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Abstract—In this paper, we consider transmission scheduling in a status update system, where updates are generated periodically
and transmitted over a Gilbert-Elliott fading channel. The goal is to minimize the long-run average age of information (AoI) under a
long-run average energy constraint. We consider two practical cases to obtain channel state information (CSI): (i) without channel
sensing and (ii) with delayed channel sensing. For (i), CSI is revealed by the feedback (ACK/NACK) of a transmission, but when no
transmission occurs, CSI is not revealed. Thus, we have to balance tradeoffs across energy, AoI, channel exploration, and channel
exploitation. The problem is formulated as a constrained partially observable Markov decision process (POMDP). We show that the
optimal policy is a randomized mixture of no more than two stationary deterministic policies each of which is of a threshold-type in the
belief on the channel. For (ii), (delayed) CSI is available via channel sensing. Then, the tradeoff is only between the AoI and energy.
The problem is formulated as a constrained MDP. The optimal policy is shown to have a similar structure as in (i) but with an AoI
associated threshold. With these, we develop an optimal structure-aware algorithm for each case.

Index Terms—Age of information, partially observable MDP, MDP, threshold-type policy.
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1 INTRODUCTION

FOr status update systems, where time-sensitive status
updates of certain underlying physical process are sent

to a remote destination, it is important that the destination
receives fresh updates. The age of information (AoI) is a
performance metric that is a good measure of the freshness
of the data at the destination. In particular, AoI is defined
as the time elapsed since the generation of the most recently
received status update. Different from the long-established
packet delay metric, AoI jointly captures packet delay and
inter-delivery time.

The problem of minimizing the AoI in status update
systems has attracted significant recent attention (e.g., [1],
[2], [3], [4], [5], [6], [7], [8], [9]). Due to the fact that
sensors in the status update system are usually battery-
powered and thus have limited energy supply, the problem
of minimizing the long-run average AoI has to take energy
constraints into account. Moreover, communication over a
wireless channel is subject to multiple impairments such
as fading, path loss and interference, which may lead to
status updating failure. Note that each failed retransmission
consumes energy which is wasted. Thus, it is critical that
we design intelligent transmission scheduling algorithms
(e.g., to determine whether we should suspend transmission
or retransmit) in order to increase channel utilization and
prolong battery lifetime.

There have been a number of works that investigate
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AoI minimization problem under energy constraints with
different settings of energy constraints, channel assump-
tions and service times [10], [11], [12], [13], [14], [15],
[16], [17], [18]. Except that papers [13], [14], [16] consider
average energy constraints, other papers consider energy
harvesting transmitter. The paper [10] studies the online
policies with stochastic service time. In [11], [12], [15], the
authors assume that channel is noiseless and the service
time is negligible, and propose offline or online status up-
dating policies. Despite the noiseless channel assumption,
the knowledge of the channel state is often assumed to
be perfect so that successful transmission is guaranteed.
In [13], the authors jointly design sampling and updating
processes over a channel with perfect channel state infor-
mation. The success of each transmission is guaranteed via
using predefined transmission power which is a function of
the channel state. However, in many practical scenarios, the
channel state may not be known a priori. Thus, more recent
works have also considered unreliable transmissions with
imperfect knowledge of wireless channels. For example, in
[16], the authors consider a block fading channel, where the
channel is assumed to vary independently and identically
over time slots. In [14], the authors consider an error-prone
channel, where decoding error depends only on the number
of retransmissions. In [17] and [18], authors consider a noisy
channel with time-invariant success probability of delivery:
unit-sized battery in [17] and infinite battery in [18].

However, these works neglect an important characteris-
tics of the wireless fading channel: The channel memory or
time correlation [19] when studying unreliable transmissions
with imperfect knowledge of channel states. Indeed, the
memory can be intelligently exploited to predict the channel
state and thus to design efficient scheduling policies in the
presence of transmission cost. A finite state Markov chain
is an often used and appropriate model for fading channel
[20]. A somewhat simplified but often-used abstraction is
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a two-state Markovian model known as the Gilbert-Elliot
channel [21]. The model assumes that the channel can be
either in a good or bad state, and captures the essence of the
fading process. In [22], the authors consider status updating
in cognitive radio networks. The occupation of primary
user’s channel is modeled as a two-state Markov chain.
Although a Markov chain is used to model occupation of
primary channel, their threshold-type structural result is
built on perfect knowledge of the channel state since update
decisions are made based on perfect sensing results. In
contrast, in our work, we do not assume that the channel
state is known a priori at the time of making updating
decisions.

Motivated by the time-correlation in a fading channel
and the fact that sensors in practice are typically configured
to generate status updates periodically [23], in this paper, we
consider a status update system where the status update is
generated periodically and transmitted over a Gilbert-Elliot
channel. We do not assume that the channel state is known a
priori and consider two practical cases to obtain the channel
state information (CSI): (i) (without channel sensing) CSI is
revealed by the ACK/NACK feedback of a transmission; (ii)
(with delayed channel sensing) delayed CSI is always available
via delayed channel sensing regardless of transmission de-
cisions. With this context, we study the problem of how to
minimize the long-run average AoI at the destination under
a long-run average energy constraint at the source, which
is motivated by the fact that sensors or IoT devices at the
source usually have limited energy supply. The problem
in case (i) is formulated as a constrained partially observ-
able Markov decision process problem (POMDP) while in
case (ii), it is formulated as a constrained Markov decision
problem (MDP). It is known that in general POMDP is
PSPACE hard to solve and MDP suffers from the curse of
dimensionality. Thus, in this paper, we focus on providing
theoretical guarantees such that we obtain an optimal policy
with reduced complexity. To this end, we characterize the
structure of the optimal policy in either case. Note that
the problem in both cases involves long-run average cost
with infinite state space and unbounded costs, which makes
the analysis difficult. In particular, our key contributions
include:

• For the case without channel sensing, we show
that the optimal transmission scheduling policy is
a randomized mixture of no more than two sta-
tionary deterministic threshold-type policies (Theorem
1 and Corollary 2). Note that although there are
some works that deal with proving the optimality
of threshold-type policies in POMDPs [24], [25], [26],
[27], [28], the techniques in these papers cannot
be applied to our problem. This is because, given
hidden state and action, the one-stage cost in these
papers is constant and bounded, while the one-
stage cost in our paper depends on varying and
unbounded AoI.

• We propose a finite-state approximation for our
infinite-state (unbounded AoI and belief on chan-
nel state) belief MDP and show that the optimal
policy for the approximate belief MDP converges
to the original one (Theorem 2). Based on this, we

Fig. 1: System Model

propose an optimal efficient structure-aware trans-
mission scheduling algorithm (Algorithm 1) for the
approximate belief MDP.

• For the case with delayed channel sensing, we
show that the optimal transmission scheduling pol-
icy is also a randomized mixture of no more than
two stationary deterministic threshold-type policies.
However, due to the simplification in the state, the
threshold here is on AoI (Theorem 3). Moreover, we
provide a relation between the thresholds associated
with different channel states (Theorem 3). Based
on the theoretical insights, we develop an efficient
structure-aware algorithm (Algorithm 2).

The remainder of this paper is organized as follows. The
system model is introduced in Section 2. For the case with-
out channel sensing, we formulate the problem in Section
3, and in Section 4, we explore the structure of the optimal
policy and propose a structure-aware algorithm. In Section
5, we investigate the case with delayed channel sensing.
Section 7 contains numerical results.

2 SYSTEM MODEL

We consider a status update system where status updates
are generated periodically and transmitted to a remote des-
tination over a time-correlated fading channel, as shown in
Fig. 1. We consider a time-slotted system, where a time slot
corresponds to the time duration of the packet transmission
time and feedback period. Every K consecutive time slots
form a frame. Updates are generated at the beginning of each
frame. In any frame, if the generated status update is not
delivered by the end of the frame, then it gets replaced
by a new one in the next frame. Define K as the set of
relative slot index within a frame, K ≜ {1, 2, · · · ,K}. Use
t ∈ {1, 2, · · · } as an absolute index for the time slot count,
which increments indefinitely with time. For any time slot t,
the corresponding frame index lt ∈ {1, 2, · · · } is determined
by lt = ⌈ t

K ⌉ and relative slot index kt ∈ K is determined by
kt = ((t− 1) mod K)+1, where ⌈·⌉ is the ceiling function.

2.1 Channel Model
The time-correlated fading channel for transmission is as-
sumed to evolve as a two-state Gilbert-Elliot model [21].
Let ht denote the channel state at time slot t. Then, ht = 1
(ht = 0) denotes that channel is in a “good” (“bad”) state.
In the “bad” state, the channel is assumed to be in a deep
fade such that transmission fails with probability one; while
in the “good” state, a transmission attempt is always suc-
cessful. This assumption conforms with the signal-to-noise
ratio (SNR) threshold model for reception where successful
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decoding of a packet at the destination occurs if and only
if the SNR exceeds a certain threshold value. The channel
transition probabilities are given by P(ht+1=1|ht=1)=p11
and P(ht+1=1|ht= 0) = p01. We assume that the channel
transitions occur at the end of each time slot, and that p11
and p01 are known.

The presence of channel memory (time correlation)
makes it possible to predict the channel state. In this paper,
we assume that p11 ≥ p01 (positively correlated channel)
(similar assumptions have been used in [26], [28]).

2.2 Transmission Scheduler and Channel State Infor-
mation
At the beginning of each slot t, the scheduler takes a decision
ut ∈ U ≜ {0, 1}, where ut = 1 means transmitting or
retransmitting the undelivered status update, and ut = 0
denotes suspension of the transmission or retransmission. In
each frame, if the generated update is delivered at the kt-th
slot of the frame, then we have ut = 0 for the remaining slots
in the frame. For simplicity, we use transmission to refer
to both transmission and retransmission in the remaining
content.

In this paper, we consider two practical cases to obtain
CSI: (i) (without channel sensing) CSI is revealed via the
feedback on transmission from the destination; (ii) (with
delayed channel sensing) CSI of the last time slot is always
available via delayed channel sensing regardless of trans-
mission decisions. In particular, for case (i), if a transmis-
sion is attempted, then the scheduler receives an error-
free ACK/NACK feedback from the destination specifying
whether the status update was delivered or not before the
end of the slot. We use Θ to denote the set of observations,
Θ ≜ {0, 1}. Let θt ∈ Θ be the observation at time slot t.
Then, θt = 1 denotes a successful transmission. θt = 0
occurs when the transmission occurs over the channel in the
bad state or the transmission is suspended. Note that when a
decision is made not to transmit updates, the scheduler will
not obtain feedback revealing the CSI. Thus, the channel in
this case is partially observable. In contrast, for case (ii), CSI
of the last time slot is always available via delayed channel
sensing regardless of transmission decisions.

2.3 Age of Information
Age of information (AoI) reflects the timeliness of the infor-
mation at the destination. It is defined as the time elapsed
since the generation of the most recently received update at
the destination. Let ∆t denote the AoI at the beginning of
the time slot t. Let U(t) denote the generation time of the
last successfully received status update for time slot t. Then,
∆t is given by ∆t ≜ t− U(t).

If a status update is not successfully delivered in a time
slot, then the AoI increases by one, otherwise, the AoI drops
to the time elapsed since the beginning of the frame (gener-
ation time of the newly delivered status update). Then, the
value of ∆t+1 is updated as follows:

∆t+1 =

{
kt if ut = 1, θt = 1,

∆t + 1 otherwise.
(1)

Let Ak denote the set of all possible AoI values at the k-th
slot of a frame. By (1), Ak = {∆ : ∆ = mK+(k)−,m ∈

Fig. 2: On the top, a sample sequence of deliveries during four
frames. Each frame consists of 4 time slots. The upward arrows
represent the times of deliveries. On the bottom, the associated
evolution of AoI.

{0, 1, 2, · · · }}, where (k)− ≜ ((K + k − 2) modK) + 1
denotes the relative slot index before k. An example of the
AoI evolution with K = 4 is illustrated in Fig. 2.

2.4 Optimization Problem
A transmission scheduling policy π = {d1, d2, · · · } specifies
the decision rules for each time slot, where a decision rule
dt is a function that maps the past actions, past and current
AoI, relative slot index of a frame and channel states to
actions. The transmitter consumes energy for each packet
transmission. In addition, energy is consumed for channel
sensing in the case with delayed channel sensing. However,
for channel sensing, a few pilot symbols will be enough. For
example, IEEE 802.11a uses only 4 pilot symbols for channel
sensing [29], [30]. That is, the energy cost of channel sensing
is often much smaller than that of packet transmission and
is a constant value. Thus, it will not change the outcome
of the optimization problem. Thus, we only consider the
transmission energy in optimization problems. We assume
that each transmission consumes the same energy which
is normalized as one unit energy. Note that if there is no
energy constraint at the source, then exploiting every time
slot in transmitting the undelivered update is optimal. This
is because suspending the transmission of an undelivered
status update does not contribute to decreasing the AoI and
also wastes an opportunity to learn the channel state in the
case without channel sensing. However, repeated transmis-
sion attempts could result in excessive energy consumption,
and could be impractical for sensors or IoT devices that are
usually energy constrained. Accordingly, we employ a long-
run average energy consumption constraint at the source. In
particular, our objective in this paper is to design a trans-
mission scheduling policy π that minimizes the following
long-run average AoI

Ā(π) ≜ lim sup
T→∞

1

T
Eπ

[ T∑
t=1

∆t|∆1, k1, h1

]
, (2)

while the long-run average energy consumption Ē(π) does
not exceed Emax ∈ (0, 1], i.e.

Ē(π) ≜ lim sup
T→∞

1

T
Eπ

[ T∑
t=1

ut|∆1, k1, h1

]
≤ Emax, (3)



IEEE TRANSACTIONS ON MOBILE COMPUTING 4

where Eπ denotes expectation under policy π. Observe that
Emax = 1 means that we have enough energy to support a
transmission in every time slot.

In case (i), although a failed transmission does not
decrease AoI, it provides CSI at the cost of energy. Thus,
the transmission scheduler has to balance tradeoffs across
energy, AoI, channel exploration, and channel exploitation.
In case (ii), delayed CSI is always available regardless of
transmission decisions. Thus, the tradeoff is only between
the AoI and energy.

3 CONSTRAINED POMDP FORMULATION AND
LAGRANGIAN RELAXATION WITHOUT CHANNEL
SENSING

3.1 Constrained POMDP Formulation

At the beginning of each time slot, the scheduler chooses
an action u. Given that the state of the underlying Markov
channel is i, the user observes θ(i, u) ∈ {0, 1}, which
indicates the state of the current channel. Specifically, an
ACK will be received if and only if the status update is
transmitted over a “good" channel, i.e. θ(1, 1) = 1. Oth-
erwise, for (i, u) ̸= (1, 1), θ(i, u) = 0. Upon receipt of
the feedback/observation, the AoI changes accordingly at
the end of this slot. The sequence of operations in each
slot is illustrated in Fig. 3. Note that when transmission
is suspended, the channel state is not directly observable.
Together with the average energy constraint, the problem
we consider in the paper turns out to be a constrained
partially observable Markov decision problem (POMDP).

Fig. 3: Sequence of operations in a slot

It has been shown in [31] that for any slot t, a belief
state ωt is a sufficient statistic to describe the knowledge of
underlying channel state and thus can be used for making
optimal decisions at time slot t.

Definition 1. The belief state ωt is the conditional probability
(given observation and action history) that the channel is in a
good state at the beginning of the time slot t.

Thus, adding the belief to the system state, the constrained
POMDP can be written as constrained belief MDP [32]. We
describe the components of the framework as follows:

States: The system state consists of completely observ-
able states and the belief state, i.e., the system state at slot t
is defined by a 3-tuple st=(∆t, kt, ωt), where ∆t∈Akt

is the
AoI state that evolves as (1); kt∈K is the relative slot index
in the frame lt that evolves as kt+1=(kt)+, where (y)+ ≜ (y
mod K)+1; ωt is the belief state whose evolution is defined
in the following paragraph.

Belief Update: Given ut and θt, the belief state in time slot
t+ 1 is updated by ωt+1 = Λ(ωt, ut, θt), where Λ(ωt, ut, θt)
is given by

ωt+1 =Λ(ωt, ut, θt) =


p11 ifut = 1, θt = 1,

p01 ifut = 1, θt = 0,

T (ωt) ifut = 0,

(4)

where T (ωt) = ωtp11 + (1 − ωt)p01 denotes the one-step
belief update. Observe that, if ut = 0, then the scheduler will
not learn the channel state and the belief is updated only
according to the Markov chain. If ut = 1, the observation θt
after the transmission provides the true channel state before
the state transition, which occurs at the end of the time slot
(see Fig. 3).

Let T m(ωt) ≜ P(ht+m = 1|ωt) denote m-step belief
update when the channel is unobserved for m consecutive
slots, where m ∈ {0, 1, · · · } and T 0(ω) = ω. Note that by
(4), after a transmission (ut = 1), ωt+1 is either p01 or p11.
The belief state ω is, hereafter, updated by T upon each
suspension until next transmission attempt. Thus, the belief
state ω is in the form of T m(p01) or T m(p11), where m ≥ 0.
Moreover, an increase in AoI by one results from either a
failed transmission or suspension. Thus, given AoI state
∆t, the maximum suspension time after last transmission
is no longer than ∆t − 1. By this, given AoI state ∆, the
belief state belongs to the following set Ω∆ ≜ {ω : ω =
T m(p01) or T m(p11), 0 ≤ m < ∆}. As a result, the state
space is given by S ≜ {(∆, k, ω) : k ∈ K,∆ ∈ Ak, ω ∈ Ω∆}.

Actions: Action set is U = {0, 1} defined in Section 2.2.
Transition probabilities: Given the current state st =

(∆t, kt, ωt) and action ut at time slot t, the transition proba-
bility to the state st+1 = (∆t+1, kt+1, ωt+1) at the next time
slot t+ 1, which is denoted by Pstst+1(ut), is defined as

Pstst+1(ut) ≜ P(st+1|st, ut)

=
∑
θt∈Θ

P(θt|st, ut)P(st+1|st, ut, θt), (5)

where

P(θt|st, ut) =


ωt if ut = 1, θt = 1,

1− ωt if ut = 1, θt = 0,

1 if ut = 0, θt = 0,

0 otherwise,

(6)

P(st+1|st, ut, θt)

=


1 if st+1=(kt, (kt)+,Λ(ωt, ut, θt)), ut=1, θt=1,

1 if st+1=(∆t+1, (kt)+,Λ(ωt, ut, θt)), θt=0,

0 otherwise.
(7)

Costs: Given a state st = (∆t, kt, ωt) and an action choice ut

at time slot t, the cost of one slot is the AoI at the beginning
of this slot, i.e., we have

C∆(st, ut) = ∆t. (8)

Moreover, the energy consumption of one slot is

CE(st, ut) = ut. (9)

For any policy π, we assume that the resulted Markov
chain is a unichain (same assumptions are also made in
[13], [33]). The transmission scheduling problem can be
formulated as a constrained belief MDP:
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Problem 1 (Constrained average-AoI belief MDP):

Ā⋆ ≜ min
π

Ā(π) = lim sup
T→∞

1

T
Eπ

[ T∑
t=1

C∆(st, ut)
]

(10)

s.t. Ē(π) = lim sup
T→∞

1

T
Eπ

[ T∑
t=1

CE(st, ut)
]
≤ Emax.

We use Ā⋆ to denote the optimal average AoI, which is the
solution to the problem (10).

A policy is stationary if the decision rule is independent
of time, i.e., dt = d, for all t. Moreover, a policy is randomized
if dt : S → P(U) specifies a probability distribution on the
set of actions. The policy is deterministic if dt : S → U
chooses an action with certainty. We show in Section 4
that there exists a stationary policy which is a randomized
mixture of no more than two deterministic policies that
achieves Ā⋆.

3.2 Lagrange Formulation of the Constrained POMDP
To obtain the optimal transmission scheduling policy, we
reformulate the constrained average-AoI belief MDP in (10)
as a parameterized unconstrained average cost belief MDP.
Given Lagrange multiplier λ, the instantaneous Lagrangian
cost at time slot t is defined by

C(st, ut;λ) = C∆(st, ut) + λCE(st, ut). (11)

Then, the average Lagrangian cost under policy π is given
by

L̄(π;λ) = lim sup
T→∞

1

T
Eπ

[ T∑
t=1

C(st, ut;λ)
]
. (12)

Then, we have an unconstrained average cost belief
MDP, which aims at minimizing the above average La-
grangian cost:

Problem 2 (Unconstrained average cost belief MDP):

L̄⋆(λ) ≜ min
π

L̄(π;λ), (13)

where L̄⋆(λ) is the optimal average Lagrangian cost with
regard to λ. A policy is said to be average cost optimal if it
minimizes the average Lagrangian cost.

The relation between the optimal solutions of the prob-
lems (10) and (13) is provided in the following corollary.

Corollary 1. The optimal average AoI of problem (10) and the
optimal average Lagrangian cost of problem (13) satisfy

Ā⋆ = sup
λ≥0

L̄⋆(λ)− λEmax. (14)

Proof. By Theorem 12.7 in [34], we only need to check
the following condition: for all r ∈ R, the set G(r) ≜
{s ∈ S : infu C∆(s, u) < r} is finite. Given r, for any
s′ = (∆′, k′, ω′) ∈ G(r), ∆′ = infu C∆(s

′, u) < r. With
fixed finite ∆′, Ω∆′ is finite. Thus, G(r) is finite.

4 STRUCTURE BASED ALGORITHM DESIGN

In this section, we investigate the structure of the optimal
policy for the constrained average-AoI belief MDP in (10),
develop a finite approximation for the infinite belief MDP
and propose an optimal algorithm using the structure.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Fig. 4: The m-step belief update with p01 = 0.2 and p11 = 0.8

4.1 Structure of Constrained Average-AoI Optimal Pol-
icy

4.1.1 Main results

To explore the structure, we first show that there exists a
stationary deterministic threshold-type scheduling policy that
solves the unconstrained average cost belief MDP in (13).

Theorem 1. Given λ, there exists a stationary deterministic
unconstrained average cost optimal policy that is of threshold-
type in belief. Specifically, (13) can be minimized by a policy of
the form π⋆

λ = (d⋆λ, d
⋆
λ, · · · ), where

d⋆λ(∆, k, ω) =

{
0 if 0 ≤ ω < ω⋆(∆, k;λ),

1 if ω⋆(∆, k;λ) ≤ ω,
(15)

where ω⋆(∆, k;λ) denotes the threshold given pair of AoI and
relative slot index (∆, k) and Lagrange multiplier λ.

Proof. Please see Section 4.1.2.

Remark:

• Note that the techniques in papers dealing with the
optimality of the threshold-type policies in POMDP
[24], [25], [26], [27], [28] cannot be applied to our
problem. This is because, given hidden state and
action, the one-stage cost in these papers is constant
and bounded, while the one-stage cost in our paper
depends on varying and unbounded AoI. To deal with
this, we jointly prove some properties of the value
functions and the optimality of threshold-type poli-
cies (see Lemma 1).

• In Fig. 4, we provide an example of m-step belief
update. In particular, the T m(p01) increases with m
while T m(p11) decreases with m, and the two curves
will converge to a same value. Denote the value as
ω0. With this, we can conclude the smallest belief
threshold must be smaller than ω0. Otherwise, the
transmitter stops updating after a failed transmission
(belief changes to p01 and never satisfies threshold
condition afterwards), which leads to the infinite
average AoI.

• If K = 1, then the optimal policy will behave as
follows:
Suppose the initial state is (1, p11), we start with (a).
(a) Upon a successful transmission, the state changes
to (1, p11). Then, the transmitter suspends transmis-
sion until the waiting time ts ≥ 0 satisfies T ts(p11) ≥
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ω∗(1+ ts). If the transmission is successful, go to (a);
otherwise, go to (b).
(b) Upon a failed transmission, the state changes to
(∆, p01), where ∆ ≥ 2. Then, the the transmitter
suspends transmission until the waiting time tf ≥ 0
satisfies T tf (p01) ≥ ω∗(∆ + tf ). If the transmission
is successful, go to (a); otherwise, go to (b).
Note that waiting time ts is constant while tf is AoI
dependent.

Next, we show that the optimal policy for the original
problem (10) is a mixture of no more than two stationary
deterministic threshold-type policies.

Corollary 2. There exists a stationary randomized policy π⋆

that is the optimal solution to the constrained average-AoI belief
MDP in (10), where π⋆ is a randomized mixture of threshold-type
policies as follows:

π⋆ = qπ⋆
λ1

+ (1− q)π⋆
λ2
, (16)

where q ∈ [0, 1] is a randomization factor, and π⋆
λ1

and π⋆
λ2

are the optimal threshold-type policies (15) for some Lagrange
multipliers λ1 and λ2, respectively.

Proof. Note that a stationary policy that transmits at the be-
ginning of every

⌈
1

KEmax

⌉
frames satisfies energy constraint,

where ⌈·⌉ is the ceiling function. Thus, the problem (10) is
feasible. Together with our unichain assumption, the result
follows from Theorem 4.4 in [34].

The method to determine λ1, λ2 and q will be discussed
in Section 4.2.2.

4.1.2 Proof of Theorem 1

We prove Theorem 1 in two steps: (i) address an uncon-
strained discounted cost belief MDP; (ii) relate it to the un-
constrained average cost belief MDP. In particular, we show
that the optimal policy for the unconstrained discounted
cost belief MDP is of threshold-type in ω, which implies
that the optimal policy for the unconstrained average cost
belief MDP is of threshold-type in ω

Given an initial state s, the total expected discounted
Lagrangian cost under policy π is given by

Lβ
s (π;λ) = lim sup

T→∞
Eπ

[ T∑
t=1

βt−1C(st, ut;λ)|s
]
, (17)

where β ∈ (0, 1) is a discount factor. The optimization prob-
lem of minimizing the total expected discounted Lagrangian
cost can be cast as

Problem 3 (Unconstrained discounted cost belief MDP):

V β(s) ≜ min
π

Lβ
s (π;λ), (18)

where V β(s) denotes the optimal total expected β-
discounted Lagrangian cost (for convenience, we omit λ in
notation V β(s)).

A policy is said to be β-discounted cost optimal if it
minimizes the total expected β-discounted Lagrangian cost.
In Proposition 1, we introduce the optimality equation of
V β(s).

Proposition 1. (a) The optimal total expected β-discounted
Lagrangian cost V β(∆, k, ω) satisfies the optimality equation as
follows:

V β (∆, k, ω) = min
u∈{0,1}

Qβ (∆, k, ω;u) , (19)

where

Qβ (∆, k, ω; 0) =∆+ βV β
(
∆+ 1, (k)+ , T (ω)

)
; (20)

Qβ (∆, k, ω; 1) =∆+ λ+ β
(
ωV β

(
k, (k)+ , p11

)
+(1− ω)V β

(
∆+ 1, (k)+ , p01

) )
. (21)

(b) A stationary deterministic policy determined by the right-
hand-side of (19) is β-discounted cost optimal.
(c) Let V β

n (s) be the cost-to-go function such that V β
0 (s)=0, for

all s ∈ S and for n ≥ 0,

V β
n+1(∆, k, ω) = min

u∈{0,1}
Qβ

n+1(∆, k, ω;u), (22)

where

Qβ
n+1 (∆, k, ω; 0) =∆+ βV β

n

(
∆+ 1, (k)+ , T (ω)

)
; (23)

Qβ
n+1 (∆, k, ω; 1) =∆+ λ+ β

(
ωV β

n

(
k, (k)+ , p11

)
+(1− ω)V β

n

(
∆+ 1, (k)+ , p01

) )
. (24)

Then, we have V β
n (s) → V β(s) as n → ∞, for every s, β.

Proof. According to [35], it suffices to show that there exists
a stationary deterministic policy f such that for all β, s, we
have Lβ

s (f ;λ)<∞. Let f be a policy that chooses u = 0 for
every time slot. For any initial state s1 = (∆, t, ω) under this
policy, we have

Lβ
s1(f ;λ) = lim sup

T→∞
Ef

[ T∑
t=1

βt−1C(st, 0;λ)|s1
]

=
∞∑

n=0

βn(∆ + n)

=
∆

1− β
+

β

(1− β)2
< ∞.

Using (c) in Proposition 1, we show properties of V β in
Lemma 1.

Lemma 1. If p11 ≥ p01, then the value function V β has the
following properties:
(a) V β(∆, k, ω) is non-decreasing with regard to age ∆.
(b) V β(∆, k, ω) is non-increasing with regard to belief ω.
(c) For beliefs x, y, z, ω that satisfy z = ωx + (1 − ω)y and
x ≥ y, we have

(1−ω)λ+ωV β(∆, k, x)+(1−ω)V β(∆, k, y)≥V β(∆, k, z). (25)

(d) The optimal policy corresponding to V β is of a threshold-type
in ω, i.e. given ∆, k, there exists a threshold ω⋆

β(∆, k;λ) such
that it is optimal to transmit only when ω ≥ ω⋆

β(∆, k;λ).

Proof. Please see Appendix A.

By (d) in Lemma 1, the β-discounted cost optimal poli-
cies are of threshold-type in belief. By [35], under certain



IEEE TRANSACTIONS ON MOBILE COMPUTING 7

conditions (A proof of these conditions verification is pro-
vided in Appendix B), average cost optimal policy can be
viewed as a limit of a sequence of β-discounted cost optimal
policies as β → 1. Thus, the average cost optimal policies are
of threshold-type in belief.

4.2 Structure-Aware Algorithm Design

It is known that MDP suffers from the curse of dimensional-
ity. Thus, in this section, we utilize the structure obtained
in the last section to design an algorithm with reduced
complexity. In particular, we exploit Corollary 2 to design
a structure-aware algorithm for (10) in two steps: We first
design a structure-aware algorithm for (13), and then con-
struct a way to determine parameters λ1, λ2 and q.

4.2.1 Structure-Aware Algorithm for the approximate un-
constrained average cost belief MDP
In practice, classic value iteration cannot work if the state
space is infinite, since an infinite number of Q-functions
associated with the infinite state space need to be updated
for each iteration. To deal with this, we first propose a finite-
state approximation for infinite-state belief MDP in (13) and
show the convergence of our approximate belief MDPs to
the original one. Based on this, we propose an optimal
structure-aware algorithm for the approximate belief MDP.

Let N be an upper bound for the AoI and the number
of Markov transitions from p01 or p11. Since T i(p01) ≤
T i+1(p01) and T i(p11) ≥ T i+1(p11) for i ∈ N, we have
that with bound N , the state space of the approximate belief
MDP is given by SN ≜ {(∆, k, ω)∈S :k ∈ K,∆ ∈ Ak,∆ ≤
N, p01 ≤ ω≤T N (p01) or T N (p11) ≤ ω ≤ p11}. Without loss
of generality, we assume N > K .

Given the state (∆t, kt, ωt) ∈ SN , the state st+1 =
(∆t+1, kt+1, ωt+1) ∈ SN is updated as follows:

st+1=


(
kt, (kt)+, p11

)
ifut=1, θt=1,(

ϕ(∆t+1), (kt)+, p01
)

ifut=1, θt=0,(
ϕ(∆t+1), (kt)+, φ(T (ωt))

)
ifut=0,

(26)

where ϕ(x) = min{x,N}, and φ(y) is given by1

φ(y) =

{
T N (p11) if T N (p01) < y < T N (p11),

y otherwise.
(27)

Given action u, the transition probability from s to s′ on
state space SN , denoted by PN

ss′(u), is expressed as

PN
ss′(u) = Pss′(u) +

∑
r∈S−SN

Psr(u)1{ν(r)=s′}, (28)

where Pss′(u) and Psr(u) are the transition probabilities
on S defined in (5), 1{·} is the indicator function, and
approximation operation to state is

ν ((z1, z2, z3)) ≜ (ϕ(z1), z2, φ(z3)). (29)

In general, a sequence of approximate MDPs may not
converge to the original MDP [36]. In Theorem 2, we show

1. We upper bound the belief state by T N (p11). This ensures that
the optimal policy for the approximate unconstrained belief MDP is of
threshold-type.

the convergence of our approximate MDPs to the original
MDP.

Theorem 2. Let L̄N⋆(λ) be the minimum average Lagrangian
cost for the approximate MDP with regard to bound N and
Lagrange multiplier λ. Then, L̄N⋆(λ) → L̄⋆(λ) as N → ∞.

Proof. Please see Appendix C.

The Relative Value Iteration (RVI) algorithm can be uti-
lized to obtain an optimal stationary deterministic policy
for the approximate MDP. In particular, RVI starts with
V N
0 (s) = 0, ∀s ∈ SN and updates V N

n+1(s) by minimiz-
ing the RHS of equation (30) in the (n + 1)-th iteration,
n ∈ {0, 1, 2, · · · }.

V N
n+1(s) = min

u

{
C(s, u;λ)

+
∑

s′∈SN

PN
ss′(u)h

N
n (s′)− hN

n (0)
}
, (30)

where 0 is the reference state and hN
n (s) = V N

n (s)−V N
n (0).

Note that similar to the proof in Section 4.1, it can be shown
that the optimal policy for the approximate MDP is still of
threshold-type. Thus, we utilize the threshold property in
RVI algorithm and propose a threshold-type RVI to reduce
the complexity in Algorithm 1 (Line 4-24). Specifically, in
each iteration n, we need to update the optimal action u∗

for all states by minimizing the right-hand-side of (30). Since
the size of the state space SN is O(N · K · (2N + 2)), the
computation complexity of updating actions for all states in
each iteration is O(N ·K ·(2N+2)) without using threshold
property. But with the threshold property, if certain state
satisfies the threshold condition (Line 11), then the optimal
action for the state is determined immediately without doing
the minimization operation (Line 12), which reduces the al-
gorithm complexity greatly. The reduction degree is affected
by the optimal thresholds and is hard to be quantified. To
give a flavor of the reduction, we provide a simulation result
here. In our simulation with parameters ϵ = 0.001, N = 500,
K = 4, p11 = 0.6 and p01 = 0.2, the times of minimization
operation without the threshold property (71854272 times)
is around 31 times the one with the threshold property
(2220468 times) till the termination of loop in Line 4-24.
Another benefit of introducing the threshold property is to
reduce the memory for storing optimal policies. Without the
threshold property, we have to store actions for all states,
which consumes O(N ·K ·(2N+2)). But with the threshold
property, we only need to store thresholds for each pair
of the AoI and the relative slot index, which consumes
O(N ·K).

4.2.2 Lagrange Multiplier Estimation

By Lemma 3.4 of [37], for λ1<λ2, we have Ā(π⋆
λ1
)≤Ā(π⋆

λ2
)

and Ē(π⋆
λ1
)≥Ē(π⋆

λ2
). Thus, the optimal Lagrangian multi-

plier λ⋆ is defined as λ⋆≜inf{λ>0 : Ē(π⋆
λ) ≤ Emax}. If there

exists λ⋆ such that Ē(π⋆
λ⋆) = Emax, then the constrained

average-AoI optimal policy is a stationary deterministic
policy where q in Corollary 2 is either 0 or 1. Otherwise,
the optimal policy π⋆ chooses policy π⋆

λ⋆− with probability
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Algorithm 1: Structure-Aware Scheduling without
channel sensing
1 Given tolerance ϵ > 0, ϵλ > 0, λ⋆−, λ⋆+, N ;
2 while |λ⋆+ − λ⋆−| > ϵλ do
3 λ = (λ⋆+ + λ⋆−)/2;
4 V N (s) = 0, hN (s) = 0, hN

prev(s) = ∞, for all s ∈ SN ;
5 while maxs∈SN |hN (s)− hN

prev(s)| > ϵ do
6 ω⋆(∆, k;λ) = ∞ for all s = (∆, k, ω) ∈ SN ;
7 foreach s = (∆, k, ω) ∈ SN do
8 if ∆ < K then
9 u⋆ = 0;

10 else
11 if ω ≥ ω⋆(∆, k;λ) then
12 u⋆ = 1;
13 else
14 u⋆ = argminu∈{0,1}{C(s, u;λ) +∑

s′∈SN PN
ss′ (u)h

N (s′)};
15 if u⋆ = 1 then
16 ω⋆(∆, k;λ) = ω;
17 end
18 end
19 end
20 V N (s) =

C(s, u⋆;λ) +
∑

s′∈SN PN
ss′ (u

⋆)hN (s′)− hN (0);
21 hN

prev(s) = hN (s);
22 hN (s) = V N (s)− V N (0);
23 end
24 end
25 Compute the average energy cost Ē(λ);
26 if Ē(λ) > Emax then
27 λ⋆− = λ;
28 else
29 λ⋆+ = λ;
30 end
31 end

q and policy π⋆
λ⋆+ with probability 1−q. The randomization

factor q can be computed by

q =
Emax − Ē(π⋆

λ⋆+)

Ē(π⋆
λ⋆−)− Ē(π⋆

λ⋆+)
. (31)

The bisection method is used to compute λ⋆−, λ⋆+ and thus
q (Line 2-3 and Line 26-30 in Algorithm 1). The algorithm
starts with λ⋆− = 0 and sufficiently large λ⋆+.

5 SCHEDULING WITH DELAYED CHANNEL SENS-
ING

With delayed channel sensing, the CSI of the last time slot
is always available at the beginning of each slot. Thus, the
problem in this case can be formulated as a constrained
MDP. The state space reduces to S ≜ {(∆, k, g) : k ∈
K,∆ ∈ Ak, g ∈ {0, 1}}, where g denotes the CSI of the last
time slot. Given st = (∆t, kt, gt) and ut at time slot t, the
transition probability to st+1 = (∆t+1, kt+1, gt+1) is written
as follows:

Pstst+1
(ut)

=


pgt1 ifut = 1, st+1 = (kt, (kt)+, 1),

1− pgt1 ifut = 1, st+1 = (∆t + 1, (kt)+, 0),

pgtgt+1 ifut = 0, st+1 = (∆t + 1, (kt)+, gt+1).

(32)

Following Section 3.2 and Section 4, the optimal trans-
mission scheduling policy in this case is also a randomized

mixture of no more than two stationary deterministic poli-
cies, each of which is optimal for an unconstrained average
cost MDP. But thanks to the simplification in state, we can
show that the optimal policy for the unconstrained average
cost MDP in this case is of threshold-type in AoI in Theorem
3.

Theorem 3. Given Lagrange multiplier λ, there exists a station-
ary unconstrained average cost optimal policy that is deterministic
and of threshold-type in AoI. Specifically, the policy is in the form
π⋆
λ = (d⋆λ, d

⋆
λ, · · · ), where

d⋆λ(∆, k, g) =

{
0 if 0 ≤ ∆ < ∆⋆(k, g;λ),

1 if ∆⋆(k, g;λ) ≤ ∆,
(33)

and
∆⋆(k, 1;λ) ≤ ∆⋆(k, 0;λ), (34)

where ∆⋆(k, g;λ) denotes the threshold given pair of relative slot
index and delayed CSI (k, g) and Lagrange multiplier λ.

Different from Theorem 1 which provides a threshold
structure in the belief ω, Theorem 3 obtains that (i) the
average cost optimal policy is of threshold-type in AoI, and
(ii) threshold when g = 1 is no larger than the threshold
when g = 0. Indeed, (ii) is used in algorithm to further
reduce algorithm complexity. In particular, similar to Section
4.2.1, we bound AoI with N and propose a threshold-type
algorithm in Algorithm 2 to minimize unconstrained aver-
age cost. Different from corresponding part in Algorithm 1,
∆⋆(k, 1;λ) is updated along with each threshold updating
(Line 15) to keep the threshold relation in (34). This further
reduces algorithm complexity.

Algorithm 2: Threshold-type scheduling for uncon-
strained average cost MDP with delayed channel sens-
ing
1 Given tolerance ϵ > 0, Lagrange multiplier λ and bound N ;
2 V N (s) = 0, hN (s) = 0, hN

prev(s) = ∞, for all s ∈ SN ;
3 while maxs∈SN |hN (s)− hN

prev(s)| > ϵ do
4 ∆⋆(k, g;λ) = ∞ for all s = (∆, k, g) ∈ SN ;
5 foreach s = (∆, k, g) ∈ SN do
6 if ∆ < K then
7 u⋆ = 0;
8 else
9 if ∆ ≥ ∆⋆(k, g;λ) then

10 u⋆ = 1;
11 else
12 u⋆ = argminu∈{0,1}{C(s, u;λ) +∑

s′∈SN PN
ss′ (u)h

N (s′)};
13 if u⋆ = 1 then
14 ∆⋆(k, g;λ) = ∆;
15 ∆⋆(k, 1;λ) = min{∆,∆⋆(k, 1;λ)};
16 end
17 end
18 end
19 V N (s) =

C(s, u⋆;λ) +
∑

s′∈SN PN
ss′ (u

⋆)hN (s′)− hN (0);
20 hN

prev(s) = hN (s);
21 hN (s) = V N (s)− V N (0);
22 end
23 end

The proof idea of Theorem 3 is similar to Theorem 1. We
relate average cost MDPs to discounted cost MDPs. Next,
we explore the structure of discounted cost optimal policies.
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The optimality equation in (19) is modified as follows:

V β (∆, k, g)=∆+ βmin
{ ∑
g′∈{0,1}

pgg′V β
(
∆+ 1, (k)+, g

′) ,
λ+ pg1V

β
(
k, (k)+ , 1

)
+pg0V

β
(
∆+ 1, (k)+ , 0

) }
. (35)

First, we prove the monotonicity of value function V β in
AoI in Lemma 2.

Lemma 2. The function V β(∆, k, g) is non-decreasing with
regard to AoI ∆.

Proof. Please see Appendix D.

With this, we characterize the structure of optimal policy
for the unconstrained discounted cost MDP in Lemma 3.

Lemma 3. Given λ and β, the optimal policy that minimizes
the β-discounted Lagrangian cost is of threshold-type in AoI ∆,
i.e. given k, g, there exists a threshold ∆⋆

β(k, g;λ) such that it
is optimal to transmit only when ∆ ≥ ∆⋆

β(k, g;λ). In addition,
∆⋆

β(k, 1;λ) ≤ ∆⋆
β(k, 0;λ).

Proof. Please see Appendix E.

Similar to the proof of Theorem 1, we can extend the
result to the unconstrained average cost MDP as in Theorem
3.

6 A SPECIAL CASE WITH K = 1 AND p01 = p11
In this section, we analyze optimal policies for a special case
with K = 1 and p01 = p11. Let p = p01. Note that if p01 =
p11, then T m(p01) = T m(p11) = p for m ≥ 0. Then, for
the case without channel sensing, the belief state ω = p at
each time slot. On the other side, for the case with channel
sensing, the transition probability pg1 = p for g ∈ {0, 1}.
Together with K = 1, the optimality equations in both cases
(Eq. (19) and (35)) reduce to the same equation as follows:

V β (∆) =∆+ βmin
{
V β(∆ + 1) ,

λ+ pV β (1)+(1− p)V β (∆ + 1)
}
. (36)

With similar proof of Theorem 3, the optimal policies for
the unconstrained MDPs in both cases when K = 1 and
p01 = p11 features a threshold policy as in Theorem 4.

Theorem 4. Given Lagrange multiplier λ, there exists a station-
ary unconstrained average cost optimal policy that is deterministic
and of threshold-type in AoI. Specifically, the policy is in the form
π⋆
λ = (d⋆λ, d

⋆
λ, · · · ), where

d⋆λ(∆) =

{
0 if 0 ≤ ∆ < ∆⋆

λ,

1 if ∆⋆
λ ≤ ∆.

(37)

The policy above can be viewed as a special version
of the (33) for the case with channel sensing. If we let
ω⋆(∆;λ) = 1 for ∆ < ∆⋆

λ and ω⋆(∆;λ) = 0 for ∆ ≥ ∆⋆
λ,

then the policy can be viewed as a special version of the
policy (15) for the case without channel sensing.

For the original problem in both cases, the optimal
solution is a randomized mixture of threshold-type policies
as in Corollary 2. Thanks to the simplification, the optimal
can be easily presented in Fig. 5. The dashed curves cor-
respond to the optimal threshold-type policies in (37) with

Fig. 5: Optimal policy for the constrained MDPs in both cases
with K = 1 and p01 = p11. The dashed curves correspond to
the optimal policies for the unconstrained MDPs with λ⋆

1 and
λ⋆
2. The solid curve represents the optimal randomized policy

for the constrained MDP.

λ⋆
1 and λ⋆

2, where λ⋆
1 ≤ λ⋆

2. The solid curve represents the
optimal randomized policy for the original problem. For
∆⋆

λ⋆
1

≤ ∆ < ∆⋆
λ⋆
2
, the probability of transmitting is the

randomization factor q.

7 NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
the proposed algorithms.

7.1 Policy estimation for the unconstrained infinite-
state MDP

Recall that in our setting, the state space is infinite due to
the unreliable channel. Thus, value iteration cannot be used
directly to obtain the optimal policy for the unconstrained
MDP in either case. To handle this, we proposed finite-state
approximations with upper bound N in each case, and then
proposed structure-aware policies in Algorithm 1 and Algo-
rithm 2 to obtain the optimal policies for the approximate
unconstrained MDPs in the two cases, respectively.

For the case without channel sensing, Line 5 - Line 24
in Algorithm 1 are used to obtain a structure-aware opti-
mal policy for the unconstrained approximate MDP given
bound N and Lagrangian multiplier λ. The optimal policy
features a threshold-type in belief state, and the optimal
threshold ω∗ is a function of the AoI ∆ and the relative slot
index k. Since we use N to bound the AoI, the resulting
policy only has threshold information for the AoI below
N + 1. To apply this policy to the infinite-state MDP, we
set ω∗(∆, k) = ω∗(N, k), for ∀∆ > N .

In Fig. 6, we investigate how N and λ affect the resulting
policy for the unconstrained infinite-state MDP. In partic-
ular, each figure in Fig. 6 presents the optimal threshold
as a function of ∆ and k. Note that given k, the optimal
threshold corresponding to the AoI outside the AoI range in
the figure is the same as the one corresponding to the largest
AoI in the figure. In simulation, we set p11 = 0.7, p01 = 0.3,
and K = 4. We can observe that with fixed λ, i.e. Fig. 6a-6d,
the policy converges as N increases. In addition, by viewing
results from the first row to the last row, we can find that as
λ increases, policies converges on larger N .

Further, we use the average Lagrangian cost to present
the performance of the resulting policy and the number
of times that the value function V N (·) is updated till the
termination of the structure-aware RVI in Algorithm 1 to
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(a) N = 9, λ = 2 (b) N = 12, λ = 2 (c) N = 15, λ = 2 (d) N = 18, λ = 2

(e) N = 15, λ = 10 (f) N = 20, λ = 10 (g) N = 25, λ = 10 (h) N = 30, λ = 10

(i) N = 30, λ = 50 (j) N = 40, λ = 50 (k) N = 50, λ = 50 (l) N = 60, λ = 50

Fig. 6: Policy estimation with different values of N and λ (without channel sensing)
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Fig. 7: Average Lagrangian cost vs updating times with different values of N (without channel sensing)

present the complexity. In Fig. 7, we study the average
Lagrangian cost and the number of updating times by
varying N , which implies the trade-off between complexity
and accuracy based on the choice of N . We set ϵ = 0.01 in
simulation. We observe that (i) as N increases, the average
Lagrangian cost decreases more slowly while the number
of times for updating V N (·) keeps increasing, and (ii) the
average Lagrangian cost remains the same after N exceeds
a certain value. It provides numerical support to our proof
of convergence for the policy.

Similarly, we conduct simulations for the case with chan-
nel sensing. Compared to the case without channel sensing,

the difference is that the threshold in this case is in AoI and
the threshold AoI is a function of the relative slot index k
and the CSI of the last time slot g. Since the threshold can
be ∞, we use a table to denote the estimated policy for
the unconstrained infinite-state MDP as shown in Table 1-
Table 9. The three consecutive tables in a row represent the
estimated policy versus N and each row corresponds to a
certain λ. Fig. 8 studies the average Lagrangian cost and the
number of times for updating value functions till the termi-
nation of Algorithm 2 by varying values of N . The trade-off
is similar as the case without channel sensing. But in this
case, it takes smaller number of times to converge given N .
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TABLE 1: Estimated Policy given λ = 2
and N = 5 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 3 5 5 5
1 1 2 4 5

TABLE 2: Estimated Policy given λ = 2
and N = 10 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 3 4 5 7
1 1 2 3 5

TABLE 3: Estimated Policy given λ = 2
and 15 ≤ N ≤ 1000 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 2 4 5 7
1 1 2 3 5

TABLE 4: Estimated Policy given λ = 10
and N = 20 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 9 11 13 20
1 3 4 6 9

TABLE 5: Estimated Policy given λ = 10
and N = 25 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 9 11 12 19
1 3 4 6 9

TABLE 6: Estimated Policy given λ = 10
and 30 ≤ N ≤ 1000 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 9 11 12 18
1 3 4 6 9

TABLE 7: Estimated Policy given λ = 50
and N = 35 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 ∞ ∞ ∞ ∞
1 8 10 13 21

TABLE 8: Estimated Policy given λ = 50
and N = 50 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 39 42 44 ∞
1 8 10 13 21

TABLE 9: Estimated Policy given λ = 50
and 65 ≤ N ≤ 1000 (with channel sensing)

Threshold ∆∗ Relative slot index k
1 2 3 4

CSI of
last slot g

0 39 42 44 61
1 8 10 13 21
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Fig. 8: Average Lagrangian cost vs updating times with different values of N (with channel sensing)

This is mainly because that the number of combinations of
(k, g) is 2K while the number of combinations of (∆, k) is
NK .

In the remaining sections, we assume N = 1000 and
obtain all simulation results over 105 time slots.

7.2 Average AoI Performance
Fig. 9 plots the AoI-energy tradeoff with different fading
characteristics (different p11 and p01) for the two cases that
we consider in this paper. In this simulation, we set K = 3.
The optimal average AoI with no energy constraint is plot-
ted as a gray dashed line accordingly. When comparing
Fig. 9a with Fig. 9b, it is easy to observe that for fixed
energy constraint and pair of p11 and p01, the average AoI
with delayed channel sensing is no larger than that without
channel sensing.

Moreover, the curves in Fig. 9a and Fig. 9b exhibit
the same trend as follows. For each pair of p11 and p01,
average AoI decreases with energy constraint. Note that it
is prohibited to transmit delivered status update. Thus, even
if there is no energy constraint, obtaining the optimal aver-
age AoI does not necessarily imply transmitting at every

time slot. This explains why the average AoI achieved by
our proposed policies approaches the gray line even when
Emax ̸= 1. In addition, we can observe that for certain energy
constraint, the average AoI decreases with either p11 or p01.
This is due to the fact that increase in either p11 or p01 results
in the increase of steady state probability that channel is in
good state.

Fig. 10 studies the average AoI performance vs frame
length with different fading characteristics in the two cases.
We set the energy constraint Emax = 0.3. Compare Fig. 10a
with Fig. 10b, we have same observations in Fig. 9 that aver-
age AoI is smaller in the case with delayed channel sensing.
Except this, average AoI increases with frame length. This
is reasonable since increase of frame length means less
frequent generation of status updates. We can also find that
the increasing rate is changing. This is actually the outcome
of both frame length and energy constraints.

7.3 Comparison with greedy policy

Let et denote total energy consumption before slot t. Then,
ēt ≜ et/(t−1) denotes the average energy consumed before
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Fig. 9: AoI-energy tradeoff with different transition probabili-
ties
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Fig. 10: Average AoI vs frame length with different transition
probabilities

slot t. We compare the proposed transmission scheduling
policies with a greedy policy that transmits when ēt < Emax
and ∆t ≥ K . We set K = 3, p11 = 0.7, p01 = 0.3, in
which case the optimal AoI with no energy constraint is
achieved with 0.6167 units energy on average. Thus, the
comparison is conducted with energy constraint ranging
from 0.1 to 0.6. In Fig. 11, it is easy to observe that the
proposed transmission scheduling policy outperforms the
greedy policy in both cases. The gap between the greedy
policy and scheduling policy in either case narrows as the
energy constraint is loosened.

7.4 Comparison with fixed-threshold policy

Recall that the proposed transmission scheduling policies
feature multi-thresholds and the randomization factor q. We
may wonder whether a fixed-threshold policy can be used
instead in practice to simplify manipulation. In this section,
we compare the average AoI performance of the proposed
policies with an optimized fixed-threshold policy. In partic-
ular, the optimized fixed-threshold policy refers to the one
that has the smallest average AoI with energy constraint
satisfied among all fixed-threshold policies. For the case
without channel sensing, the fixed threshold ω∗ is chosen
from {ω : p01 ≤ ω ≤ T N (p01) or T N (p11) ≤ ω ≤ p11}.
For the case with channel sensing, the fixed threshold ∆∗ is
chosen from {1, · · · , N}.

As a metric for the comparison, we define average AoI
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Fig. 11: Comparison with greedy policy

increase Â as

Â =
Ā∗

fixed − Ā∗
multi

Ā∗
multi

(38)

where Ā∗
multi, Ā

∗
fixed denote the average AoI obtained with

our proposed policy and the optimized fixed-threshold pol-
icy, respectively.

In Table 10, we investigated average AoI increase Â in
scenarios with different combinations of channel conditions
((p11, p01) ∈ {(0.6, 0.4), (0.7, 0.3), (0.7, 0.4), (0.7, 0.5),
(0.8, 0.4)}), energy constraints (Emax ∈ {0.2, 0.5, 0.8}) and
frame lengths (K ∈ {1, 2, 3}). We provide 19 scenarios in
total. Recall that it is prohibited to retransmit delivered
status update. Thus, even if there is no energy constraint,
obtaining the optimal average AoI does not necessarily
imply transmitting at every time slot. In particular, for all
the scenarios with K = 1, the optimal policy without energy
constraint is to transmit at every time slot since there is an
update at every time slot. For scenarios with p11 = 0.7 and
p01 = 0.3, the optimal AoI with no energy constraint is
achieved with 0.75 and 0.6167 units energy on average when
K = 2 and K = 3, respectively. Thus, we do not provide
Emax = 0.8 in scenarios with K = 2 or K = 3.

Scenarios No. 1-15 have the same frame length K = 1, in
which each group of the three consecutive scenarios (num-
bered 3l − 2, 3l − 1, 3l, for l ∈ N+ ) have the same channel
conditions but with different energy constraints. Scenarios
No. 16-17 (No. 18-19) form a group that has the same
frame length K = 2 (K = 3) and channel conditions but
with different energy constraints. We can observe in each
group that for both cases, Â mainly decreases with Emax.
This is because that as Emax becomes larger, the optimal
multiple thresholds tend to get closer, which narrows the
performance gap between our policies and the optimized
fixed-threshold policy. In few situations like No. 11 and
No. 12 in the case with channel sensing, the Â increases
with Emax. Such kind of situations can be explained as
follows. Notice that the threshold of the optimized fixed-
threshold policy should be a threshold bounded by the
smallest and largest values of optimal thresholds of our
policies. Usually, choosing a threshold in middle should be
better than using the smallest value as a threshold. Thus,
when the optimized fixed-threshold policy has to choose the
smallest value as its optimal threshold, Â may increase. For
example, in scenario No. 11, the threshold of the optimized
fixed-threshold policy is 3, in the middle of optimal thresh-
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TABLE 10: Average AoI increase with different frame lengths, energy constraints and channel conditions in two cases

Scenarios Frame length
K

Channel conditions Energy constraint
Emax

Average AoI increase Â (%)

p11 p01
Without

channel sensing
With

channel sensing
1 1 0.6 0.4 0.2 170.085 13.276
2 1 0.6 0.4 0.5 89.840 12.054
3 1 0.6 0.4 0.8 32.133 5.418
4 1 0.7 0.3 0.2 165.703 39.473
5 1 0.7 0.3 0.5 58.757 12.452
6 1 0.7 0.3 0.8 19.701 5.323
7 1 0.7 0.4 0.2 186.876 27.733
8 1 0.7 0.4 0.5 63.551 18.282
9 1 0.7 0.4 0.8 20.539 7.209
10 1 0.7 0.5 0.2 208.362 9.129
11 1 0.7 0.5 0.5 108.793 4.908
12 1 0.7 0.5 0.8 172.684 9.521
13 1 0.8 0.4 0.2 267.096 31.843
14 1 0.8 0.4 0.5 100.203 9.026
15 1 0.8 0.4 0.8 9.947 9.851
16 2 0.7 0.3 0.2 120.124 35.271
17 2 0.7 0.3 0.5 3.114 11.208
18 3 0.7 0.3 0.2 171.136 42.235
19 3 0.7 0.3 0.5 13.452 28.367

olds ∆∗(1, 1) = 2,∆∗(1, 0) = 4 of our policy. However,
in scenario No. 12, the threshold of the optimized fixed-
threshold policy is 2, the smallest one of optimal thresholds
∆∗(1, 1) = 2,∆∗(1, 0) = 3 of our policy.

Every three scenarios in No. 1-No.15 differ in channel
conditions. We can observe that channel conditions do have
impact on Â but the trend is indeterminate. By comparing
scenarios No. 4, No. 16 and No. 18, and scenarios No.5, No.
17 and No. 19, we can observe that the frame length also
affects Â but the trend is indeterminate.

In addition, the average AoI increase in the case without
channel sensing is much larger than the case with channel
sensing. With the results, we can say that it is necessary to
use our policy when energy constraint is not close to the
energy required to achieve the optimal AoI without energy
constraint, especially for the case without channel sensing.
When energy constraint is loose, we need to judge Â based
on the channel conditions and frame length to see whether
the fixed-threshold policy can be used with only a small
sacrifice in the performance.

8 CONCLUSION

We studied scheduling transmission of periodically gener-
ated updates over a Gilbert-Elliott fading channel in two
cases. For the case without channel sensing, the problem is a
constrained POMDP and is rewritten as a constrained belief
MDP by introducing belief state. We show that the optimal
policy for the constrained belief MDP is a randomization of
no more than two stationary deterministic policies, each of
which is of a threshold-type in the belief on the channel.
For the case with delayed channel sensing, we show that
the optimal policy has a similar structure as the one in the
former case but with AoI associated threshold. In addition,
we show that the AoI threshold has monotonic behavior
in the delayed channel state in this case. The structure is
utilized in either case to reduce algorithm complexity.
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APPENDIX A
PROOF OF LEMMA 1
Without loss of generality, we extend space of belief state to
[0, 1] and show that (a)-(d) hold for ω ∈ [0, 1]. By Proposition
1, V β

n (s) → V β(s) as n →∞. Thus, we show that V β
n (s)

satisfies (a)-(d) for n ≥ 0 via induction. Note that V β
0 (s) = 0

satisfies (a)-(d).
Suppose that (a)-(d) hold for n. We (1) show that (d)

holds for n+1 based on the assumption that (a)-(c) hold for
n, and (2) show that (a)-(c) holds for n+1 based on the result
that (d) hold for n+1 shown in step (1) and the assumption
that (a)-(c) hold for n.

Step (1): We show that (d) holds for n+1. Recall that
V β
n+1(s) = min{Qβ

n+1(s; 1), Q
β
n+1(s; 0)}. Thus, we can ob-

tain the threshold property by examining the Q functions
Qβ

n+1(s; 0) and Qβ
n+1(s; 1) given in (23) and (24). By the

expression in (24), Qβ
n+1(∆, k, ω; 1) is linear in ω. Besides,

the value function V β
n (∆, k, ω; 1) in our case is a piece-

wise linear and concave function with respect to the belief
state for all n, which can be shown via induction similar
to [31]. Thus, Qβ

n+1(s; 0) is concave by (24). Moreover,
by definition, we have Qβ

n+1(∆, k, 0; 1)≥Qβ
n+1(∆, k, 0; 0).

Based on the relation between values of Qβ
n+1(∆, k, 1; 1)

and Qβ
n+1(∆, k, 1; 0), there are two possible cases for curves

of Qβ
n+1(∆, k, ω; 1) and Qβ

n+1(∆, k, ω; 0) as shown in Fig.
12.

(a) (b)

Fig. 12: Values of Qβ
n+1(∆, k, ω;u)

Case 1: Qβ
n+1(∆, k, 1; 1)<Qβ

n+1(∆, k, 1; 0) as in Fig. 12a.
Due to the concavity of Qβ

n+1(∆, k, ω; 0) and linearity of
Qβ

n+1(∆, k, ω; 1) in ω, there must be one unique intersection
(corresponds to threshold).

Case 2: Qβ
n+1(∆, k, 1; 1) ≥ Qβ

n+1(∆, k, 1; 0) (see Fig.
12b):. In the case, we will show that it is always
optimal to suspend for any ω given ∆ and k, i.e.
Qβ

n+1(∆, k, ω; 1) ≥ Qβ
n+1(∆, k, ω; 0) for every ω. In partic-

ular, by Qβ
n+1(∆, k, 1; 1)≥Qβ

n+1(∆, k, 1; 0), and definitions
(23) and (24), we have λ + βV β

n (k, (k)+ , p11) − βV β
n (∆ +

1, (k)+ , p11) ≥ 0. Moreover, by induction hypothesis, (c)
holds for n. Thus, we have

Qβ
n+1(∆, k, ω; 1)−Qβ

n+1(∆, k, ω; 0)

=ω
(
λ+ βV β

n (k, (k)+ , p11)− βV β
n (∆ + 1, (k)+ , p11)

)
+ β

(
ωV β

n (∆ + 1, (k)+ , p11)− V β
n (∆ + 1, (k)+ , T (ω))

(1− ω)V β
n (∆ + 1, (k)+ , p01)

)
+ (1− ω)λ (39)

≥0 (40)

Step (2): We show that (a)-(c) hold for n+1. First, we
consider property (a). It suffices to show that if ∆′ > ∆,
then V β

n+1(∆
′, k, ω) ≥ V β

n+1(∆, k, ω). Since V β
n+1(s) =

min{Qβ
n+1(s; 1), Q

β
n+1(s; 0)}, we only need to show that for

any u that applies to state (∆′, k, ω), there exists an action
u′ such that Qβ

n+1(∆
′, k, ω;u) ≥ Qβ

n+1(∆, k, ω;u′)

If u = 0, then we have

Qβ
n+1(∆

′, k, ω; 0)

=∆′ + βV β
n (∆′ + 1, (k)+, T (ω)) (41)

≥∆+ βV β
n (∆ + 1, (k)+, T (ω)) (42)

=Qβ
n+1(∆, k, ω; 0) (43)

The inequality (42) holds since property (a) holds for n by
induction hypothesis.

If u = 1, according to values of ∆, we have two cases
to consider specified as follows. If ∆ < K , then ∆ = k − 1
and it implies that the receiver has received the latest status
update generated at the beginning of the frame. In the case,
the action chosen for state (∆, k, ω) is to suspend. Recall that
∆′ = mK + k − 1 at the k-th slot of certain frame, where
m > 0. For the case, we have

Qβ
n+1(∆ +mK, k, ω; 1)

=∆+mK + λ+ β
(
ωV β

n (k, (k)+, p11)

+ (1− ω)V β
n (∆ +K + 1, (k)+, p01)

)
(44)

≥∆+ λ+ β
(
ωV β

n (k, (k)+, p11)

+ (1− ω)V β
n (k, (k)+, p01)

)
(45)

≥∆+ βV β
n (k, (k)+, T (ω)) (46)

=Qβ
n+1(∆, k, ω; 0) (47)

The inequality (45) holds since property (a) holds for n
by induction hypothesis. The inequality (46) holds since
property (c) holds for n by induction hypothesis.

If ∆ ≥ K , then we have

Qβ
n+1(∆

′, k, ω; 1)

=∆′ + λ+ β
(
ωV β

n (k, (k)+ , p11)

+ (1− ω)V β
n (∆′ + 1, (k)+ , p01)

)
(48)

≥∆+ λ+ β
(
ωV β

n (k, (k)+ , p11)

+ (1− ω)V β
n (∆ + 1, (k)+ , p01)

)
(49)

=Qβ
n+1(∆, k, ω; 1) (50)

The inequality (49) holds since property (a) holds for n by
induction hypothesis.

Second, we consider property (b). It suffices to show that
if ω′ ≤ ω, then V β

n+1(∆, t, ω′) ≥ V β
n+1(∆, t, ω) given V β

n has
properties (a)-(c). The general idea to show this is same to
that in proving property (a).
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Since p11 ≥ p01, T (ω) = (p11 − p01)ω + p01 is non-
decreasing in ω and T (ω′) ≤ T (ω). Then, we have

Qβ
n+1(∆, k, ω′; 0)

=∆+ βV β
n (∆ + 1, (k)+ , T (ω′)) (51)

≥∆+ βV β
n (∆ + 1, (k)+ , T (ω)) (52)

=Qβ
n+1(∆, k, ω; 0) (53)

The inequality (52) holds since property (b) holds for n by
induction hypothesis.

Recall that for the (k)+-th slot of certain frame, the small-
est age is k. Then, V β

n (k, (k)+ , p11)−V β
n (∆+1, (k)+ , p01) ≤

0 since properties (a) and (b) in Lemma 1 hold for n by
induction hypothesis. Hence, we have

Qβ
n+1(∆, k, ω′;u = 1)

=∆+ λ+ β
(
V β
n (∆ + 1, (k)+ , p01)

+ ω′
(
V β
n

(
k, (k)+ , p11

)
−V β

n

(
∆+ 1, (k)+ , p01

)) )
(54)

≥∆+ λ+ β
(
V β
n (∆ + 1, (k)+ , p01)

+ ω(V β
n (k, (k)+ , p11)− V β

n (∆ + 1, (k)+ , p01))
)

(55)

=Qβ
n+1(∆, k, ω;u = 1) (56)

The inequality (55) holds since ω′ ≤ ω and
V β
n (k, (k)+ , p11)− V β

n (∆ + 1, (k)+ , p01) ≤ 0.
Finally, we consider property (c). Note that x ≥ y and

z = ωx+(1−ω)y. For the left-hand-side of Eq. (25), there are
three possible combinations of actions for state (∆, k, x) and
(∆, k, y), i.e. suspending for both states, transmitting for
both states and suspending for latter state but transmitting
for former state. Note that x ≥ y implies that if the optimal
action for state (∆, k, y) is to update, then the optimal action
for state (∆, k, x) is also to update since the optimal policy
for n+ 1-th iteration is of threshold type.

For the case of suspending for both states, we have

(1− ω)λ+ ωQβ
n+1(∆, k, x; 0) + (1− ω)Qβ

n+1(∆, k, y; 0)

=(1− ω)λ+ ω
(
∆+ βV β

n

(
∆+ 1, (k)+ , T (x)

))
+ (1− ω)

(
∆+ βV β

n (∆ + 1, (k)+ , T (y))
)

(57)

≥∆+ βV β
n (∆ + 1, (k)+ , T (z)) (58)

=Qβ
n+1(∆, k, z; 0) (59)

≥V β
n+1(∆, k, z) (60)

The inequality (58) holds since property (c) holds for n by
induction hypothesis. The inequality (60) holds by (22).

For the case of transmitting for both states, we have

(1− ω)λ+ ωQβ
n+1(∆, k, x; 1) + (1− ω)Qβ

n+1(∆, k, y; 1)

=(1− ω)λ+∆+ λ+ β
(
zV β

n (k, (k)+ , p11)

+(1−z)V β
n (∆ + 1, (k)+ , p01)

)
(61)

=(1− ω)λ+Qβ
n+1(∆, k, z; 1) (62)

≥Qβ
n+1(∆, k, z; 1) (63)

≥V β
n+1(∆, k, z) (64)

The first equality is by (24) plus some basic calculation. The
second equality is by (24). The inequality (64) holds by (22).

For the case of transmitting for state (∆, k, x) but sus-
pending for (∆, k, y), we have

(1− ω)λ+ ωQβ
n+1(∆, k, x; 1) + (1− ω)Qβ

n+1(∆, k, y; 0)

=λ+∆+ βω
(
xV β

n (k, (k)+ , p11)

+ (1− x)V β
n (∆ + 1, (k)+ , p01)

)
+ β(1− ω)V β

n (∆ + 1, (k)+ , T (y)) (65)

≥λ+∆+ βω
(
xV β

n (k, (k)+ , p11)

+ (1− x)V β
n (∆ + 1, (k)+ , p01)

)
+ β(1− ω)

(
yV β

n (∆ + 1, (k)+ , p11)

+ (1− y)V β
n (∆ + 1, (k)+ , p01)

)
(66)

≥λ+∆+ β
(
zV β

n (k, (k)+ , p11)

+ (1− z)V β
n (∆ + 1, (k)+ , p01)

)
(67)

=Qβ
n+1(∆, k, z; 1) (68)

≥V β
n+1(∆, k, z) (69)

The equality (65) is by (23) and (24). The inequality (66)
holds since the value function is a piecewise linear and con-
cave function with respect to the belief state, which can be
verified with theory developed in [31]. The inequality (67)
holds since property (a) holds for n by induction hypothesis
with some basic calculation. The inequality (69) holds by
(22).

APPENDIX B
PROOF FOR VERIFICATION OF CONDITIONS IN [35]
The conditions are listed below:

• A1: V β(s) defined in (18) is finite ∀s, β.
• A2: ∃I ≥ 0 s.t. −I ≤ hβ(s) ≜ V β(s)− V β(0), ∀s, β.
• A3: ∃M(s) ≥ 0 s.t. hβ(s) ≤ M(s), ∀s, β. Moreover,

for each s, ∃u(s) s.t.
∑

s′∈S P(s′|s, u(s))M(s′) < ∞.
• A4:

∑
s′∈S P(s′|s, u)M(s′) < ∞ ∀s, u.

In Proposition 1, we showed that a policy f that chooses
u = 0 at every time slot satisfies Lβ

s (f ;λ)<∞. By (18), we
have V β(s) ≤ Lβ

s (f ;λ), which implies A1. Moreover, we
have V β increasing in ∆ and decreasing in ω by Lemma 1.
Hence, by setting I = V β(0)−mink∈K V β((k)−, k, p11)≥0,
where 0 = (K, 1, p11) is the reference state, we proves A2.

Let δ be the policy that transmits at each time slot.
Similar to proof of Lemma 6 in [38], The AoI can be regarded
as a stable AoI queue. In particular, average arrival rate is
one since age increases by 1 at each time slot, and average
service rate is infinite since the channel is in a good state
with positive probability and can serve infinite number of
age packets when it is in a good state. In the case, the
age queue is stable. Hence, states that occur after delivery
are recurrent. This implies that 0 is recurrent. Actually, the
probability of not entering state 0 after l frames is no more
than blK , where b is steady state probability that channel is
in a bad state. Hence, under policy δ the expected cost of the
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first passage from state s to 0, denoted by cs,0(δ), is finite.
Let δ′ be a mix policy where δ is used until entering state 0
and the discounted Lagrange cost optimal policy δβ is used
afterwards. Suppose T is the first time slot when system
enters 0. Then, we have

V β(s)

≤Eδ′ [
T−1∑
t=1

βt−1C(st,ut)|s]+Eδ′ [
∞∑
t=T

βt−1C(st,ut)|0] (70)

≤cs,0(δ) + Eδβ (β
(T−1))V β(0) (71)

≤cs,0(δ) + V β(0). (72)

Hence, by setting M(0)=0 and M(s)=cs,0(δ) for s ̸=0, we
proves A3. After transition from s under any action, there
will be at most two possible states. Since for all s, M(s) <
∞, the sum of at most two M(·) is also finite. Hence, A4
holds.

APPENDIX C
PROOF OF THEOREM 2
Let V β,N be the optimal β-discounted Lagrangian cost
for the approximate MDP with bound N and hβ,N (s) =
V β,N (s)−V β,N (0). By [39], it suffices to verify the following
conditions B1-B2.

• B1: ∃ I ≥ 0, M(·) ≥ 0 on S s.t. −I ≤ hβ,N (s) ≤
M(s) for s ∈ SN , where β ∈ (0, 1) and N = K +
1,K + 2, · · · .

• B2: lim supN→∞ L̄N⋆(λ) ≤ L̄⋆(λ).

Consider policy π that updates at each time slot with
equal probability. Let cs,0(π) and cNs,0(π) be the expected
cost of the first passage from a state s to 0 by applying
π to original and approximate MDP, respectively. Similar
to the proof in Appendix B, we have I = V β,N (0) −
mink∈K V β,N ((k)−, k, p11), cs,0(π) < ∞ and hβ,N (s) ≤
cNs,0(π). Next, we show that cNs,0(π) ≤ cs,0(π). Then,
M(s) = cs,0(π). By the proof of Corollary 4.3 in [39], it
suffices to show that∑

s′∈SN

PN
ss′(u)cs′,0(π) ≤

∑
s′∈S

Pss′(u)cs′,0(π) (73)

Recall that ν is approximation operation to the state defined
in (29). Then, we have∑

s′∈SN

PN
ss′(u)cs′,0(π)

=
∑

s′∈SN

(
Pss′(u)+

∑
r∈S−SN

Psr(u)1{ν(r)=s′}

)
cs′,0(π) (74)

≤
∑

s′∈SN

Pss′(u)cs′,0(π)+
∑

r∈S−SN

Psr(u)cr,0(π) (75)

=
∑
s′∈S

Pss′(u)cs′,0(π) (76)

The inequality (75) holds since policy π does not depend on
states and thus c(∆,k,ω),0(π) ≤ c(∆′,k,ω′),0(π) for ∆ ≤ ∆′.

For B2, we need to show that V β,N (s) ≤ V β(s) for all
N . By this, we will have for all N , L̄N⋆(λ)= limβ→1(1−
β)V β,N (s) ≤ limβ→1(1−β)V β(s)= L̄⋆(λ), which completes
our proof. Next, we use induction to prove this inequality

V β,N (s) ≤ V β(s). The inequality holds obviously when n =
0. Suppose V β,N

n (s) ≤ V β
n (s), then

V β,N
n+1 (s)

=min
u

{C(s, u;λ) + β
∑

s′∈SN

PN
ss′(u)V

β,N
n (s′)} (77)

≤min
u

{C(s, u;λ) + β
∑

s′∈SN

PN
ss′(u)V

β
n (s′)} (78)

≤min
u

{C(s, u;λ) + β
∑
s′∈S

Pss′(u)V
β
n (s′)} (79)

=V β
n+1(s) (80)

The inequality (78) is due to the induction hypothesis.
The inequality (79) is due to

∑
s′∈SN PN

ss′(u)V
β
n (s′) ≤∑

s′∈S Pss′(u)V
β
n (s′), which can be shown similar to (73).

APPENDIX D
PROOF OF LEMMA 2
Let V β

n (s) be the cost-to-go function such that V β
0 (s) = 0 for

all s ∈ S and for n ≥ 0,

V β
n+1(∆, k, g) = min

u∈{0,1}
Qβ

n+1(∆, k, g;u) (81)

where

Qβ
n+1 (∆, k, g; 0) =∆+β

∑
g′∈{0,1}

pgg′V β
n

(
∆+1, (k)+ , g′

)
(82)

Qβ
n+1 (∆, k, g; 1) =∆+ λ+ β

(
pg1V

β
n

(
k, (k)+ , 1

)
+ pg0V

β
n

(
∆+ 1, (k)+ , 0

) )
(83)

With similar argument in proof of Proposition 1, we can
obtain that V β

n (s) → V β(s) as n → ∞, for every s, β.
Hence, we only need to show that for all n, the func-
tion V β

n (∆, k, g) is non-decreasing in AoI. Next, we show
the result using induction. Note that zero function (i.e.,
V β
0 (s) = 0) satisfies the property. In other words, for n = 0,

the property holds. Suppose that the property holds for n. It
remains to show that the property holds for n+ 1. Suppose
∆′ > ∆, we will show V β

n+1(∆
′, k, g) ≥ V β

n+1(∆, k, g). Since
V β
n+1(s) = min{Qβ

n+1(s; 1), Q
β
n+1(s; 0)}, it suffices to show

that for each u that applies to state (∆′, k, g), there exists an
action u′ such that Qβ

n+1(∆
′, k, g;u) ≥ Qβ

n+1(∆, k, g;u′).
If u = 0, then we have

Qβ
n+1(∆

′, k, g; 0)

=∆′ + β
∑

g′∈{0,1}

pgg′V β
n (∆′ + 1, (k)+, g

′) (84)

≥∆+ β
∑

g′∈{0,1}

pgg′V β
n (∆ + 1, (k)+, g

′) (85)

=Qβ
n+1(∆, k, g; 0) (86)

The inequality (85) holds by our induction hypothesis.
If u = 1, then we have two cases to consider based on

the values of ∆. At the k-th slot of a time frame, if ∆ < K ,
then ∆ = k − 1 and it implies that the receiver has received
the latest status update generated at the beginning of the
frame. In the case, the action is to suspend. Recall that ∆′ =
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mK + k − 1 at the k-th slot of certain frame, where m > 0.
For the case, we have

Qβ
n+1(mK + k − 1, k, g; 1)

=mK + k − 1 + λ+ β
(
pg1V

β
n (k, (k)+, 1)

+ pg0V
β
n (mK + k, (k)+, 0)

)
(87)

≥k − 1 + β
(
pg1V

β
n (k, (k)+, 1) + pg0V

β
n (k, (k)+, 0)

)
(88)

=Qβ
n+1(k − 1, k, g; 0) (89)

=Qβ
n+1(∆, k, g; 0) (90)

The inequality (88) holds by induction hypothesis.
If ∆ ≥ K, then we have

Qβ
n+1(∆

′, k, g; 1)

=∆′ + λ+ β
(
pg1V

β
n (k, (k)+, 1)

+ pg0V
β
n (∆′ + 1, (k)+, 0)

)
(91)

≥∆+ λ+ β
(
pg1V

β
n (k, (k)+ , 1)

+ pg0V
β
n (∆ + 1, (k)+ , 0)

)
(92)

=Qβ
n+1(∆, k, g; 1) (93)

The inequality (92) holds by induction hypothesis.

APPENDIX E
PROOF OF LEMMA 3
Without loss of generality, we assume that at state (∆, k, g)
it is optimal to attempt a transmit. That is, Qβ(∆, k, g; 1) ≤
Qβ(∆, k, g; 0). Then, for any ∆′ > ∆,

Qβ(∆′, k, g; 1)−Qβ(∆′, k, g; 0)

=λ+ βpg1(V
β
(
k, (k)+ , 1

)
− V β

(
∆′ + 1, (k)+ , 1

)
) (94)

≤λ+ βpg1(V
β
(
k, (k)+ , 1

)
− V β

(
∆+ 1, (k)+ , 1

)
) (95)

=Qβ(∆, k, g; 1)−Qβ(∆, k, g; 0) (96)
≤0 (97)

The inequality (95) holds since V β
(
∆′ + 1, (k)+ , 1

)
≥

V β
(
∆+ 1, (k)+ , 1

)
by Lemma 2. Thus, it is also optimal to

transmit at (∆′, k, g). Hence, the unconstrained discounted
Lagrange cost optimal policy is of threshold-type in AoI.

Let ∆⋆
β(k, g;λ) denote the threshold associated with k

and g. That is, given k and g, it is optimal to transmit when
∆ ≥ ∆⋆

β(k, g;λ). Let ∆1 = ∆⋆
β(k, 0;λ), we have

Qβ(∆1, k, 1; 1)−Qβ(∆1, k, 1; 0)

=λ+ βp11
(
V β

(
k, (k)+ , 1

)
− V β

(
∆1 + 1, (k)+ , 1

) )
(98)

≤λ+ βp01
(
V β

(
k, (k)+ , 1

)
− V β

(
∆1 + 1, (k)+ , 1

) )
(99)

=Qβ(∆1, k, 0; 1)−Qβ(∆1, k, 0; 0) (100)
≤0. (101)

The inequality (99) holds since p01 ≤ p11 by assumption and
V β

(
k, (k)+ , 1

)
−V β

(
∆+ 1, (k)+ , 1

)
≤ 0 by Lemma 2. The

inequality (101) holds by optimality.
Thus, we have ∆⋆

β(k, 0;λ) = ∆1 ≥ ∆⋆
β(k, 1;λ). In other

words, the threshold associated with good state is not larger
than that associated with bad state.


