IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, JUNE 2015 1

On Stochastic Confidence of Information Spread
In Opportunistic Networks

Yoora Kim', Member, IEEE, Kyunghan Lee!, Member, IEEE, and Ness B. Shroff}, Fellow, IEEE
fyrkim@ulsan.ac.kr, fkhlee@unist.ac.kr, $shroff.11@osu.edu

Abstract—Predicting spreading patterns of information or virus has been a popular research topic for which various mathematical
tools have been developed. These tools have mainly focused on estimating the average time of spread to a fraction (e.g., «) of the
agents, i.e., so-called average a-completion time E(T, ). We claim that understanding stochastic confidence on the time T, rather
than only its average gives more comprehensive knowledge on the spread behavior and wider engineering choices. Obviously, the
knowledge also enables us to effectively accelerate or decelerate a spread. To demonstrate the benefits of understanding the
distribution of spread time, we introduce a new metric G, 5 that denotes the time required to guarantee o completion (i.e., penetration)
with probability 3. Also, we develop a new framework characterizing G, 5 for various spread parameters such as number of seeders,
contact rates between agents, and heterogeneity in contact rates. We apply our technique to a large-scale experimental vehicular trace
and show that it is possible to allocate resources for acceleration of spread in a far more elaborated way compared to conventional
average-based mathematical tools.

Index Terms—Information spread, CTMC analysis, spread time analysis, spread time distribution
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1 INTRODUCTION a specific epidemic model after a time durationfrom the

Spreading patterns of pandemics [1], computer virusesgag €mergence of a virus (or generation of information). Thisften
information [3] have been widely studied in various reshard€presented by [&V;] where N; denotes the number of infected
disciplines including epidemics, biology, physics, stmiy, and nodes at time. Aforementioned mathematical techniques have
computer networks. In these disciplines, most studies haem Made various extensions to this analysis. In [6], it is idesut
devoted to characterizing spread behaviors toward a nktaor how much network topologies affect the speed of virus spnegad
mobile agents including humans, vehicles, and mobile @svic The authors in [7] derived a closed-form equation for thécai
over time. These studies can be classified into two groupsdbad€Vel of virus infection rate that lets a virus persist in awark
on their objectives. Interestingly, these objectives tieopposite When the virus is recoverable with a certain rate. More séeli
directions: delaying or accelerating spread. For the rebetnat 2verage spread behaviors of a virus with the heterogemesigrent
deals with biological or electronic viruses, how to slow dotlie  iN human mobility patterns have been studied through sitiauls
spread has been the most important question to be answemed Id8]. In computer networks, [9] analyzed the average pgaian
the other hand, another set of research work for computeratat behavior of code red worm in the Internet using measurement
information distribution has pursued designing methogiglsto data from ISPs. In [3], the authors applied understanding on
speed up the spread. the average behavior of virus spread to information propaga
Whatever the goals are, existing studies have relied #hdelay tolerant networks. Similarly, [2] analyzed the rage
common mathematical techniques such as the branching ptBread behaviors of self-propagating worms in the Intensetg
cess, mean-field approximation, and stochastic diffeatetua- Pranching process.
tions [4]. These techniques have mostly been developedslyzn While there has been a plethora of work on average analysis,
the average behavior of spread under various epidemic mod&e problem of optimal allocation of resources to a netwdrk o
summarized in [5]. The epidemic models are first classified [§@t of nodes for slowing down or speeding up spread has been
whether agents are recovergbte not, and then the recoverablednder-explored. Specifically, higher order spread behavver

cases are further classified by whether the agents becomerimmtime rather than average behaviors have not been well undeis
after recovery or susceptible again to infection. Therefore, the right question to be answered should be whiat w
Average behavior analysis successfully answers a question0€ the distribution of the number of infected nodes at timvehich

how many nodes are infected (or informeaf) averageunder IS equivalent to what will be the temporal distribution oétévent
thatn nodes are infected. Characterizing the temporal disichut
é l:(r_eliminanrfl Vﬁrslign of this par}e’\r/lwis pub_lishzd in |EEE§$O:\</|'13- of spread allows us to guarantee the time for spread withretbsi
K. L(Ierz,Itsh\évgortreipoi%?rztgmaeu%gr, is?/f/itﬁThaengsc’hog;ﬁré;gﬂand‘Cc?:ﬁ;?ﬂter prObab,ms“C confidence, and it Iead§ tc,) having control ks tor
Engineering, UNIST, Korea. allocating resources to a network with its own purpose o¢agr
N. B. Shroff is with the Department of Electrical and Compiagineering However, understanding the temporal distribution invelven-
and the Department of Computer Science and Engineering,Ofie State  {rjyial challenges since it requires to handle a huge diroensf

University, USA. diversity in contact events among nodes in a network
1. We will interchangeably use agents and nodes unless sionfarises. ty 9 ’

2. A virus that is not recoverable can be considered to betitchnto In order to taCkle.the challenges involved in this paper, we
undeletable or unforgettable information. propose a new analytical framework based on CTMC (contiauou
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time Markov chain), which enables us to fully characterize t nodes in clasé. Let N = (N7, N, ..., Ng). Then, we have
temporal aspect of spread behaviors. For simplicity, thhowt |[|N|| £ >, N = N.3
this paper, we put our emphasis on information distribuéiorong The system under our consideration spreads informatioa (or
intermittently meeting mobile nodes forming an opporttinis packet or a virus) as follows. Initially, the informationdslivered
network, i.e., a mobile social network, but our results aasilg to a set of selected nodes, which we csdlederd Whenever
applicable to general spread of epidemics or informationr Oa seeder, say node, meets a susceptible node not having the
framework is capable of answering many intriguing engimegr information yet, it spreads the information to the susddgtnode
questions such as “What is the distribution of time for a mekwo  with probability ¢, € (0, 1]. Then, the susceptible node, say
havez% (0 < x < 100) penetration rate?” and “l{% penetration node b, successfully receives the information with probability
is aimed, when is the time to guarantee that level of penetrat ), € (0,1] and becomes infected (or informed). Once the sus-
with % (0 < y < 100) of confidence?”. It can also answer aceptible node becomes infected, it stays infected for theneder
more fundamental question involving heterogeneity of sodea  of the spread process and joins disseminating the infoométi a
network, “Does heterogeneity help or hurt spreading?”. Wens similar manner as the seeders. The spread process ends livhen a
the efficacy of our solution in answering these questionk thie nodes in the network obtain the information. In our spreadeho
use of one of the largest experimental GPS (global posit@pnithe probabilitiesp, andy, can be interpreted as the infectivity
system) trace of taxies in Shanghai, China. Our simulatiodies and the susceptibility of nodesandb, respectively. For instance,
on the trace reconfirm that our framework is robust and pewidin the case of rumor propagatiop, quantifies the tendency of
opportunities to engineer the network in a far more elaleoratay a persoru to gossip, whiley;, quantifies the receptive nature of
than existing average-based approaches. a listenerb to the rumor. For the case of packet forwarding in an
The rest of the paper is organized as follows. In Section @pportunistic networky,, represents the probability that node
we describe our system model and introduce relevant metrisshedules to transmit a packet, apgrepresents the probability of
In Section 3, we develop a new analytical framework. Baseuliccessful packet reception at nddevhich depends on various
on our framework, we characterize the temporal spread l@havfactors including contact duration, interference levelmber of
and provide its engineering implications in Section 4. Wespnt contending nodes, and wireless channel condition.
simulation studies using Shanghai taxi trace in Sectionn5. | The stochastic characteristic of a pairwise contact pisea
Section 6, we discuss about available techniques thatanitimty critical factor that determines the opportunity of spread hence
reduce the computational complexity involved in our framdw the temporal behavior of the spread process. In particthiatjime
We conclude our paper in Section 7. duration between two consecutive contacts of a pair of nodes
called pairwise inter-contact timeis an essential factor. In the
literature, it has been recently shown that the pairwiserioontact
2 MODEL DESCRIPTION time can be approximately modeled by an exponential random
2.1 Overview of Epidemic Models variable in many scenarios without having too much of discre

In epidemics, an individual is typically classified into et 2NCY: €.9-, [10]-{12]. In [10], exponential inter-contpetterns are
susceptible, infected, or removed (sometimes called Eeov validated experimentally using three different mot_)lllta_t_ai sets.
and immune) according to its infection status for a contagio!" [12], the authors considered both the user availabiliycpss
disease [4]. A susceptible individual refers to the one whagt and the contact process to analyze the distribution of autter-
infected yet but is prone to be infected. An infected indiit transfer time (i.e., time duration between two consecuixglable
refers to the one who already got the disease and is capabld/@fiSfer opportunities). They prove that the inter-trandime
spreading it to susceptible individuals. A removed indidtindi- distribution becomes close to an exponential distribytieven
cates the one who was previously infected but became imnané/f1€n the underlying contact dynamics is non-Poisson, feabi
the disease. These three classifications are convengateibted that the availability process and the contact process péna
by S, I, and R, respectively and induce SIS, SIR, and SI epiden? .3|m'|lar.t|me scale. Thus, in this paper we assume that the
models and their variants. For instance, SIR or SIS repteseRairWise inter-contact time between nodesnd b, denoteq by
that an individual will become immune or susceptible agdiera a., follows an exponential distribution with rate, , (> 0):
the cure. In this paper, we focus on the SI model in which P(Map > t) = exp(—Aapt), t>0. (1)
once a susceptible individual is infected, it stays infedta the o ) )
remainder of the epidemic process. The S| model fits paatityul Suefpose that node is infected and nodé is susceptible. Let
. : ; :
well with information spread in opportunistic networks)@ once M, denote the tlmeﬂtaker_l by nodeto spread the information
a data is delivered to an individual, it is considered that tHO nodeb. We (_:aIIM;"# the infection timethroughout the paper.
information included in the data is delivered and recoghipg The infection time) ", can be obtained from (1) by taking the
the individual (i.e., permanently infected). infectivity ¢, and the susceptibility, into account as follows:

P(ME, > t) = exp(—AS"t), t >0, )

2.2 System Model where)@‘:f = Aa,pas. Since mobile nodes in the same class are

We consider a network consisting & mobile nodes. We as- assumed to be stochastically homogeneous, the infectien$,
sume that mobile nodes in the network can be classified ito ’
different types according to their mobility patterns antkeation 3. Throughout this paper, we use a boldface font for a veata matrix
rates. Hence, all nodes in the same class are assumed tg"g@tion. For a vectoV = (V},), we interchangeably use the notatidiis),,
homogeneous. Note that in our modél, can take any integer ﬁr"ﬁ‘(’;;ﬁgﬁngtghﬁhflezme(r"ﬁg the vectoV’, and define the operation
. =2k = 2.k .

value from1 to N. We denote the collection of theth type 4. Note that being selected as seeders can be of willing oillimyy For
of nodes as clasé (k = 1,..., K). Let Nj, be the number of instance, a seeder of a virus gets the virus unwillingly.
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should be determined by the class index. Thus, we can retligte gets confident. Thugz,, s facilitates avoiding underestimating or
infection rate as\gffb = &i(a),k(v), Where the subscripts(a) and  overestimating the required resources for spreadingrimdtion to
k(D) denote the class indices of nodesnd b, respectively. For a network. The ratid?,, g defined below describes just how much

later use, we define an infection rate matixas E[T.,] underestimates or overestimates the spread time compared
to the guaranteed time.

S&in &2 oo Sk

| G2 S22 - Sk Definition 3 ((«, 3)-guaranteed to average time ratidjor o €

A=l : : : [0,1] and3 € [0,1], let R, 3 denote the ratio of the guaranteed
' ' ' ] time to the average-completion time, i.e.,

ka1 Ex2 .. ERK

Our spread model is general in that it covers a variety of wp 2 g{;ﬁ]_ (5)

«

scenarios from homogeneous to completely heterogeneses.ca
For instance, whenk' = 1, the spread model reduces to thgye call R, the (o, 3)-guaranteed to average time ratio
homogeneous case where any pair of nodes in the network has

the same infection ratéLl (é é’) On the other hand, when Fina"y, we define the set of seeders in each CIaSSS}e.e&

K = N, it induces the completely heterogeneous case whele(0) denote the number of seeders in classand lets = (sy,)
each node unique|y forms a class. When= 2,..., N — 1, the be the seeder vector. ||FS|| > aN, then we have a trivial result
spread model is able to capture heterogeneity arising froitiple  that 7o = 0, Gog = 0, and R, 3 = 1 for any 8 € [0, 1].
communities. In addition to heterogeneity, the spread risde Therefore, in the rest of the paper, we only consider themegif
capable of characterizing the impact of various spreadmpeters ||s|| < aN. For a givens = (s,), the s, number of seeders are
(e.g., level of contact rates and group-wide populatioe)san chosen randomly in each clagssince mobile nodes in the same
spread behaviors by varying the values of the rate matriand class are stochastically homogeneous.

the class cardinality vectaN .

. 3 TEMPORAL ANALYSIS FRAMEWORK
2.3 Performance Metrics ] ) ]
In this section, we develop a framework for analyzing the per

formance metricd,,, G5, andR, 5. We first explain the main
ideas and technical approaches that lead us to presentopotal
analysis framework. We then provide a step-by-step praesitu
computing the performance metrics.

In this section, we describe our performance metrics inildékst
Sk(t) be the number of susceptible nodes in clasg timet and
I1,(t) be the number of infected nodes in cldsat timet. Then,
we haveSy(t)+ I (t) = Ny, for all k andt. The first performance
metric of our interest is--completion time as defined below.

Definition 1 (a-completion time) For o € [0, 1], let T,, denote

the minimum time required to infect (i.e., penetratefraction of
the total population, i.e., According to Definition 1, we need the distribution of thealot

number of infected node§’, I;(t) as a function of timet.
Directly solving it appears to be intractable, unless wevkno
how the overall infected nodes are distributed to each Class
o To this end, our approach is to rewrite the spread process as a
We call'T,, the a-completion time joint level-phaseprocess, wheréevel tracks the total number of
The a-completion timeT}, is closely connected with existing infécted nodes, anghasesupplements the level by specifying
studies that have characterized the average number oftanfecVhich sample instance realizes the level. Then,dthempletion
nodes at time (i.e., E[ Y, Ix(t)]) using various mathematical ime T, becomes equivalent to the time taken by the level-phase
tools, because [E,] is a dual of B3, Ix(t)]. However, to Process to reach the leveh V'], where[z] denotes the smallgst
better understand the spread behavior and to better dgsigads Nteger greater than or equal:toIn our analysis, we characterize
prevention or acceleration methods, it is essential toatterize the joint level-phase process in terms of its temporal itistion.
the distribution of7,, beyond simply the mean. To this end, wdrom the characterization, we can identify the distributand

introduce a new metric, calley, 3)-guaranteed time, as definedoments of7,, which in turn yield the(c, 5)-guaranteed time
next. G, and the ratioRz,, .

3.1 Technical Approach

K
Taéinf{tZO:ZIk(t) ZaN}. 3)
k=1

Definition 2 ((«, §)-guaranteed time)For o € [0,1] and 3 €
[0,1], let G, 5 denote the minimum time required to guaranted-2 Teémporal Analysis Framework
spread toa fraction of the total population with probability at\we describe step-by-step procedures to obfins and R,, s for
leasts. It is then given by a given set of system parameters. In this section, we onbf bri
. key results. The necessity of each step and technical deriga
Go,p & inf {t >0:P(Ta <t) = B}' “) inv{)lved in each step arZ: explained iF:] detail in the follayvin
We callG, g the («a, 3)-guaranteed time section.

Note that the quantity3 in (4) can be interpreted as the 5. in[13], it considers a similar problem in the context ohtant delivery
probability that the actual spread tinie, does not exceed the time. The authors analyze a bound on the content deliverg tova certain

; ; ortion of a network, while its exact distribution is left solved (See
time G, 6. In that Sense7q 5 can be used to predict not only theEemma 5). The approach in Lemma 5 of [13] is mainly based onetige

range of spread time but also the confidence of the pr.ed.iCtiQé}pansion of a graph, but it is not applicable for capturigylthe nodes
the higher we set the value g, the greater the prediction having the content are distributed to each class.



Step 1 (Level-phase representation). In this step, we describe

mathematical notions of level and phase. First, we defineta
F in a K-dimensional spac&Z>¢)% by

FE{f=fr)i<r<x 10 < fr <N, 1<||f|| <N} (7)

The setF represents the collection of all feasible combinations

of the infected node distribution to each class. Hore F,

let L(f) = ||f]|. We call L(f) the level of f. According to
the levels, we can partition the s@ into N disjoint subsets
-Flv -F27 c
at each level, as defined below:

Fi&2{feF:L(f) =i},

Without loss of generality, we assume that the elemen;iare
ordered in a lexicographical manner, and then denote thidqros
of f in the subsefF;, ¢y by J(f). We call J(f) the phaseof f
and distinguishf from others in the same level.

Now, we define a mag’ : F — N x Nfor f € F by

X(f) = (L(£), I (£))-

That is, the mapt transforms eaclf in F into a pair of level and
phase. The resulting level-phase space is given by

U={(,7):1<i<N1<j<|Fl}

1 <7< N.

®)

where | F;| denotes the cardinality of the s&;. See Fig. 1 for
an example. There is a one-to-one correspondence betfvaad
X(f). Thus, the inverse functioX ~! : I/ — F exists, and we
henceforth use the relatiod®(f) = (i,j) and f = X~1(i, )
interchangeably.

Step 2 (Initial condition). In Step 2, we formalize the initial

condition concerning the seeder vecsor (sy,). First, for a given
a € [0, 1], we define
To 2{(i,j)eU i< [aN] -1},

which denotes the subspacelofvith level lower thamN. Next,
we define a vectoh,, (s) by

ha(s) £ (Lix(s)=(.0}) i jye T 9)

wherel ., is the indicator function. Note that by definitiof’(s)

returns the level and phase of the seeder vestokccordingly,
h.(s) pinpoints the initial state in the spadg by reflecting the
value of s.

Step 3 (Transition rate matrix). In this step, we obtain a matri

F,, that represents transition rate from the sp@geo itself. The
matrix F, is given in (6) at the bottom of this page. In (&;

is a|F;| x |Fit1| matrix representing transition rate from level

i to level i 4+ 1; e is a column vector of onesliag(R;e) is a
| Fi| x | F;| diagonal matrix with the main diagon&;e; andO is
a zero matrix.

., Fn to denote the set of possible node distributions phases

Level 1

Level 2

Level 43

SE Phase 1 ) (:/(0.0,2)\:)

Phase 2

Phase3 (

Phase 4

Phase 5

Fig. 1. Example of a sample path for a level-phase process: we set K =
3, s = (0,1,0), and N = (10, 20, 15). The level-phase representation
of sand IV is given by X(s) = (1,2) and X(IN) = (45, 1), respectively.
Thus, the process starts from (1, 2) and ends up with (45, 1).

To compute the matriR;, we define a function : F x F —
R for f,g € F by

o J (N = F)e(fA)r if g= f+ ey for somek,
M0 = {0 otherwise
(10)

wheree;, denotes théith unit vector. The value\(f, g) indeed
is the transition rate fromf to g (which will be shown in
Section 3.3). In particular, the cage = f + e accounts for
the rate to infect one additional node in cldsgrovided that the
current infected node distribution is given tfy The other cases
become null events, yielding zero transition rate. Thea ntiatrix
R; is obtained by using\(+, -) as
R, = [)\(X’l(i,j),X’l(i—l—l,j’))] @y
1<G<|Fi[,1<5" <|Fit1]

Step 4 (Formulas forG, s and R, 3). Once we have the vector
h.(s) in (9) and the matrixF,, in (6) at Steps 2 and 3, we can
obtain the following Theorem o6, s and R, 3.

Theorem 1. The CDF ofTy, is given by

Ho(t) 2P(T, <t)=1—hy(s)exp(Fyt)e. (12)
The inverse function of,(-) exists and give&:,, g as
Gap=H' (D). (13)
Also, the inverse matrix oF,, exists and givest, s as
-1
Ros = e .
Proof: See Section 3.3. [ ]

We summarize a step-by-step guide for computing the perfor-
mance metricgx,, g, and R, s in the following table.

[—diag(R;e) R, 0
0 —diag(Rse) R,
[N 0 0 —diag(Rse)
0 0 0
0 0 0

0 0

0 0

0 0

, ©)
7d7;a’g(R|’(xN.|—26) R[(xN]—Q

0 —diag(Rion1-1€) |
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Algorithm 1:  Step-by-step guide for computing G 3 selection of the seeder vectserLastly, Step 3 reflects parameters

and Rq g for the infection rates such as infectivity, susceptipjiind contact
Input: seta, penetration rate rates using the rate matrix. Compared to our prior work in [14]
Input: set3, guaranteeness where K -dimensional Markov chain is used for analysis, the idea
Input: setA, infection rate matrix of adopting level and phase in this paper enables us to handle
Input: sets, seeder the diversity in contact events and group formations withou
Input: set’, number of classes increasing the dimension of state space. Even for a contplete
Input: setN', number of nodes in each class heterogeneous network (i.e., the c#Se= N), we can analyze the

system using a two-dimensional process. Moreover, thetisolu
in Theorem 1 provides a unified structural form for aliye N,
while the one in [14] has difficulty in expressing the cdse> 3.

Output: (a, 5)-guaranteed timé&,, 3

Output: («, 3)-guaranteed to average time rafty, s

Step 1. Generate level-phase space- (K, N) by Eq. (8)
Step 2. Compute initial conditioh,, < (U,«,s) by Eq. (9)

Step 3-1. Compute matriR; < (U, A, N) by Eq. (11) 3.3 Proof of Theorem 1
Step 3-2. Compute rate matri, < R; by Eq. (6) To prove Theorem 1, we start with the easiest case 1. We
Step 4-1. Compute CDF,, + (h,, F,,) by Eq. (12) then extend our analysis to general cases [0, 1).

Step 4-2. Compute timé&', g < (5, H,) by Eq. (13)
Step 4-3. Compute ratiB, g < (hq,Fo.Hy,5) by Eq.(14)  3.3.1  Proof for the case o = 1

As outlined in Section 3.1, we employ a joint level-phasecpes
for the analysis. In the following, we give a mathematiceda®p-

Remark 1. In Theorem 1,exp(F,t) is a matrix exponential tion of the level-phase process. LEtt) £ (I1(¢),...,Ix(t)).
defined byexp(Fnt) = > 07, %(Fat)”. When the diagonal Then, we havel (t) € F (whereF is defined in (7) at Step 1).

entries of F,, are all distinct,exp(F,t) can be written rather Thus, we can apply the map to I(t) as follows:
simply in terms of its diagonal entries as follows:
X(I(t)) = (L(I(t)), J(I(1))).

et 0 o ... 0
0 et o . 0 To simplify notation, letL(t) £ L(I(t)) and J(t) & J(I(t)).
exp(Ful) = V 0 0 et .. 0 |y-1 Note that the level functiod.(¢) represents the total number of

infected nodes at timeé, and the phase functiod(t) specifies
: : : : : how L(t) number of infected nodes are distributed to each class.
0 0 0 ... et We call {L(t);t > 0} and{J(t);t > 0} the level processand
the phase processespectively. In Lemma 1, we characterize the

S . . .
whereM = | 71| + ... + |Flan)-1 is the size of the matrix stochastic nature of joint level-phase process.

F.,; ¢ (1 <m < M) is the absolute value of theith diagonal
entry of F,; and V' is a M x M matrix whosemth column Lemma 1. The joint level-phase procedsL(t), J(t));t > 0}
vector is the eigenvector df,, corresponding to-(,,, (which in forms a two-dimensional CTMC.

fact is the eigenvalue adF},). Hence, the tail distribution@, > Proof: See Appendix A. [ |

)y =1- H_a(t) in Theorem 1 becomes a weighted linear sum Since{X(f) : f € F} = U (See Eq. (8)), the state space of
of exponential functions whose decay rates come from tha m%e Markov chain in Lemma 1 i§X (I(1)) : I(t) € F} — U.

diagonal of . The proofis given in Appendix C Moreover, it has the following properties:

Remark 2. \'NhenK.:. 1, our result in Theorem 1 is simplified (p1) The level proces§L(t); ¢ > 0} is acounting process
as follows. (i) Phasg is always 1 for any level, and the level- (p2) The joint level-phase proce$$L(t), J(t));t > 0} stops
phase space is given iy = {(i,1);é = 1,...,N}. Hence, evolving when the level reachés.

) i AP
fr;” tgnyA(z, 1d> Ee L:o Y[\;]ee Ei\;ef( " (1’1) . Z;HE:}) TT)e r?t.e Hence, state transition of the Markov chain occurs only ® th
arix A reduces stalt = ¢. (i) submarix adjacent level from; to 7 + 1, and then the Markov chain is

R; inside F,, becomes a scalar representing transition rate from
(i.1) to (i + 1.1). By applying ()i to the function (10) eventually absorbed to levéV. An example of a sample path

in Step 3, we obtainR; — A(ii + 1) = i(N — i)é. As is shown in Fig. 1. Thus, the state spdéds decomposed into

a result, T,, follows a phase-type distribution with simplifiedtransIent state spac® and absorbing state spageas

representatiorih,, (s), F, ), which gives T2 {(i,j) €U i< N},
[aN]-1 A2 {(i,j)€U:i=N}.
T.= Y Z, (15) .
i=Tall Note that7, defined at Step 2 reducesTowhena = 1. Now we

consider then-completion timeT,, for « = 1. By Definition 1,
whereZ; are independent exponential random variables with ratgs is the time required for the level(t) to reach the statéV.
R; = i(N—i)f and are the duration of time that the system stayf terms of Lemma 17} is the time taken by the Markov chain
in level . {(L(t), J(t));t > 0} to be absorbed into the state spatei.e.,

Remark 3. Our framewgrk is dgsigned to accommodate \{arious Ty = inf {t > 0: (L(t), J(t)) € A}. (16)
spread factors systematically. First, Step 1 reflects métaanfig-

uration parameters including the number of clagseghe size of Hence, we can understafid as thetime until absorptionwhich
each classVy, and the network siz&V. Next, Step 2 reflects the has been studied widely in Markov chain theory by e.g., NEL&k
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and Bremaud [16]. In what follows, we summarize existingitss That is, the matrixF’ defined in (6) at Step 3 represents transition
that are directly related to our problem. rate from transient state spacg to itself and becomes the

. 0
Lemma 2. Suppose that{ X(f):¢ > 0} is a CTMC with fundamental matrix of the Markov chafi{ L(¢), J(t)); ¢t > 0}

transient state spac€ and absorbing state spad®¥. Let Q we are now re_ady to prove Theorem 1 for_the cases L.
P By applying (17) in Lemma 2 to the completion tinig, we
be the infinitesimal generator of the CTMCX (¢);¢ > 0}. If . ) .
A - A . . . have (12) in Theorem 1. It is clear from the formula in (12)ttha
T £ inf{t > 0: X(¢t) € £°} denotes the time until absorption, . . s . ,
the function H; (-) is strictly increasing and continuous. Hence,
then we have [15, Lemma 2.2.2] o . 1 . . .
its inverse functionH; ~(-) exists. Moreover, in accordance with
P(T >t) = hexp(Ft)e, (17) Definition 1, we can obtait¥; 5 by solvingH: (G1,5) = P(T} <
G1p) = B,i.e.,G1,5 = H; *(B). This proves (13) in Theorem 1.
whereh £ (P(X(0) = 2)) . and F 2 Q|exe. Thenth  Inour spread model, the proce§s.(t), J(t)); ¢ > 0} eventually

moment ofT" (n € N) is given by [15, Eq. (2.2.7)] enters the absorbing state spatwith probability 1, which shows
" . the existence of the inverse matrix df; [15, Lemma 2.2.1].
E[(T)"] = nlh(=F)"e, (18)  Hence, by applying (18) in Lemma 2, we have (14). This com-

provided that the inverse of the mattR exists. pletes the proof of Theorem 1 far = 1.

Proof: Refer to [15]. [ ]
3.3.2 Proof for the case « € [0,1)

Because of its importance, we cdil in Lemma 2 thefun- The kev idea behind derivati f thi . ti
damental matrixLemma 2 says that both the initial distribution e key idea behind our derivation of this case is tfiat is

on transient state space and the fundamental matrix eakkyentithe t'm? taken.by the proc.e'sﬁ(t) o reaph the gtatéaN]
govern the time until absorption. Accordingly, we first lowito Expanding Fhe idea, we judiciously .redefme transient sipece

the initial distribution of the Markov chaif(L(t),.J(t)); > 0} oo 2°S0ring state space dependingiomnd construct a new

on transient state spade. The initial value is determined by the arkov’ process on fose redetined spaces. then, by using an
seeder vectos = (s;) and becomes$L(0), J(0)) = X(s). In approach similar to the case = 1, we can derive formulas for

the case when the number of seeders is selected in a detgtimin[’ @8 @Nd fta.p. In what follows, we present our derivation in

manner as in our model, the initial distribution @nis obtained by €t
First, wetruncatethe state spack to a smallei/, parame-
(P(X(s) = (i,j)))(i7j)e7_l = (I{X(s)z(ivj)})(i,j)eﬂ’ terized bya as follows:
which is identical tok (s) in (9) defined at Step 2. Ua 2 {(i,5) €U i < [aNT}.

We next look into the fundamental matrix of the Markov chaifext we partition the spadé, into transient state spadg, and
{(L(t), J(t));t > 0}. Let @ denote the infinitesimal generatorahsorhing state spacé,, as

of the Markov chain. Then, it is of the following matrix form:
Q= [Ri,i’]lgm-/SN-

Here, R; ;» is a|F;| x |Fi| matrix representing transition rate
from leveli to level i’ (i.e., from state(i, j) to state(i’, ;') for
1<j<|F;| and1<j' <|Fy|). Supposeé < N. Then, from (P1)
we haveR; ;; = 0 unlessi’ = i+ 1 ori’ = i. In the case’ =

i+ 1, we denoteR; (= R; 1) by R; and derive the closed- (L(t), J (1)) as lon )

. , o+ L : g asL(t) < [aN] (ie., (L(t), J(t)) € Ta).
form expression foi; below in Lemma 3. Inthe case =i, by ¢ 14y enters the leve[aN] (i.e., (L(t),J(t)) € Ag), then
(P1) again R, ; becomes a diagonal matri. Its main diagonal i, o process L, (t), Jo(t)) stops evolving and is absorbed into
determined by the identit@le = 0, and is thus given by the spaceA,. Note that by Lemma 1, the truncated process

R e—— Z R, e =—R,, 1e = —Rse. {(La(t), Ja(t));t > 0} forms a two-dimensional CTMC with
o = o e ’ possibly multiple absorbing states.iti,. An example of a sample

‘ path for the truncated Markov chain is shown in Fig. 2.
Now supposes = N. Then, from (P2), we havéR;; = 0 Similarly to the casex = 1, we have

for all +/ (i.e., no further transition occurs from an absorbing .
state). Therefore, the infinitesimal genera@ris given by (19) To =inf {t > 0: (La(t), Ja(t)) € Aa}, a€l0,1).
at the bottom of the next page, in whidR; can be obtained by That is, T, for a €
Lemma 3.

Ta 2 {(i,j) EUa :i < [aN]},

Ao £{(i,j) €Uy i = [aN]}.
Note that7,, defined at Step 2 exactly refers to the above. On
the state spacé, U A, we define a truncated level-phase pro-

cess, denoted byL,(t), J(t)), from the proces§L(t), J(t))
as follows: (Lq(t), Jo(t)) evolves identically to the process

[0,1) can be viewed as théme until absorp-
tion. Thus, by applying Lemma 2 with proper initial distribution

Lemma 3. The matrixR; (1 < ¢ < N — 1) is obtained by and fundamental matrix, we can obtain the formulasdarz and
1 e y R, g fora e |0,1).
Ry = [NX7'(i,5), X ' (i+1,) ))]1§j§|f7,|,1gj/§|f7,+1|’ First, we look into the initial distribution of the Markov am

: o {(La(t), Ja(t));t > 0} on the spacé,. Similarly to the case

where.:A(~, ) is deflqed in (10). o = 1, the initial value is determined by the seeder vector as

Proof: See Appendix B. B (1.(0), J.(0)) = X(s). Hence, the initial distribution off;, is
Comparing (6) and (19), we have obtained by

Qlr oy = F. (20) (P(X(s) = (1:0) i jyer. = (Lx@=6.01) 4jyer
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computed with the scaled infection raf€;, .. Using our level-
phase framework in Theorem 1, we can derive the relationship
e among those metrics, as presented in the following theorem.

Level 45

Level1

Level 2 Level 44

Phasel { (002 | (920,050

Phase 2

..... - Theorem 2. For anya € [0, 1], we have

Phase 3

5 Sod
(nasas)) To =T,

Phase 4

Phase 5

where2 denotes “equal in distribution.” As a consequence, we
obtain the following for anyx € [0, 1] andg € [0, 1]:

Phase 6

Fig. 2. Example of a sample path for {(L« (t), Ja(t));t > 0} with a = A -1 _

0.95: we use the same parameters K, s, and N as in Fig. 1. The Markov Ga,B =7 Ga,Bv Ra,ﬂ = Ra,B-

chain starts from X (s) = (1,2) and ends up with one of states having

level [aNT = 43. Proof: See Appendix D. [ |

) ) ) Theorem 2 says that the spread becomes fastgrortionally
which corresponds to the vectér, (s) in (9) defined at Step 2. to the level of infection rates imistribution senseFrom the
This explains the necessity of Step 2. perspective of average analysis, the result in Theorem @ als

Next, we look into the fundamental matrix. Since the levghdicates the following. LetM(t) £ E[Y, Ix(t)] denote the
process{L(t);t > 0} is a counting process anfl,(t) is the average number of infected nodes in the network at time

for the procesq (L (%), Ja(t));t = 0} is obtained by truncating js computed with the scaled infection ratgj. s/, satisfies the
the infinitesimal generato® as Q|7 x7, . The resulting matrix following for all ¢ > 0:

corresponds td&, in (6) defined at Step 3.

Now we are ready to prove Theorem 1 far € [0,1). R
Following the approach used for the case= 1, we can prove M(t) = M(3t).
Theorem 1 fora € [0,1). The only difference is that we apply o ) _ o )
Lemma 2 with 7y, ha(s), and F,, instead of7;, hi(s), and Th(=T pr.oof of (21A) is given in AppeAndDE E. Likewise, Fhe time
F, in the place of transient state space, initial distributiand derivativesD(t) = M'(t) andD(t) = M'(t) representing the
fundamental matrix, respectively. Due to similarity, weibthe ~SPeed of information propagation, should change over timith
details. the relationD(t) = vD(~t).

(21)

4 ANALYTICAL CHARACTERISTICS AND APPLICA-
TIONS

In this section, we identify analytical characteristicgtué (., 3)- We next investigate the impact of the network si¥eon the time
guaranteed tim&/, s and the ratiol, g through our temporal for information spread. In our spread model, each non-iméat
analysis framework. We then remark how we can utilize suctode (i.e., susceptible node) can be considered as a wdrktoa
characteristics in practical applications. finish. In this respect, adding a node to the network mightslo
down the spread. However, once the node becomes inforneed (i.
infected), it works in a similar manner as the seeder and/ived

. . o in spreading the information. In this respect, adding a nde
Various spread factors control the behavior of the infofamat . Harvork might expedite the spread. Therefore, it is earcl

spread time. \We first answer the question on how the level gfoiher the network size accelerates or slows down the speed
infection rates affect the distribution of thecompletion imel’n.  intormation propagation. Using our framework, we can gie t
To formalize, we suppose that the infection rdg,: from an ;. cwer as shown in Theorem 3. ’

infected node in clask to a susceptible node in clak$is scaled
by v (> 0) times for alll < k, k' < K. LetT,, Gop andR, g
denote, respectively, the values Bf,, G5 and R, s that are

4.2 Impact of Network Size

4.1 Impact of the Level of Infection Rates

Theorem 3. Supposex = 1, K = 1, ands; = 1. Then, as the
network sizelN increases, we have the following.

-7d7;(lg(R1€> R1 0 0 0 0
0 —diag(Rge) R2 ‘e 0 0 0
0 0 —diag(Rze) ... 0 0 0
Q= : : : ' : : : (19)
0 0 0 7diag(RN,26) RN,Q 0
0 0 0 ‘e 0 —diag(RN,le) RN,1
I 0 0 0 .. 0 0 0 |




(1) The averagex-completion time ET,] is strictly decreasing TABLE 1

with V. Also, it asymptotically behaves &s Comparison of Population Effect on the Spread Time
_ —1a7—1
E[Ta] o ®(§ N N)' (22) | Cooperative model | Non-cooperative model |
(2) The guaranteed tim@,, s is strictly decreasing wittV if gis | Varance | Stictly decreasiwnﬂ Strictly i””easeivg“”\’
greater than a certain valil < 1. Also, for any3 € [0, 1], Of T and scale a®({""N"*) | and converge t§~*((2)
it asymptotically behaves as Skewness Strictly decrease withv Strictly increase withV
of Ta and scale a® (£ 3N ~3) and converge tg—3¢(3)
Gap = @(f‘lN‘l(ln N — 1n(1ng—1)))7 (23) E[(Ta)"] | E[(Ta)"]<oo for afixedN | E[(Tx)"] < oo for a fixed N

(n>2) limy oo E[(Ta)"] < 0o limy oo E[(Ta)"] = oo

from which we haveR, g = ©(1).

Proof: See Appendix F. [ ]

o ] 4.3 Impact of Heterogeneity
Theorem 3 indicates that adding a node to the network

celerates the information spread when per-pair infectates are the impact of heterogeneity in information or virus spreas h

unchanged. This effect, which we call population effectaliso been less explored. Using our frgmework, we analyze andrunde
observed in Fig. 4 of [8] where the authors study the impact gﬁr:(xhﬁtel;nploraljprceoancj baegzvp:# r;dﬁ(r)ageteerggensnnmezt anqi
heterogeneous human activities on epidemic spreadingidghro W; fic llJarlp e(;oacss (Sm n P ér. V\‘l‘lDoe hg:e% r; eL.JtS. | e
simulations. Theorem 3 also says that the degree of actietera Paricurar W us on answering S rogenetyigersly

X ) ) g X X 1 ?!1 " H o
is asymptoticallyproportional to the network size. Combining expedite the spread or not?”, “Is there an optimal heterefgen

with Theorem 2, our analytic findings in Theorem 3 imply tha%EVEI ;or Inf[cr)]rmatlpnfspre?g?",hatnd Is thetre an up;]per Or‘ﬂdpt o
information spread accelerated by the population effeotvsha ound-on the gain from the helerogeneity over homogeneity:

quantitatively similar behavior as if the level of infeaticates is " IS section, we provide the answers to these questions by
scaled up by the network size. studying a dual community modeK( = 2) compared with a

. . . single community model = 1). Note that our framework can
To assist understanding of Theorem 3, we consider a nqIL; .
. - . e easily extended to study the cases whepr 3.
cooperative spread model in which only the seeder(s) chagen We first describe the system parameters for a heterogeneous

the beginning of the spread is able to disseminate the irettiom. network. We assume that (i) both classes are of the same size,

In epldem|ology_, this non cooperative model_can b_e classifito ie., N1 = N2 (= N/2). (ii) There is one seeder in the network.
a SIR model with zero recovery time from infection. Remark 4, . . .

. . . . . Without loss of generality, the seeder is chosen randonan fr
summarizes our result with the proof given in Appendix G.

nodes in class 1, i.es = (1,0). (i) The inter-class infection
Remark 4. Supposen = 1, K = 1, ands; = 1. Then, as rates are the same in either direction, i&,» = £21 (é Einter)-
the network sizeV increases, we have the following for a nonHence, the rate matriA can be expressed as

cooperative spread model.
. . . . . . A= finter " L (24)
(1) The averagev-completion time ET,] is strictly increasing 1 r)’

with N. Also, it asymptotically behaves as i
ymp y wherer; £ &1 /&inter and 7y £ &3.9/&iner. The ratiosr; and

E[T.] = ©(¢ ' InN). r2 control the intra-class infection rates whose values acseh
freely in the rangd) < r1,79 < oco. Note that(ry,72) = (1,1)
reduces to the homogeneous case, and the largers) is
deviated from(1, 1), the more the heterogeneity is induced. To
summarize, the heterogeneous network in this study is peteam
ized by the tupl& N, &inter, 71, 72 ).
We next describe the system parameters for a homogeneous
from which we haveR,, 5 = O(1). network. For a fair comparison between homogeneo_us.anubhete
geneous networks, we impose the following constraint:
The higher order statistics df,, for the non-cooperative N N
spread model and our spread model (namely, cooperativeljnode = 2 =1 2b=1,b£a Sk(a) k(D) (25)
are further compared in Table 1. In the tahjég) 2 S0 n=¢ NN -1)
denotes the Riemann zeta function. The proof of Table 1 istethi Here, the left-hand side is the infection rate in a homogeseo

due to'similari'gy to the proofs of Theorem 3 and Remark 4.' OWetwork, which equals the per-pair averaged infection nata
analysis showing thar, s behaves differently for the scaling heterogeneous network on the right-hand side. Thus, aduster

of N and ¢ tells that resource allocation for information spreagleous network witiV, ier, 71, 72) and a homogeneous network
should be carefully designed based on the willingness opes  yith (v, ¢) are fairly comparable if

tion in a spread process (i.e., infectivity in a spread psege ¢ N
inter
= — ——1 " N;. 26
$Taw- {(Z-)ermenf e
(i) g(n) = O(h(n)) if there exists a constant > 0 andn € N such that : ; ;
l9(m)] < clh(n)| for all n > . With the help of Theorems 2 and 3 concerning the scaling of

(i) g(n) = Q(h(n)) if h(n) = O(g(n)). ¢ and N, we can characterize and generalize the impact of
(iiiy g(n) = O(h(n)) if g(n) = O(h(n)) andg(n) = Q(h(n)). heterogeneity by only observing a specific se{&fN). Hence,

(2) The guaranteed timé&', g is strictly increasing with/V for
any S € [0, 1]. Also, it asymptotically behaves as

Gap =0 ' (InN —In(ln g7 1)),

6. We adopt the following notations to describe asymptogicaviors:
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Fig. 3. Comparison of the guaranteed time G, g between het-
erogeneous and homogeneous networks for 8 = 0.9 and o €

{0.3,0.5,0.7,1.0}: if (r1,72) € T'a g, then heterogeneity with the level  Fig. 4. The guaranteed time G, 4 for 8 = 0.1 (left) and 8 = 0.9 (right):
(r1,r2) accelerates the information spread (i.e., reduces the guaranteed (r1,72) = (1,1) reduces to the homogeneous case, and the larger

time G ). If (r1,72) ¢ Tq,p, then heterogeneity slows down the  (r;, r5) is deviated from (1, 1), the more the heterogeneity is induced.
information spread.

In this study, we fix(¢, N) = (1,40) as above and vamy, in the

we fix (§, N) = (1,40) in this study, and lefr;, o) vary inthe range{1.0,1.3,1.6,1.8}. Here, we set; > 1 (i.e.,&11 > &a.2)
range0 < 7y, 7o < 20.7 so that the seeder is chosen from a more infective community.

Using our framework, we obtain the guaranteed tifes for  Under this system setup and parameters, we obtaindhg)-
each(ry,r2) and compare it with the homogeneous counterpaguaranteed timé,, 5 for o € [0,1], 8 € {0.1,0.9} and show
Fig. 3 shows the result. In the figur€,, g is the region such the resultin Fig. 4. From the figure, we confirm that hetereggn
that (r1,r2) € T, g if and only if heterogeneity with the level indeed accelerates the spread for smaller penetrationf@irdow
(r1,72) yields reduced guaranteed tindé, s compared to the «) but slows down it for higher penetration.
homogeneous case. Hence, the rediars can be interpreted as
the area where heterogeneity accelerates the informapiad. 4.4 Heterogeneity Advantage on Spread

From the figure, we can have the following observations ang assist understanding of our numerical observations i+ Se
interpretations: tion 4.3, we investigate the rates at which the spread psdeeses
(1) For a fixeds, the regionT',, 5 becomes reduced as in- eachlevel (i = 1,2,...,N — 1), i.e., the rate of informing one
creases, i.el'y, 3 C Ta, s for a1 > ao. Hence, for a additional node provided thatodes have been informed. Let
fixed (r1,72), there exists a thresholdy, € [0, 1] such that be the rate of leaving the levein a homogeneous network. Then,
(r1,72) € Do pif o < amand(ri,re) ¢ Lo pif o > am.  We have
This implies that heterogeneity in infection rates acetks wi = Ei(N —1).

the spread at the beginn?ng phase of the spread process'(b%erem from the homogeneous case, we have multiple ghase
a = O“T‘)’ whereas slovx(/jlglg. dowrr: thhe sphrelzd a(‘it the end"”@ach level in a heterogeneous network, and the rate of lgavin
phase (i.e.o > aun). In addition, the thresholdy, decreases o) 5rjes depending upon which phase realizes the lelegice,

as(r,rs) devia.tes from (1,1) mea”‘“9 that the time portio.rih the case of a heterogeneous network, we dgiine to be the
of the acceleration becomes shorter with more heterogenei ate of leaving the level when the associated phaseXs

(2) Fora € {0.3,0.5,0.7,1.0}, the region(\, I's,s is non- Let i be fixed. Then, we hav& = X; € {1,...,|F;|}. For
empty. This shows that there is aptimal heterogeneity level eachX; = j € {1 | F:|}, the rateji; ; can be obtained by
H 3 H (2 70ty (2PR] 1,7
for information spread which always accelerates the spreggding the transition rate from level-phase statg) to (i+1, ;')

entirely from the beginning to the end of the spread proce % adding the(j, j')th element of the matrix?;) for all 1 <
(i.e., an = 1). Such an optimal heterogeneity level can be, | Fi1| as follows: <

found in the intersectiofi),, T'n.5(= I'1 g).
(3) For anya, we havel', 5 {(r1,72):71 <79} = @. Hence, fig= Y. [Rljy=ON-HFNDT, @7

in the region{ (1, r2) : 71 <r2}, heterogeneity always slows 1</ <| Fipa|

down the information spread from the beginning to the end Wheref = X~(i,j) and AT denotes the transpose of a matrix

the spread process. This observation indicates that itbaes (or a vector)4, and where the second equality comes from (10).

is chosen from a less infective community, then heterodgne[, . . the collection 0y (j=1,2 | F:|) for a giveni can
never accelerates the information spread. be obtained froniz; as i R
(3

In the following, we support the above observations for acipe

~ _ . T
case when the inter-class infection rate is determined filoen (fti)j=1,2,.. |17 = (Ri€)".
intra-class infection rates ter = (£1,1 + &2,2)/2. In this case, It follows from the theory of absorbing Markov chains [15hth
the rate matrixA in (24) is further simplified as the probability distribution of; on {1,2,...,|F;|}is
1 0
A = Ginter <7"11 9 _ T1> . .
(P(Xi = j))jz1.2,. 17| = ha(—Fa)™! o , (28)

7. Then, from the constraint (26), we can compégte, for each(r1,72), R
which in turn determines uniquely the rate matxin (24). [aNT-1
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Due to technical difficulty in handling the inverse matrix
(FZ-/N)‘1 analytically, we prove this conjecture in a simplified
case wherd{ = 2, N; = N, and the rate matri is given by

A=t 51 ) 32)

2—7“1

500

400f

3001

200f

This is the model underlying Fig. 4 of Section 4.3. The het-
erogeneity parameter; is in the range[l,2). Whenr, = 1,

it reduces to the homogeneous case.rAsncreases, the more
the heterogeneity is induced. The following theorem prestre

——Homogeneous case
——Heterogeneous case (set 1)
—e—Heterogeneous case (set 2)
——Heterogeneous case (set 3)

Average flux fi;

100r

0 10 20 30 40

Level i relation between; and ;.
Fig. 5. Average rate fi; of leaving each level i for the spread parameters Theqrem_‘l- SupposeK =2,N; = Ns, s=(1,0),and t'he rate
in (30). matrix A is given by (32). Then, the average rateof leaving the
level: satisfies
. N N .
wherea = -8 Hence, the expectation @f; x accommodating ~ Ai = Hi + c(r1 — 1) 5 ") i=1,2,...,N -1,

all the possibilities of the phas¥ (= X;) for a given level; is )
wherec > 0 is a constant.

|7l Proof: See Appendix H. [ ]
fii 2 Elpix] =Y P(Xi = j)fui The result in Theorem 4 implies that (i) due to variability
J=1 in 1, the average fluyi; can be deviated from;. (i) The more
0 the heterogeneity is induced, the largeris deviated fromy;.
—1 : (iif) Concerning the conjecture, we hayg > p; if 1 < % and
=hy (-Fy) o | e (29) i < it i > X showing thatV in (31) is &
Rifl

4.5 Implication

The metric/i; represents the average rate of information flow (q4ow to optimally distribute given resources to nodes in avoei
dispersion) passing through susceptible nodes fiomformed to minimize the time for information spread is of an impottan
nodes, which we call flux. Based on (29), we compare the/ilux research question. Our results on heterogeneity provigeatheer-

with p; for i = 1,2,..., N — 1 and show the result in Fig. 5. standing to this question. We note that there exists a swegitbn

In the figure, we useéV = 40 and{ = 1 for homogeneous case.of A with heterogeneous contact rates, which always make the
For heterogeneous case, we use the following three setse#p spread faster than a homogeneous network for a targstshown

parameters: in Fig. 3. This implies that when utilizing a vehicular netkdor
information delivery (e.g., DieselNet [17]) or a socialwetk for
(Set) N = (20,20), A — {19 1 ] advertising a productA can be manipulated to be heterogeneous
T L 01]” by allocating uneven fuel to vehicles or providing distirged
19 1 incentive to users. How to realize sudhfrom fuel or incentive
(Setd N =(10,30), A =163 [ 1 0.1] ’ (30) distribution needs experimental study that is beyond tlopsof
19 1 this paper.
(Set3 N = (5,35), A:2.74{1 01].

. _ 5 SIMULATION STUDY
For a fair comparison, those parameters are chosen toysa'u,glf1 Contact Statistics of a Vehicular Network
the constraint in (26). In all three cases, we choose oneeseed ) o
randomly from nodes in a more infective community (i.e.sela). Ve study the efficacy of our framework and characterizations

We can observe that at the beginning of the spread, tHging a vehi_cula_lr mobility _trace_ obtained from more than a
average fluxi, in the heterogeneous network is larger than thétgousand taxies in Shanghai, China [18]. The experimeraabt

of the homogeneous network. This trend becomes flipped aftsicked GPS coordinates of taxies at every 30 seconds deéing
a certain moment as shown in Fig. 5. This phenomenon can $&/S i Shanghai. The trace was previously analyzed in fIlt

understood intuitively given that heterogeneity allows e was shown that the taxies have exponentially distributechvize

range of mobility and contact patterns resulting in spequtgad ;nter-contsct time, which is well aligned with our CTMC-leas
together with procrastinatory spread. ramework.

. . . Figs. 6 (a), (b), and (c) characterize the statistics of &xe t
From the discussion above, we form a conjecture that there . S
R network with 1000 randomly chosen taxies in the aspect ofberm
existsN < N such that

of contacts, number of neighbors in a communication range
(50 meter in our analysis), and contact duration, respelgtiv
. (31) We apply these three factors for evaluating the infecticesra
i < i if i>N. N = N ppathy I (2), where the infectivityp, is 1 and the
suéceptibilityq/)b is derived from how many infection (i.e., data
> 0}, the probability  fransmission) opportunities a contact duration can hotdoball
=1). neighboring nodes who are willing to infect others. The ftssu

,[Li>,LLi if i<N,

8. In terms of the level-phase procdgd.(t), J(¢)); ¢
P(X; = j) in (28) can be rewritten as(P(t) = j|L(t)
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are summarized in Table 2 for a homogeneous network and a

[

heterogeneous network witkk = 2. Note that the infection @
rates in Table 2 satisfy the constraint in (25) that was thiced 5 0.8
. . c
for a fair comparison between a homogeneous model and a £ 0l
heterogeneous model. 8
8 04t
g
TABLE 2 S ool
Infection rates for a homogeneous network and for a heterogeneous % ’
network with two classes of taxies o ‘ ‘ ‘
0 100 200 300 400
Information delivery time (h)
| Homogeneous cas+3 Heterogeneous case |
3 11 £2,2 §1.2 (= €21 Fig. 9. Effective penetration of information, a x 3, over time from 1 seeder
4.14 x 1074 707 x 1074 | 1.93x 107% | 3.72x 1074 in a homogeneous network of infection rate ¢ = 4.14 x 1074,

Based on the statistics in Table 2, it is possible to predict
the information spread time and to find out efficient methaus f

properly allocating resources to the taxi network. To thisl,e that approaching tex = 1 or 5 = 1 significantly extends the

we simulate probabilistic guarantees for the completioretin a correspondinda, §)-guaranteed time. Especially, achieving both

homogeneous and a heterogeneous network, each with 1@8.taxi 1_ano:6 :tO.?r? |;5tf]how? to ;equwe r?ucg tlpnger ?m‘;‘ﬂlt IS
We assume an application scenario of a firmware update to 'BE19uing to note that the ratio of guaranteed times of aeing

distributed for mobile devices, which will take around 9@eds O‘ﬁ) = (160'991‘) a”ddaCh'_e"'”q“’ B)T:h. (2'5"’ Ot'ﬁ) tgfeﬁ larger
demanding 1.15 number of contacts on average. In our siionjat as the number of seeders increases. This tells that fulltyzeioz

the number of taxies is limited to be 100 due to computationgf information to a network is relatively hard to improve weas

1 i i 0,
complexity involved in the matrix operations. a moderate penetratlon (e.g., half penetratlon with 50%aguee)
is much easier to speed up by adding more seeders.

Figs. 8 (d), (e), and (f) show contour maps of Figs. 8 (a),
(b), and (c), respectively. The lines in the contour mapshech
We first study the spread time in a homogengous network. Figshe combinations ofx and 3 parameters that yield the same
(@), (b), and (c) show thea, §)-guaranteed time for € [0,1]  giaranteed timeG, 5. The resulting lines provide us useful
and 5 € {0.5,0.9,0.99} with the number of seeders given by, ijance on designing an information spread system. Ftarine,

1, 10, and 20, respectively. The figures tell that if we taf@f## Fiqg g (d) shows that the contour lines are changing from aeec
penetration with 99% confidence (i.€x, 5) = (0.9,0.99)), then 4 conyex as the time of spread proceeds. In addition, theenty
the taxi network with a single seeder is estimated to takaiabyf ihe lines gets steeper as the time proceeds. These [satiemn
11.6days (i.e., 278 hours) to achieve the target level ofmétion 5.0 3150 observed in Figs. 8 (e) and (f) clarify that targptin
spread. This estimation largely differs from the existisgreation p51ancen and 3 is more effective than aiming at an extreme
of the average time to achieve 90% of penetration, whichaseel , o, 3, especially when maximizing theffective penetration of
to 7 days. This clarifies that designing plans associated & ;formation defined asa x . More intuitively speaking in the
successful spread to 90% of nodes should incorporate ab®ut dyntext of Fig. 8 (d), spreading to 60% of population with 60686
additional days. If someone wants to avoid the associat@spl g arantee takes the same amount of time with spreading ta82%
being delayed, our framework is able to suggest adding mQgy,ation with 30% of guarantee, but the former is more ieffic
seeders to the network as shown in Figs. 7 (b) and (c). AS theterms of the effective penetration. The choicexcdnd 3 surely

number of seeders increases to 10 or 20, the time required fdhends on the application scenarios and the system designe
90% penetration with 99% confidence reduces from 278 hoursdgais. However, given time budget, it is highly recommented

137 hours (5.7 days) and 113 hours (4.7 days), respectively. e system designers to adjustor 3 slightly to see if they can
Similarly, we can study a heterogeneous network with tWochieve higher effective penetration without deviating touch

classes. Figs. 7 (d), (e), and (f) show tfie 3)-guaranteed time from their original goals.

fora € [0,1]andg € {0.5,0.9,0.99} with 1, 10, and 20 seeders, . . . .

respectively. Direct comparison between Figs. 7 (a), ®)abcd . Fig. 9 dgtalls the C,ha”‘?!”}g patt'ern dofl'the maxmurr&neffec-

Figs. 7 (d), (e), (f) confirms our claims in Section 4.3. Theimis UVE Penetration at a given information delivery time whéne

tell that the(«, §)-guaranteed time in a heterogeneous network ligaxmum_of_a xBis takgn from the contour line of th_e same

faster than a homogeneous network for loweand is slower for time. A_‘S Itis aforgmentmned, the pattern of c_hangln_g from

highera close to 1. This implies that if it is mandatory to achiev oncavity to convexity makes the maximum effective peneina

100% penetration, making the properties of nodes in a né&tw °k_ like a Si_ngid fungtion. This_sig_moid function well aapes
the information spreading behavior in a network as the spéed

to be more homogeneous (e.g., by providing more resources . .

inactive groups of nodes) can be helpful in spreading in&drom. penetra_tlon goes up and then down as the numbers of_lnfected
and uninfected nodes become balanced and then again unbal-

) . ) anced (with only few remaining uninfected). When balaneed.(

5.3 Effective Penetration of Information 50:50), the possibility of infection is surely maximizedgFo can

We further analyze detailed cases of a homogeneous netwalko work as a quick reference for checking the minimum regui

with o and 8 parameters in the ranges [f, 1] and[0.1,0.99], time for any« x . For instance, achieving effective penetration

respectively. Figs. 8 (a), (b), and (c) show the 3-D plot§safs o x 8 = 0.25 would take at least 120 hours no matter how we

with different number of seeders. These 3-D plots commadmbyws combinea andp.

5.2 Information Spread Time in a Vehicular Network
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Fig. 10. («, B)-guaranteed time with 8 € {0.50, 0.90, 0.99} for various number of classes K. Larger K (i.e., stronger heterogeneity) helps spreading
at the beginning, but delays spreading at the end.

5.4 Impact of Multi-classes

100

In this section, we study the impact of multi-classes on firead 8o _Z_E;ggg 7
time with increasing number of classds. In practice, how
to classify nodes in a network may be of a difficult question.
Given the notion and the definition of a class (i.e., all nouhes
a class keep homogeneity), segregating humans or vehities i
multiple exclusive classes is infeasible since even the sioslar
behaviors of humans or vehicles in a class cannot statigtica % ,
guarantee their homogeneity. This implies that classifyiodes a
is mainly for improving mathematical tractability and rethg i —_ o | o
the computatonal complexiy in predicting spreading ga. £, 1, Tece S Suaien s fo%, 5000 samole pats
We here test the impact of grouping nodes with various number

of classes fromK = 1 (i.e., totally homogeneous) t& = 10

(i.e., totally heterogeneous) for a network consisting@hbdes. (i.e., targeting 100% penetration in a totally heterogeserase)
Infectivity upon a contact is set to be 0.25 for capturing aewi yieldingn = 2V.

variety of spreading patterns. Fig. 10 shows h6,s changes ~  ngnetheless, the matri, has an extra property that we can
for different number of classes. Note that the rate maflix (e advantage of,, is a highlysparsematrix. According to (10),
for 10 nodes are captured from the most active taxies in they|iows non-zero transition rates only between stateorsahat
Shanghai trace. Inter and intra contact rates for diffecéeses yifrer in one component. Consequentl,, becomes a banded
are assigned by taking the average behavior of nodes in ea¢her triangular matrix and more than half of its elements ar
class, since all nodes in a class are assumed to be hom_ogeneﬂ#ol as shown in (6). This property enables us to exploit the
From the figure, we can observe that larderleads to quicker existing technique, calledrylov approximation(e.g., [20]-[22]

spread at the beginning, but procrastinatory spread atnle €;nq references therein), and a ready-to-use software gacka
This behavior is aligned with the heterogeneity advantagée .51 EpokiT [23], to resolve the computational problem as
spread time presented in Section 4.3, as ladgeinduces more yascribed below.

heterogeneity. For those 10 taxies, we run a trace driveulation There have been extensive studies on the numerical algo-
using the trajectories for those taxies included in the §han (i ns for computing matrix exponentials in mathematicsl an

trace. In order to make the statistical property of the trdteen . jeq [24]. The case where the matrix is of moderate difoens
simulation close to that of numerical analysis, we appliEgSame ¢ penefited from the classical methods such as Padé approx
infectivity and collected 50,000 sample paths. Fig. 11 shtve i, 504 Taylor series approximation. For a large sparseimat

50%, 90%, and 99% guaranteed spread time for vatouslues. —voy subspace projection technique has been shown taggov
Note that/ guaranteed time is equivalent fb quantile spread |, ot requction of computational burden in exponentiaginch

time from all sample paths. The comparison between Fig. 10 %hatrix, especially for the one arising in Markov chains [20]
Fig. 11 supports that the totally heterogeneous cASe(10) that 5 g nstantial performance gain has been justified by étieat
went through minimum approximation captures the real SPReg .4 acterizations as well as practical studies [21], [2].

patterns in the most accurate manner for all tegtedlues. Let us explain briefly the underlying principle of Krylov
subspace projection technique. The gist of Krylov appration
is that the original large sparse problem (of sigds converted to
a small dense problem (of size < n) by incorporating the well-
A computational problem can be encountered when applyidy (1known Arnoldi algorithm [26]. Practicallyy < 50 whereas: can
(13), and (14) in Theorem 1, especially when computing tHfxceed thousands. The underlying technique is to approgima
matrix exponentiabxp(F,t). The matrixF,, in the theorem is a (Fut) (Fot)?
square matrix of orden (i.e., F,, € R"*"), wheren is the num- w(t) £ exp(Fut)e = e + “' + O‘|
ber of states in our Markov chain and scale<ts:(1 + ££)). B 2
Hence, for each fixedV, the computational complexity increasedy an element of the Krylov subspack,,(F.t,e) =
with K andc, and the worst case occurs wher= 1 andK = N Span{e, (Fut)e, ..., (F,t)" le}, wherem is the dimension

601

401

201

(o, B)-guaranteed time (h)
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of Krylov subspace. Thus, Krylov approximation gives [5]

ﬁ}(t) =7V eXp(Hmt)elv (6]
whereV,, € R*"™™ and H,, € R™*™ are, respectively, the
orthonormal basis of the Krylov subspakg, (F,t,e) and the
upper Hessenberg matrix resulting from Arnoldi procesd,a#
lle]|2.® Usually, the dimensiomn of H,, is much smaller than
that n of F,,. As m increases, Krylov approximation becomeT,S]
more accurate. It is proven that the error in the approxiomati
behaves like [21]

w(®) = @] = O (e 1Flt (|| lat=)").
(10]

for m > 2t||F,||2. EXPOKIT is a software package that pro-
vides a set of ready-to-use routines (in Matlab and Fortan 7
for computing matrix exponentials and is available onlig&][ [
One of the component P okiT/dmexpv(m), implements Krylov
subspace technique to cope with a large sparse matrix inaviark?]
chains. A full description can be found in [23]. The compiatadl
complexity involved in our work can be reduced with help déth [13]
software.

[7]
9]

11]

[14]
7 CONCLUSION

In this paper, we charactetize the probabilistic guarardge [15]
the time for information spread in opportunistic networkg by
developing a two-dimensional CTMC-based analytical fraork  [17]
and introducing the metri€7, g. Our characterization includes
understanding of the temporal scaling behavior of inforamat [1g)
spread through a set of various spread measures. We alsdung
various examples of application scenarios and demonsirigte (19]
Shanghai taxi traces that our framework enables us to ggtima
proper amount of resource for information spread by praowdi [20]
the detailed statistics of the guaranteed time for giveretration
targets. We believe our framework can be viewed as an impiortg1)
first step in the design of highly sophisticated accelenati@thods

for information spread or prevention methods for epidemics [22]
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APPENDIX A APPENDIX C
PROOF OF LEMMA 1 PROOF OF REMARK 1

Suppose that at tim&, the system enters staté&(t), J(to)) = Since F,, is an upper triangular matrix, its diagonal entries
(i,7). Let Z;(i,j) and Si(7,j) denote, respectively, the indexbecome the eigenvalues @, [28]. If the diagonal entries of

sets of infected nodes and susceptible nodes in dlaks the F,, are all distinct (that is,F,, has no repeated eigenvalues),
given level-phasdi, j). If i = N, thenSy(i,j) = @ for all then the matrixF,, has M linearly independent eigenvectors,

k=1,..., K, and thus the system stops evolving. From now oand consequently it is diagonalizable Bs = V. DV ~! where
we consider < N — 1. Define D = diag((—Ci,--.,—Cum)) [28]. Thus, we obtain
Q,5) &2 {m: X7+ 1,m)=X""(i,5) + ey for somek}, exp(Fot) = exp(V(DH)V™Y) = Vexp(Dt)V 1,
that denotes the collection of phases to which the very ngghere the second equality follows from the property of the
transmog from stati, j) can occur. matrix exponential thaéxp(Y XY ~1) = Y exp(X)Y ! for
o Forg’ e {1,2,., [Fial}, 1et Y 5y (iy1,50) denote the ap invertible matrix”. Furthermoregxp(Dt) reduces to
time required to jump fronii, j) to (i + 1, 5'). If 5/ & Q(i,5),
then the transition never happens, i.e., exp(Dt) = dmg((e—élt7 o e—CMt)).

Yiij)» Gt =00, i ¢ Q(i,j). (33)

APPENDIX D

If 5 € Q(i,7), then there exist’ such that¥ ~(i + 1,;') =
X~Yi,7) + ew, and Y{; j)_(i+1,5) becomes the time to have” ROOF OF THEOREM 2

one more infected node in clas& Note that at time, there are In this proof, we introduce a symbal over a variable, say,

Tk (i, ) infected nodes in each clagsand Sy (7, j) susceptible to denote the value of computed with the scaled infection rate

nodes in clasg’. Hence, we obtain Ak 1. Since the infection ratéy, ,- is multiplied by~ for all
v B ) et 1 <k, k' < K, the rate matrix satisfieA = yA. Hence, by (35)
G2 =k 1), beS () (M}, and (36) in the proof of Lemma 3, we obtal®; = R, for all

1 <i < N —1,whichinturn givesﬁ‘ = v F, by (6). Applying
F, = ~F, to (12) in Theorem 1, we obtain
Hence, by (2),Y(; j)—(i+1,;7) becomes an exponential random

if j/ € Q@,5). (34)

P(Ty > t) = ho(s) exp(Fyt)e = ho(s) exp(Fo(vt))e

variable. The sojourn time of stafg, j) is the minimum among . (37)
Yiij)o (v, forall j* € {1,2,..., |Fiy1]}. Thus, by (33) and =P(Ty >7t) =P(y Ty > 1).

(34), it follows an exponential distribution. Therefordgetjoint I

level-phase process is a CTMC. Since (37) holds for any > 0, we haveT, = 7~ 'T,. Let

> ) he 2

Hal(t) £ P(T, < t) denote the CDF off,,. Then, (37) gives
H,(t) = Hy(vt), and thus we havdl, ' (t) = v 1H; ().
APPENDIX B From (13) of Theorem 1(+, g is then obtained byG, g =
PROOF OF LEMMA 3 H1(B) = v " H:Y(B) = 7 'Gap. SinceTy < 41T, we
In this proof, we use the same notation as in the proof of Lemay , o 577 1 — ~~1E[T. 1. Hence 2. » — et — R

unless otherwise mentioned. L&R;]; ;; denote the(j, j')th Bla] =7 ElTa)- el T o
element of the matrixR;. Then, it represents the transition rate

from (i,7) to (i + 1,5’). From (33), we obtaifR;]; ; = 0if APPENDIX E

J" ¢ Q(i, 7). In addition, from (34), the transition raf&;]; ;» for  pProoF OF EQUATION (21)

the casg’ € Q(i, j) can be derived as .
Since >, I;(t) takes on only natural numbers from 1 19,

[Ri]; 0 = > Ek(a),k(b) M(t) can be obtained byM(t) = SN P(X, In(t) > i).
acUE_, Tp.(5,5), bES (i,5) Note that by Definition 1, the evef ", I;.(t) > i} is equivalent
K to {T;/n < t}. Hence, we haveM(t) = PO P(Tyn < 1).
=[Sk (6 ) Y 1Tk (65 5) | (35) Similarly, M(t) is given by M(t) = SN P(Tyy < t) =
k=1 Zf\il P(T;)n < ~t), where the second equality comes from

Let £ 2 X~1(i,j) andg 2 X~1(i + 1,5'). Then, we can Theorem 2. Therefore, we obtaivl (t) = M ().
rewrite the conditionj’ € Q(i,7) asg = f + ey . In addition,
|Zx (i, j)| and[Sk (i, j)| can be expressed &% (i,j)| = (f)x
and [S,(i, )| = N — |Tk(i.j)| = (N — f)i, respectively. APPENDIXF
Hence, (35) is simplified as PROOF OF THEOREM 3

K K In this proof, we add a subscripf or N + 1to T, andG, g in

|Sk (7, 7)] Z |Z (i, )|y = (N — i Z(f)k@f & order to explicitly denote the underlying network size.
k=1 k=1 Proof of Theorem 3. (1)We first consider a network withdV
=(N = f)w(fA)r.  (36) nodes. From (15) witax = 1 ands; = 1, we have

Combining (10) and (36) gives - N-1 4 1Nfl 1 .
ElTa,nN] = = =& — -
[Rilj0 = A(F.9) = MA (), X7 G+ 1,5). =Lt LWy
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Slmllarly, for a network withV + 1 nodes, we have[F,, n+1] = detailed proof. For an odd, thea-completion timeT, n in (15)

& EZ 17 N+1 AGESEOE Hence, for anyV € N, we obtain can be rewritten as
1 N2—1 N—1 N2—1 N2—1
E[To,nt1] — E[Tan] = ( + Z (H—1 — ;)) Ton=Y.Zi+ Y, Zi=Y Zi+ Yy Zni (43)
i=1 j= N1 i=1 i=1
2
N-1
1 1 1 1
= — — = = Then, we can derive upper and lower bound as
<¢ (N TN ol ; (i+1 z)> PP Tany
e} i - i —0 (39) Tiower = Ta,N = Tuppen (44)
N N

where Typper 2 SN 11 7% and Tiower £ YN, Z, and where

That s, the average-completion time 77, x] is strictly decreas- Z!* and Z! are independent exponential random variables with

ing with an increasingV. rates¢ Ni/4 and {Ni, respectively. Note that the rate &f; is
Next, we prove (22). Suppose thatis an odd number. When greater than that o, if and only if i < % Hence, we have

N is an even number, we can prove similarly and thus omit the

detailed proof. For an odd, E[T, y] in (38) can be rewritten as Zi 2 Zy; fori=1,2,...,(N—-1)/2. (45)
N1 . d ; ; .
& 1 SinceZyn_; = Z; andZ3; < Z3;_, for all ¢, we further have
ElTan] =261 T (40) 2 et
i=1 In_i = Z% | fori=1,2,...,(N—1)/2.  (46)
Let f be a function defined by (z) £ m for0 <z < N. o _ N1 N1
Since f is a strictly decreasing convex function for< z < &, Cojmbl'”'rl‘g (45) and (46) yield_, 5 Zi + 3,5 Zn-i =
the expectation in (40) is bounded above as >i=1 Z'. This provesTq n = Typper By using a similar
approach, we can provéjower = Tr,n. Due to similarity, we
? N omit the details. Letypper = 4(EN) " H{In(N —1) —In(In 1)}
E[Tu,n] =261 Z f(i) < 2571{‘/:(1) +/1 f(z) de}~ andtiower 2 +tupper IN the following, we will show that
lim P(Tiower > tiower) = 1 — 3, 47a
It is straightforward to obtairf (1) + fl r)dr = 7 + N—ro0 (Tiower > iower) B (472)
+In (]X,Jrll) , which gives BT}, n] = O(& 1N 1 In N). By the A}Enoo P(Tupper > tuppe) = 1 — 5. (47b)

same reason, the expectation in (40) is bounded below as . )
The results in (44), (47a), and (47b) imply that there exié§se

_ N such thattiower < Ga,g,8 < tupperforall N > Ny, which
Tan] 2267 / =2N) T N+, GivesGapy — OE TN Hin N n(n 3-1))).
a1 Equations (47a) and (47b) remain to be proven. It is well-
which gives BT n] = (¢~ N In N). Therefore, we have 0 that the sums of n independent exponential random
E[Tan]=O( ' N""InN). variables with rates; (i = 1,...,n) follows the generalized
Proof of Theorem 3. (2)For two random variablegl and B, let  Erlang distribution. Whenr; # r; for all i # j, e.g., in the
A = B denote PA > z) < P(B > z) for all x € R. From (15), caser; = £Ni, the generalized Erlang distribution is given by
itis clear thatl, y = Z1, i.e.,

n n

P(Ton >t) > P(Z1 > t) = exp(—&(N — 1)t).  (41) P(S>t)=)" ( I —= T_) exp(—rit).  (48)

r
i=1 Nj=1,j#i J v

Similarly, we have T, yy1 =< ErlangN,¢N), where
Erlang’k, \) denotes the Erlang random variable with shap8eplacingr; by { N and simplifying (48) yields
k € N and rate\ > 0. Hence,

N -1
P(To,N+1 > t) < P(Erlang N, fN) > t) P(Tiower > t) = Z < ) ) exp(—¢Nit).
i=1
(fN) (42)
= exp(—€NT) ZO i Hence, we obtain
From (42) and (41), we obtain = - (N—=1\/Inpg 1\’
No1 ) P(Tiower > tlower) = (_1)Z ! i (Nﬁ 1)
 PTani>t) —~ (EN?)! i=1 a
oYl 7~ _ — )
M o s S A exp(=eY) ; a0 I (N— 1)( In 8 )
Accordingly, there exists (> 0) such that PT, y4+1 > t) < i=0 ! N1
P(Ton > t)forallt > tg. Let By 2 P(To,n < to). Then,3y < mg \V !
1 and, as shown in Fig. 12, we hat&, s v > Ga,g,n+1 for =l-+5—7 (49)

B > Po. That s, the guaranteed tinde, g x is strictly decreasing

with an increasingV for 5 > fj. By taking NV to co in (49), we havéim y oo P(Tiower > tiower) =
Next, we prove (23). Suppose thitis an odd number. When 1 — exp(In 8) = 1 — 8, which proves (47a). Similarly as above,

N is an even number, we can prove similarly and thus omit thvee can prove (47b) and omit the details.
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wherec = 2&ner(E[X;] — %). Using mathematical induction, we
L= B = — Plew >t} prove thate > O foralli =1,2,..., N — 1, as follows.
N, = P(Tonsa > 1) We first rewrite EX, 1] by conditioning onX; as
Y E[Xit1] = Y P(Xi = HE[Xi1|Xi = j]. (51)
1-8 = Sy J
"""""""""""" Since X; represents the number of infected nodes in class 1 when
t

there arei infected nodes in the network, we have eithér, ; =
X;+1 (i.e., newly infected node belongsto class 1)Xgr.; = X

(i.e., newly infected node belongs to class 2) at the very lesel.
Hence,

to Gepn+1 Gapn

Fig. 12. Proof of Theorem 3. (2): G 3,8 > Ga,5,n+1 fOr 8> Bo

APPENDIX G EXit1|Xs =4l =( +‘1)P(Xz'+1 =] + 1|Xi =7)
PROOF OF REMARK 4 + jP(Xip1 = j|Xi = j)

Our framework is applicable for the analysis of the non- =J+PXip =j+11Xi =5).  (52)
cooperative spread model. The only change occurs at Step 35lﬁbstituting (52) into (51) gives
the computation ofR;. The function\(f, g) in (10) now should

be replaced b\°(f, g) as follows: E[Xit1] = i)+ Z Xit1 =7+ 1X; =7).
2(f,g) 2 {(N — fe(sA) if g = f + ey, for somek, (53)
0 otherwise In the following, we will show that the second probability tre
With this replacement, we can prove Remark 4 by applying thight-hand side of (53) is bounded by
technique used in the proof of Theorem 3. Due to similaritg, w N
give only a sketch of the proof and omit the details. P(Xip1 =7+ 1|X; =j5) > 2—=. (54)
—1
Proof of Remark 4. (1)Let T 5 be thea-completion time in a ) ) )
network consisting ofV non- cooperatlve nodes. Then, Let Y(; j)—(it1,4) denote the time required to jump from level-

phase statéi, j) to (i + 1,5') (as we defined in Appendix A).
o o Then, as shown in Appendices A and; ;)_,;41,;) follows an
Ton = Z Zi (50) exponential distribution whose rate[iR;], ;» and can be obtained
from (10) as
whereZ? are independent exponential random variables with rates

N-— . 1 ST 1A o .
§i. Hence, we have £ | = Lyt 1, which is strictly (% — ) [j ; _j} {Am} if /= j+1,

increasing withVand scales a®({~ 11nN) (R, — 2,1

117,50 =
Proof of Remark 4. (2)SinceT? v, < T¢ v + Z% by (50), X it {j iij} Avz| e
we have RTS y > t) < P(T9 ., > t) forall ¢ > 0. Az

Hence, G, g~ is strictly increasing with an increasiny for . .

oy Ea[ 1]. Also, by applying the formula (48), we canWhere A; ; denotes the(i, j)th element of the rate matriA.

derive ; N-10_q N-1 ) Let NotethatA;; > Ay; = Ajp > Ag o, and thus the rate above
rnv F{ a,N > ) Zz:l ( ) ( )eXp( 57’ ) |S bounded by

£ 1{1H( —1) —In(In 3~1)}. Then, e have
N A N
N-1 R > NTs s 2’1]2——"A
o =10y~ 1 (1s 8 Ry 2 (-0l =) |32 = G - dine,
which giveslimy oo P(Ty ;> t°) =1 —exp(lnf) =1 — 3. N Aoy N
Therefore, we havél, 5 v = O((71(In N — In(ln 57 1))). [Ri]jj < (5 —i+j)[j i—1]] {Au] = (E—Z—i-j)ZAQJ
if j' = j.

APPENDIX H
PROOF OF THEOREM 4

In the caseK = 2, we can set the phasg; to be the number
of infected nodes in class 1 for the level as it can specify

Note that the even{X,;; = X, + 1} occurs if and only if
Vi) G+1,+1) < Yl 5)-(+1,9)- Hence,

P(Xit1 =j+11X; = j)

uniquely which sample instance realizes the level. Thenhawe = P(}/(i,j)ﬁ(iJrl,jJrl) < Yr(i,j)ﬂ(iJrl,j))
X~1(i,5) = (j,i — j), and Eq. (27) leads to B [Ri]jj+1

A o N . [Rilj g1 + (Rl

Hi 5 = i + 2€inter (] - 5) (Tl - 1) (5 - Z) . (% 7]'),[;A271

- /N g N . .\ -
The expectationii; is thus obtained by (5 —)iAy + (5 —i+ )iz
N .
N 2

)



This proves (54). Combining (53) and (54) yields

N
E[Xi+1] > E[X;] + ; P(Xi =) ]2V —Z
¥ _EXy]
= EX]+ 25—
. ) N
_ (N —J\:lEEXz] t3 (55)

If E[X;] > % then the last equation in (55) is further bounded by

(N—i-Di+L 41
E[X; - .
K] > N_i 2

That is, if EX;] > %, then BX;41] > L. Moreover, since

the seeder is selected from class 1, we haf@&f = 1 > 1.

By mathematical induction, we therefore havieX] > < for all
i=1,2,..., N — 1. This competes the proof.
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