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Abstract—Millimeter wave (mmWave) communication has the potential to achieve very high data rates but is highly vulnerable to
blockage. In this paper, we provision an integrated mmWavesub-6 GHz architecture to combat blockage and intermittent connectivity of
the mmWave communications. To this end, we model the mmWave channel as a two-state Markov channel and investigate the problem
of scheduling packets across the mmWave and sub-6 GHz interfaces such that the long-term average delay of system is minimized.
We prove that the optimal policy is of a threshold-type with state-dependent thresholds, i.e., packets should always be routed to the
mmWave interface as long as the number of packets in the system is smaller than the state-dependent threshold. Numerical results
demonstrate that under heavy traffic, integrating sub-6 GHz with mmWave can reduce the average delay by over 70%. Moreover,
considering the difficulty of tracking the mmWave channel state in practice, we develop heuristics of substituting a single fixed threshold
(state-independent) for two state-dependent thresholds. Our simulation results indicate that the replacement only incurs a slight
increase in average delay. Moreover, when system parameters are not known, we propose a certainty-equivalence threshold-based

learning algorithm, and provide an upper bound on its regret.

Index Terms—Delay optimization, millimeter wave, Markov decision process, learning.

1 INTRODUCTION

THe annual amount of mobile data traffic is projected
to reach almost one zettabyte by 2022 [1]. The deluge of
data traffic, especially the recent demands for data-intensive
applications enabled by 5G and beyond, will only worsen
the spectrum crunch that service providers are already
experiencing. The bandwidth available in the millimeter
wave (mmWave), ranging from 30 GHz to 300 GHz, has
the potential to mitigate the spectrum scarcity in the sub-6
GHz band by enabling wireless communication at data rate
of several Gbps.

One of the main hurdles to achieve reliable and robust
mmWave communication is related to blockage. In par-
ticular, due to small wavelengths in the mmWave band,
most objects such as concrete walls and human bodies
cause blocking and reflections as opposed to scattering and
diffraction in the sub-6 GHz frequencies. When the line-
of-sight (LOS) is blocked, mmWave channel suffers from
highly dynamic occasionally zero-throughput connectivity
that further degrades upper layer performance [2], [3], [4].
Thus, the mmWave links may exhibit intermittent con-
nectivity with ON/OFF (or available/unavailable) periods
under blockage [2], [5]. For instance, the human body in-
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creases the mmWave path loss by more than 20 dB that
can completely break the link and result in an almost zero
data rate [2], [5], [6], [7]. To demonstrate the effect of
human blockage on mmWave links, we have conducted a
set of measurements with a stationary transmitter and a
mobile receiver that moves away from the transmitter with
the speed of 1 m/s. During the time intervals 200 — 300
and 500 — 600 ms, a human body blocks the line-of-sight
(LOS) path between the transmitter and receiver. Figure 1a
shows our basic experimental setup, and Fig. 1b depicts
the strength of received signal at the mobile receiver over
time [8]. From the results, we see that the received signal
strength falls to almost zero under blockage, which can be
modeled as an OFF or unavailable period. Therefore, the
mmWave link exhibits an available/unavailable connectiv-
ity pattern under blockage scenarios such that during the
unavailable periods, delivery rate and delay performance
highly degrade. Besides, in this experiment, there are some
metal reflectors placed around the transmitter and receiver.
As such, when the mmWave receiver is moved away from
the transmitter, the reflector provides an additional signal
rays during specific time intervals, which in turn, increases
the received signal strength.

In order to combat the blockage and achieve robust
mmWave communication, some solutions have already
been proposed, which will be further discussed in Section
1.1. Briefly speaking, one class of works study the ways
to switch among mmWave paths to avoid blocked ones.
However, it may happen that mmWave links (from a source
or to a destination) in all directions are blocked. Thus, these
methods cannot guarantee a robust connection, motivating
the need to use a relatively reliable carrier to assist the
mmWave. Another class of works suggest using sub-6 GHz
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Fig. 1: Effect of human blockage on mmWave channels. Figure
(a) shows measurement setup and experiment scenario. Figure
(b) depicts received mmWave signal strength under line of sight
(LOS), human blocker (HB), and reflection (REF). The received
signal power is measured and reported in terms of Watts. [8].

to assist the mmWave communication. But in these works
on integrated mmWave and sub-6 GHz system, the delay
optimization problem has not been extensively explored.
Compared with these works, our paper aims to develop
the optimal policies for the delay minimization problem in
the integrated mmWave/sub-6 GHz system considering the
rapid increase in delay-sensitive applications. In the prelim-
inary version of this paper [9], we considered a memoryless
available/unavailable mmWave channel without knowledge
of the state of mmWave channel. To combat blockage, the
sub-6 GHz interface is exploited as a fallback data transfer
mechanism such that packets may be routed to the sub-
6 GHz interface upon arriving to the system. Moreover,
packets are allowed to be impatient in the sense that they
can “renege” from the mmWave interface to the sub-6 GHz
interface, when the waiting time of the head-of-line packet
in the mmWave interface becomes large. Under this setting,
we developed a threshold-type policy with a single fixed
threshold and showed its optimality for minimizing both
discounted and average delay in the integrated mmWave
and sub-6 GHz system. Compared with the Bernoulli chan-
nel used in [9], this paper considers a more general chan-
nel model (Markov channel). In particular, we model the
mmWave channel as a two-state Markov chain, which is
experimentally shown to be able to characterize mmWave
channel in the presence of blockage [10]. Although the
model is simple, it roughly captures the intermittency of
the mmWave channel. For mmWave channels with a larger
state space i.e. the mmWave channel may have different
average service rates (transmission rates) when they are
not blocked, the optimal policy can be computed via dy-
namic programming but the computation cost is usually
prohibitive. Thus, we believe the optimal policy obtained
for the two-state Markov model is of interest since it allows
us to gain deeper insight into how the channel parameters

affect the scheduling choices.

To develop a theoretical framework for analyzing the de-
lay performance, we first assume that the scheduler has ac-
cess to the mmWave channel state. Under this assumption,
we develop the optimal packet scheduling policy, which is
expressed in terms of the mmWave channel state. In partic-
ular, the optimal policy is shown to be of a threshold-type
with two state-dependent thresholds such that the optimal
thresholds depend on the mmWave channel state. Next, we
relax the assumption that the scheduler can access to the
mmWave channel state in order to develop a scheduling
policy that is independent of the mmWave channel state.
This is especially important from practical point of view
since the link speed of the mmWave interface (multi Gbps)
is comparable to the speed at which a typical processor
in a smart communication device operate, which makes
tracking the channel state challenging. In particular, we
develop heuristics of substituting a single fixed threshold
(state-independent) for two state-dependent thresholds. Our
numerical results indicate that such a replacement only
incurs a slight increase in average delay over the optimal
policy. In this case, the fixed threshold can be obtained using
our model in [9] by replacing the “available” probability
of the Bernoulli mmWave channel with the steady state
probability that the Markovian mmWave channel is avail-
able. Moreover, we consider this scheduling problem in an
unknown environment, where system parameters including
arrival rates of packets and statistics of channel dynamics
are not known a priori. This scenario can model the time-
varying system. We employ bandit and threshold property
to develop an efficient learning algorithm, which learns the
parameters and thus minimize the delay. We also prove the
upper bound for the regret of our learning algorithm.

1.1 Related works

There exist some works dealing with intermittent mmWave
communications. One class of works investigates methods
to switch from the unavailable mmWave path/link to the
available mmWave path/link based on the state of mmWave
links. In [11], the authors model the problem of cell selec-
tion in mmWave cellular networks as a Markov decision
problem (MDP) to deal with intermittency of mmWave
link. In [12], the authors develop a learning approach to
access network selection in order to maximize throughput.
The authors in [13], [14] consider multi-hop communica-
tion, in which relays are used to form an available path
that goes around the blocked one. Another class of works
suggest integrating a more reliable carrier, i.e., sub-6 GHz
with mmWave. The authors in [8], [15] consider resource
allocation and cooperative communication between the sub-
6 GHz and mmWave to maximize the throughput of the
system. In [16], the authors propose a novel dual-mode
scheduling framework that jointly conducts user applica-
tions selection and scheduling over mmWave and sub-6
GHz bands in order to minimize the number of unsatis-
fied user applications. The paper [17] provides a roadmap
towards realizing the integrated mmWave/sub-6 GHz net-
works, which may achieve joint mobile broadband and
ultra-reliable low latency communication (URLLC), by in-
troducing new designs for the radio interface and frame
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structure with flexible numerology and transmission time
interval (TTI). However, delay optimization in the inte-
grated mmWave and sub-6 GHz system, which is studied in
this paper, has not been extensively studied in these works.

In the integrated mmWave and sub-6 GHz system, the
mmWave interface acts as the fast but unreliable server
whose service can be blocked completely, while the sub-6
GHz interface acts as a slow but reliable server. The most
related class of works to our delay minimization problem
is the slow-server problem, in which the goal is to obtain
a delay optimal scheduling policy in a queuing system
with heterogeneous (i.e., fast and slow) servers. The goal of
this problem is to investigate the trade-off between waiting
in queue and entering slow servers when fast servers are
busy. The slow-server problem was first proposed in [18],
where the authors presented a M/M/2 queuing system with
two heterogeneous servers and conjectured that the optimal
policy for minimizing the average delay and expected total
discounted delay in system is of a threshold-type. The
conjecture was then proven in [19] with policy iteration.
Later, [20] and [21] showed the same result with coupling
arguments and value iteration, respectively. Following these
works, [22] extended the result to the system with multi-
servers (i.e., more than two), and [23], [24] studied the delay
minimization problem with different arrival and service
processes. In [24], the authors took the failure of service
into consideration and showed that the optimal policy to
minimize the long-term average number of customers in
system is also of a threshold type. Different from the parallel
structure in the slow-server problem, our architecture is a
mix of tandem and parallel queues (see Fig. 2). Moreover, we
allow for a reneging action in the system which complicates
the relationships among actions, i.e., we have to further
consider the trade-off between waiting in the mmWave
interface and reneging to the sub-6 GHz as well (details are
discussed in section II).

1.2 Key contributions

We consider an integrated mmWave and sub-6 GHz system,
and develop a delay-optimal scheduling policy for such a
system. Our key contributions are as follows:

o We investigate the policy that minimizes the expected
total discounted delay and through value iteration of
Markov Decision Process (MDP), we obtain three
rules that partially characterize the optimal policy.
Based on the findings, we propose a threshold-type
policy with state-dependent thresholds. Then, we
collapse our system state space from five dimensions
to four dimensions, and further demonstrate the op-
timality of the proposed policy. We further show that
the proposed policy is also optimal for the average
delay problem.

e We develop a technique for solving the delay min-
imization problem in settings consisting of tandem
and parallel queues with heterogeneous servers. In
particular, tandem queues exist in one branch of two
parallel queues (see Fig. 2). This implies that our
architecture is a mix of tandem and parallel queues,
which is different from the parallel structure in the
slow-server problem (introduced in Section 1.1).
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Fig. 2: Integrated sub-6 GHz and mmWave architecture. The
system consists of a head buffer, a processing server, an
mmWave interface and a sub-6 GHz interface. Packets that
arrive at this system, wait in the head buffer to be processed
and served by either mmWave or sub-6 GHz.

e We consider the case for which system parameters
(service rates, arrival rate, and transition rates of
channels) are not known. In this case, we propose
a certainty equivalence-threshold based learning al-
gorithm and provide an upper bound for the regret
of the algorithm.

o We numerically verify that it is important to use the
sub-6 GHz especially when the system is in heavy
traffic. We develop heuristics of substituting a single
fixed threshold for two state-dependent thresholds to
make our policy implementable in practice. Numeri-
cal results indicate that the replacement only results
in a slight increase in average delay over optimal

policy.

To improve readability, we summarize primary notations
of this paper in Table 1.

2 PROBLEM SETUP

In this section, we present the system model and formulate
the delay minimization problem.

2.1 System Model

We consider an integrated communication architecture with
dual sub-6 GHz and mmWave interfaces as shown in Fig. 2.
The infinite head buffer is utilized to store all packets waiting
to be processed and served by either mmWave or sub-6
GHz. The processing server is responsible for essential data
processing before scheduling. In addition, the system in-
cludes two servers (mmWave and sub-6 GHz servers) with
different service rates, e.g.,, mmWave spectrum can deliver
theoretical speeds as high as 5Gb/s while sub-6 GHz, by far
the most common, will usually deliver between 100 and 400
Mbit/s [25].

(i) Queueing Models: In our system model, we add a
buffer to the mmWave server, which stores packets routed
from the head buffer. The rationale behind our design (i.e., a
separate queue for the mmWave interface) is described next.
The service rate of the mmWave server is comparable to the
processing server (i.e., processor speed). If we assume that
there is no buffer for the mmWave server, then every packet
would need to wait in the head queue until the mmWave
server is available. In this case, the packet will experience
the service time of both the processing and the mmWave
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TABLE 1: List of Notations

Symbol Description

Y The transition rate from unavailable to available state.
e The transition rate from available to unavailable state.
A Arrival rate.

Lmm Service rate of the mmWave interface.

Hp Service rate of the processing server.

Hsub-6 Service rate of the sub-6 GHz interface.

q0 Queue length of the head buffer.

q1 Queue length of the mmWave interface.

I Busy/idle condition of the processing server.

lo Busy/idle condition of the sub-6 GHz interface.

s State of the mmWave link.

Ao () Arrival event.

D1 (+) Departure of a packet from the mmWave interface.
D> (+) Departure of a packet from the sub-6 GHz interface.
T() Processing completion.

B() MmWave link becomes unavailable.

G() MmWave link becomes available.

The set of allowed actions. Aj, denotes holding action; A; dispatches a packet to the mmWave line;
Ag dispatches a packet to the sub-6 GHz server; A; dispatches two packets to the two servers;
A, moves a packet from the mmWave line to the sub-6 GHz interface.

Kq The set of admissible actions in state q.

Ar, The reneging action from the processing server.

Arn The reneging action from the mmWave interface.

Jg(q) The optimal expected total discounted delay with initial state q.
m* = (m§, m}) Optimal thresholds: mf, m} denote optimal thresholds

Tm* ={Dm*,Dm*,---}

when mmWave channel is unavailable and available, respectively.
Optimal threshold-type policy with decision rule Dy, .

Tk The beginning of the k-th episode.

€k The set of consecutive time slots that constitute the k-th episode.

Na(n) The number of arrivals until the n-th decision epoch.

Np(n) The number of service completions on processing server until the n-th decision epoch.
Nsyb—g(n) The number of service completions on sub-6 channel until the n-th decision epoch.
Npm(n) The number of service completions on mmWave channel until the n-th decision epoch.
Ni—j(n) The number of i to j channel state transitions until n-th decision epoch.

I4(¢) The time between the arrival of ¢-th and ¢ + 1-th packet.

Sp(£) The time taken for completion of the ¢-th service at the processing server.

Ssub—6(£) The time taken for completion of the ¢-th service at the sub-6 channel.

Smm (€) The time taken for completion of the ¢-th service at the mmWave channel.

servers (almost double the service time of the mmWave) ex-
cept waiting time in the head buffer. Then, the performance
of mmWave is degraded by approximately half. In contrast,
if the mmWave server has its own buffer for the processed
packets, part of the waiting time in the head buffer can be
utilized to process packets in advance, which reduces the
experienced service time mentioned above. However, the
sub-6 GHz link is much slower than the processing server.
Therefore, the processing delay can be ignored compared
to service time of the sub-6 GHz. In other words, it is not
necessary for the sub-6 GHz server to have its own buffer.
Thus, it is appropriate to assume that the sub-6 GHz interface
acts as a server with a buffer size of one, while the mmWave
interface consists of an infinite buffer and a server.

(ii) Two-state Markovian mmWave link; Available or
Unavailable: As mentioned before, the mmWave link is
highly variable with intermittent ON/OFF periods under
the impact of blockage that can result in approximately zero
throughput. As such, we model the mmWave channel as a
Markov chain with two states: available state denoted by 1
and unavailable state denoted by 0 as in Fig. 2. The transition
rate matrix governing the channel model is denoted as

I I e o}
R=[ 1000 )

where 7 (or o) denotes the transition rate from unavailable
(or available) to available (or unavailable) state. For the un-

available state, the mmWave channel is almost disconnected
and thus we assume that the service (transmission) rate of
the mmWave is 0. For the available state, we assume that
the service (transmission) time of a packet is exponentially
distributed with parameter fimm. Note that the Markov
channel model is more general compared to the Bernoulli
channel in the preliminary version of this paper [9].

We further assume that arrivals to the system form a
Poisson process with rate ), and that the service times of
the processing server and the sub-6 GHz interface are expo-
nentially distributed with means i and “:lbié, respectively.
Given that the mmWave service rate is of the same order
as the clock speed of the processor (i.e., multi-GHz), we
assume that p, is much faster than psu¢ but on the same
order as fimm (i.e., fip > Usub-6 aNd fmm > Usub-6)- Since the
delay of the processing server becomes negligible compared
with the sub-6 GHz interface, we consider the equivalent
model depicted in Fig. 3 where we call the processing server
and mmWave interface as mmWave line.

Within this content, we further clarify the difference of
our problem from previous work, which has been briefly
discussed in Section 1.1. In Fig. 3, packets that are scheduled
to the mmWave line have to go through a processing server
first. This makes our system a mix of the tandem and
parallel queues, which implies that our problem is more
complex than the classic slow-server problem.
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Fig. 3: Equivalent system model. We omit the processing server
on the way where a packet is dispatched from the head buffer to
the sub-6 GHz since the delay of the processing server becomes
negligible compared with the sub-6 GHz interface.

To avoid a large waiting time in the mmWave queue
due to the intermittent channel (e.g., due to blockage), we
require the packets to be impatient in the sense that if the
waiting time of the head-of-line packet in the mmWave
queue becomes large, the packet “reneges” (is moved to)
from the mmWave line or “routes” from the head buffer
(is dispatched to) to the sub-6 GHz interface. Note that
the packet in the sub-6 GHz server cannot be sent back to
the mmWave line or the head buffer. Adding the reneging
concept introduces new challenges such as: should the packets
be moved from the head buffer or the mmWave queue to the
sub-6 GHz server? Therefore, in addition to the trade-off
between waiting in the head queue and entering the slow
server, which is investigated in the slow-server problem, we
investigate: (i) the trade-off between waiting in the mmWave
line and entering the slow server, and (ii) trade-off between
dispatching packets from the head buffer and the mmWave
line.

2.2 System Dynamics

(i) States: Let qp, ¢1 € N denote the queue length of the
head buffer and mmWave interface, respectively. Let {1, I2
€ {0,1} denote the busy/idle condition of the processing
server and sub-6 GHz interface, respectively. In this case,
l; =1 (I = 1) implies that the processing server (sub-6 GHz
interface) is busy. Moreover, s € {0, 1} denotes the state of
the mmWave link, where s = 1 (s = 0) corresponds to avail-
able (unavailable) state. Therefore, the system state can be
expressed by a five-dimensional vector q = (qo,l1,q1, l2, 5)
with the state space of X £ N x {0,1} x N x {0,1} x {0,1}.
(ii) Events: Six different events that happen in the system
are defined as follows:
(1) Arrival of a packet to the head buffer: Ag(q) =
(go+ 1,11, q1,12,5).
(2) Departure of a packet from the mmWave interface:
This happens only when the mmWave link is available
(s = 1) and changes the system state as: D;(q) =

(qg, Ly (=171, 1) , where (-)* = max (-,0).

(3) Departure of a packet from the sub-6 GHz interface: D3 (q) =
(QO,117Q1, (o —1)" 75) :

(4) Processing completion: If the processing server delivers a
packet to the mmWave queue, the system state changes as:

T (q) £ (Qm (=175 + Q1J2,3)
(5)  mmWave link
(90,11, 1,12,0).

[I>

becomes  unavailable:

B(q)

(6) mmWave link becomes available: G (q) = (qo, 1, q1,12,1) .
Note that we introduce “dummy” packets for events in (2)-
(4) when ¢; = 0,1l = 0 and l; = 0, respectively. This is
further elaborated in Section 2.3.

(iii) Actions: K = {A,, A1, As, Ay, A} is the set of
allowed controls or actions. Kq C K denotes the set of
admissible actions in state q. Each action in set K is defined
as follows:

(1) Holding: Aj keeps the system state unchanged, ie.,
Ah (q) = (QO7l1aQ1712a3) , 4 € X.

(2) Scheduling-on-mmWave: A packet can be routed to the
mmWave line if the processing server is idle, i.e., A; (q) =
(qo - 1a15q1al278)5 qc {q “qo > 17l1 = 0}

(3) Scheduling-on-sub-6: A packet can be routed to the sub-6
GHz interface if the sub-6 GHz server is idle, i.e., A5 (q) £
(QO - 1al17Q17178)5 qc {q tqo = 17l2 = 0}

(4) Scheduling-on-both: If both the sub-6 GHz and processing
servers are available, two packets can be dispatched to the
two servers simultaneously, i.e.,

Ap(a) 2 (g0 —2,1,q1,1,5), qe{q:q >2,l1 =l =0}.

(5) Reneging: Action A, moves a packet from the mmWave
line to the sub-6 GHz interface, and it is defined on the
set {q:q1 +11 > 1,lp =0}. Let A, and A, denote the
reneging actions from the processing server and mmWave
interface, respectively. Therefore, we have:

‘A’rP (q)é(QanvthaS)a qe{q:llzl7 l2:0}7
Armm (q)é(qO;llvql_lvlvs)v qe{q:ql 217 ZZZO}

Then, A, is expressed as follows:

A (q) ifli=1,¢.=0
A (q) 2 Arn (@) iflh =0, qn>1
min v (A4, (q)) otherwise,

a€{rp, "mm}

where v () denotes the delay cost. Note that if A, and A,
are admissible, we select an action that results in a smaller
cost. In Section 3, we show that A, = ArP for the discounted
delay problem when both A, and A, are admissible.

T'mm

2.3 Problem Formulation

A scheduling policy 7 specifies the action selection rule
for each decision epoch when an event happens. We use
IT to denote the set of all admissible scheduling policies,
where admissible means that each action selected in a
certain state is admissible in that state. Further, whenever
an event happens, we select a control variable from the set
U 2 {(uo,u1,us, U3, Ug, Us) © Ug, U1, Uz, Uz, Us,us € K},
where ug, u1, u2, u3, us, us are selected actions correspond-
ing to events Ay, T, D1, Ds, B, G, respectively. In particular,
if the system occupies state q and u = (ug, u1, Uz, ug, U4, Us)
is selected at a certain decision epoch, then we know that if
an arrival occurs at the next decision epoch, we would take
action ug. Similar explanation applies to uy, us, us, u4, us.
Average Delay Problem: Our objective is to find an
admissible scheduling policy 7 that minimizes the average
delay in the system. By Little’s Law, minimizing the delay is
equivalent to minimizing the total number of packets in the
system. Thus, the problem is expressed as follows:
T
min limsup —E”™ / c(q(t)) dt} , (2)
mell T eo t=1
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where E™ denotes the conditional expectation given policy
7, q(t) € X is the system state at time ¢, and ¢(q) is a
function of the system state that computes the total number
of packets in the system, i.e.,

cl@ 2 q+aq+h+l. 3)

The problem is a continuous-time MDP, and for simplic-
ity, we convert the continuous-time MDP problem into an
equivalent discrete-time MDP problem using uniformiza-
tion [26]. In particular, we assume that all servers will serve
“dummy” packets whenever they are idle. Then, we sep-
arate continuous time into time slots with sequences when
either a packet arrival or a packet (real or dummy) departure
(from the processing server or interfaces) or change of the
state of the mmWave link occurs.

The technical analysis for uniformization can be found
in [26]. The heuristic explanation is as follows. To ensure
that the transformed discrete-time system is equivalent to
the continuous-time system, the sampling rate across the
continuous time should be the same. If we only consider
real packets, then the sampling rate can be different. For
example, for the case that the mmWave channel is in good
state, the sampling rate is A + ftmm + @ when only the
mmWave interface is busy, while it is A + figub-s + & When
only the sub-6 GHz interface is busy.

Let n € N denote the beginning of the n-th time slot (de-
cision epoch) when a certain event happens. Furthermore,
without loss of generality, we scale time and assume that
)‘+Mp+,umm+,usub—6+a+’y: 1.

Let q be the system state just before an event happens.
After an event happens, certain actions will be selected. Let
q’ denote the system state after the action is taken. Then,
the transition probability that goes from one state to another
under certain action is expressed as:

A if ' =ug(Ag(q))
pp if ' =ui (T (q))
Umm if 9" =us(D1(q)) and sq =1
P(q'|q,u) =
(lam) =1 e if o = us (D (@)
o if  =us(B(q)) and sq =1
y if ¢ =u5(G(q)) and sq =0,

4)

where 54 denotes the state of the mmWave link in system
state q.

Then, with the discrete-time MDP, the uniformized prob-
lem is formulated as:

1
min limsup —E™
well N_>oop N

Z c(q(n))} , ®)

where q(n) denotes the system state at the n-th time slot.

A policy is called a stationary deterministic policy if it is
time independent and can be expressed as # = {D, D, --- },
where D is a deterministic function that maps states to
actions. Stationary deterministic policies are the easiest to be
implemented and evaluated. However, there may not exist
a stationary deterministic policy that is optimal for average
delay problem [27]. In Section 3, we show that there exists
an optimal policy for average delay problem.

6

Discounted Delay Problem: A method for studying av-
erage cost MDPs is to relate them to discounted cost MDPs.
Specifically, average cost optimal policy can be regarded as
a limit of a sequence of discounted cost optimal policies.
Thus, we begin with discounted delay problems and extend
our results to the average delay problem in the end. The
discounted delay problem in the equivalent discrete-time
MDP is expressed as follows:

: (6)

mell Nooo n—0

N-1
min limsup E™ {Z (8)"c(q(n))

where q(n) denotes the system state at the n-th time slot,
and g is a discount factor such that 0 < 8 < 1.

3 DELAY OPTIMAL PoLicy
3.1 Discounted Delay Problem

Note that one-step cost ¢(q) is unbounded. Therefore, there
may not exist a stationary deterministic policy for the dis-
counted delay problem. In Proposition 1, we will show
that there do exist optimal stationary deterministic policies,
and we provide a method to study the structure of the
optimal policies. Before that, we provide some notations
and definitions which will be used in the proposition and
following content.

Let w be a positive real-valued function on X" defined by
w(q) = max(c(q), 1). Define the weighted supremum norm
|| - || for real-valued functions v on X by

[|v]]w = sup m
qex w(q)
Let V be the space of real-valued functions v on A that
satisfies ||v||,, < co. We define an operator B : V — V as:

-
Bu(q) £ Jain v (u(q))- @)
Then, we define operator £ : V' — V as:

Lv (q)
Se(q) + ﬂ{ABv (Ao (@) + B0 (D (@) - sy

+ :U'sub—éBv (DQ (q)) + /u‘va (T (CI))
+aBuv(B(q)) - Lisy=1} T 7B (G () - L{s,=0}

+p(a)- Bu(q) } ®

where 1, is the indicator function, v(-) € V and p(q)
denotes the total probability of impossible events in state q.
For example, when s = 0, a departure from the mmWave
will not happen. The expression of p (q) is

pla)=1- )‘_,up — Msub-6 — (Mmm+a) : ]]-{sqzl} =7 ]]-{sq:(]}~
)

Let J3 (q) denote the optimal expected total discounted
delay function of initial state q.

Proposition 1. (a) The optimal expected total discounted delay
Jg satisfies the following optimality equation:

J,@ (q) = [:Jﬂ (q) . (10)
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(b) There exists a stationary deterministic policy for the
discounted delay problem and it is determined by the right-hand-
side of (10).

(c) For any function v € V, we have lim,,_, LMy = Js

Proof. Please see Appendix A. O

Next, in Theorem 1, we will show some rules that the
optimal policy must satisfy via value iteration provided in
Proposition 1. In particular, we define © asasetofallv € V'
that satisfy the following properties from (11) to (15), and
show that Jg € ©.

if g >1, Iy =0 (11)
ifgp>1, 1 +q >1,and Iy = 0;

(12)
v(T(a)) <v(q) if i1 = 1; (13)
v(A1(q)) <v(A2(q)) if 9= (g0,0,0,0,s) and g > 1;

(14)
U(ql) S U(qQ) if q1,92 € X7

q2—a1 €{(1,0,0,0,0), (0,1,0,0,0),
(0,0,1,0,0), (0,0,0,1,0)}. (15)

Note that the function set © is not empty since any constant
function belongs to ©.

Except that the mmWave channel is extremely inter-
mittent, the average service rate of the mmWave is much
higher than the sub-6 GHz (e.g., two orders of magnitude).
Besides, the service rate of the mmWave and processing
server are in the same order. Hence, it is reasonable to
assume that the expected time for a packet to go through
empty mmWave line is less than empty sub-6 GHz interface,

je, L yxta. 1 m 1b6. With this assumption, we have
'Sub-

¥ mm
the fopllowing theorem

Theorem 1. Given that i—i—wjo‘ L

Homm Hsub-6” we have Jﬂ < 6'

Proof. Please see Appendix B. O

Remark: Note that in the following, we say that action A; has
a higher priority than action A; if action A; incurs no more
costs than action A;, where ¢,j € {1,2,7,b, h}.

By Theorem 1, we obtain three rules that partially char-
acterize the optimal policy:

e Rule 1: Holding is not preferable as long as the
processing server is available: Property (11) implies
that A; has priority over Ay,

e Rule 2: Keeping the mmWave line busy: Properties
(11) and (14) imply that a packet should be scheduled
on the mmWave line whenever the mmWave line is
empty and the head buffer (see Fig. 3) is not empty.

e Rule 3: Head buffer is the first choice for the sub-
6 GHz interface: That is to say, moving a packet
from the head buffer to sub-6 GHz interface incurs no
more cost than reneging a packet from the mmWave
line does. In particular, property (12) says that A; has
priority over A,.. In addition, if both A, and A, are
admissible. then Jg (A, (q)) = J3(T (A, (aq))). By
property (13), we have Js(Ar,(q)) < Jz(Ap,.(q)),
which implies that A, = ATP when ATP and A, are
admissible.
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Optimal Policy: Based on these rules, we propose a
threshold-type policy mm+* £ {Dm+, Dm=, -} with state-

dependent thresholds m* £ (m{, m}), where m{ and m}

denote optimal thresholds when mmWave channel is un-
available and available, respectively, and Dy, is defined as
follows:

Dm+(q)=
Ay if 9=(qo0,0,91,1,5), go>1,
or q=(qo0,0,¢1,0,s), go =1, go+q1 <mj,
Ay if q=(qo,1,¢1,0,5), go>1, go+q+1>m},
or q=(1,0,q1,0,s), ¢ >m},
A, if q=(0,11,41,0,8), l1+¢1 >m,
Ap if a=(q0,0,1,0,5), go+q1>m,q0>2,
A;, otherwise.

Note that 7+ follows all above rules. Next, we show the
optimality of mm~ for the discounted delay problem. To
this end, we name the action sets {A;, A} and {As, A}
as “not-adding-to-sub-6” and exclusively “adding-to-sub-6”,
respectively. We already know the priority between A; and
A}, and the priority between Ay and A,. Thus, it remains
to determine the priority between the sets not-adding-to-
sub-6 and adding-to-sub-6. To show this, we dub the path
consisting of the head buffer, the processing server, and
the mmWave queue as “FastLane”. We claim that in the
discounted delay optimal policy, adding-to-sub-6 obtains
priority over not-adding-to-sub-6 when the queue length of
FastLane exceeds certain state-dependent threshold m}, i.e.,
a threshold-type policy as expressed by mm+. We will show
this via value iteration. For simplicity, we re-express the
system state q in the form of (z,¢1,l2, s) where x denotes
the number of packets in the head buffer and processing
server. Note that if > 0, then the processing server should
be busy by Rule 1. For the sake of exposition in the following
proof, we define a term in Definition 1.

Definition 1. Let Jj (v,q1,l2, s) denote the optimal expected
total discounted delay over the next n time slots with initial state
(7, q1,12,5). Then, Jg“ (7, q1, 12, 8) is written as:

Jg+1 (l’, q1, l23 S)
=(x+q +12)+ 5(/\BJ§ (x+1,q1,12,8)

+ ppBJg ((ac - 1)+ x+q — (z— 1)+ ,lg,s)

+ Mmm-BJéI (37, (fh - 1)+ 7l27 8) : ]]-{szl}

+ Msub—6BJg (SU, q1, 07 S) + ’YBJE (557(]1, l27 1- 8) ! ]]-{520}

+aBJjg (x,q1,la,1=5)-1{s=1y + p(q) BJ§ (z,q1,12, 5) )
(16)

Moreover, Jg (x,q1,l2,8) =+ q1 + la.

Next, we define a class of functions with threshold,
supermodular and monotonicity properties in Definition 2
and Lemma 1 proves that Jj has these properties.
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Definition 2. We define a class of functions F that satisfy the
following properties where f € F, 12,5 € {0,1}, and x,q1 € N:

f(x+1,q1,0,s) +f($+17q171a8)

<f(@ aq,1,s)+ f(z+2,¢,0,s)  (17)
f(z+1,41,0,5) +f($ a+1,1,s)
<f(x,q1,1,8)+f(x+1,¢14+1,0,s) (18)
£(0,q1+1,0,s) +f(0 a+1,1,5)
<f(0,q1,1,5) + f(0,q1+2,0,5) (19)
fz,a1+1,12,8) Sf(x+1aQ17l258) (20)
together with supermodularity:
fz,q1,1,8) +f (z+1,41,0,5)
<f(z,q1,0,8) + f(z+1,q1,1,5)  (21)
f(z,q1,1,8) +f (z,q1+1,0,5)
<f(2,q1,0,8) + f(z, 1 +1,1,5)  (22)
and monotonicity:
f(z,q1,l2,8) < f(z+1,q1,l2,5) (23)
f(zai,le,8) < f(z,q1+1,12,5) (24)
f(2,q1,0,8) < f(z,q1,1,5) (25)

Eq. (17) to (19) describe the threshold property.

Lemma 1. Jy satisfies all properties in Definition 2, i.e., Jg €
F for each n € N.

Proof. Please see Appendix C. O

Now we are ready to provide our main result that the
optimal policy is of the threshold-type for both “available”
and “unavailable” states of the mmWave link.

Theorem 2. If s = 0 (s = 1), then there exists an m§ (m}) € N
such that if the number of packets in the system is larger than m§
(m7), ie., c(q) > m§ (c(q) > mk), then it is optimal to add a
packet to the sub-6 interface.

Proof. Please see Appendix D. O

Thus far, we have proven that the optimal policy for the
discounted delay problem is of a threshold type. However,
note that we allow controllers to take actions when fictitious
events happen, where the fictitious events refer to the events
that do not alter the system state. Actually, the fictitious
events make changes to the “dummy” packets. For example,
if the current system state is (10,1,0,0,1) and the event
departure from the mmWave interface occurs, the mmWave
interface finishes serving a “dummy” packet rather than
a “real” packet, in which case the system state does not
change. However, it is impossible to track these fictitious
events in practice. In fact, our current policy will preserve
its optimality when actions are limited to real events. This
is because when the fictitious events happen, the optimal
action does not change the system state as long as the
system starts from a proper state. We will prove this via
the following theorem. Moreover, we call a state to be proper
if no optimal actions can be taken in this state. For example,
state (5,0,0,1,1) is not proper since it is optimal to do A4,
by property (11); however, state (0,0, 0, 0, 0) is proper since
no actions can be taken.
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Theorem 3. If the system begins with a proper state and the
optimal policy is followed, then the system state will not be
changed when fictitious events happen.

Proof. Please see Appendix E. O

Optimal Threshold: From Theorem 2, we already know
that for both cases that the mmWave link is either unavail-
able s = 0 or available s = 1, the optimal policy is of
the threshold type. The following theorem will provide the
relationship between the threshold values m§ and mj.

Theorem 4. The optimal threshold values for the sub-6 GHz
interface satisfy mg < mj, where mg and m7 denote the optimal
threshold values for cases that the mmWave link is unavailable
and available, respectively.

Proof. Please see Appendix F. O

3.2 Average Delay Problem

The following theorem extends our results to the average
delay problem.

Theorem 5. There exists a threshold-type optimal stationary
deterministic policy that minimizes the average delay in our
system.

Proof. According to [28], limg, 1 (1 — fn) JW;‘" (@) =

J™ (q), Vq € X, where Jg " (q) denotes optlmal expected
total discounted delay under optlmal policy 7 associated
with discount factor 3, and J™ (q) denotes optimal av-
erage delay under optimal policy 7*. Since our action set
is finite, by [28], there exists an optimal stationary policy
for the average delay problem such that 73 — 7*, which
implies the optimal policy is of a threshold- type O

In Fig. 4, we provide a flowchart on how decision is
made based on a state. Briefly speaking, when the sub-6
GHz interface is idle, we decide whether to use it based on
checking go + g1 + 11 > mj. As long as the condition is sat-
isfied, the sub-6 GHz interface is used either by dispatching
a packet from the head queue or reneging a packet from the
mmWave line.

4 LEARNING TO MINIMIZE DELAY IN UNKNOWN EN-
VIRONMENT

While deriving scheduling policies, we assumed that the
following parameters were given:

Packet arrival rate ),

Service rate of the processing server i, ,

Service rate of the sub-6 GHz channel pigp-6,

Service rate of the mm Wave channel gy,

o Parameters «,~ that describe the dynamics of the
mmWave channel.

However, in practice these may not be known a priori.
In this section we design “learning" algorithms that simul-
taneously optimize delays while “learning” these unknown
parameters. This allows us to derive delay-minimizing
schemes for the case when these parameters are not known
to the scheduler. We denote these parameters collectively by

the vector 0, i.e., 6 := (1/A, 1/1p, 1/ pisup-6,1/ pimms 1/, 1/7).
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Fig. 4: Decision making. The ¥ and N in the figure denote Yes and No, respectively. The m} is state-dependent threshold.

The reason why we use the reciprocals of the arrival rates, given as follows,
service rates and channel transition rates rather than the
rates themselves to parameterize the system is that the K
empirical estimates for the former are unbiased. In what ($,T) := Z Z c(q(n)) — He(r) |, (26)

follows, we will work exclusively with the discrete-time
system that has been obtained by sampling the original
continuous-time system at those time instants when either
of the following events occur: (i) service completion, (ii)
packet arrival, and (iii) the channel state changes.

A learning rule ¢ is a collection of maps that at each
decision epoch n maps the operational history of the system
until 7 to a scheduling decision. We will derive learning
policies under the following assumption.

Assumption 1 (Episodic Setup). The state of the network is
“reset” at times t = kH where k = 1,2, ... as follows: both the
queues are emptied, and the channel state is reset to 1. This setup
resonates with the episodic reinforcement learning (RL) setup [29]
in which the system state is “reset” to a designated “start state”
at the end of each “episode”.

We note that the above assumption is not very restrictive
since we can always reset the system state at any desired
time as follows. We simply stop the arrivals by not letting
packets enter the queueing system until the queues are
“drained". Thereafter, we wait for the channel state to be-
come equal to 1. Thus, we can always perform a system reset
after every H time steps, in order to start a new episode.

Thus, the k-th episode begins at time 7, := kH, and
lasts for a duration of H time-steps. We denote &, :=
{m6, 7 +1,..., 7 + H — 1} as the set of consecutive time-
slots that constitute the k-th episode.

Let m* be an optimal stationary policy for the network
that minimizes the average delay when the parameter 6
is known. Let ¢(n*) be the optimal average cost (delay)
under the policy 7*. In order to measure the efficiency of the
proposed learning algorithm, we will quantify its learning
regret [30]. The regret R(¢,T) of a learning algorithm ¢ is

We are interested in designing learning rules ¢ for which
the expected value of regret ER(¢,T) is low, where the
expectation is taken with respect to the probability measure
induced by ¢.

4.1 Certainty Equivalence Learning Rule

We begin with some notation. Let N4 (n) denote the number
of arrivals, and Ny(n), Nsub—6(n), Ny (n) the number of
service completions on processing server, sub-6 channel
and mmWave channel respectively until the n-th decision
epoch. Let NV;_,;(n) be the number of i to j channel state
transitions until n-th decision epoch. Let S;_,;(¢) denote the
holding time for the ¢-th i — j transition. Let I4(¢) denote
the time between the arrival of ¢-th and ¢ 4 1-th packet,
while S,(¢), Ssup—6(£), Smm(£) denote the time taken for
completion of the ¢-th service at the processing server, sub-6
channel and mmWave channel respectively. The empirical
estimates of these rates are obtained as follows:

- o
. N(")
5 Noup—6(n)
|- L mei”;m“. (30)

We now obtain estimates of the parameters «, y. We observe
the following: the holding time in state 0 (1) is an exponen-
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tial random variable with rate « (7). Thus, the empirical
estimates for the parameters 1/«, 1/ are given as follows:

1 ™ Sesa(n)
|:OL:| (n) - E 1]\/*0_>1(7/L) ’ (31)
[P > e ()

Slm= == e

We let é(n) be the vector that contains these estimates (27)-
(32). Let 7* () be the scheduling policy that is optimal when
the true system has parameters 6. It was shown in Theo-
rem 5 that the optimal policy for the delay-minimization
problem (6) is of a threshold-type, with two state-dependent
thresholds mg, m7. Recall that we denote this policy as mm+.
We will make the following assumption while designing the
learning algorithm.

Assumption 2. The scheduler knows an upper-bound on the
optimal thresholds m§, m7 of Theorem 5, i.e., it knows the value
of M such that m§, mj < M. Thus, it knows that the optimal
policy belongs to the following set of policies

MY}

Note that the above assumption allows the scheduler
to obtain some “partial knowledge" about the underlying
system.

Hopt = {W(mo-,mﬂ NS {0, 1,.. (33)

Remark 1. The above assumption is justified since it suffices
to choose the parameter M in (33) to be sufficiently large. For
example, it could be taken to be greater than a known upper-bound
on the optimal value of average delay (6). Any crude upper-bound
on the optimal delay would be sufficient for our purpose. To see
that why would such a technique work, we note that a policy with
both the thresholds mg, my set equal to M does not transmit
unless the queue lengths exceed M, and hence necessarily has
average delay greater than M. Thus, when M is chosen so as to
satisfy this condition, 11,y would contain an optimal threshold
policy.

Certainty Equivalence Learning Rule: The proposed
algorithm proceeds in episodes. Let 7fj (0") denote the
policy from the set I1,,; that achieves the smallest average
delay when the true system parameter is equal to ¢. At the
beginning of each episode k, i.e. at time 7, the learning
rule derives the empirical estimates é(Tk) as in (27)-(32).
It then solves for the policy nfj t(é(m)) that is optimal
when the true value of the systerlﬁ parameters is equal to
0(). It then implements the policy T, t(é(Tk)) during
E. Thus, the learning algorithm implemepnts a “certainty
equivalent” (CE) controller [31], [32], [33] that during each
episode makes scheduling decisions that are optimal when
the true value of the system parameters are equal to the
current estimates. Though the CE based learning algorithm
is very simple to implement, it is well-known that such a CE
rule needs not always yield the optimal performance [31],
[32], [33], [34]. In general, while optimizing the performance
of an unknown system, one also needs to take into account
the estimation errors while making sequential decisions. For
example, the Upper Confidence Bound (UCB) [34], [35], [36]
rule maintains a high-probability confidence ball around the
empirical estimates, and implements a policy that is optimal
for the “optimistic estimate" from within this ball. Reward
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Biased Maximum Likelihood Estimate (RBMLE) [32] derives
an optimistic estimate of the parameter by maximizing an
objective function that is sum of log-likelihoods and a “bias"
term that gives more weightage to those system parameters
that yield better performance. Even though these learning
algorithms are known to yield state-of-the-art performance
in RL tasks, they entail higher computational complexity
than the CE rule, and are also harder to analyze. How-
ever, as our analysis shows, for the task of minimizing the
average delays in the wireless networks, the time-average
learning regret of the CE rule is asymptotically 0. Our proof
relies on the key result Theorem 5 which shows that while
searching for an optimal policy, one can safely restrict to the
class of threshold policies.

Algorithm 1: Certainty Equivalence Learning Rule

1. Initialize the empirical estimate §(1).
2: forn=1,2,...do

3. if n = 7, then

4 Calculate 6(n) as in (27)-(32).

Calculate the policy from the set 11,,; (33) that has

the smallest cost

5:  end if
Implement this policy within the current episode.
6: end for

4.2 Preliminary Results

We will analyze regret of Algorithm 1 under the following
assumption.

Assumption 3. Under each threshold policy from the set
IT,p: (33), the average cost (6) is finite, i.e., ¢(m) < oo for all
e Hopt-

This amounts to the assumption that under each policy
from II,,;, the system is “stable”, i.e., has a finite average
cost. In order to verify this assumption, we could utilize
Lyapunov functions [37] in order to verify whether for each
policy the network remains stable as the system parameter
values range over the set of possible values that could be
assumed by them. We now derive some results that are
useful while analyzing the learning regret of the CE rule.

Lemma 2. Consider a sequence of parameters 6,,n € N that
satisfies 0, — 6. Let Assumption 2 hold true. We then have
T, (On) = 71, (6)'. Consequently, there is an €, > 0 such

that whenever® ||0" — 0|| < ep, then nfy  (0") = 77y, (6).
Proof. Please see Appendix G. O

Lemma 3. There exists a constant > 0 and natural number ng
such that for all n > ng, m € gy,

Ex(Na(n)) Ex(Np(n)) Ex(Nsub—6(n)) Ex(Nmm(n)) >nn,
(34)

and also, for m € Wy, 4,7 € {0,1},
E.Ni—;(n) > nn,Vn > ng.

1. Recall that wﬁopt (0") denotes the optimal policy from within the
set IIopt, when the true parameter is 6.
2. For a vector z, we let ||z|| denote its Euclidean norm.
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Proof. Please see Appendix H. O
Lemma 4. (Sufficient sampling) Define,

Ny(n) := min {NA(n), Np(n), Neyp—s(n),

N (n), Nos1(n), N1oo(n) }. (35)
Define the following event,
Gr:={w: Np(n) 2mn, Vn€{Tulpsro}, (36)

where my € (0,7), n is as in Lemma 3, and kg is the smallest
episode that satisfies

2
Tho = L logT, 37)
where T' is the operating time horizon. We then have that
log T
Z exp (—07x) < Tz
k>ko
Proof. Please see Appendix I. O

Lemma 5. (Concentration Result) Fix a §& > 3. Define the
confidence intervals for empirical estimates 6(n) (27)-(32) as

follows:
Ca(n) : = {z>0: . i] (n)' f\ff%}
Coy(n):=32>0: |z~ :p](”) < ivl:(gn?}
Cp () : = {z>0: - u:m] (n)‘ Jff,iog(:)}
Ca(n) ={z>0 . ;}(n)‘ éz“vlozgnv;}
Cy(n) : = {z>0: . H(n)‘ - éj“vljégnv;}

Let Co(n) be the set of those possible values of the system param-

eters 0 = (1/x, L/t 1 11 s 1/ 1/7f) for which
the individual elements belong to the corresponding confidence
intervals. Define

Ga(n) :={w:0 €Cy(n)}, and Gy := Np>p,Ga(n), (38)
where ng € N. We have
6
P(G2) > 1~ ; — (39)
Proof. Please see Appendix J. O

Corollary 1. Consider the operation of the CE learning (Al-
gorithm 1), and let the events Gi,Gy be as in (36), and (38)
respectively. We then have that

6 logT
P(glmg2)>1—<z —+ = )

n>ngo
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4.3 Regret Analysis of CE Learning Rule

We will analyze the regret on the sets G; NG and (G N Go)©
separately.

Regret on G; N Ga: In this case, the confidence inter-
val Cy(n) holds true, and moreover its radius is smaller

than illogn Let ny be the smallest integer that satisfies
Eiﬁ% < ¢, (€p is as in Lemma 2). Since the radius of the

confidence ball is less than ¢, in this scenario the policy
produced by the CE rule is optimal after time n;. Thus, the

. . LlogT
regret after ny is 0. n; is clearly upper-bounded by eZ
where T is the operating time-horizon. Thus, the regret is

upperbounded by 2T

162 :

Regret on (G1 N gz) : It follows from Lemma 4 and
Lemma 5 that the probability of the event that either C(7y)
fails, or the number of samples Ny(71) is less than ny 7y, is
upper-bounded by + exp(—n171). Under Assumption 3,

the regret within such a “bad” episode can be trivially
upper-bounded by a constant C; (the maximum cost in-
curred by a policy from the set 1I,,;) times its duration
H. Hence, the reget during such an episode can be upper-
bounded by

1 1
+ eXp( m Tk) T = ﬁ
Tk k

Cy + C17 exp(—n17k)-

Summing up the above expression over episodes k, we
conclude that this regret is bounded by

Z ! —|—ZTkexp (—m7r)

k Tk
1
:Z W + HZ k’exp(—Hmk‘).
k k

Since & > 3, this sumation is bounded.
We summarize our result below.

Theorem 6. Consider the CE based learning rule (Algorithm 1)
that is used for making scheduling decisions for the network
described in Section 2. The expected value of its regret (26) R(T)
until time T" can be bounded as follows:

ER(T)gglogT—kClZ !

-HCl E exp( ‘H’r]lk)7
2 —11£6-1
me, = HE1kE

k=1

where €, is a problem-dependent constant as in Lemma 2, the
constant & can be taken to be 3, and the constant Cy is the
maximum cost incurred by a policy from the set I1,p;.

5 SIMULATION RESULTS

In this section, we numerically investigate the performance
of our proposed policy. To this end, we first investigate
the relationship between the arrival rate and the optimal
thresholds. Next, we demonstrate the benefits of utilizing
the sub-6 GHz paired with our threshold-type policy es-
pecially in heavy traffic scenarios. Finally, we compare the
proposed policy with other policies. In particular, our results
show that replacing the state-dependent optimal thresholds
with one fixed threshold incurs slight cost increase over the
optimal policy.

According to 802.11ad, with different Modulation and
Coding Scheme (MCS), the data rate of the mmWave ranges
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from 27.5 Mbps to 6756.75 Mbps while according to 802.11n,
the data rate of the 20MHz channel ranges from 6.5 Mbps
to 288.9 Mbps. Based on the statistics, we assume that the
length of the packet is 64kB ! and set jumm = pp = 2000
pps (packets per second) and pisub-s = 40 pps. In addition,
[10] conducted a field measurement to study the impact
of blockage caused by typical pedestrian traffic on the
mmWave link and formulated the mmWave link with a two-
state Markov channel according to their measurement. We
use the transition rates of the continuous Markov mmWave
channel obtained in this paper, i.e. we set & = 0.18 and
v = 3.85.

5.1 Optimal Threshold

As in [9], we use simulations to obtain optimal thresholds.
In particular, for each fixed arrival rate, we simulate the
delay performance as the thresholds m; and my vary. From
our results, for all arrival rates, the optimal threshold when
mmWave is unavailable (mg) is 1. This is reasonable since
the expected transition time from unavailable mmWave to
available mmWave in the simulation is 1/0.18 s, which
is is large enough to serve at least one packet (average
service time is 1/40 s). In addition, as shown in Fig. 5, for
fixed arrival rate and the threshold for unavailable state
mg, the average delay first decreases and then increases
as the threshold for available state m; increases, and the
smallest average delay corresponds to optimal threshold
m7}. Then, it is easy to observe that the optimal threshold
for available state m] decreases with arrival rate. The unit
kpps in the figure is short for kilo packets per second.
The abrupt change in Fig. 5d, is due to the fact that the
arrival rate approaches the service capability of the system.
As the system is in heavy load, utilizing the sub-6 GHz
interface at the right time is extremely important. Before
the transition point, lots of packets which could be served
by the mmWave are served by the sub-6 GHz since the
sub-6 GHz is overused. After using the optimal threshold,
the sub-6 GHz is utilized at the right time. Because of the
large load, using the sub-6 GHz appropriately will allow the
mmWave to serve significantly increased number of packets
over using a smaller threshold. This is why the change is
abrupt.

5.2 Benefits from the Sub-6 GHz with Threshold-Type
Policy

In this section, we demonstrate benefits of the sub-6 GHz
interface to combat the effects of blockage and intermit-
tent connectivity, especially under heavy traffic scenarios.
Considering the extremely different service rates of the
mmWave and the sub-6 GHz interfaces, we raise the follow-
ing question: How much does the sub-6 GHz interface improve
the average delay of the system? To answer this question, we
compare delay performance in systems with and without
the sub-6 GHz. For the system with the sub-6 GHz (our
integrated system), the proposed threshold-type policy is
utilized. For the system without the sub-6 GHz server, no

1. Considering that the maximum size of the data frame in MAC
layer of 802.11n is 65kB and we focus on scheduling policy in this layer,
we assume that our packet size is 64kB.

12
=().! A=1.1 kpps
242 A=0.9 kpps 26.9 pp
24.1
6.8
24
P29 7267
éz:s E
- 5,266
& 237 <
= =
) S
Q236 Q265
235
264
234
233 263
123456789101112131415 123456789101112131415
Threshold m, Threshold m,
(@) (b)
=1.3 k A=L.5 kpps
395 A=1.3 kpps 618.8 pp
39.45
6187
394
@ 3 618.6
w w
39.35
E E
> 393 >, 618.5
= =
D 395 o
I~ 2 6184
392
618.3
39.15

123456789101112131415 12

Threshold m 1
(© (d)

34567 89101112131415

Threshold m 1

Fig. 5: Delay vs threshold mi (when mg = 1). Given arrival rate,
the smallest delay in each figure corresponds to the optimal
threshold mj. As arrival rate increases (from (a) to (d)), the
optimal threshold m7j decreases.

scheduling policy applies since only mmWave interface ex-
ists in the system. To provide a more clear exhibition of our
simulation results, we define relative delay improvement as
follows:

W= W (no sub-6) — W (with sub-6)
N W (no sub-6) ’

where W (with sub-6) and W (no sub-6) denote the average
delay in the integrated system and that in the system
without the sub-6 GHz server, respectively. As shown

70+
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30F

20+

10F

Relative Delay Improvement (%)

04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19

Arrival Rate (kpps)

Fig. 6: Relative delay improvement vs arrival rate. Delay
improvement from using sub-6 GHz and our threshold-type

policy increases with arrival rate. ) )
in Fig. 6, we study how the relative delay improvement

changes as arrival rate varies. We note that the relative delay
improvement increases with arrival rate and reach more
than 70% in heavy traffic scenarios.

5.3 Comparison with other Policies

5.3.1

In this section, we investigate the performance of threshold-
type policy compared with the MaxWeight policy. From

Throughput and Delay Comparison with MaxWeight
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the results shown in Fig. 7, we note that the threshold-
type policy has better delay performance while achieving
almost the same throughput performance compared with
MaxWeight. We also observe that when arrival rate exceeds
1.1 kpps, the gap between the two policies is very small.
This is because that the system is in a very heavy load
scenario. That is, the chance that the number of packets in
the head queue and mmWave line is less than the threshold,
is small. Thus, by our threshold-type policy, the sub-6 GHz
will be utilized almost every time when it becomes idle. This
is similar to what Maxweight does in the scenario. When
Maxweight is utilized, the sub-6 GHz is utilized whenever it
becomes idle and the head queue has more than one packet,
which is true when arrival rate is high. Thus, the gap is very
small in this case.

o Threshold-type Polic 7
212} e e ]
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5 1 _ pg
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Arrival Rate (kpps)
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(b) Delay performance

Fig. 7: Comparison with MaxWeight. (a) Our threshold-type
policy achieves almost the same throughput performance com-
pared with MaxWeight. (b) Our threshold-type policy outper-
forms MaxWeight in delay performance.

5.3.2 Policy with Fixed Threshold

Recall that the optimal thresholds are state-dependent.
However, the link speed of the mmWave interface (multi-
Gbps) is comparable to the speed at which a typical pro-
cessor in a smart device operates. Thus, from a practical
perspective it will be challenging to track and respond to
channel variations in real time. Within this context, it is
desirable to devise a more practical policy that can achieve
a similar delay performance as the optimal policy. To this
end, we substitute the two state-dependent thresholds with
one fixed threshold that does not depend on the mmWave
channel state. Further, the only difference in flowchart of
decision making (Fig. 4) is that m} is fixed rather than state-
dependent. In order to find the fixed threshold, we deploy
our method in section 5.1. But at this time, no action will be
taken when the mmWave channel state changes. Moreover,
we use the steady state probability of the available state
as the “available" probability in the policy proposed in our

13
TABLE 2: Cost increase over optimal policy
Arrival
Rate (kpps) 0.7 0.9 1.1 1.3 1.5 1.7
Cost Increase
over Optimal  0.0272 0.002 0.0101 0.0133 0.0036 0

Policy (%)

previous paper [9] and obtain a threshold-type policy with
a fixed threshold. For the sake of exposition, we refer to this
policy as i policy. Table 2 illustrates the delay increase of
ji over the optimal policy vs arrival rate. The results in the
table demonstrate that the benefits of varying thresholds as
a function of the mmWave channel state are slight. This is
because when the system is steady, the queue length in the
system does not approach the threshold very frequently.

5.4 Performance of learning algorithm

Fig. 8 illustrates the delay performance of our CE-Threshold
based learning (Algorithm 1) over time. In particular, we set
H = 20 and A = 0.5kpps. We can observe that the delay
obtained from the CE-Threshold based learning algorithm
converges to the delay obtained from the optimal policy
which has a priori knowledge of system parameters. The
delay increase of the learning algorithm over the optimal
policy is less than 10% after 10000 iterations.

<103

25

— CE-Threshold based learning
> — Optimal Policy

0
0 2000 4000 6000 8000
Time slot

10000

Fig. 8: Comparison between CE-Threshold based learning (Al-
gorithm 1) for H = 20 and optimal policy

5.5 Performance of the threshold-type policy with real-
world traffic

To show whether our threshold-type policy is still useful
for a real-world traffic, we apply the threshold-type policy
and Q-learning method to the scenario with inter-arrival
distribution replaced by Pareto distribution. Fig. 9 compares
the delay performance of the threshold-type policy and
model-free Q-learning. In the simulation, we keep scale
parameter of Pareto distribution as 2000 and simulate delay
performance with different arrival rates by varying shape
parameter. We can observe that the threshold-type policy
does better than Q-learning in delay.
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)
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Fig. 9: Delay with Pareto distributed inter-arrival time
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Fig. 10: Delay performance with four-state mmWave channel. Scenario 1 has parameter (pdecay;Pshads Punshad,Prise) =
(0.21,10.49, 5.48,9.79); scenario 2 has parameter (Pgecay; Pshad, Punshad, Prise) = (0.18,11.3,6.88,10.36); scenario 3 has parameter

(pdecayapshadapunshadaprise) = (021» 7.88,7.67, 77)

5.6 Performance of the threshold-type policy with
multi-state mmWave channel

In the paper, we theoretically prove that the proposed
threshold-type policy is optimal for the setting with a
two-state mmWave channel. Using [10], the mmWave
can be also modeled by a four-state Markov chain. In
addition to shadowed and unshadowed periods, the
four-state model considers a decaying signal level region
from unshadowed to shadowed, and a rising signal
level region from shadowed to unshadowed. In this
section, we simulate the performance of the proposed
threshold-type policy in the setting with a four-state
mmWave channel and compare it with relative value
iteration (RVI) to see whether our policy works for
more complex scenario. Since the state in the problem
is unbounded, we make truncation to the state before
applying RVI. In the simulation, we use bound N = 1000
for truncation and test delay performance in three scenarios
using parameters in [10], i.e., (Pdecay; Pshads Punshad, Prise) €
{(0.21,10.49, 5.48,9.79), (0.18,11.3,6.88, 10.36), (0.21, 7.88,
7677 77)}/ where Pdecay, Pshad, Punshad and Prise denote
transition rate from unshadowed to decay state, from decay
to shadowed state, from rising to unshadowed state and
from shadowed to rising state, respectively. Further, we set
service rate in decay and rising state the half of the service
rate in unshadowed state.

As you can see in Fig. 10, the delay performance gap
between the threshold-type policy and RVI is quite small.
It is known that RVI is a classical method to find optimal
solution for MDP problem. Although the truncation may
introduce some offset from optimality, RVI can be treated
as a standard to test performance of other policies. Hence,
the threshold-type policy has near-optimality performance
in four-state scenario while it has reduced complexity com-
pared to RVI.

6 CONCLUSION

In this paper, we proposed utilizing the sub-6 GHz interface
as a fallback data transfer mechanism to mitigate blockage

in the mmWave bands. In this case, packets can be trans-
mitted through the mmWave or sub-6 GHz interface or
both. We investigated the optimal scheduling policy such
that the expected total discounted delay and the average
delay are minimized when system parameters (service rates,
arrival rates and transition rates of the channel) are given.
Using value iteration, we proved that the optimal policy
is of a threshold-type with two state-dependent thresholds.
Based on this, we propose a certainty equivalence-threshold
based learning algorithm for the case that system param-
eters are unknown. Also, an upper bound of its regret is
provided. Numerical results verified that utilization of sub-
6 GHz paired with our threshold-type policy can highly
improve delay performance, especially under heavy traffic.
Moreover, our results demonstrated that the threshold-type
policy outperforms the MaxWeight policy in terms of aver-
age delay. We also showed that the delay increase incurred
by replacing the state-dependent thresholds in the optimal
policy with a single fixed threshold is less than 0.023%,
which implies the feasibility of using a single fixed threshold
as an alternative in practice.
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APPENDIX A

PROOF OF PROPOSITION 1

Note that our state space is countable and action set is finite.
Thus, by Theorem 6.10.4 in [26], we only need to show the
following two assumptions hold:

Assumption 1: There exists a constant y < oo such that

sup le(q)] < pw(q). (40)

qe

Assumption 2: (i) There exists a constant L, 0 < L < oo, such
that

> Bldlg, wu(q) < w(q)L,
q'eXx
for all q and u. (ii) For each 3, there exists an (, 0 < { < 1
and an integer I such that for all deterministic policies 7,

B PLda)w(q) < ¢w(a),

q'eX

(41)

(42)

where PL denotes the I-stage transition probability under
policy .
Assumption 1 holds with ;¢ = 1 obviously. Since

> P(d|g, w)w(d’) < w(Ao(q)) < 2w(q),
qex

(43)

Assumption 2(i) holds with L = 2. For any policy 7, we
have

By Phda)w(d) < B’

q'eX

w(Aj(q) < B/ + Dw(a),
(44)

where Al denotes the I arrivals to the system. Conse-
quently, for I sufficiently large, /(I + 1) < 1. Hence,
assumption 2(ii) holds.

APPENDIX B
PROOF OF THEOREM 1

Note that zero function (i.e., v = 0) belongs to the function
set ©. By Proposition 1, we have lim,,_, LMy = Jg. Thus,
in order to show that Jg € O, we start with zero function
and show that Lv € © given that v € ©. Before providing
the proof, we first show that the operator B preserves the
properties of functions in © in Lemma 6, which will be used
in our main proof.

Lemma 6. If v € O, then Bv € ©, where B is defined by Eq.
).

Proof. First, let us consider the preservation of property (11).
We want to show

Bv(Ai(q)) — Bv(An(a))
:ue}?ﬂ(q»”(“( 1(a))) *urg;glv(U(Ah (a))) <0.

It suffices to show that for each uy € K, there exists
up € Ka,(q) such that v(uz(An(q))) > v(ui(Ai(q))).
Same logic is also used in the following proof for other cases.

Generally, {Ap, A1} € Kq and Ay € K(4,(q))- Then, we

(11)
have v (A, (4r (q))) = v (A1 (An(q))) = v(An (41 (a))).
If p, = 0, then A2 € Kq and A, € Ka,(q)- But

1

o (s (An (@) = (@0 — 1,0,q1,1,8) = v (A, (A1 (@)). If
lo =0and g; > 1, then A, € Kq and we have:
o (A (An (@) 2 0 (s (An (@) = v (A, (4 (a)))

For property (12), generally, A, € K4
K(4,(q))- Then, we have:

r(a) and Ap €

(12)
v (An (4r (a) =v (4, (a) = v(A2(a)) =v (4 (A2(q))).
If [; = 0, then A; is admissible for both states. We obtain:

v (A1 (4 (@) = (20— 1,1,¢1 —1,1,9)

(13)
> (g0 —1,0,q1,1,5) = v (A (A2(q))) -

Ifl; =1, then A; € K (4, (q))- By (13), it is better to renege
a packet from processing server than from the mmWave
interface and we have:

v(A1 (A (@) = (90 — L, 1,q1,1,8) = v(An (A2(q))) .
For property (13), if I; = 0, then the result holds
obviously since 7(q) = q. If i = 1, then generally A,

1
is admissible for both states and we have v (A (q)) (23)
v(Ap (T (q))). If lo = 0, then A, € K(7(q)) and we have
v(4,(q)) = v(4.(T(q)). If Il = 0 and gg > 0, then
13

As € K(T(q)) and we have v (A2 (q)) (Z) v (T (A2 (q))) =
v (A2 (T (q)))-

For property (14), generally A;, is admissible for both

(14)
states and we have v (A, (A2 (q))) > v(Ap (A1 (q))). If
qo > 1, then A; € K(4,(q)) and we obtain v (4; (A2 (q))) =

v (A2 (A1 (q)))-
For property (15), if q; =
1,11, 41,12, ), we have

Bu(qz) = uglll(n v(u(qo + 1,11, q1,12,5))
a2

(15)
> v(An(qo, 11, q1,12,5))

> Bu(qy)

(90,11, 1,12,5) and g2 = (qo +

Similarly, we can show that property (15) holds when g2 —
ai € {(071,0,0,0),(O,O,1,0,0),(0,0,0,170)}. O

Next, we use this lemma to show our result.
Property (11): If mmWave channel is unavailable s = 0,
then we have:

Lo (Ai(q)) — Lv (An(a))
—BA(Bv (Ao (A1(q))) — Bv (Ao (An(a))))
+ Bup (B (T (A1(q))) — Bv (T (An(a))))
+ Busu-s (Bv (D2 (A1(q))) — Bv (D2 (An(q))) )
+ By(Bv (G (A1(q))) — Bv (G (An(a))))
+ Bp(a)(Bv (A1(q)) — Bv (Ax(q)))
DA (B (A1 (Ao(@))) — Bo (4n (Ao(a))))
+ Busubs (Bv (A1 (D2(q))) — Bv (An (Da(q))) )
+ Bup (B (A1(q)) — Bv (An(q)) )
+ Bv(Bv (Ax (Q(Q)))— ( 1 (G(a))))
+ Bp(q) (Bv (A1(q)) — Bv (An(q)) )

(2)
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where (c1) is due to Bv (T (41(q))) < Bv(4i(q)) by
Lamma 6 and Bv (7 (An(q))) = Bv(An(q)) ; (c2) is be-
cause that B preserves the property (11) by Lamma 6.

If mmWave channel is available s = 1, then we have:

Lo (A1(a)) — Lv (An(a))

=BA(Bv (Ao (A1 Q))) Bu (Ao (An(q))))
+ Bup(Bo (T (Ar(a))) — Bo (T (An(a))) )
+ Bitmm (Bv (D1 (A1(q))) — Bv (D1 (An(q))))
+ Bhisub-6(Bv (D2 (/h(q))) Bv (Dz (Ah (@)
+ Ba(Bv (B(Ai(q))) — Bv (B(A
+ Bp(q)(Bv (A1(q)) — Bv (An(q )))

) —

<ﬁ/\(Bv (A1 (Ao(a))) — Bv (A (Ao(a))) )
+ Bup(Bv (Ai(q)) — Bv (An(a)))
+ 5Nmm(BU (A1 (Di(a))) — Bv (A (Dl(Q)))>
+ Busubs (Bv (A1 (D2(q))) — Bv (A (D2(a))) )
) —

1
+ Ba(Bv (A1 (B(q))) — Bv (An (B(a))))
+ Bp(a) (Bv (Ai(a)) — Bv (An(a)))
D

where (c3) is due to Bv (T (41(q))) < Bwv(Ai(q)) by
Lemma 6 and Bv (T (Axr(q))) = Bv (An(q)); (c4) is because
that B preserves the property (11) by Lemma 6.

Property (12): If mmWave channel is unavailable s = 0,
then we have:

Lo (A2(q)) — Lv (Ar(a))
=BA(Bv (Ao (A2(q))) — Bv (Ao (A(a))) )
Jrﬂﬂsub-e(BU(DQ (A2(q))) — Bv (D2 (Ar(q ))))
+ Bup (Bo (T (A2(q))) — Bv( ( +(a))))
+ Bv(Bv (G (A2(q))) — Bv (G (A-(q))) )
+ Bp(q)(Bv (A2(q)) — Bv (Ar(q)) ) (45)

Notice that by property (13), it is better to renege a
packet from the processing server than from the mmWave
interface if the processing server is not empty. Then, the
operator 7 will not change the system state since the
processing server must be empty after action A,. Thus,
Bv (T (A(q))) = Bv (A,(q)). We have:

Bo (T (Aa(a)))
By (As(0) -

- Bo(T (4,(@)))
Bu(4(a)) < 0
For the )\ term, we have:
Bo (Ao (4s(@)))
—Bu (43 (Aol@))) — B

For the gy term, if [; = 1, then we obtain:

Bv (D2 (A2(a))) — Bv (D2 (Ar(a)))
=Bv (g — 1,1,¢1,0,0) — Bv(qo,0,¢1,0,0)

=Bv (Al (QO7 07 q1, 07 0))

— Bv (Ao (4:(q)))

(12)

Ar (Ao(q))) <0

an
— Bv (An(g0,0,41,0,0)) <0

If [; = 0, then we obtain:

Bv (Dz (A2(q))) — Bu (D2 (Ar(a)))
=Bv (qO - 1a07q170?0) — Bv (QO»O7Q1 -

(13)
<Bv(q —1,1,q

1,0,0)

an
—1,0,0) — Bv(qo,0,q1 —1,0,0) <0

For the ~ term, we have:

Bu (G (As(a))) — Bv (G (A,(a)))
—Bu (A (G(a)) — Bu (4, (G(@))) < 0

The last term is less than or equal to zero since B preserves
property (12) by Lemma 6. Hence, (45) is less or equal to
Z€ero.

For the case that the mmWave channel is available s = 1,
the proof of the terms A, i, psub-s and last term (p(q) term)
are same with the case s = 0. It remains to show the fmm
and « terms.

For the pimm term, if [; = lorly = 1,¢1 > 1, then
exchanging the order of operators D; and A,, operators D;
and A, does not affect results. Then, we have;

Bu (Ds (As(a))) — Bu (s (A,(a)))
—Bu (A (D1(a))) - Bu(A, (Di(q))) < 0
If [y = 0and gq; = 1, we have;

B (D1 (42(a))) = Bv (D1 (Ar(a)))

=Bv (qo —1,0,0,1, 1) — Bv (qO, 0,0,1, 1) (g) 0
For the o term, we have:
Bu (B (As(a))) — Bv (B (4,()))
—Bu (4 (B(a))) - Bv (4, (B(@))) < 0

Property (13): This can be shown with similar argument
in proof for property (11) and (12).
Property (14): Note that

B (Ao (41 (a))) = Bu (Ao (A2 (a)))
=Buv (A1 (Ao (q))) — Bu (A2 (A () <0.
1(q

With similar argument, we have Buv (D;(4:(q))) <
Bv (D1 (A2 (q))), Bv(B(Ai(q))) < Buv (B(Az( ))) and
Bv ﬁg (A1 (q))) < Bv(G(A2(q))). By Eq. (8), it remains
to show

/chl + ,Ufsub-éc2 < NJPCS + /~Lsub—6C4' (46)

where C; = Bv(q —1,0,1,0,5) , Cs =
Bv(qo—1,1,0,0,s), C3 = Buv(g —1,0,0,1,5) and
Cy £ By (qo — 1,0,0,0,8). Note that Cy < C1 < Oy < (5
by Lemma 6.

First consider the difference between C3 and C. For the
best case, at current state the optimal action is to use the sub-
6 GHz and the next event is processing completion. Then,
Cs =v(q0 —2,1,0,1,5) and C; = v(go — 2,0, 1,1, s). After
processing completion, the states in two processes become
the same. In the case, the difference between C3 and C is

Thus, Cg - Cl > L

" Now consider the cflfference between C3 and Cjy. By Eq
(14) Cy = 'U(qO 2,1,0,0, S) if qo > 2. Then, Cy — Cy <
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v(go —2,1,0,1,5) —v(go — 2,1,0,0, s). For the worst case,
in the process with initial state (go — 2,1,0,0, s), the sub-6
GHz is not used until in the process with initial state (go —
2,1,0,1 s) the sub-6 GHz completes its service. Thus, Cy —
Cy < Hsu . For case ¢y = 1, we can get same conclusion with
similar argument. Thus, 1, (C5 — C1) > pisub-6(C2 — C4).

Property (15): Now we check monotonicity: If the mmWave
is unavailable s = 0, then:

Lv(q1) — Lv(q2)

=BA(Bv (Ao (a1))—Bv (Ao (a2)) )
+Bup(Bv (T (a1))—Bv (T (q2)) )
+Blisubs (Bv (D2 (q1)) — Bv (D2 (q2)) )
+ Bv(Bv (G (a1)) — Bv (G (a2)))
+ Bp(q)(Bv (q1) — Bv (q2))

<0

The inequality holds because for £ € {4y,T,D2,G}, we have
E(as)—E(ar) €{(1,0,0,0,0), (0,1,0,0,0), (0,0, 1,0,0),
(0,0,0,1,0),(0,0,0,0,0)}, and the operator B preserves the
property (15). With similar argument, we can prove the case
that the mmWave is available s = 1.

APPENDIX C
PROOF OF LEMMA 1

Note that Jg (z,q1,1l2,8) = z+q1+12 and Jg € .Z obviously.
By Eq. (16), it remains to show that BJj € .7 and then
Jg“ € 7 given Jj € Z. Before our proof, we provide
some properties extended from Definition 2, which will be
used in the following proof.

Extended properties from Definition 2:

f(@,q,l8) < fz+1q,1,8)+ f(z—1,q1,1,5) (47)
2f(0,¢q1,1,5) < f(1,q1,1,8)+ f(0,q1 — 1,1, 5) (48)
2f(0,q1,1,8) < f(0,q1 +1,1,8) + f (0,1 —1,1,8) (49)
f@+1,q1,0,8) < f(z+2,q1,0,8) + f (2,41,0,5) (50)
2f (0,1 +1,0,5) < f(0,q1,0,8) + f(0,q1 +2,0,5) (51)
flxoq,1s)+ f(z—1L,q1+1,1,s)

<flr,q+1,1,8)+ f(x—1,q1,1,8) (52)
f(0,q1+1,0,5)+ (0,1 +1,1,5)

< f(0,q1,1,8) + f(L,q1 +1,0,5) (53)
f(x+1,q,0,8)+ f(z,q1 +1,0,5)

< f(x+1,g14+1,0,5)+ f (z,41,0,s) (54)

These properties can be obtained from combinations of cer-
tain equations in Definition 2. We take Eq. (47) for example.
It is obtained by adding Eq. (17) with = replaced by x — 1
and Eq. (21).

With this, we first show that BJj € .7 given Jg € 7.
For Eq. (17): Note that BJj(z+2,q1,0,s) =
min{Jg (z +2,¢1,0,5),J§ ( + 1,q1,1,5)} and
BJg (z,q1,1,5) = J§(z,q1,1,s). Thus, we only need
to consider two cases. Note that the proof for other
equations also follow similar flow in which case we omit
description of same analysis.

If BJg (z+2,q1,0,8) =
B'],g ($+1’Q170a3)+BJ,g (x+17QI71a8)

J§ (x+2,q1,0,s), then:

@)
<Jg (x+1,q1,0,8) + Jg (z+ 1,q1,1,5)
17)
SJE (‘raQ171?s)+Jg (x+27Q17078)'
If BJg (z+2,q1,0,8) =
BJg (x+1,q1,0,5) + BJg (x +1,q1,1,5)

Jg (x+1,q1,1,5), then:

@)
S‘Ig (‘raQ17 1’3) =+ Jg ($+ 17Q17 178) :

Thus, (17) holds. Similarly, we can show that Eq. (18), (19)
and (20) hold.
For Eq. (21) : If BJ (2,q1,0,5) =

BJg (v,q1,1,5) + BJg (x +1,q1,0,5)

J§ (7,q1,0, ), then:

@)
SJg (x7Q17175) +Jg (3’]+ 1;‘117035)
1)
<Jg (7,q1,0,8) + J5 (x + 1,q1,1,5).
If z > 1and BJj (z,q1,0,5) = J§ (z
BJg (x,q1,1,8) + BJg (x +1,q1,0, )

—1,¢1,1,s), then:

)

<2Jg (v,q1,1,5)

7)

<Jﬁ ((E—]_ Q1,1 S)—’_Jﬁ (1’+1 QIvlaS)
Ifz=0,¢q1 > 1and BJg (0,41,0,8) = Jg (0,1 —
then:

L 1s),

BJ5(0,q1,1,s) + BJg (1,q1,0, s)
)
§2‘]g (07 q1, 17 S)

48) n
SJB (anl - 1717S)+
For Eq. (22) : If BJj (2,1,0,5) =

J,g (17(]17 17 S) .

Ji (%,q1,0,5), then:
ng (x,(ha 1a3) + B‘]g (xafh + 1,0, 5)

@)

SJ/? (.’I},Q]_,l,S) + Jg (xaql + 1a078)

(22)
S‘]g (x7Q1707S) +Jg (Iath + ]-7]-35)'
Ifz > 1and BJj (2,41,0,8) =

Ji (x —1,q1,1, ), then:
BJ/? (xaQMLS) +BJ§ (x7QI + 17075)

@)

SJ[? (xa(Ilv 1a5) + Jg (IE - 17Q1 + ]-7 1a8)

(52)

<Jg(r—1,q1,1,8) +Jg (v,q1 +1,1,5).
Ifz=0,¢q >1and BJy (0,41,0,8) = Jg (0,q1 —
then:

11,s),

BJ;? (OaQ17175) +BJ[73L (07Q1 =+ 17075)
@)
§2JZ-3L (an13178)
(49)
SJE((qu _1717S)+‘]g (OaQ1 +1a158)'

For Eq. (23) : If BJj (z + 1,q1,12,5) = J§ (z + 1,q1, 12, 5),
then:

) (23)
BJg (z,q1,12,5) < J5 (z,q1,l2,5) < J5 (z+1,q1,12,8).
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Iflo =0and BJg (z +1,¢1,0,8) = Jg (z,q1,1, 5), then:

@) (25
BJE (x,CIhO,S) S JZ; (%QLO»S) S Jg (‘ra(hv]-?s)'

Similarly, we obtain Eq. (24) and Eq. (25).

Next, we show that Jg“ € .Z. According to Eq. (16),
we show seven terms, say A, fip, fimm, Msub-6, €, Y and p(q)
terms, satisfy properties in Definition 2, respectively. Note
that p(q) term holds obviously since B.Jj € .7. Moreover,
the v and y terms hold since only mmWave changes status
of availability (s turns into 1—s), Vs € {0,1},and BJy € F.
Next, we focus on the remaining four terms.

For Eq. (17): the difficulty falls in the p, term with z = 0
and ftsub-6 term. The former one can be proved with Eq. (53).
and for the latter, Eq. (17) reduces to Eq. (50).

For Eq. (18): For the y, term, when = = 0, it reduces to Eq.
(19). For the pmm term, when ¢; = 0, Eq. (18) reduces to
equality. For peup-¢ term, Eq. (18) reduces to Eq. (54).

For Eq. (19): the A and p, terms obviously hold. For the
tmm term, the difficulty falls in the case with ¢; = 0, where
BJ;}(O, 0,0,s) < BJZ(0,1,0,s). In fact, the inequality
holds by Eq. (24). For the pguw¢ term, Eq. (19) reduces to
Eq. (51).

For Eq. (20): the A, pp, with © > 1, pmm with g3 > 1 and
Hsub-s terms hold obviously. As for the pp, with x = 0 term,
Eq. (20) reduces to an equation. As for the fimm with g1 =0
term, Eq. (20) reduces to Eq. (23) with ¢; = 0.

For Eq. (21): the A, pp with > 1, and pmy terms hold
obviously. Notice that for the fi5b-6 term, Eq. (21) reduces to
an equality. For the i, term with = 0, Eq. (21) reduces to
Eq. (22).

For Eq. (22): the difficulty falls in the psup-¢ and pimm with
g1 = 0 terms. For both of the cases, Eq. (22) reduces to an
equality.

For Eq. (23): the difficulty falls in the i, term with z = 0. In
the case, Eq. (23) reduces to Eq. (24) with z = 0.

For Eq. (24): the difficulty falls in the ptmm term with ¢; = 0.
In the case, Eq. (24) reduces to an equality.

For Eq. (25): the difficulty falls in the pswp-¢ term, in which
case Eq. (25) reduces to an equality.

APPENDIX D
PROOF OF THEOREM 2

If the mmWave channel is unavailable (s = 0), then accord-
ing to Lemma 1, for each n € N, Jj satisties properties
(17), (18), (19) and (53). It implies that for either the case
r > 0orx =0 Jg(+1,q,0,0) - J5(z,q,1,0) or
J5 (0,q1 +1,0,0) — JZ (0,41, 1,0) increases as the number
of packets in the FastLane (i.e., 4 g1 + 1) increases (due to
increase of x or g1 or both). In other words, the difference be-
tween costs resulted from not-adding-to-sub-6 and adding-
to-sub-6 increases as the number of packets in the FastLane
increases. It is known that .J (0,1,0,0) < JE (1,0,0,0) <
Jg (0,0,1,0), which means that it’s better to hold the packet
in FastLane when only one packet is in the system. As z+¢;
increases, the difference becomes positive, which means that
adding-to-sub-6 obtains priority.

To sum up, when s = 0, for each n € N, there exists a
certain threshold for the queue length of FastLane (or the
number of packets in the system) above which we should

4

add a packet to the sub-6 GHz interface. In other words,
for each round of value iteration, corresponding policy is
of threshold-type. As n — oo, the corresponding policy is
also of the threshold-type, and the policy is expected total
discounted delay optimal policy. Thus, when s = 0, there
exists some threshold mf such that when ¢(q) > mg, it is
optimal to use the sub-6 GHz interface.

With similar argument, we can easily show that when
s = 1, there exists a threshold mj such that when ¢(q) >
mj, it is optimal to use the sub-6 GHz interface.

APPENDIX E
PROOF OF THEOREM 3

Let us call an epoch fictitious transition epoch if fictitious
events happen at the epoch. Consider the set of actions
{An, A1, A, A, }. Action A}, cannot change system state. If
we want to take action A; at a fictitious transition epoch,
then the state just before the transition must satisfy the
condition that the processing server is idle and the head
queue is not empty. But this contradicts with the fact that
action A; is always preferable to A;, by property (11). In
other words, A; should have been taken in last epoch
before this fictitious transition epoch. It remains to consider
actions Ay and A,.. We will show the result by contradiction.
Suppose the first fictitious transition epoch that changes the
system state is epoch ?y. Let ¢; be the last decision epoch
before t.

If it is optimal to take A; at ¢y. Then the state just before
to must be (go,1,q1,0,s) for gg > 0, g0 + ¢1 + 1 > mZ,
s € {0,1}. According to what kind of events happen at
t1, there are different states for the time just before ;. We
will consider these possibilities separately and show that
(g0, 1,4q1,0, s) cannot be reachable if the system starts from
a proper state.

(a) Packet arrival happens at t;. In the case, the state just before
epoch ¢; should be (g0 — 1,1, 1,0, s). However, since gy +
g1 +1 > m}, one packet will be delivered to the sub-6 GHz
interface upon packet arrival. And the state before ¢, should
be (QO - 17 13 qi, 17 S)

(b) Processing server completes serving a packet. In the case, the
state just before epoch t; should be (g + 1,1,¢1 — 1,0, s).
However, since go+¢1+1 > m}, one packet will be delivered
to the sub-6 GHz interface upon service completion. And
the state before to should be (g0 — 1,1, ¢1, 1, s) rather than
(QO7 L,q1,0, S)

(c) A packet departs from the sub-6 GHz interface. In the case,
the state just before epoch ¢ should be (g0, 1, 41,1, s). How-
ever, since gy + g1 + 1 > m}, one packet will be delivered to
the sub-6 GHz interface upon the departure. And the state
will be (g0 — 1,1, 41,1, s) rather than (qo, 1, ¢1,0, s) before
to.

(d) MmWave link changes states. In the case, the state just
before epoch ¢; should be (go,1,¢1,0,1 — s). When the
mmWave link changes states from 1 — s to s at t;, it is
optimal to deliver a packet to the sub-6 GHz interface since
go + g1 + 1 > m?. Then, the state will be (g0 — 1,1, ¢1,1, )
rather than (qo, 1, ¢1, 0, s) before tg.

(e) MmWave is available s = 1 and a packet departs the mmWave
interface. If s = 0, then it is possible that a packet leaves the
mmWave at ¢;. In the case, the state just before t; should be
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(go,1,q1 + 1,0, 1). But since go + ¢1 + 1 > mj, one packet
will be delivered to the sub-6 GHz interface. Then, the state
will be (g0 — 1,1, 41,1, s) rather than (qo, 1, 41,0, s) before
to. Thus, the system cannot reach the state (qo, 1, ¢1,0, s) for
90 >0,q0+q +1>m% se€{0,1}.

If it is optimal to take A, at ¢y. Then the state just before
to must be (0,11,¢1,0,s) for iy + ¢1 > m}, l1,s € {0,1}. If
l; =1, we can show the result with similar argument in last
case. Next we consider the case [; = 0. Notice that it is not
possible for a packet to arrive at ¢; since the packet cannot
be delivered to the mmWave interface within one time slot.
Next, consider remaining possible states separately.

(a) Processing server completes serving a packet. In the case,
the state just before epoch ¢ should be (0,1,¢1 — 1,0, s).
However, since g1 > m}, one packet will be delivered to the
sub-6 GHz interface upon service completion. And the state
before to should be (0,0,q; — 1,1, s).

(b) A packet departs from the sub-6 GHz interface. In the
case, the state just before epoch ¢; should be (0,0, ¢, 1, ).
However, since g1 > m}, one packet will be delivered to the
sub-6 GHz interface upon the departure. And the state will
be (0,0,q1 — 1,1, s) before .

(c) MmWave link changes states. In the case, the state just
before epoch t; should be (0,0,¢1,0,1 — s). When the
mmWave link changes states from 1 — s to s at ¢y, it is
optimal to deliver a packet to the sub-6 GHz interface since
g1 > m¥. Then, the state will be (0,0, g1 — 1, 1, s) rather than
(0,0, ¢1,0, s) before t.

(d) MmWave is available s = 1 and a packet departs the mmWave
interface. In the case, the state just before t; should be
(0,0,q1 + 1,0,1). But since g > mJ, one packet will be
delivered to the sub-6 GHz interface. Then, the state will be
(0,0,¢1 — 1,1, s) before tg.

Therefore, the system cannot reach the state
(0,l1,¢1,0,8) for 1 + g > m% li,s € {0,1}. Thus,
the fictitious transition epoch that can change system state
does not exist if the system starts with a proper state and
the optimal policy is followed at each epoch.

APPENDIX F
PROOF OF THEOREM 4

For ease of exposition, we re-express the system state as
(y,1l2,s), where y € N denotes the queue length of FastLane.
Then, Theorem 2 is expressed as follows:

Jag(y+1,0,5) < Jg(y,1,s), if y+1 < mj;
Js(y+1,0,8) > Jg (y,1,8), if y +1>mg,

(55)
(56)

We will show the result by contradiction. Suppose that
mg > mj. Then, m{§ = m} + k, for k € NT. Assume that
at the beginning of the n-th time slot, the system state is
(m} +k—1,0,0) and a packet arrives at the system now.
Since the mmWave is currently unavailable, by (55) the
optimal action is to keep this packet in the FastLane, and
the next system state will be (m} + k,0,0). However, if a
suboptimal action is taken (the packet is delivered to the
sub-6 GHz interface), then the new system state will be
(m} +k—1,1,0). Let us track these two processes, say P,
and P». Assume that these two processes will experience
same consecutive events, i.e., same arrivals, departures from
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same interfaces, same change of mmWave links. For process
Py, we will take optimal actions at each decision epoch. But
for process P, we can choose both optimal and suboptimal
actions. In the case, the values (delay) obtained at each
epoch in P; should be less or equal to that in P». But in
fact, it does not always hold.

Now consider the next decision epoch, the beginning of
the (n + 1)-th time slot. There are four possible events that
can happen, say arrival of a packet, service completion at
processing server, departure from the sub-6 GHz interface
and state change of the mmWave link. Let us examine the
value functions for each case.
case 1: If a packet arrives at the system, in P; the optimal
action is to deliver the packet to the sub-6 GHz interface by
(56) and the new system state is (m} + k,1,0). In P5, since
the sub-6 GHz interface is occupied, the new state will be
(m} + k,1,0), which is same with that in P5.
case 2: If the processing server completes service, in both P;
and P> no action can be taken and the system state will keep
unchanged.
case 3: If a packet departs from the sub-6 GHz, in P; the
optimal action is to keep the state (m} + k,0,0) by (55). In
P,, the new system state will be (mj + k — 1,0,0), which
has smaller value than that in P, by monotonicity.
case 4: If the mmWave changes the state, in P; the optimal
action is to deliver a packet to the sub-6 GHz interface by
(56) and the new state is (mj +k —1,1,1). In P,, since
the sub-6 GHz interface is occupied, the new state will be
(mi; 4+ k —1,1,1), which is same with that in P5.

APPENDIX G
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Consider 7 € Il,;. It follows from Lemma 7 that PT(rOO) (;6n)
converges weakly to P{*)(; 6).

Lemma 7. Let 7 be a stationary deterministic policy that makes
scheduling decisions for the network described in Section 2. Con-
sider a sequence of systems such that the corresponding sequence
{6, } of parameters converges to 0, i.e. 0,, — 0. We then have that
the sequence of stationary probability distributions associated with
the system that has parameter 0,, and operates under m, converges
weakly to the stationary probability associated with the system
that has parameter 6 and operates m. (For a detailed discussion on
weak convergence see [38]).

Proof. We denote the controlled transition probability from
state q to state @' under the control u by P(q,dq’,u;0).
Note that if § is known, the transition probability is fixed
(defined in (4)). Thus, the controlled transition probabilities
for the n-th system are solely a function of ,,, and moreover
the probabilities P(q,q’,u;6,) — P(q,d’,u;6) pointwise.
Thus, the result follows from Theorem 1 of [39]. O

Thus, the estimates of the steady state delay resulting
from 7 under ,, also converge to the true value. Since there
are only finitely many policies in II,,:, we obtain 7*(6,,) =
7*(0) if ||0,, — 0| is sufficiently small. This completes the
proof.
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Fix thresholds mg, m;. We will derive lower bounds on
the stationary probability with which each parameter is
sampled.

Sampling ftsub-6: The sub-6 channel is used only when
the total packets are more than a certain threshold. We
will derive a lower bound on the probability of the event
that queue length exceeds this threshold. To do this, we
consider a modified system, one in which the two server
dynamic scheduling system is replaced by a single server
that provides service at the rate pguw6 + ftmm, and the
two queues are replaced by a single queue. Clearly, the
probability with which the queue length of this modified
system exceeds max{mg, m1}, serves as a lower bound on
the probability of the original system. This p(robabi}ity for

max(mo,m1
Sampling ftmm, tp: Consider a modified system, in which

upon arrival, a packet is sent to the sub-6 GHz channel if it
is available. Otherwise, the packet is “lost” from the system.
The sub-6 GHz channel does not maintain any queue. This
packet loss probability serves as a lower bound on the
sampling frequency of tmm, fip-

Sampling A, o, y: A lower bound clearly follows since
the associated events are not controlled by the scheduler,
and these events (e.g. packet arrival, channel state value)
occur with non-zero probability.

the original system is equal to (

APPENDIX |
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We decompose the operation into consecutive “frames”,
each of duration L time-steps, where the parameter L is
as in Lemma 3. Let ng(k) be the number of samples of
obtained during the k-th such frame. Consider the following
martingale difference sequence,

A(k) :=E (ng(k)|Fr) — no(k).

Note that ng(k) is bounded by the frame duration L. It thus
follows from Azuma’s inequality [40] that (note that there
are |[n/L] frames until n),

L/ L] 22
P | [No(n) — ’;1 A(k) =z | <exp <_W> .

Since Z,Ei/lLJ A(k) > nn, we have that {Nyp(n) < mn} C
{|No(n) —mmn| > (n — m)n}, so that letting z = (n — m)n
in the above we obtain

P(Ng(n) <mn) < exp(=L(n—m)n).

Letting 71 = 7/2, and using union bound on the episode
starting times 75,k > ko, this probability can be upper-
bounded by >, exp (—nL7y) < Kexp (—nL7k,) < 5,
where K is the number of episodes until T'. This completes
the proof.
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Amongst these, we will only derive a (probabilistic) upper-

bound on the error associated with [1](n). Rest of the

proof would involve using union bound to control the
errors for estimates of all the parameters. Fix the number
of samples used for estimating 1/X at j, and let 73, be a
threshold. Note that 14(1),74(2),...,14(j) are successive
inter-arrival times. It follows from a modified version of
Azuma-Hoeffding’s inequality from [41] that if the proba-
bility that atleast one out of j service times exceeds 7y, is less
than ¢, then we have

'

Since the inter-arrival times are exponentially distributed
with parameter A\, when we let § = jexp (—Arp) in (57)
and threshold 75, = W, we obtain that the proba-
bility with which atleast one out of I4(¢),¢ = 1,2,...,j
exceeds the value (EH)%, is less than n—1§ We then let
z = y/j&logn in the inequality (57) (and also use the fact

that 5 < n) to obtain:

Y la(e) 1
(=

J

> Ia(e) - % >

22
(=1 I

h

> Slogn) <i+i.

Concentration result for [1](n) then follows by taking
union bound with respect to the number of arrivals until
n (this can assume values from 1 to n). The proof for
concentration of 1/fp, 1/ pisub-6,1/ttmm, 1/, 1/ is similar,
and hence omitted. (39) then follows by using union bound
in order to jointly control deviations of all the components
of 0.



