents reveals that on average SyncCoding
compresses documents about 10.8%, 20.8%, and 66.1% more
compared to LZMA after Deduplication, LZMA without
Deduplication, and Deduplication only?, respectively. An-
other evaluation in the same scenario with a dataset of
PDF and image files shows that SyncCoding compresses
18.5% and 40.0% more for PDF files and 1.2% and 3.0%
more for image files compared to LZMA and Neptune. It
confirms that SyncCoding is still beneficial even for PDF

1. The chunk size for deduplication here is chosen as a small value, 8
bytes to demonstrate the maximum potential of deduplication
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and image files, but at the same time it reveals the need
for a future work that can work more efficiently especially
for image files, for instance, by allowing partially matching
bit sequences to be referenced with delta-encoded bits or
by allowing arbitrary two-dimensional blocks (i.e., sets of
non-continuous bits in the original bit stream) of bits to be
referenced.

Further evaluation of SyncCoding in the web browsing
scenario shows that SyncCoding outperforms commercial
web speed-up algorithms, Brotli [16] from Google with and
without deduplication by 81.3% and 84.3%, and Deflate [17]
with and without deduplication, by 85.6% and 87.2%, re-
spectively, in the size of compressed webpages of CNN.
We find that this substantial gain observed for SyncCoding
comes from the similar programming style maintained over
the webpages in the same website and confirm that the gain
is persistent over various websites such as NY Times and
Yahoo.

2 RELATED WORK

Reforming a given bit sequence with a new bit sequence to
reduce the total number of bits is called data compression
and it is also known as source coding. When the original
bit sequence can be perfectly recovered from the encoded
bit sequence, it is called lossless compression which is the
focus of this work. A bit sequence is equivalent to, hence
interchangeable with, a symbol sequence where a symbol
is defined by a block of bits which repeatedly appears
in the original bit sequence (e.g., ASCII code). Shannon’s
source coding theorem [18] tells us that a symbol-by-symbol
encoding becomes optimal when symbol i that appears
with probability p; in the symbol sequence is encoded by
—log, p; bits. It is well known that Huffman coding [19] is
an optimal encoding for each symbol but is not for a symbol
sequence. Arithmetic coding [20] produces a near-optimal
output for a given symbol sequence.

However, when the unit for encoding goes beyond a
symbol, the situation becomes much more complicated. An
encoding with blocks of symbols that together frequently
appear may reduce the total number of bits, but it is unclear
how to find the optimal block sizes that give the smallest
encoded bits. Therefore, finding the real optimal encoding
for an arbitrary bit sequence becomes NP-hard [21] due to
the exponential complexity involved in testing the combina-
tions of the block sizes.

LZ77 [22], the first sliding window compression algo-
rithm, tackles this challenge by managing dynamically-
sized blocks of symbols within a given window (i.e., the
maximum number of bits that can be considered as a block)
by a tree structure. In a nutshell, LZ77 progressively puts
the symbols to the tree as it reads symbols and when there
is a repeated block of symbols found in the tree, it replaces
(i-e., self-cites) the block with the distance to the block and
the block length. This process lets LZ77 compress redundant
blocks of symbols.

Deflate [17] combines LZ77 and Huffman coding. It
replaces matching blocks of symbols with length-distance
pairs similarly to LZ77 and then further compresses those
pairs using Huffman coding. LZ78 and LZMA are vari-
ants of LZ77, of which their encoding methods for length-
distance pairs are improved. LZMA is the algorithm used in



7z format of the 7-zip archiver. We will later discuss about
the operations of LZMA in detail in Section 3.

Unlike the aforementioned compression algorithms,
there exist several techniques that include external informa-
tion in addition to the source data for encoding. There are
simpler ways of exploiting external information such as Star
encoding (*-encoding) [23] that uses an external static dic-
tionary shared between a server and its client. A similar yet
more efficient approach has been made using Length Index
Preserving Transform (LIPT) [24] with an English dictionary
having about 60,000 words. Brotli [16], one of the latest
encoding techniques, has a pre-defined shared dictionary of
about 13,000 English words, phrases, and other sub-strings
extracted from a large corpus of text and HTML documents.
Brotli is known to achieve about 20% compression gain over
Deflate in the encoding of webpages in a web browser [25].
Exploiting a static shared dictionary is useful in general, but
its efficacy is limited as each replacement is bounded by the
length of words.

Deduplication [2] is a practical repetition elimination tech-
nique for duplicate data, which is widely studied and de-
veloped for storage systems. It essentially replaces repeated
data chunks of a file with the matching chunks of other files
in the storage by which it enables the concept of SIS (single
instance storage). A similar idea called RE (redundancy
elimination) eliminates duplicate packets in network traffic
originally at the network switches [3] and later in the end
hosts as in EndRE [26] to avoid its impact being reduced
by encrypted packets with TLS (transport layer security).
Deduplication is especially effective for secondary storage
systems in which periodic system back-ups that are highly
redundant to each other occupy a large portion. It is also
effective in cloud storage services such as Google Drive [27]
and Dropbox [28] because there exist many subscribers who
store popular files such as music, image, video, and PDF
files in their storage spaces. As long as these popular files
are unmodified, the files can be easily deduplicated in the
cloud storage system. However, when there exist slight
modifications, the original deduplication with FSC (fixed-
size chunking) fails to work due to so called boundary shift
problem.

To tackle this problem, CDC (contents-defined chunk-
ing) [10] is proposed with byte-level fingerprints (i.e., rolling
hash values such as Rabin fingerprints [10] and Gear
hashes [29]) in which chunk boundaries are not determin-
istically defined by the size but defined adaptively by a
pre-defined hash pattern. CDC makes chunk sizes variable
and requires much more computation than FSC, but it effec-
tively identifies modified chunks that are subject to delta
encoding [30] over certain chunks and also detects right
boundaries to extract unmodified chunks. For efficient delta
encoding for an unmatched chunk, Neptune [4] and a WAN
optimization technique [31] leverage a sketch of that chunk,
which is nothing but some characteristic values obtained
from fingerprints, to find a similar chunk as a basis for
delta encoding. QuickSync [32] utilizes the idea of Neptune
for mobile devices and optimizes it for energy saving by
adapting the average chunk size of CDC to the network
bandwidth and by bundling packet transmissions for delta-
encoded chunks. In another line of research, a number of
acceleration techniques for deduplication in practical sys-
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Fig. 1. Sample encoding of (a) LZ77 and (b) LZMA over a
sequence of symbols. Whenever a match exists, the longest
match is encoded with a length-distance pair. No match
lets the symbol be encoded. When there is a distance value
repeated recently, LZMA points to it instead of directly
encoding it.

tems are proposed such as bloom filter [8], stream-informed
locality [9], and hardware accelerators using GPU [11],
but they do not fundamentally improve the compression
efficiency of deduplication.

3 LZMA PRIMER

SynCoding is implemented based on LZMA. Therefore, in
order to explain how SyncCoding is implemented, we give
a short primer of LZ77 and LZMA algorithms.

LZ77 encodes a sequence of symbols by maintaining a
sliding window of size w within which the blocks of sym-
bols appeared in the window are systematically constructed
as a tree. Since the window is sliding, the blocks of symbols
captured in the tree will change as the encoding proceeds.
The compression of bits in LZ77 occurs when a repeated
block of symbols is replaced with a length-distance pair,
where the length and the distance denote the length of the
block of symbols and the bit-wise distance from the current
position to the position where the same block of symbols
appeared earlier within the window. Every time a block of
symbol is replaced by a length-distance pair, LZ77 tries to
find the longest matching block in the window in order
to reduce the number of encoded length-distance pairs as
the reduction directly affects the compression efficiency. A
sample encoding with LZ77 when the window size is 4 is
illustrated in Fig. 1 (a). The static window size in LZ77 may
cause inefficiencies. For example, when the window size is
small, the number of blocks of symbols that can be kept
in the window is limited, hence reducing the chances of
compression.

LZMA works very similarly to LZ77 but with two major
improvements. The first is that LZMA adopts a dynamic
window that has its initial size as one and grows as the en-
coding proceeds. Because the window grows, LZMA is not
suffering from being constrained by a small static window
size. The second is that LZMA further reduces the number
of bits representing a length-distance pair by specifying a
few special encoded bits that are used when the current
distance is the same with the distances that are most recently
encoded. Reusing the distance information with fewer bits
helps a lot when the data to compress has a repetitive nature
(e.g., repetitive sentences or paragraphs in a file). The look
up of the distances is typically done for the last four pairs. A
sample encoding with LZMA is depicted in Fig. 1 (b). These



small changes cause LZMA can compress data more than
LZ77 [33].

The optimality of LZ77 was proved earlier by Ziv and
Lempel [34] in the sense that the total number of bits
required to encode a data with LZ77 converges to the
entropy rate of the data, where the entropy rate is defined
with the symbol-by-symbol manner. Since LZMA is more
efficient than LZ77, it is not difficult to prove that LZMA
also converges to the entropy rate by extending the proof in
[34].

Our interest lies whether SyncCoding uses less or more
bits than LZMA. To this end, we explain how the number of
bits required for LZMA can be mathematically evaluated.

Let Tizma ({S}YY) be the total required bits of the output
encoded by LZMA for a given sequence of N symbols
{S}¥. Suppose that przya is the number of phrases to be
encoded in LZMA, where a phrase is defined by a block of
symbols. Note that as the encoding progresses, the length of
a new phrase (i.e., the number of symbols in the phrase)
is determined by the longest matching sub-sequence of
symbols that can be found in the sliding window. Then,
Tizma({S}Y) becomes the bits required to encode all the
length-distance pairs for the phrases, > "4 { f(l;) + g(d;)},
where [; is the length of phrase i, d; is the matching distance
of phrase 4, and f(l;) and g(d;) denote the bits to encode I;
and d;, respectively. The matching distance d; is the bit-wise
distance from the current position to the previous position
of the same phrase.

LZMA uses comma-free binary encoding [34] for f(l;),
which is also used in LZ77. The comma-free binary encod-
ing consists of two parts: 1) the prefix and 2) the binary
encoding of I;, denoted by b(l;). According to [34], the prefix
and the binary encoding occupies 2[log, [log,(I; + 1)]] and
[log,(l; + 1)] bits, respectively. The summation of those
quantifies f(l;) of LZMA.

g(d;) in LZMA falls into either of the following three
cases. When the distance to encode is not the same with
any of the four recently used distances, the distance is
encoded by the binary encoding of a fixed number of digits
which is determined by the size of the sliding window
w. Therefore g(d;) always goes to log,(w). There is one
exception when Il; = 1 (i.e., the phrase consists of a single
symbol), the symbol itself is encoded instead of the distance
being encoded. Therefore, g(d;) = log, C, where C' denotes
the size of the symbol space (i.e., character space for a text
encoding). When the distance is repeated from the four
recently used distances, there exist two bit mappings of 4
bits or 5 bits by the following cases: 1) g(d;) = 4 when
the distance matches with the first or the second lastly used
distance, 2) g(d;) = 5 when the distance matches with the
third or the fourth lastly used distance.

By the above equations, we can estimate the best case of
LZMA, that happens when all the distances to encode for
the phrases whose length is larger than two are found from
the first or the second lastly used distance, ie., g(d;) = 4.
Thus, we have the following lower bound for Tizva ({S}Y).

Lemma 1 Tz ({S}Y) is lower bounded by the following
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Fig. 2. The concept and basic operations of SyncCoding.
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where pl,y4 is the number of phrases whose length is one (ie.,
l; =1).

4 SYSTEM DESIGN AND ANALYSIS

In this section, we formally state the problem that Sync-
Coding tackles and proposes the design of SyncCoding.
Then, we provide a mathematical analysis for the design
and explain how it can be compared with that of LZMA.

4.1 System Design

Suppose that there exist n files that are previously synchro-
nized between a server and a client, denoted by F; where
i = 1,---,n. Upon transmitting the (n + 1)-st file Fj, 41,
from the server to the client, our problem is to answer how
should F,;; be encoded using the shared files, F, - - - , F,.
Fig. 2 depicts this scenario in which the encoder (i.e., server)
locates in a cloud system and the decoder is of a mobile
device.

Given that the number of previously synchronized, we
assume that we can somehow choose the most useful k files
out of n files and use them only to encode F;,; . We call
those chosen files references and denote the set of references
for F,,,1 whose cardinality is k as RF +1- Let us discuss the
methods for choosing such k files in the next section.

For the compression, we let SyncCoding concatenate all
the files in R¥_; to be a single large file and append it at
the front part of Fj,41 to create a virtual file to encode. We
denote this virtual file, a compound of the file to encode
and its references as Vrf’_H. Given V* " 1, we let SyncCoding
simply encode it by LZMA in the hope that all the blocks
of symbols that are commonly found in the references and
the file to encode get converted to length-distance pairs,
hence reducing the bits to encode. Note that when V,* o is
constructed, we let SyncCoding place the references in the
order that a reference with higher usefulness is placed closer
to Fj,+1. Once encoding is done, we cut out the front part
and extract only the encoded portion of F;,; 1, denoted by
E¥ . . SyncCoding transmits E¥_ ; to the decoder with the
list of file indexes chosen as references, denoted by I%_ ;.

For decoding EX 11, we let SyncCoding first decode I, k 11
to recall the references at the decoder side. Then, we let
SyncCoding create the concatenated file of R¥ 11 asif it was



done at the encoder and compress it by LZMA. Once we get
the output, we append it at the front part of EX ; to create
a compound and decode the compound by LZMA. By the
nature of LZMA, this decoding guarantees the acquisition of
F,+1 from EX . The encoding and decoding procedures of
SyncCoding is summarized in Algorithm 1. We implement
SyncCoding of this procedure by modifying an open-source
implementation of LZMA [35].

Algorithm 1 Encoding/Decoding Procedures of SyncCod-
ing

Encoding:
1) Choose k useful references Rﬁﬂ, and index them by I’,ﬁH
2) Sort the references in RﬁH in the reverse order of useful-
ness
3) Concatenate all the references in R 41
4) Append it at the front of F, 41 to get V,ﬂl
5) Encode Vnk+1 by LZMA and cut out the encoded file E7’§+1
6) Transmit Eﬁﬂ and L’fH

Decoding:
1) From [, fi+1, restore the concatenated file made up of RfLH
2) Compress it by LZMA
3) Append the compressed file at the front of E’;H
4) Decode the compound by LZMA and cut out to obtain £, 41

4.2 Comparative Analysis

We analyze SyncCoding by comparing its total number of
bits for encoding, Tsc({S}Y), with that of LZMA. Recall
that the input is again {S}), a sequence of N symbols,
which was identically used for LZMA. By the analogy
with the analysis of LZMA, we can view that Tsc({S}1)
conforms to > {f(I;) + g(d;)} + klog, n, where psc de-
notes the number of phrases to be encoded in SyncCod-
ing. klog,n, the overhead of SyncCoding, quantifies the
number of bits to list the indexes of the references. Since
SyncCoding adopts LZMA for its bit encoding, f(-) and
g(+) for SyncCoding are not different from those in LZMA.
Note that the number of phrases identified in SyncCoding
is always smaller than or at least equal to that in LZMA
mainly because the references give a more abundant source
of matching phrases. Therefore, the better the reference
selection, the more the gap between psc and przma. It is also
obvious that pi- < pi s, Where pd- denotes the number of

phrases of length one in SyncCoding.
We now find the condition that guarantees better com-

pression for SyncCoding over LZMA, so that Tsc({S}Y) <
Tizma({S}Y) is satisfied. For that, we compare the worst
case bit-size of SyncCoding with the best case bit-size of
LZMA. Suppose that SyncCoding reduces the number of
phrases by the factor of v as psc = v - przma, where 7~y
is a constant satisfying 0 < v < 1. It is unlikely, but if
the reference selection goes extremely wrong, it is possible
to have v = 1. Having a smaller number of phrases that
is to encode a smaller number of length-distance pairs is
the key factor of reducing bits to encode for SyncCoding.
However, this brings a side effect, which is to increase
the average phrase length. Note that the ratio between
numbers of phrases in LZMA and SyncCoding, v, affects
the average phrase length because the following holds:
Isc - psc = N, where lgc is the average phrase length
in SyncCoding. Therefore, the average phrases length in
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SyncCoding increases by the factor of 1/y compared to
LZMA as in lsc = lizma /7, where lizma is the average
phrase length in LZMA. Also, there is another side effect
that is the increment in the distance of a length-distance
pair. This increment may request more bits to encode the
distance. The largest increment in bits comes from the case
when a phrase finds its match from the farthest reference
(i.e., the reference appended at the very beginning). Thus,
this largest bit increment is affected by the number of
references and is bounded by log, k bits. Under this setting,
we derive an upper bound of the bit-size of SyncCoding by
assuming possible worst cases in combination as follows:
1) the distance to encode in each length-distance pair is
either not found from any of the four lastly used distances
or not of the length one, 2) the phrases to encode whose
length is one are fully removed by using the references,
say pic = 0. The condition 1) makes each distance to
be encoded by the binary encoding, so g(d;) = [logy N
holds. The condition 2) makes a phrase always encoded
by a length-distance pair instead of being encoded by the
symbol space, whose bit consumption log, C, is typically
much smaller than g(d;) = [logy, N. These arguments with
the Jensen’s inequality® let us conclude that T5c({S}Y) is
upper bounded by the following lemma.

Lemma 2 Tsc({S}) is upper bounded by the following maxi-
mal total number of bits:

Tsc({S}') < k[logyn] + 7 - przma - ([loga N + [log, k1)

+Y-Przma (2 [log, [logy (ILzama /v + )] +[10gs (lLzma /Y + 1)]) .
By wusing the Lemmas 1 and 2, the condition,

Tsc({SHY) < Tizma({S}Y), gives the following theorem.

Theorem 1 If h(vy) > 0 is satisfied for the following definition
of h(7), the total number of bits of SyncCoding is less than that
of LZMA, i.e., Tsc({S}) < Trzma({S}).

h(v) =0 =7 - przma - (ﬁ + [logy (lLzma/v + 1)
+ 2[log, [logy (Inzma /vy + 1)“)7

where o and B denote 3377, (2[logy[logy(li + 1)T] +

[logy(l; +1)1) + pizma - [1085 C1 + 4(przma — Pizma) —
k[logy n] and [logy N + [log, k|, respectively.

)

It is complex to find the solution for vy that guarantees
h(y) > 0, but it is not difficult to show numerically that
there exists v < 1 satisfying h(y) > 0. Also, it is trivial that
h(vy) > 0 if v approaches to zero. This implies that selecting
references that effectively reduces the number of phrases to
encode is the key for SyncCoding to be superior than LZMA.

4.3 Questions on SyncCoding

As revealed by the analysis, the efficacy of SyncCoding
over LZMA depends highly on how much SyncCoding
can reduce the number of length-distance pairs to encode.
The ratio of reduction, v, is the outcome of the reference

2. For a random variable X and a concave function g, E[g(X)] <
g(E[X]) holds. Such g includes log, function.
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selection. The question on which selection of a set of ref-
erences from the synchronized data whose volume may be
huge is the most efficient selection, brings the subsequent
questions: 1) which data in the synchronized data helps the
most?, 2) what is the size of the set of references that leads to
the best compression?, 3) how long does it take for SyncCoding
to encode and to decode a file with the chosen references (i.e.,
encoding and decoding complexity)?, and 4) How much energy
does SyncCoding consume in downloading and decoding a file in
mobile devices?

It is essential to answer these questions to make Sync-
Coding viable, but answering each of these questions is chal-
lenging. Because of the complexity involved in the symbol
tree construction in LZMA and also due to the correlated
nature of symbols in the input sequence of symbols (e.g.,
language characteristics and intrinsic data correlation), none
of the four questions can be tackled analytically. In the next
section, we empirically characterize SyncCoding and give
heuristic answers to these questions.

5 CHARACTERIZATION OF SYNCCODING
5.1 Reference Selection

We first tackle the question on reference selection. As it
was intuitively explained in the system design, it is obvious
that a file containing high similarity with the target file to
encode is preferred to be included in the set of references.
However, given that SyncCoding as well as LZMA tries to
minimize the number of length-distance pairs to encode by
seeking the longest matching subsequence of symbols, it is
unclear how this similarity between files in the context of
encoding can be defined. One definition rooted from the
usefulness as a reference can be the total length of matching
subsequences included in the reference given a target file to encode.
The more the matching subsequences and the longer the
matching subsequences, this definition gives a higher simi-
larity value. However, this definition is practically impaired
as its measurement itself takes as much time as the encoding
process takes, so it is not so different from quantifying how
much additional compression is obtained in SyncCoding by
having the reference afterwards.

In order to ensure practicality, we need a much lighter
similarity measure that can quickly investigate the individ-
ual usefulness of all the previously synchronized files with
respect to the target file to encode. For this, we borrow
the concept of document similarity, which has been widely
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used in the machine learning field with various implemen-
tations such as cosine similarity [36] and Kullback-Leibler
divergence [37]. Based on such similarity measures, we
propose a modified cosine similarity measure. Our modified
cosine similarity denoted by sim(A,T') between two files, a
reference candidate A and the target file to encode T, is
formally defined as follows:

A T
Sim(A,T) & Yieser) FED)f(E) ’
VZieser) fED2 Ties FET)?

where S(T) is the set of distinct symbols {¢;}, observable
from T, t{ and t! are the frequencies of observing the
symbol ¢; in the file A and T, and f(+) is a transformation
function. By definition, t7' > 1 and t#* > 0 hold.

In order to validate the efficacy of the proposed similar-
ity measure, we build a dataset by randomly downloading
8,000 RFC documents from the IETF database [38]. We use
one hundred documents as new data for synchronization
and use the others to imitate the database of previously syn-
chronized data (i.e., reference candidates). With this sample
database, we rank the reference candidates with the modi-
fied cosine similarity of three different f(-) transformation
functions for the chosen document: 1) Linear: f(t;) = t;, 2)
Log: f(t;) = log(t; + 1), and 3) Boolean: f(t;) = 1fort; >0
and f(¢;) = 0 for t; = 0. We depict the compression ratio of
SyncCoding with different f(-) for each reference candidate
sorted by its similarity rank in Fig. 3 in comparison with
LZMA that uses no reference. Note that the compression
ratio is the fraction of the compressed amount over the
size of the original file, where the compressed amount is
the difference between the size of the original file and the
compressed file. Fig. 3 shows that SyncCoding with either
of three functions compresses the chosen document more
than LZMA. Especially with the reference candidate of the
highest similarity rank, SyncCoding-Boolean achieves about
77.7% compression ratio meaning that the compressed size
is only 22.3% of the original size. Comparing this result
with that of LZMA which achieves the compression ratio
of 74.0% and results in the compressed file whose size is
26.0% of the original, SyncCoding reduces the size of the
compressed file by about 14.3% only with one well-chosen
reference. Also, as Fig. 3 shows, SyncCoding with either of
three functions maintains non-decreasing tendency over the
reference candidates sorted by the rank. This implies that it
is acceptable to use the modified cosine similarity rank for a
quicker selection of a reference.

Fig. 4, where we increasingly add references for Sync-
Coding by the similarity rank measured by either of three
functions, further investigates the efficacy of using the mod-
ified cosine similarity in the reference selection. In Fig. 4,
we also include, for comparison, the compression ratios
from a greedy search where the reference that maximally
improves the compression ratio out of all remaining refer-
ences is added to the existing set of references and from
a random addition. Note that Fig. 4 only takes the size
of the compressed amount into account when evaluating
the compression ratio and does not consider the overhead
of indexing the references, which will be discussed in the
next subsection. As shown in Fig. 4, SyncCoding-Boolean
performs better than others at least slightly and achieves

2
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on understanding the impact of reference selection.
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Fig. 5. The h() and ~y of SyncCoding over LZMA with one
reference whose modified cosine similarity is ranked by the
Boolean transformation function.

the closest performance to the greedy search. Given that
the computational complexities of the greedy search and
SyncCoding-Boolean are O(N?) and O(N), respectively?,
it is reasonable to conclude that SyncCoding-Boolean is a
viable solution to the reference selection problem.

We lastly check whether modified cosine similarity with
Boolean transformation function can be used as a substitute
for h(y) of Theorem 1 or not. We explain in Section 4
that quantifying h(v) is difficult because computing /()
requires the actual number of length-distance pairs in a
target file and the references used. This means that obtaining
the value of h(v) is as difficult as compressing the target
file by SyncCoding using the chosen references. Therefore,
having a good proxy of h(7y) is important. Fig. 5 shows that
our similarity measure has an increasing tendency with h(7)
and a decreasing tendency with 7y over reference candidates,
confirming that our measure can predict the rank of h(7)
for reference candidates. Throughout this paper, we use
SyncCoding-Boolean as our default SyncCoding implemen-
tation.

5.2 Maximum Compression Efficiency

We now tackle the second question on the maximum com-
pression advantage of SyncCoding over LZMA. It is of
particular interest in cases where the network bandwidth
to deliver the compressed data is severely limited. The cases
not only include extreme situations such as deep sea com-
munication, inter-planet communication, but also include

3. SyncCoding-Boolean incurs the complexity of evaluating N ref-
erence candidates linearly, where as the greedy search incurs the
complexity of E;V: 7]\’f *1 jin order to find out the most helpful reference
at every addition. The optimal can be obtained by a full search, but
incurs O(NV).
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Fig. 6. The compression efficiency of SyncCoding for an
increasing number of references. The per-reference overhead
is chosen as either of 10 or 20 bytes.

networks with high link cost such as satellite communica-
tion, while being at an ocean cruise or at an airplane. From a
different perspective, it is also of strong interest in the cases
where even a small amount of additional compression gives
huge benefit. A nice example is found in inter-data center
synchronization in which tens of terabytes are easily added
daily and need to be synchronized (e.g., 24 terabytes of new
videos are added to YouTube daily [39]).

If there is no overhead of listing the indexes of the
references used for encoding, it is obvious that adding a
new reference keeps improving the compression ratio of
SyncCoding although the gain achieved by each addition
may keep diminishing as shown in Fig. 4. However, Sync-
Coding requires the indexes to be independently encoded
and transmitted along with the main data. We simply let
SyncCoding use the address space of ten bytes, that is of 80
bits. This size of address (i.e., index size) gives a pointer that
can specify a file from a database with about 10 files. It is
relatively a large number for a personal use, but in the case
of a global data center, it can be extended to twenty bytes
(160 bits) or more to index the files with active accesses. To
characterize the impact of the overhead from the indexes
in SyncCoding, we depict SyncCoding-Boolean with two
index sizes, considering the overhead added to the size of
the compressed file in Fig. 6. To avoid confusion, we define
compression efficiency as the compression ratio evaluated with
the compressed amount including the overhead, i.e., the
ratio between the compressed amount plus overhead and
the original file size. For simplicity, we quantify the over-
head by the address space size multiplied with the number
of references used, assuming that no additional encoding
is applied for the indexes. We discuss about the overhead
optimization in the next subsection.

As shown in Fig. 6, with 10 and 20 bytes overhead per
reference, SyncCoding achieves about 76.85% and 76.53% as
its maximum compression efficiency for the chosen docu-
ment, respectively. The number of references that achieve
the maximum compression efficiency in this test are 24
and 17, confirming the intuition that a larger per-reference
overhead makes the compression efficiency saturated earlier
with respect to the number of references used. However,
even with a larger per-reference overhead, the maximum
compression efficiency achieved does not change much.
This is because the referencing happens mostly from a small
number of highly similar files.

We now provide a practical method of choosing the
number of references that approximately obtains the maxi-
mum compression efficiency for a given file to encode. Note
that finding the real optimal number of references to use,
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Fig. 8. Maximum compression efficiencies of SyncCoding
obtained from 100 randomly chosen documents are com-
pared with the compression efficiencies of SyncCoding that
use only k* references. The difference between them is
marginal.

say k*, is impractical as it requires to find the maximum
from ,, P (= #k:)'k‘) permutations given k ranging from
1 to n, where k£ and n are the number of references to use
and the number of reference candidates. To avoid such high
complexity, we again use our similarity measure to approxi-
mate the compression result as follows: 1) We first sort each
reference candidate A € R for the file to encode 1" by its sim-
ilarity, sim(A, T'), where R is the set of reference candidates
(i.e., |R| = m). 2) We then add them one by one to the set
of references while measuring the cumulative similarity at
each addition as sim(Ag,T'), where Aj, denotes the set of k
most similar reference candidates from R. 3) We finally find
the saturation point of the cumulative similarity by testing
if the moving average of Ay, = sim(Ay,T) — sim(Ag_1,7T)
is below a certain threshold Ay, (e.g., Ay, = 0.01). We use &
at this saturation point as k*.

Fig. 7 shows the cumulative similarity with 10 bytes
per-reference overhead and k* obtained from the aforemen-
tioned method for the same data and setting as in Fig. 6.
As shown in Fig. 7, our method finds k* = 16 and gives
the compression efficiency of 76.76% which is not much
different from the actual maximum 76.85% with k = 24
as in Fig. 6. We finally test 100 randomly chosen docu-
ments with our method for choosing £* and compare their
compression efficiency with actual maximum compression
efficiency obtained from huge computation cost under 10
bytes per-reference overhead in Fig. 8. Fig. 8 shows that
the performance gap is within 0.96%, confirming that our
method of approximately finding k* works effectively.

5.3 Referencing Overhead Optimization

The overhead of referencing files by fixed-length indexes
can be further optimized by a variable length coding such
as Huffman coding [19]. Especially when there are multiple
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Fig. 9. The referencing overhead by indexing references with
Huffman coding when referencing frequencies of reference
candidates are updated over transmissions.

files to exchange between end hosts which already have
many synchronized files, for instance file exchange between
data centers, indexing with a variable length coding can
help. In such a case, instead of indexing N files equally
assigned with log, N bits, assigning less bits for more fre-
quently referenced files is possible. Huffman coding in prin-
ciple assigns — log, w; bits to index file ¢ that is referenced
by f; times thus having its relative weight w; = f;/ >, fi.
Similarly, at every file transfer between end hosts, w; can
be updated for all synchronized files and the referencing
indexes can be reassigned accordingly. The more the files
are referenced, the less the bits are reassigned. Hence, refer-
encing overhead reduces as file transfers continue.

In order to demonstrate this idea, we reuse our 8,000
RFC documents dataset in Section 5.1 and build a synchro-
nization database between end hosts, in which indexing a
reference needs 13 bits for equal bit assignment. We test
the total referencing overhead for each file transfer where
a thousand randomly chosen files from the database are
transferred sequentially each with 24 references, and the
indexes are updated as aforementioned. In a test, all other
unchosen files are considered previously synchronized and
are used as reference candidates. The results in Fig. 9 are
averages from 200 repetitions of this test. As shown in the
figure, the overhead starts from 312 bits (13x24) and reduces
gradually over transmissions to about 245 bits. It is hard to
know what the actual reduction in overhead will be because
it depends on how frequencies of chosen references change
over transmissions, but it is always possible to optimize
overhead in this way. In particular, data centers with a huge
number of synchronized files can benefit from this more.
However, in the remaining sections, we use fixed-length
indexes to characterize the performance of SyncCoding the
most conservatively.

5.4 Encoding Time and Decoding Time of SyncCoding

We tackle the third question on the encoding and the decod-
ing time of SyncCoding by performing experiments. We let
Tg(z,k) and Tp(z, k) denote the time duration taken for
encoding and decoding a file x with k references. Because
the encoding and the decoding complexities of SyncCoding
with k references are not largely different from the complex-
ity of LZMA repeated by k times, it is expected that Tz (x, k)
and Tp(z, k) may increase linearly as k increases for a given
x. Fig. 10, a measurement on Linux (Kernel 2.6.18-238.el5)
over Intel i7-3770 CPU (3.40 GHz) for three kinds of docu-
ments of on average about 50, 100, and 200kB, a hundred
for each kind, randomly chosen from the aforementioned
dataset in Section 5.1, confirms that the average encoding
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Fig. 11. Experimental evaluation of Tpy(z,k) (top) and
Tp(z, k) (bottom), the time duration to download and to
decode a file x with k references under Galaxy Note 5
(Exynos 7 Octa 7420) connected to an LTE network with
the downlink speed of about 30 Mbps. For comparison, the
line for LZMA denotes the time consumed for |z| = 200kB.

time as well as the average decoding time from one hundred
trials increases almost linearly to £. Fig. 10 also confirms that
the size of x has little impact on the times because the size
of the data to encode is smaller than the total size of the
references. The decoding time is on the scale of milliseconds
and is relatively negligible compared to the encoding time
which is on the scale of a second.

We further evaluate end-to-end time performance in the
perspective of a mobile device, which is from downloading
to decoding. We let T (x, k) denote the time duration
taken for downloading a document x encoded with k ref-
erences in the aforementioned Linux platform. The average
downlink speed of the LTE network connected on a mobile
device, Galaxy Note 5, we use during the experiment is
about 30 Mbps. We repeat the experiments 100 times for
two different average sizes of the tested documents, 100kB
and 200kB. As shown in Fig. 11, the downloading time of
SyncCoding decreases and the decoding time increases as
the number of references increases. As a result, the end-
to-end time in the mobile device is minimized when using
k*= 16 for 100kB and £* = 11 for 200kB, and the reduction
in end-to-end time is 2.3% for 100kB and 15.1% for 200kB
compared to only LZMA, respectively. One important thing
to note here is that the encoding time can often be hidden
to users due to the following reasons: 1) the existence of a
powerful encoding server, 2) the parallelism between the
encoding process and the network transmission process,

Fig. 12. Our test environment for measuring energy con-
sumption of receiving data with or without SyncCoding
in an Android device. Measurements are conducted by a
digital power monitor from Monsoon [40].
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Fig. 13. The energy consumption measurement results on
Galaxy Note 5 smartphone for downloading and decoding
data of variable sizes with SyncCoding and LZMA.

and 3) preprocessing of SyncCoding in the server. We will
explain more about the applicability of the preprocessing of
SyncCoding to practical use cases in Section 6.

5.5 Mobile Energy Consumption of SyncCoding

We answer the last question on the mobile energy consump-
tion of SyncCoding in this subsection. Since mobile devices
are more sensitive to high energy consumption than power-
corded desktops or data centers, it is important to know how
much energy that SyncCoding consumes for receiving data
in a mobile device. We define the energy consumption with
a compression algorithm for receiving data to be the total
energy consumption from the start of downloading data to
the end of decoding data. When no compression is applied,
no energy is consumed for decoding. We experiment the
energy consumption from SyncCoding in comparison with
LZMA and no compression in two perspectives: 1) energy
saving by downloading compressed data of smaller sizes
and 2) extra energy spending for decoding. For this exper-
iment, we reuse the RFC documents of the aforementioned
dataset in Section 5.1, whose average file size is about 250kB.
We randomly choose one input file (i.e., the target paper
to compress) from this dataset and use k* reference files
chosen out of all other papers. The experiment is carried out
on an Android device, Galaxy Note 5 connected to an LTE
network. The average downlink speed of the LTE network
we use during the experiment is about 30 Mbps. Our setup
for the energy measurement is depicted in Fig. 12.

Fig. 13 (a) shows the mobile energy consumption with
SyncCoding, LZMA, and with no compression for receiv-
ing data of variable sizes. When receiving data with a
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Fig. 14. The energy consumption of SyncCoding for down-
loading with various downlink speeds which are 10, 30, and
50 Mbps (left) and for decoding with different computa-
tional efficiencies which are 0.7, 1.4, and 2.1 GHz (right) on
a Galaxy Note 5 smartphone.

compression method, the downloading size is reduced, but
the additional decoding process is needed. SyncCoding on
average saves 26.7% and 69.2% of energy over LZMA and
no compression for the downloading part but overspends
69.4% of energy over LZMA for the decoding part. The
energy consumption for downloading as well as decod-
ing increases nearly linearly to the input file sizes. This
is reasonable because the compressed data size is highly
correlated with the input file size and the decoding process
that reads through the compressed data to progressively
recover the original bit sequences from the references is
also highly correlated with the compressed data size. Since
the amount of saved energy in downloading is greater than
the energy overspent for decoding, SyncCoding can overall
outperform no compression as well as LZMA in terms of
total mobile energy consumption. Fig. 13 (b) summarizes the
energy gain of SyncCoding from receiving data over LZMA
and no compression, which are shown to be on average
15.3% and 75.9%, respectively*.

Fig. 14 further shows the impact of various network
bandwidths and CPU clock frequencies (i.e., energy efficien-
cies of computation) to mobile energy consumption when
using one hundred documents of on average about 200kB
encoded with k* references. For the evaluation, we con-
trolled the bandwidth of our server from which our mobile
device downloads data through LTE networks and adjusted
the CPU clock of our mobile device using DVFS (dynamic
voltage and frequency scaling) API of Android platform. As
shown in Fig. 14, network bandwidth gives nearly linear
impact to mobile energy consumption while CPU clock
gives rather flat impact due to computation time increase
for clock reduction. However, note that these results can
be more fickle when using different LTE chipsets and CPU
models with different architectures. Therefore, one should
consider these conditions when applying SyncCoding for
mobile energy saving.

We lastly evaluate the total energy consumption of Sync-
Coding for the different number of references, k, used in
Fig. 15 to find the optimal k that minimizes the energy
consumption. As shown in Fig. 15, for smaller £, the energy
consumption for decoding is less, while the energy con-
sumption for downloading is more. It is vice-versa for larger
k. We find that the optimal £* in terms of mobile energy

4. The results fluctuate for small original file sizes because of the ran-
domness in experiments (e.g., difference in contents for encoding, LTE
channel variation, computational load variation from system services),
but it becomes more stable as the original size increases.
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Fig. 15. The total energy consumption of SyncCoding for the
different number of references used, k, which consists of the
energy consumed in downloading and decoding.

consumption in this experiment is 6, which is different
from the optimal k* of 9 that obtains the shortest mobile
end-to-end time. We leave the mobile energy modeling for
downloading and decoding for different k as future work.

5.6 Energy Consumption of SyncCoding in Extreme
Situations

As a special case of mobile applications of SyncCoding, we
further characterize SyncCoding in extreme situations such
as deep sea communications and planetary communications
in which devices are often resource-constrained and their
communication bandwidth are mostly extremely limited.
In such an environment, the benefit of applying SyncCod-
ing for data exchange is directly related to the trade-off
between the energy saving from compressing the size of
data to transmit or receive and the energy expenditure from
encoding or decoding of SyncCoding. We here focus on
the encoding and transmission case for simplicity. We find
that data communications in such extreme situations often
demand very high power consumption especially in the
transmission part (e.g., tens of watts in deep see acoustic
data transmission [41], tens of watts in the outer planetary
data transmission of Voyager 1 and 2 [42], and tens of watts
in the Iridium satellite data transmission [43]), but they only
achieve very low data rates such as tens of kilo bps. In such a
case, reducing the size of data to transmit, thus reducing the
transmission time can save a substantial amount of energy.
Therefore, although SyncCoding takes extra energy for data
encoding, there exist possibilities for energy saving.

In order to experimentally characterize such behaviors,
we emulate the energy consumption of SyncCoding in
extreme situation by lowering the CPU clock frequency
and bandwidth. For one hundred documents to transmit
whose average size before encoding is about 200 kB °,
we measured average time to encode in SyncCoding and
LZMA under 700, 1400, and 2100 MHz CPU frequency
under i7-3770 CPU by controlling the clock and voltage
with CPUfreq module [44], one of DVFS APIs on Linux
platform. The resulting encoding times are 2.24, 1.07, and
0.71 seconds for SyncCoding and 0.45, 0.22, and 0.14 seconds
for LZMA. We also measured the transmission time between
two Linux machines by limiting the network bandwidth
using netem [45] as 10, 50, and 100 kbps. The results are
25.55,4.99, and 2.40 seconds for SyncCoding and 43.83, 8.38,
and 4.32 seconds for LZMA. Overall, SyncCoding spends

5. Each document is encoded in SyncCoding with k* references
chosen for the document.
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more time in encoding and spends less time in transmission.
Converting these results to energy consumption for the case
of 10 kbps and 700 MHz with typical 10 watts power con-
sumption in the transmitters for extreme situations and 11.4
watts power consumption measured by PowerTOP Linux
tool, we get 41.7% energy saving (i.e., 182.8 J) in transmis-
sion and 79.9% energy overspending (i.e., 20.4 J) in encoding
from SyncCoding over LZMA. In total, SyncCoding gives
36.6% energy saving (i.e., 162.4 ]) in this test scenario. We
note that this result can vary depending on the types of
communication chipsets, processor models with different
architectures, the size of data to transmit, and link speeds
of the networks. Therefore, in order to apply SyncCoding to
extreme situations, it is necessary to study these conditions
judiciously.

6 EVALUATION

We evaluate the efficacy of SyncCoding in two real scenar-
ios: 1) cloud data sharing and 2) web browsing. The scenario
we consider for cloud data sharing is to synchronize a
new file of an existing folder from the storage server to a
user device, given that the folder already includes about
a hundred files relevant to the new file. The use case we
consider for web browsing is to browse webpages of a
website at a user device given that the webpages visited
up to a moment are all cached in the device, so the web
server can exploit those cached pages for encoding a new
page. The overview of these scenarios is depicted in Fig. 16.

We experiment both scenarios and statistically compare
the compression efficiency of SyncCoding with existing
encoding techniques, Brotli, Deflate, LZMA, and Dedupli-
cation, whose settings are described in the next subsection.
Here we focus on the compression efficiency without being
concerned about the encoding and the decoding time, in
order to give our focus to the reduction of network data
traffic. As is discussed in the previous section, applying
SyncCoding on the fly takes time. Therefore, SyncCoding
may not be effective in speeding up web browsing experi-
ences especially for web servers with insufficient computa-
tional capability. However, SyncCoding is still useful to the
users who would like to browse web pages with minimal
cellular data cost. In the case of cloud data sharing where
the users are less sensitive to the synchronization delay,
the processing time for the SyncCoding can be successfully
hidden to its users.
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6.1 Settings

SyncCoding: We use SyncCoding-Boolean with k* refer-
ences chosen by the proposed algorithm in Section 5.2 and
use the per-index overhead of 10 bytes. For the parameters
inherited from LZMA implementation, we adopt the values
from LZMA with its maximum compression option.
LZMA: For the evaluation of LZMA, we use its SDK (Soft-
ware Development Kit) provided in [35] with the parame-
ters from the maximum compression option.

Deflate: For the evaluation of Deflate, we use [46], a popular
open source library including Deflate with all the parame-
ters from the maximum compression option.

Brotli: For Brotli, we use an open source implementation
of Brotli [47], which is embedded in Google Chrome web
browser [48]. We also use its maximum compression option.
Deduplication: For the evaluation of Deduplication, we
modify OpenDedup [49] so as to investigate its ideal Dedu-
plication performance for documents. We reduce the lower
bound of the chunk size (i.e., 1kB in OpenDedup [49]) to be
arbitrarily small.

6.2 Use Case 1: Cloud Data Sharing

We emulate a folder of a cloud storage (e.g., Dropbox) by
creating a folder with files of similar attributes. In this folder,
we put three types of data: 1) 8,000 RFC documents as in
Section 5.1, 2) 300 image files collected from Google image
for a few search keywords (e.g., Eiffel tower), 3) 300 PDF
files of presentation materials collected from Google for a
few research topics (e.g., wireless networking).

For the evaluation of SyncCoding and other encoding
techniques except Deduplication, we regard a randomly
chosen file from the folder as the target file to encode for
synchronization and assume that all other files in the folder
are reference candidates. For the RFC documents, we per-
form the following three tests and evaluate the compression
efficiencies of SyncCoding and other techniques: 1) Tests for
the target documents of various sizes with k* references, 2)
Tests for a randomly chosen document with various num-
bers of references, 3) Tests for 50 randomly chosen target
documents with k£* references. In test 1), for each size of the
target document, we select and test 20 documents whose
size ranges from 90% to 110% of the given size. Fig. 17 sum-
marizes the results of these tests. Fig. 17 (a) shows the av-
erage compression efficiency with 90% confidence intervals
for different sizes of documents to encode and reveals that
SyncCoding persistently outperforms others. With respect
to the compressed size (i.e., 100% - compression efficiency),
SyncCoding makes the size on average 12.5%, 20.8%, and
30.1% less than Brotli, LZMA, and Deflate. Fig. 17 (b) shows
that SyncCoding achieves nearly the maximum compres-
sion efficiency at around the chosen number of references,
k* = 26 °. Fig. 17 (c) comparing the compressed sizes of
50 randomly chosen documents confirms that SyncCoding
gives consistent saving over Brotli, LZMA, and Deflate of
about 11.5%, 18.3%, and 29.5%.

We separately test the performance of Deduplication
from a randomly chosen target file with one hundred ref-
erence files for various chunk sizes from 4 to 4096 bytes.

6. SyncCoding inarguably requires more computation. We note that
Brotli and Deflate show 14% and 98% faster encoding and 72% and 67%
faster decoding compared to SyncCoding in this experiment.
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Fig. 18 shows the compression ratio and efficiency with and
without overhead. As Fig. 18 shows, Deduplication achieves
its maximum of about 47.60% when the chunk size is 8
bytes, but this is far lower than 82.26% from SyncCoding.

We further test the compression efficiency of SyncCoding
and other techniques over the outcomes of Deduplication
with one hundred reference files and its best chunk size in
Fig. 19. This mimics a mixed Deduplication and compres-
sion method proposed in [50]. Our experiment verifies that
Deduplication indeed helps other encoding techniques by
about 2.17% on average but helps SyncCoding by only about
0.19%. This limited improvement over SyncCoding implies
that SyncCoding already eliminates most redundancy that
Deduplication targets to eliminate.

We lastly test the impact of SyncCoding over JPEG image
files and PDF files, which are known to occupy top two
portions, 19.6% and 14.5%, in cloud storage services [51].
As these files are relatively larger than RFC documents (on
average 400kB for JPEG images and 330kB for PDF files),
we compare SyncCoding with one of the state-of-the-art
Deduplication techniques, Neptune [4] that exploits CDC
with the average chunk size of 8kB in conjunction with
delta encoding for unmatched chunks. We note that in order
to find similar files for PDF and image files, we apply the
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Fig. 20. The compression efficiencies of SyncCoding, Brotli,
LZMA, Deflate, and Neptune with the average chunk size
of 8kB for PDF and JPEG image files.

same modified cosine similarity as in Section 5.1 with the
definition of a word being simply replaced by a block of 8
bytes, because such files do not have the notion of words.
Figs. 20 (a) and (b) compare the compression efficiencies for
PDF and JPEG image files. As shown in the figures, Sync-
Coding compresses 8.71%, 18.53%, 25.81%, and 40.02% more
for PDF files and 0.72%, 1.22%, 1.94%, and 3.01% more for
JPEG files compared to Brotli, LZMA, Deflate, and Neptune.
We observe that the current implementation of SyncCoding
still compresses a non-negligible amount of data for both
formats, but we also observe that it is our important future
work to develop a more efficient compression technique as
a substitute of Brotli or LZMA especially for compressed
image files.

6.3 Use Case 2: Web Browsing

To evaluate the efficacy of SyncCoding in web browsing, for
a given website, we recorded webpage visit histories of a
user and cached all the resources relevant to the webpages
(e.g.,, HTML files, Java scripts, and CSS files) in the visit
histories by an off-the-shelf web browser, Google Chrome.
For a given sequence of webpages in a history, we let
encoding techniques in comparison compress each web-
page when it is invoked. SyncCoding and Deduplication
are assumed to utilize all the previous webpages to the
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Fig. 21. Compression efficiencies of SyncCoding, SyncCoding-Cached and three other encoding techniques for the
webpages sequentially visited by sample visit histories obtained from (a) CNN (Politics section) and (b) Yahoo (Science

section). (c) A comparison of the average compressed sizes of webpages from three websites with no section restriction.

newly invoked webpage and Brotli is assumed to exploit its
pre-defined static dictionary, that is delivered in advance,
between the server and the client. LZMA and Deflate do not
use additional resources.

Fig. 21 (a) and (b) show the compression efficiency com-
parison for a sample visit history recorded inside the politics
category of CNN and inside the science category of Yahoo.
As expected, Fig. 21 (a) shows that SyncCoding does not
show any advantage over LZMA when there is no previous
webpage to use, i.e., for the first webpage. However, from
the second webpage onward, SyncCoding shows significant
compression efficiency improvement over LZMA, Brotli,
and Deflate. The compression efficiency is nearly maximized
after the third webpage and the improvement over Brotli is
as much as 20% on average. The same pattern for the com-
pression efficiency is observed for the webpages of Yahoo
as shown in Fig. 21 (b). One important thing to note here is
that if we allow SyncCoding to cache an old webpage of a
website, for instance the main webpage of CNN or Yahoo
of yesterday, to our surprise SyncCoding achieves from the
first page as good compression efficiency as visiting the
second page as shown in Fig. 21 (a) and (b). We denote
this technique by SyncCoding-Cached. We wondered why this
huge gain appears in SyncCoding and found the following
reason by an analysis for the contents of the webpages: ev-
ery webpage in a website authored by a company or a group
of programmers show extremely similar programming style
(e.g., programming templates), and thus a huge portion of
the contents can be referenced from previous webpages
in SyncCoding. Note that this gain is fundamentally not
achievable when using a static pre-defined dictionary such
as in Brotli. To evaluate the performance of SyncCoding
for more general web browsing behaviors, we let two test
users freely visit webpages of three websites for an hour,
CNN, NYTimes, and Yahoo. Using their visit histories, we
perform the same test and depict the average compression
efficiencies with 95% confidence intervals in Fig. 21 (c). The
figure confirms that from the perspective of the compressed
size, the improvement of SyncCoding-Cached over Brotli,
LZMA, and Deflate are on average 78.4%, 80.3%, and 84.3%
even under such general browsing behaviors. This implies
that if a website is prepared to serve its webpages with
SyncCoding, it can substantially enhance its user experience.

We again evaluate the performance of Deduplication on
the CNN case with ten reference pages for various chunk
sizes. Fig. 22 shows the compression ratio and efficiency
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with and without referencing overhead. Fig. 22 shows
that Deduplication achieves its maximum compression ef-
ficiency of about 40.59% when the chunk size is 8 bytes, but
this is still far below 96.63% from SyncCoding.

We also test the compression efficiencies of SyncCoding
and other techniques with ten reference pages and its best
chunk size in Fig. 23. It shows Deduplication helps other
encoding techniques by about 2.53% on average but makes
SyncCoding even worse by about 0.5%. This is because
SyncCoding loses some chances to match longer subse-
quences after the Deduplication which twists those subse-
quences as mixtures of original contents and the addresses
to matching chunks.

Motivated by this web browsing use case in which
program codes are shown to be a good application of
SyncCoding, we further evaluate the efficacy of SyncCoding
for the cloud code-hosting scenario. For the evaluation, we
chose Github, one of the most popular cloud code-hosting
services, and downloaded files from three popular Github
projects, Keras [52], Tensorflow [53], and Pytorch [54] 7
The total sizes of files downloaded from Keras, Tensorflow,
and Pytorch projects are 110MB, 880MB, and 730MB, re-

7. The downloaded release of Keras, Tensorflow, and Pytorch are
v2.2.4,v1.12.3, and v1.1.0, respectively.
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spectively. Each project has several repositories, and each
repository consists of various program codes written in
many kinds of programming languages such as Java, C++,
and Python. They also include images, docs, and PDF files.
In our evaluation, SyncCoding is assumed to utilize all the
files included in the older half of the repositories in each
project to compress the files in the remaining half of the
repositories. This emulates a scenario that the programmers
participating in a project exploit SyncCoding with the previ-
ously shared or stored repositories as references when they
make a new repository to share and store their program
codes in the project. For these three projects, as shown in
Fig. 24, SyncCoding on average compresses more about
33.2%, 37.5%, and 38.1% than Brotli, LZMA, and Deflate
in the perspective of the compressed size, respectively.
Since the codes would be written in a similar style by
the programmers involved in a project and each repository
may be related to each other in terms of the contents, as
expected, SyncCoding shows superior performance over
other compression techniques.

7 DISCUSSION

In this section, we discuss two potential performance issues:
1) the performance of SyncCoding when it is applied to en-
crypted data, and 2) the operational overhead of SyncCod-
ing when it is applied to commercialized synchronization
services such as Dropbox.
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Most cloud storage services such as Dropbox and Google
Drive store and exchange user data with encryption due to
security and privacy concerns. A natural question that arises
is whether SyncCoding can compress even the encrypted
data more or not? If the repeated patterns of data inherent
in the file before it is encrypted can be preserved in the
encrypted file, SyncCoding may still be possible to compress
the encrypted data more compared to other compression
algorithms. In such a case, SyncCoding encoder and decoder
can be implemented in network proxies located in edge
servers and can improve the efficiency of data transmission
without having any modification in the existing data syn-
chronization applications.

To evaluate the efficacy of SyncCoding over encrypted
data, we test the encryption algorithms, DES, AES, and
ARIA, explained as follows. DES (Data Encryption Stan-
dard) [55], [23], [56] is a symmetric encryption algorithm
whose encryption and decryption keys are the same, which
had been used from 1975 as an encryption standard in
the US. It has relatively small key size of 56 bits. AES
(Advanced Encryption Standard) [57], [58], developed by

SyncCoding for Encrypted Data

14

N
(=}

“:|C0mpression gain of SyncCoding over LZMA with and without encryption‘
+28.Y32%
I

W
(=}

—_
(=}
I

+0.94% +0.86
—

AES

+0.87%

ARIA

Compression gain (%)
[\e]
(==}

No encryption

DES

Fig. 25. The compression gain of SyncCoding over LZMA
with 90% confidence intervals for three encryption algo-
rithms and for no data encryption.

?\i 30 [EE Compression gain of SyncCoding over LZMA with encryption ‘ 1
=] +24.42%
20 A
=

2

210 b
2 +4.68%

& +1.32% 1.91%

g s | —— I I

O DES-32 DES-24 DES-16 DES-8

Fig. 26. The compression gain of SyncCoding over LZMA
for DES with different block sizes.

NIST (National Institute of Standard and Technology) in
2001, is also an encryption standard in the US which has
been widely used for applications such as Dropbox and
Google Drive. It uses variable key sizes from 128 to 256 bits
and adopts Rijndael algorithm [59], which uses substitution
and permutation in each block encryption round. ARIA
(Academy Research Institute Agency) [60], [61] is a block
encryption algorithm that also uses variable key size like
AES. ARIA is an encryption standard in South Korea. Both
AES and AIRA use symmetric keys. We here focus only
on symmetric algorithms because asymmetric algorithms,
whose encryption and decryption keys are different, are
not widely used due to their much slower encryption and
decryption performance.

We reuse the same RFC dataset as in the cloud data
sharing scenario in Section 6.2. For the evaluation of Sync-
Coding, we repeatedly choose one random target document
from the dataset and used k* most similar references from
the remaining documents for one hundred times. Fig. 25
shows the average compression gain of SyncCoding over
LZMA with 90% confidence interval for compression over
no encryption and for compression after applying three
encryption algorithms. When the data is compressed af-
ter encryption, the gain of SyncCoding over LZMA for
DES, AES, and ARIA in the compressed size are about
0.94%, 0.86%, and 0.87% while the compression efficiency
of SyncCoding for DES, AES, and ARIA are about 0.9%,
0.64%, and 0.66%, respectively. When the data is compressed
before encryption, the gain of SyncCoding over LZMA is
about 28.3% while SyncCoding compresses about 78.8%.
Interestingly, SyncCoding as well as LZMA merely reduce
the size of the encrypted data. This is because of the features
of modern encryption techniques: Confusion and Diffusion.
Confusion makes it more difficult to guess the contents of the
original data. Diffusion makes it harder to find the pattern
of the encrypted data. By doing so, they transform original
data into high-entropy data. Since the repeated patterns of
original data are well hidden inside the encrypted data,
compression over encryption is in general not effective.



To solve this problem, we apply and test a similar
method in deduplication to improve the compression effi-
ciency of SyncCoding for encrypted data. We first segregate
data (i.e., file) into small blocks, store the concatenated
encrypted blocks as the pseudo encrypted data, and then
apply SyncCoding over these pseudo encrypted data. To
evaluate this method, we test DES with 8, 16, 24, and 32
bytes of block sizes for the same dataset as in Fig. 25 for
one hundred times. Fig. 26 shows the average compression
gain of SyncCoding over LZMA for block encrypted data
with DES. The SyncCoding for DES with the block sizes of
8, 16, 24, and 32 bytes on average compresses data more
by 24.42%, 4.68%, 1.91%, and 1.32% with k* references
over LZMA, while LZMA itself compresses data by 29.77%,
2.78%, 1.82%, and 1.19%, respectively. On top of this block-
level encryption, data in transport between servers and
clients can be additionally protected by another encryption
such as TLS (transport layer security). According to [62],
Dropbox also stores block-encrypted data and transmit data
additionally with TLS. Overall, applying SyncCoding in the
network path (i.e., after TLS) is impractical, but applying
SyncCoding in a block-encrypted cloud storage before data
is transmitted is still a viable option.

7.2 Operational Overhead of SyncCoding

Understanding the operational overhead of SyncCoding
when it is applied to commercial synchronization services
such as Dropbox can be helpful in deciding how to imple-
ment and integrate SyncCoding into such services. How-
ever, it is practically not easy to quantify the overhead
in such commercialized services since their databases or
snapshots of databases are not accessible. Nevertheless,
we can estimate the overhead logically as follows. To run
SyncCoding, it first needs to index the reference candidates
(e.g., up to all the files) and needs to keep the indices. This is
regarded as a storage overhead. Note that assigning 10 bytes
per index as in Section 5.2 can cover up to 280 (roughly 10%4)
files, so it may be sufficient for most users. Given a user
who keeps 100 gigabytes of data in his or her cloud storage
space with files whose average size is about 1 megabyte,
the storage overhead to keep such indices becomes about
1 megabyte (=~ 10 x 10° bytes), and the reference index
overheads attached to the files with 20 references on average
becomes about 20 megabytes (= 10 x 10° x 20 bytes) in total,
which are both acceptable. With those indices ready, given
a file SyncCoding needs to scan other files and select actual
references to use for encoding. This process is subject to a
trade-off between computation and storage because tagging
files based on the file contents for quick classification can
significantly save the scanning computation in the cost of
storage overhead for tagging. If the file system is designed
to tag each file with limited bytes such as 100 bytes, the
storage overhead from tagging will be about 10 megabytes
in total for the aforementioned use case, which is still
acceptable. Note that zero file tagging that pays zero extra
storage overhead is also possible, but this is never going
to be a practical choice because its required computation
load may be prohibitively high. Another source of overhead
is from keeping track of file changes such as additions,
deletions, and modifications. This operation is also subject
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to a trade-off between computation and storage. Immediate
re-indexing of the reference candidates or re-encoding of the
encoded files with the modified length-distance pairs may
bring huge computation overhead, but this overhead can
be intelligently mitigated by temporarily keeping copies of
those untouched files in the background and by applying
batch updates intermittently. This intelligence is the key
to develop a practical SyncCoding-based file system and
determines the major storage and computation overheads.
A naive strategy is to let the file system spare a certain
percentage of storage space (e.g., 1% of the cloud storage
space) to keep the copies, and a more elaborated strategy
may be to adjust the size of this temporary space depending
on the frequency of file changes. A more radical strategy is
to adopt CDC-based single instance file system as a basis
for SyncCoding-based file system and redesign the length-
distance pair format of SyncCoding to be compatible with
CDC chunks (e.g., a distance format having a CDC chunk
index with the offset bytes inside the chunk). In this strat-
egy, re-indexing and re-encoding may substantially reduce
because only the encoded files that contain chunk indices
with bit changes are subject to re-computation. Designing
this intelligence with high efficiency is an open question
and we leave it as our future work.

8 CONCLUDING REMARKS

In this work, we propose a novel data encoding technique
SyncCoding that exploits the database of previously syn-
chronized data to improve efficiency of networking. Our
experiments show that SyncCoding can reduce the energy
consumption of mobile devices for data synchronization
and also confirm that SyncCoding outperforms existing
encoding techniques, Brotli, Deflate, and LZMA in terms
of compression efficiency in two popular use cases: cloud
data sharing and web browsing. SyncCoding sets up a
new baseline for encoding techniques that exploit inter-data
correlation.
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