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Abstract—Predicting spreading patterns of information or virus has been a popular research topic for which various mathematical
tools have been developed. These tools have mainly focused on estimating the average time of spread to a fraction (e.g., α) of the
agents, i.e., so-called average α-completion time E(Tα). We claim that understanding stochastic confidence on the time Tα rather
than only its average gives more comprehensive knowledge on the spread behavior and wider engineering choices. Obviously, the
knowledge also enables us to effectively accelerate or decelerate a spread. To demonstrate the benefits of understanding the
distribution of spread time, we introduce a new metric Gα,β that denotes the time required to guarantee α completion (i.e., penetration)
with probability β. Also, we develop a new framework characterizing Gα,β for various spread parameters such as number of seeders,
contact rates between agents, and heterogeneity in contact rates. We apply our technique to a large-scale experimental vehicular trace
and show that it is possible to allocate resources for acceleration of spread in a far more elaborated way compared to conventional
average-based mathematical tools.

Index Terms—Information spread, CTMC analysis, spread time analysis, spread time distribution
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1 INTRODUCTION

Spreading patterns of pandemics [1], computer viruses [2],and
information [3] have been widely studied in various research
disciplines including epidemics, biology, physics, sociology, and
computer networks. In these disciplines, most studies havebeen
devoted to characterizing spread behaviors toward a network of
mobile agents including humans, vehicles, and mobile devices1

over time. These studies can be classified into two groups based
on their objectives. Interestingly, these objectives lie in opposite
directions: delaying or accelerating spread. For the research that
deals with biological or electronic viruses, how to slow down the
spread has been the most important question to be answered. On
the other hand, another set of research work for computer data or
information distribution has pursued designing methodologies to
speed up the spread.

Whatever the goals are, existing studies have relied on
common mathematical techniques such as the branching pro-
cess, mean-field approximation, and stochastic differential equa-
tions [4]. These techniques have mostly been developed to analyze
the average behavior of spread under various epidemic models
summarized in [5]. The epidemic models are first classified by
whether agents are recoverable2 or not, and then the recoverable
cases are further classified by whether the agents become immune
after recovery or susceptible again to infection.

Average behavior analysis successfully answers a questionon
how many nodes are infected (or informed)on averageunder
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1. We will interchangeably use agents and nodes unless confusion arises.
2. A virus that is not recoverable can be considered to be identical to

undeletable or unforgettable information.

a specific epidemic model after a time durationt from the
emergence of a virus (or generation of information). This isoften
represented by E[Nt] whereNt denotes the number of infected
nodes at timet. Aforementioned mathematical techniques have
made various extensions to this analysis. In [6], it is identified
how much network topologies affect the speed of virus spreading.
The authors in [7] derived a closed-form equation for the critical
level of virus infection rate that lets a virus persist in a network
when the virus is recoverable with a certain rate. More realistic
average spread behaviors of a virus with the heterogeneity inherent
in human mobility patterns have been studied through simulations
in [8]. In computer networks, [9] analyzed the average propagation
behavior of code red worm in the Internet using measurement
data from ISPs. In [3], the authors applied understanding on
the average behavior of virus spread to information propagation
in delay tolerant networks. Similarly, [2] analyzed the average
spread behaviors of self-propagating worms in the Internetusing
branching process.

While there has been a plethora of work on average analysis,
the problem of optimal allocation of resources to a network of a
set of nodes for slowing down or speeding up spread has been
under-explored. Specifically, higher order spread behaviors over
time rather than average behaviors have not been well understood.
Therefore, the right question to be answered should be what will
be the distribution of the number of infected nodes at timet, which
is equivalent to what will be the temporal distribution of the event
thatn nodes are infected. Characterizing the temporal distribution
of spread allows us to guarantee the time for spread with desired
probabilistic confidence, and it leads to having control knobs for
allocating resources to a network with its own purpose of spread.
However, understanding the temporal distribution involves non-
trivial challenges since it requires to handle a huge dimension of
diversity in contact events among nodes in a network.

In order to tackle the challenges involved in this paper, we
propose a new analytical framework based on CTMC (continuous
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time Markov chain), which enables us to fully characterize the
temporal aspect of spread behaviors. For simplicity, throughout
this paper, we put our emphasis on information distributionamong
intermittently meeting mobile nodes forming an opportunistic
network, i.e., a mobile social network, but our results are easily
applicable to general spread of epidemics or information. Our
framework is capable of answering many intriguing engineering
questions such as “What is the distribution of time for a network to
havex% (0 ≤ x ≤ 100) penetration rate?” and “Ifx% penetration
is aimed, when is the time to guarantee that level of penetration
with y% (0 ≤ y ≤ 100) of confidence?”. It can also answer a
more fundamental question involving heterogeneity of nodes in a
network, “Does heterogeneity help or hurt spreading?”. We show
the efficacy of our solution in answering these questions with the
use of one of the largest experimental GPS (global positioning
system) trace of taxies in Shanghai, China. Our simulation studies
on the trace reconfirm that our framework is robust and provides
opportunities to engineer the network in a far more elaborated way
than existing average-based approaches.

The rest of the paper is organized as follows. In Section 2,
we describe our system model and introduce relevant metrics.
In Section 3, we develop a new analytical framework. Based
on our framework, we characterize the temporal spread behavior
and provide its engineering implications in Section 4. We present
simulation studies using Shanghai taxi trace in Section 5. In
Section 6, we discuss about available techniques that substantially
reduce the computational complexity involved in our framework.
We conclude our paper in Section 7.

2 MODEL DESCRIPTION

2.1 Overview of Epidemic Models

In epidemics, an individual is typically classified into either
susceptible, infected, or removed (sometimes called recovered
and immune) according to its infection status for a contagious
disease [4]. A susceptible individual refers to the one who is not
infected yet but is prone to be infected. An infected individual
refers to the one who already got the disease and is capable of
spreading it to susceptible individuals. A removed individual indi-
cates the one who was previously infected but became immune to
the disease. These three classifications are conventionally denoted
by S, I, and R, respectively and induce SIS, SIR, and SI epidemic
models and their variants. For instance, SIR or SIS represents
that an individual will become immune or susceptible again after
the cure. In this paper, we focus on the SI model in which
once a susceptible individual is infected, it stays infected for the
remainder of the epidemic process. The SI model fits particularly
well with information spread in opportunistic networks, since once
a data is delivered to an individual, it is considered that the
information included in the data is delivered and recognized by
the individual (i.e., permanently infected).

2.2 System Model

We consider a network consisting ofN mobile nodes. We as-
sume that mobile nodes in the network can be classified intoK
different types according to their mobility patterns and infection
rates. Hence, all nodes in the same class are assumed to be
homogeneous. Note that in our model,K can take any integer
value from 1 to N . We denote the collection of thekth type
of nodes as classk (k = 1, . . . ,K). Let Nk be the number of

nodes in classk. Let N , (N1, N2, . . . , NK). Then, we have
||N || ,

∑

kNk = N .3

The system under our consideration spreads information (ora
packet or a virus) as follows. Initially, the information isdelivered
to a set of selected nodes, which we callseeders.4 Whenever
a seeder, say nodea, meets a susceptible node not having the
information yet, it spreads the information to the susceptible node
with probability ϕa ∈ (0, 1]. Then, the susceptible node, say
node b, successfully receives the information with probability
ψb ∈ (0, 1] and becomes infected (or informed). Once the sus-
ceptible node becomes infected, it stays infected for the remainder
of the spread process and joins disseminating the information in a
similar manner as the seeders. The spread process ends when all
nodes in the network obtain the information. In our spread model,
the probabilitiesϕa andψb can be interpreted as the infectivity
and the susceptibility of nodesa andb, respectively. For instance,
in the case of rumor propagation,ϕa quantifies the tendency of
a persona to gossip, whileψb quantifies the receptive nature of
a listenerb to the rumor. For the case of packet forwarding in an
opportunistic network,ϕa represents the probability that nodea
schedules to transmit a packet, andψb represents the probability of
successful packet reception at nodeb, which depends on various
factors including contact duration, interference level, number of
contending nodes, and wireless channel condition.

The stochastic characteristic of a pairwise contact process is a
critical factor that determines the opportunity of spread and hence
the temporal behavior of the spread process. In particular,the time
duration between two consecutive contacts of a pair of nodes,
called pairwise inter-contact time, is an essential factor. In the
literature, it has been recently shown that the pairwise inter-contact
time can be approximately modeled by an exponential random
variable in many scenarios without having too much of discrep-
ancy, e.g., [10]–[12]. In [10], exponential inter-contactpatterns are
validated experimentally using three different mobility data sets.
In [12], the authors considered both the user availability process
and the contact process to analyze the distribution of actual inter-
transfer time (i.e., time duration between two consecutiveavailable
transfer opportunities). They prove that the inter-transfer time
distribution becomes close to an exponential distribution, even
when the underlying contact dynamics is non-Poisson, provided
that the availability process and the contact process operate in
a similar time scale. Thus, in this paper we assume that the
pairwise inter-contact time between nodesa and b, denoted by
Ma,b, follows an exponential distribution with rateλa,b (> 0):

P(Ma,b > t) = exp(−λa,bt), t ≥ 0. (1)

Suppose that nodea is infected and nodeb is susceptible. Let
M eff

a,b denote the time taken by nodea to spread the information
to nodeb. We callM eff

a,b the infection timethroughout the paper.
The infection timeM eff

a,b can be obtained from (1) by taking the
infectivity ϕa and the susceptibilityψb into account as follows:

P(M eff
a,b > t) = exp(−λeff

a,bt), t ≥ 0, (2)

whereλeff
a,b = λa,bϕaψb. Since mobile nodes in the same class are

assumed to be stochastically homogeneous, the infection rateλeff
a,b

3. Throughout this paper, we use a boldface font for a vector or a matrix
notation. For a vectorV = (Vk), we interchangeably use the notations(V )k
andVk to denote thekth element of the vectorV , and define the operation
||V || as||V || ,

∑
k Vk =

∑
k(V )k .

4. Note that being selected as seeders can be of willing or unwilling. For
instance, a seeder of a virus gets the virus unwillingly.
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should be determined by the class index. Thus, we can rewritethe
infection rate asλeff

a,b = ξk(a),k(b), where the subscriptsk(a) and
k(b) denote the class indices of nodesa andb, respectively. For
later use, we define an infection rate matrixΛ as

Λ ,











ξ1,1 ξ1,2 . . . ξ1,K
ξ2,1 ξ2,2 . . . ξ2,K

...
...

. . .
...

ξK,1 ξK,2 . . . ξK,K











.

Our spread model is general in that it covers a variety of
scenarios from homogeneous to completely heterogeneous cases.
For instance, whenK = 1, the spread model reduces to the
homogeneous case where any pair of nodes in the network has
the same infection rateξ1,1 (, ξ). On the other hand, when
K = N , it induces the completely heterogeneous case where
each node uniquely forms a class. WhenK = 2, . . . , N − 1, the
spread model is able to capture heterogeneity arising from multiple
communities. In addition to heterogeneity, the spread model is
capable of characterizing the impact of various spread parameters
(e.g., level of contact rates and group-wide population size) on
spread behaviors by varying the values of the rate matrixΛ and
the class cardinality vectorN .

2.3 Performance Metrics

In this section, we describe our performance metrics in detail. Let
Sk(t) be the number of susceptible nodes in classk at timet and
Ik(t) be the number of infected nodes in classk at timet. Then,
we haveSk(t)+Ik(t) = Nk for all k andt. The first performance
metric of our interest isα-completion time as defined below.

Definition 1 (α-completion time). For α ∈ [0, 1], let Tα denote
the minimum time required to infect (i.e., penetrate)α fraction of
the total population, i.e.,

Tα , inf

{

t ≥ 0 :
K
∑

k=1

Ik(t) ≥ αN

}

. (3)

We callTα theα-completion time.

Theα-completion timeTα is closely connected with existing
studies that have characterized the average number of infected
nodes at timet (i.e., E

[
∑

k Ik(t)
]

) using various mathematical
tools, because E[Tα] is a dual of E

[
∑

k Ik(t)
]

. However, to
better understand the spread behavior and to better design spread
prevention or acceleration methods, it is essential to characterize
the distribution ofTα beyond simply the mean. To this end, we
introduce a new metric, called(α, β)-guaranteed time, as defined
next.

Definition 2 ((α, β)-guaranteed time). For α ∈ [0, 1] andβ ∈
[0, 1], let Gα,β denote the minimum time required to guarantee
spread toα fraction of the total population with probability at
leastβ. It is then given by

Gα,β , inf
{

t ≥ 0 : P(Tα ≤ t) ≥ β
}

. (4)

We callGα,β the(α, β)-guaranteed time.

Note that the quantityβ in (4) can be interpreted as the
probability that the actual spread timeTα does not exceed the
timeGα,β . In that sense,Gα,β can be used to predict not only the
range of spread time but also the confidence of the prediction:
the higher we set the value ofβ, the greater the prediction

gets confident. Thus,Gα,β facilitates avoiding underestimating or
overestimating the required resources for spreading information to
a network. The ratioRα,β defined below describes just how much
E[Tα] underestimates or overestimates the spread time compared
to the guaranteed time.

Definition 3 ((α, β)-guaranteed to average time ratio). For α ∈
[0, 1] andβ ∈ [0, 1], let Rα,β denote the ratio of the guaranteed
time to the averageα-completion time, i.e.,

Rα,β ,
Gα,β

E[Tα]
. (5)

We callRα,β the(α, β)-guaranteed to average time ratio.

Finally, we define the set of seeders in each class. Letsk ,

Ik(0) denote the number of seeders in classk, and lets , (sk)
be the seeder vector. If||s|| ≥ αN , then we have a trivial result
that Tα = 0, Gα,β = 0, andRα,β = 1 for any β ∈ [0, 1].
Therefore, in the rest of the paper, we only consider the regime of
||s|| < αN . For a givens = (sk), thesk number of seeders are
chosen randomly in each classk, since mobile nodes in the same
class are stochastically homogeneous.

3 TEMPORAL ANALYSIS FRAMEWORK

In this section, we develop a framework for analyzing the per-
formance metricsTα, Gα,β , andRα,β . We first explain the main
ideas and technical approaches that lead us to present our temporal
analysis framework. We then provide a step-by-step procedure for
computing the performance metrics.

3.1 Technical Approach

According to Definition 1, we need the distribution of the total
number of infected nodes

∑

k Ik(t) as a function of timet.
Directly solving it appears to be intractable, unless we know
how the overall infected nodes are distributed to each class.5

To this end, our approach is to rewrite the spread process as a
joint level-phaseprocess, wherelevel tracks the total number of
infected nodes, andphasesupplements the level by specifying
which sample instance realizes the level. Then, theα-completion
time Tα becomes equivalent to the time taken by the level-phase
process to reach the level⌈αN⌉, where⌈x⌉ denotes the smallest
integer greater than or equal tox. In our analysis, we characterize
the joint level-phase process in terms of its temporal distribution.
From the characterization, we can identify the distribution and
moments ofTα, which in turn yield the(α, β)-guaranteed time
Gα,β and the ratioRα,β.

3.2 Temporal Analysis Framework

We describe step-by-step procedures to obtainGα,β andRα,β for
a given set of system parameters. In this section, we only brief
key results. The necessity of each step and technical derivations
involved in each step are explained in detail in the following
section.

5. In [13], it considers a similar problem in the context of content delivery
time. The authors analyze a bound on the content delivery time to a certain
portion of a network, while its exact distribution is left unsolved (See
Lemma 5). The approach in Lemma 5 of [13] is mainly based on theedge
expansion of a graph, but it is not applicable for capturing how the nodes
having the content are distributed to each class.
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Step 1 (Level-phase representation). In this step, we describe
mathematical notions of level and phase. First, we define a set
F in aK-dimensional space(Z≥0)

K by

F ,
{

f=(fk)1≤k≤K : 0 ≤ fk ≤ Nk, 1 ≤ ||f || ≤ N
}

. (7)

The setF represents the collection of all feasible combinations
of the infected node distribution to each class. Forf ∈ F ,
let L(f) , ||f ||. We call L(f) the level of f . According to
the levels, we can partition the setF into N disjoint subsets
F1,F2, . . . ,FN to denote the set of possible node distributions
at each level, as defined below:

Fi ,
{

f ∈ F : L(f) = i
}

, 1 ≤ i ≤ N.

Without loss of generality, we assume that the elements inFi are
ordered in a lexicographical manner, and then denote the position
of f in the subsetFL(f) by J(f). We callJ(f) the phaseof f
and distinguishf from others in the same level.

Now, we define a mapX : F → N× N for f ∈ F by

X (f) ,
(

L(f), J(f)
)

.

That is, the mapX transforms eachf in F into a pair of level and
phase. The resulting level-phase space is given by

U =
{

(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ |Fi|
}

, (8)

where |Fi| denotes the cardinality of the setFi. See Fig. 1 for
an example. There is a one-to-one correspondence betweenf and
X (f). Thus, the inverse functionX−1 : U → F exists, and we
henceforth use the relationsX (f) = (i, j) andf = X−1(i, j)
interchangeably.

Step 2 (Initial condition). In Step 2, we formalize the initial
condition concerning the seeder vectors = (sk). First, for a given
α ∈ [0, 1], we define

Tα ,
{

(i, j) ∈ U : i ≤ ⌈αN⌉ − 1
}

,

which denotes the subspace ofU with level lower thanαN . Next,
we define a vectorhα(s) by

hα(s) ,
(

1{X (s)=(i,j)}

)

(i,j)∈Tα
, (9)

where1{·} is the indicator function. Note that by definition,X (s)
returns the level and phase of the seeder vectors. Accordingly,
hα(s) pinpoints the initial state in the spaceTα by reflecting the
value ofs.

Step 3 (Transition rate matrix). In this step, we obtain a matrix
Fα that represents transition rate from the spaceTα to itself. The
matrix Fα is given in (6) at the bottom of this page. In (6),Ri

is a |Fi| × |Fi+1| matrix representing transition rate from level
i to level i + 1; e is a column vector of ones;diag(Rie) is a
|Fi| × |Fi| diagonal matrix with the main diagonalRie; and0 is
a zero matrix.

Fig. 1. Example of a sample path for a level-phase process: we set K =
3, s = (0, 1, 0), and N = (10, 20, 15). The level-phase representation
of s and N is given by X (s) = (1, 2) and X (N) = (45, 1), respectively.
Thus, the process starts from (1, 2) and ends up with (45, 1).

To compute the matrixRi, we define a functionλ : F×F →
R for f , g ∈ F by

λ(f , g) ,

{

(N − f)k(fΛ)k if g = f + ek for somek,

0 otherwise,
(10)

whereek denotes thekth unit vector. The valueλ(f , g) indeed
is the transition rate fromf to g (which will be shown in
Section 3.3). In particular, the caseg = f + ek accounts for
the rate to infect one additional node in classk, provided that the
current infected node distribution is given byf . The other cases
become null events, yielding zero transition rate. Then, the matrix
Ri is obtained by usingλ(·, ·) as

Ri=

[

λ
(

X−1(i, j),X−1(i+1, j′)
)

]

1≤j≤|Fi|,1≤j′≤|Fi+1|

. (11)

Step 4 (Formulas forGα,β andRα,β). Once we have the vector
hα(s) in (9) and the matrixFα in (6) at Steps 2 and 3, we can
obtain the following Theorem onGα,β andRα,β .

Theorem 1. The CDF ofTα is given by

Hα(t) , P(Tα ≤ t) = 1− hα(s) exp(Fαt) e. (12)

The inverse function ofHα(·) exists and givesGα,β as

Gα,β = H−1
α (β). (13)

Also, the inverse matrix ofFα exists and givesRα,β as

Rα,β =
H−1

α (β)

−hα(s)(Fα)−1e
. (14)

Proof: See Section 3.3.

We summarize a step-by-step guide for computing the perfor-
mance metricsGα,β , andRα,β in the following table.

Fα ,



















−diag(R1e) R1 0 . . . 0 0

0 −diag(R2e) R2 . . . 0 0

0 0 −diag(R3e) . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . −diag(R⌈αN⌉−2e) R⌈αN⌉−2

0 0 0 . . . 0 −diag(R⌈αN⌉−1e)



















. (6)
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Algorithm 1: Step-by-step guide for computing Gα,β

and Rα,β

Input : setα, penetration rate
Input : setβ, guaranteeness
Input : setΛ, infection rate matrix
Input : sets, seeder
Input : setK, number of classes
Input : setN , number of nodes in each class

Output : (α, β)-guaranteed timeGα,β

Output : (α, β)-guaranteed to average time ratioRα,β

Step 1. Generate level-phase spaceU ← (K,N) by Eq. (8)
Step 2. Compute initial conditionhα ← (U ,α,s) by Eq. (9)
Step 3-1. Compute matrixRi ← (U ,Λ,N) by Eq. (11)
Step 3-2. Compute rate matrixFα ← Ri by Eq. (6)
Step 4-1. Compute CDFHα ← (hα,Fα) by Eq. (12)
Step 4-2. Compute timeGα,β ← (β,Hα) by Eq. (13)
Step 4-3. Compute ratioRα,β←(hα,Fα,Hα,β) by Eq. (14)

Remark 1. In Theorem 1,exp(Fαt) is a matrix exponential
defined byexp(Fαt) ,

∑∞
n=0

1
n!(Fαt)

n. When the diagonal
entries ofFα are all distinct,exp(Fαt) can be written rather
simply in terms of its diagonal entries as follows:

exp(Fαt) = V















e−ζ1t 0 0 . . . 0
0 e−ζ2t 0 . . . 0
0 0 e−ζ3t . . . 0
...

...
...

. . .
...

0 0 0 . . . e−ζM t















V −1,

whereM , |F1| + . . . + |F⌈αN⌉−1| is the size of the matrix
Fα; ζm (1 ≤ m ≤ M) is the absolute value of themth diagonal
entry of Fα; and V is a M × M matrix whosemth column
vector is the eigenvector ofFα corresponding to−ζm (which in
fact is the eigenvalue ofFα). Hence, the tail distribution P(Tα >
t) = 1 − Hα(t) in Theorem 1 becomes a weighted linear sum
of exponential functions whose decay rates come from the main
diagonal ofFα. The proof is given in Appendix C

Remark 2. WhenK = 1, our result in Theorem 1 is simplified
as follows. (i) Phasej is always 1 for any leveli, and the level-
phase space is given byU = {(i, 1); i = 1, . . . , N}. Hence,
for any (i, 1) ∈ U , we haveX−1(i, 1) = i. (ii) The rate
matrix Λ reduces to the constantΛ = ξ. (iii) The submatrix
Ri insideFα becomes a scalar representing transition rate from
(i, 1) to (i + 1, 1). By applying (i)-(iii) to the function (10)
in Step 3, we obtainRi = λ(i, i + 1) = i(N − i)ξ. As
a result,Tα follows a phase-type distribution with simplified
representation(hα(s),Fα), which gives

Tα =

⌈αN⌉−1
∑

i=||s||

Zi, (15)

whereZi are independent exponential random variables with rates
Ri = i(N− i)ξ and are the duration of time that the system stays
in level i.

Remark 3. Our framework is designed to accommodate various
spread factors systematically. First, Step 1 reflects network config-
uration parameters including the number of classesK, the size of
each classNk, and the network sizeN . Next, Step 2 reflects the

selection of the seeder vectors. Lastly, Step 3 reflects parameters
for the infection rates such as infectivity, susceptibility, and contact
rates using the rate matrixΛ. Compared to our prior work in [14]
whereK-dimensional Markov chain is used for analysis, the idea
of adopting level and phase in this paper enables us to handle
the diversity in contact events and group formations without
increasing the dimension of state space. Even for a completely
heterogeneous network (i.e., the caseK = N ), we can analyze the
system using a two-dimensional process. Moreover, the solution
in Theorem 1 provides a unified structural form for anyK ∈ N,
while the one in [14] has difficulty in expressing the caseK ≥ 3.

3.3 Proof of Theorem 1

To prove Theorem 1, we start with the easiest caseα = 1. We
then extend our analysis to general casesα ∈ [0, 1).

3.3.1 Proof for the case α = 1

As outlined in Section 3.1, we employ a joint level-phase process
for the analysis. In the following, we give a mathematical descrip-
tion of the level-phase process. LetI(t) , (I1(t), . . . , IK(t)).
Then, we haveI(t) ∈ F (whereF is defined in (7) at Step 1).
Thus, we can apply the mapX to I(t) as follows:

X
(

I(t)
)

=
(

L(I(t)), J(I(t))
)

.

To simplify notation, letL(t) , L(I(t)) andJ(t) , J(I(t)).
Note that the level functionL(t) represents the total number of
infected nodes at timet, and the phase functionJ(t) specifies
howL(t) number of infected nodes are distributed to each class.
We call {L(t); t ≥ 0} and{J(t); t ≥ 0} the level processand
the phase process, respectively. In Lemma 1, we characterize the
stochastic nature of joint level-phase process.

Lemma 1. The joint level-phase process{(L(t), J(t)); t ≥ 0}
forms a two-dimensional CTMC.
Proof: See Appendix A.

Since{X (f) : f ∈ F} = U (See Eq. (8)), the state space of
the Markov chain in Lemma 1 is{X (I(t)) : I(t) ∈ F} = U .
Moreover, it has the following properties:

(P1) The level process{L(t); t ≥ 0} is acounting process.
(P2) The joint level-phase process{(L(t), J(t)); t ≥ 0} stops

evolving when the level reachesN .

Hence, state transition of the Markov chain occurs only to the
adjacent level fromi to i + 1, and then the Markov chain is
eventually absorbed to levelN . An example of a sample path
is shown in Fig. 1. Thus, the state spaceU is decomposed into
transient state spaceT and absorbing state spaceA as

T ,
{

(i, j) ∈ U : i < N
}

,

A ,
{

(i, j) ∈ U : i = N
}

.

Note thatTα defined at Step 2 reduces toT whenα = 1. Now we
consider theα-completion timeTα for α = 1. By Definition 1,
T1 is the time required for the levelL(t) to reach the stateN .
In terms of Lemma 1,T1 is the time taken by the Markov chain
{(L(t), J(t)); t ≥ 0} to be absorbed into the state spaceA, i.e.,

T1 = inf
{

t ≥ 0 : (L(t), J(t)) ∈ A
}

. (16)

Hence, we can understandT1 as thetime until absorption, which
has been studied widely in Markov chain theory by e.g., Neuts[15]
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and Bremaud [16]. In what follows, we summarize existing results
that are directly related to our problem.

Lemma 2. Suppose that{X(t); t ≥ 0} is a CTMC with
transient state spaceE and absorbing state spaceEo. Let Q

be the infinitesimal generator of the CTMC{X(t); t ≥ 0}. If
T , inf{t ≥ 0 : X(t) ∈ Eo} denotes the time until absorption,
then we have [15, Lemma 2.2.2]

P(T > t) = h exp(F t) e, (17)

whereh ,
(

P(X(0) = x)
)

x∈E
and F , Q|E×E . The nth

moment ofT (n ∈ N) is given by [15, Eq. (2.2.7)]

E[(T )n] = n!h(−F )−ne, (18)

provided that the inverse of the matrixF exists.
Proof: Refer to [15].

Because of its importance, we callF in Lemma 2 thefun-
damental matrix. Lemma 2 says that both the initial distribution
on transient state space and the fundamental matrix essentially
govern the time until absorption. Accordingly, we first lookinto
the initial distribution of the Markov chain{(L(t), J(t)); t ≥ 0}
on transient state spaceT1. The initial value is determined by the
seeder vectors = (sk) and becomes(L(0), J(0)) = X (s). In
the case when the number of seeders is selected in a deterministic
manner as in our model, the initial distribution onT1 is obtained by

(

P(X (s) = (i, j))
)

(i,j)∈T1
=
(

1{X (s)=(i,j)}

)

(i,j)∈T1
,

which is identical toh1(s) in (9) defined at Step 2.
We next look into the fundamental matrix of the Markov chain

{(L(t), J(t)); t ≥ 0}. Let Q denote the infinitesimal generator
of the Markov chain. Then, it is of the following matrix form:

Q =
[

Ri,i′
]

1≤i,i′≤N
.

Here,Ri,i′ is a |Fi| × |Fi′ | matrix representing transition rate
from level i to level i′ (i.e., from state(i, j) to state(i′, j′) for
1≤j≤|Fi| and1≤j′≤|Fi′ |). Supposei < N . Then, from (P1)
we haveRi,i′ = 0 unlessi′ = i + 1 or i′ = i. In the casei′ =
i + 1, we denoteRi,i′ (= Ri,i+1) by Ri and derive the closed-
form expression forRi below in Lemma 3. In the casei′ = i, by
(P1) again,Ri,i becomes a diagonal matrix. Its main diagonal is
determined by the identityQe = 0, and is thus given by

Ri,ie = −
∑

i′ 6=i

Ri,i′e = −Ri,i+1e = −Rie.

Now supposei = N . Then, from (P2), we haveRi,i′ = 0

for all i′ (i.e., no further transition occurs from an absorbing
state). Therefore, the infinitesimal generatorQ is given by (19)
at the bottom of the next page, in whichRi can be obtained by
Lemma 3.

Lemma 3. The matrixRi (1 ≤ i ≤ N − 1) is obtained by

Ri =
[

λ
(

X−1(i, j),X−1(i + 1, j′)
)]

1≤j≤|Fi|,1≤j′≤|Fi+1|
,

whereλ(·, ·) is defined in (10).
Proof: See Appendix B.

Comparing (6) and (19), we have

Q|T1×T1
= F1. (20)

That is, the matrixF1 defined in (6) at Step 3 represents transition
rate from transient state spaceT1 to itself and becomes the
fundamental matrix of the Markov chain{(L(t), J(t)); t ≥ 0}.

We are now ready to prove Theorem 1 for the caseα = 1.
By applying (17) in Lemma 2 to the completion timeT1, we
have (12) in Theorem 1. It is clear from the formula in (12) that
the functionH1(·) is strictly increasing and continuous. Hence,
its inverse functionH−1

1 (·) exists. Moreover, in accordance with
Definition 1, we can obtainG1,β by solvingH1(G1,β) = P(T1 ≤
G1,β) = β, i.e.,G1,β = H−1

1 (β). This proves (13) in Theorem 1.
In our spread model, the process{(L(t), J(t)); t ≥ 0} eventually
enters the absorbing state spaceA with probability 1, which shows
the existence of the inverse matrix ofF1 [15, Lemma 2.2.1].
Hence, by applying (18) in Lemma 2, we have (14). This com-
pletes the proof of Theorem 1 forα = 1.

3.3.2 Proof for the case α ∈ [0, 1)

The key idea behind our derivation of this case is thatTα is
the time taken by the processL(t) to reach the state⌈αN⌉.
Expanding the idea, we judiciously redefine transient statespace
and absorbing state space depending onα, and construct a new
Markov process on those redefined spaces. Then, by using an
approach similar to the caseα = 1, we can derive formulas for
Gα,β andRα,β. In what follows, we present our derivation in
detail.

First, we truncatethe state spaceU to a smallerUα parame-
terized byα as follows:

Uα ,
{

(i, j) ∈ U : i ≤ ⌈αN⌉
}

.

Next, we partition the spaceUα into transient state spaceTα and
absorbing state spaceAα as

Tα ,
{

(i, j) ∈ Uα : i < ⌈αN⌉
}

,

Aα ,
{

(i, j) ∈ Uα : i = ⌈αN⌉
}

.

Note thatTα defined at Step 2 exactly refers to the above. On
the state spaceTα ∪ Aα, we define a truncated level-phase pro-
cess, denoted by(Lα(t), Jα(t)), from the process(L(t), J(t))
as follows: (Lα(t), Jα(t)) evolves identically to the process
(L(t), J(t)) as long asL(t) < ⌈αN⌉ (i.e., (L(t), J(t)) ∈ Tα).
If L(t) enters the level⌈αN⌉ (i.e., (L(t), J(t)) ∈ Aα), then
the process(Lα(t), Jα(t)) stops evolving and is absorbed into
the spaceAα. Note that by Lemma 1, the truncated process
{(Lα(t), Jα(t)); t ≥ 0} forms a two-dimensional CTMC with
possibly multiple absorbing states inAα. An example of a sample
path for the truncated Markov chain is shown in Fig. 2.
Similarly to the caseα = 1, we have

Tα = inf
{

t ≥ 0 : (Lα(t), Jα(t)) ∈ Aα

}

, α ∈ [0, 1).

That is,Tα for α ∈ [0, 1) can be viewed as thetime until absorp-
tion. Thus, by applying Lemma 2 with proper initial distribution
and fundamental matrix, we can obtain the formulas forGα,β and
Rα,β for α ∈ [0, 1).

First, we look into the initial distribution of the Markov chain
{(Lα(t), Jα(t)); t ≥ 0} on the spaceTα. Similarly to the case
α = 1, the initial value is determined by the seeder vector as
(Lα(0), Jα(0)) = X (s). Hence, the initial distribution onTα is
obtained by

(

P(X (s) = (i, j))
)

(i,j)∈Tα
=
(

1{X (s)=(i,j)}

)

(i,j)∈Tα
,
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Fig. 2. Example of a sample path for {(Lα(t), Jα(t)); t ≥ 0} with α =
0.95: we use the same parameters K, s, and N as in Fig. 1. The Markov
chain starts from X (s) = (1, 2) and ends up with one of states having
level ⌈αN⌉ = 43.

which corresponds to the vectorhα(s) in (9) defined at Step 2.
This explains the necessity of Step 2.

Next, we look into the fundamental matrix. Since the level
process{L(t); t ≥ 0} is a counting process andLα(t) is the
same withL(t) until it reaches⌈αN⌉, the fundamental matrix
for the process{(Lα(t), Jα(t)); t ≥ 0} is obtained by truncating
the infinitesimal generatorQ asQ|Tα×Tα

. The resulting matrix
corresponds toFα in (6) defined at Step 3.

Now we are ready to prove Theorem 1 forα ∈ [0, 1).
Following the approach used for the caseα = 1, we can prove
Theorem 1 forα ∈ [0, 1). The only difference is that we apply
Lemma 2 withTα, hα(s), andFα instead ofT1, h1(s), and
F1 in the place of transient state space, initial distribution, and
fundamental matrix, respectively. Due to similarity, we omit the
details.

4 ANALYTICAL CHARACTERISTICS AND APPLICA-
TIONS

In this section, we identify analytical characteristics ofthe(α, β)-
guaranteed timeGα,β and the ratioRα,β through our temporal
analysis framework. We then remark how we can utilize such
characteristics in practical applications.

4.1 Impact of the Level of Infection Rates

Various spread factors control the behavior of the information
spread time. We first answer the question on how the level of
infection rates affect the distribution of theα-completion timeTα.
To formalize, we suppose that the infection rateξk,k′ from an
infected node in classk to a susceptible node in classk′ is scaled
by γ (> 0) times for all1 ≤ k, k′ ≤ K. Let T̂α, Ĝα,β andR̂α,β

denote, respectively, the values ofTα, Gα,β andRα,β that are

computed with the scaled infection rateγξk,k′ . Using our level-
phase framework in Theorem 1, we can derive the relationship
among those metrics, as presented in the following theorem.

Theorem 2. For anyα ∈ [0, 1], we have

T̂α
d
= γ−1Tα,

where
d
= denotes “equal in distribution.” As a consequence, we

obtain the following for anyα ∈ [0, 1] andβ ∈ [0, 1]:

Ĝα,β = γ−1Gα,β , R̂α,β = Rα,β .

Proof: See Appendix D.

Theorem 2 says that the spread becomes fasterproportionally
to the level of infection rates indistribution sense. From the
perspective of average analysis, the result in Theorem 2 also
indicates the following. LetM(t) , E[

∑

k Ik(t)] denote the
average number of infected nodes in the network at timet.
By Theorem 2, we have thatM̂(t), the value ofM(t) that
is computed with the scaled infection rateγξk,k′ , satisfies the
following for all t ≥ 0:

M̂(t) =M(γt). (21)

The proof of (21) is given in Appendix E. Likewise, the time
derivativesD(t) , M′(t) and D̂(t) , M̂′(t) representing the
speed of information propagation, should change over timet with
the relationD̂(t) = γD(γt).

4.2 Impact of Network Size

We next investigate the impact of the network sizeN on the time
for information spread. In our spread model, each non-informed
node (i.e., susceptible node) can be considered as a workload to
finish. In this respect, adding a node to the network might slow
down the spread. However, once the node becomes informed (i.e.,
infected), it works in a similar manner as the seeder and is involved
in spreading the information. In this respect, adding a nodeto
the network might expedite the spread. Therefore, it is unclear
whether the network size accelerates or slows down the speedof
information propagation. Using our framework, we can give the
answer, as shown in Theorem 3.

Theorem 3. Supposeα = 1, K = 1, ands1 = 1. Then, as the
network sizeN increases, we have the following.

Q =























−diag(R1e) R1 0 . . . 0 0 0

0 −diag(R2e) R2 . . . 0 0 0

0 0 −diag(R3e) . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . −diag(RN−2e) RN−2 0

0 0 0 . . . 0 −diag(RN−1e) RN−1

0 0 0 . . . 0 0 0























. (19)
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(1) The averageα-completion time E[Tα] is strictly decreasing
with N . Also, it asymptotically behaves as6

E[Tα] = Θ
(

ξ−1N−1 lnN
)

. (22)

(2) The guaranteed timeGα,β is strictly decreasing withN if β is
greater than a certain valueβ0 < 1. Also, for anyβ ∈ [0, 1],
it asymptotically behaves as

Gα,β = Θ
(

ξ−1N−1(lnN − ln(ln β−1))
)

, (23)

from which we haveRα,β = Θ(1).

Proof: See Appendix F.

Theorem 3 indicates that adding a node to the network ac-
celerates the information spread when per-pair infection rates are
unchanged. This effect, which we call population effect, isalso
observed in Fig. 4 of [8] where the authors study the impact of
heterogeneous human activities on epidemic spreading through
simulations. Theorem 3 also says that the degree of acceleration
is asymptoticallyproportional to the network size. Combining
with Theorem 2, our analytic findings in Theorem 3 imply that
information spread accelerated by the population effect shows a
quantitatively similar behavior as if the level of infection rates is
scaled up by the network size.

To assist understanding of Theorem 3, we consider a non-
cooperative spread model in which only the seeder(s) chosenat
the beginning of the spread is able to disseminate the information.
In epidemiology, this non-cooperative model can be classified into
a SIR model with zero recovery time from infection. Remark 4
summarizes our result with the proof given in Appendix G.

Remark 4. Supposeα = 1, K = 1, and s1 = 1. Then, as
the network sizeN increases, we have the following for a non-
cooperative spread model.

(1) The averageα-completion time E[Tα] is strictly increasing
with N . Also, it asymptotically behaves as

E[Tα] = Θ
(

ξ−1 lnN
)

.

(2) The guaranteed timeGα,β is strictly increasing withN for
anyβ ∈ [0, 1]. Also, it asymptotically behaves as

Gα,β = Θ
(

ξ−1(lnN − ln(lnβ−1))
)

,

from which we haveRα,β = Θ(1).

The higher order statistics ofTα for the non-cooperative
spread model and our spread model (namely, cooperative model)
are further compared in Table 1. In the table,ζ(c) ,

∑∞
n=1 n

−c

denotes the Riemann zeta function. The proof of Table 1 is omitted
due to similarity to the proofs of Theorem 3 and Remark 4. Our
analysis showing thatGα,β behaves differently for the scaling
of N and ξ tells that resource allocation for information spread
should be carefully designed based on the willingness of coopera-
tion in a spread process (i.e., infectivity in a spread process).

6. We adopt the following notations to describe asymptotic behaviors:
(i) g(n) = O(h(n)) if there exists a constantc > 0 and n̂ ∈ N such that
|g(n)| ≤ c|h(n)| for all n ≥ n̂.
(ii) g(n) = Ω(h(n)) if h(n) = O(g(n)).
(iii) g(n) = Θ(h(n)) if g(n) = O(h(n)) andg(n) = Ω(h(n)).

TABLE 1
Comparison of Population Effect on the Spread Time

Cooperative model Non-cooperative model

Variance Strictly decrease withN Strictly increase withN

of Tα and scale asΘ(ξ−2N−2) and converge toξ−2ζ(2)

Skewness Strictly decrease withN Strictly increase withN

of Tα and scale asΘ(ξ−3N−3) and converge toξ−3ζ(3)

E[(Tα)n] E[(Tα)n]<∞ for a fixedN E[(Tα)n]<∞ for a fixedN

(n ≥ 2) limN→∞E[(Tα)n] < ∞ limN→∞E[(Tα)n] = ∞

4.3 Impact of Heterogeneity

The impact of heterogeneity in information or virus spread has
been less explored. Using our framework, we analyze and under-
stand the temporal spread behavior under a heterogeneous network
with multiple classes compared with a homogeneous network.In
particular, we focus on answering “Does heterogeneity persistently
expedite the spread or not?”, “Is there an optimal heterogeneity
level for information spread?”, and “Is there an upper or a lower
bound on the gain from the heterogeneity over homogeneity?”.
In this section, we provide the answers to these questions by
studying a dual community model (K = 2) compared with a
single community model (K = 1). Note that our framework can
be easily extended to study the cases whenK ≥ 3.

We first describe the system parameters for a heterogeneous
network. We assume that (i) both classes are of the same size,
i.e.,N1 = N2 (= N/2). (ii) There is one seeder in the network.
Without loss of generality, the seeder is chosen randomly from
nodes in class 1, i.e.,s = (1, 0). (iii) The inter-class infection
rates are the same in either direction, i.e.,ξ1,2 = ξ2,1 (, ξinter).
Hence, the rate matrixΛ can be expressed as

Λ = ξinter

(

r1 1
1 r2

)

, (24)

where r1 , ξ1,1/ξinter and r2 , ξ2,2/ξinter. The ratiosr1 and
r2 control the intra-class infection rates whose values are chosen
freely in the range0 ≤ r1, r2 < ∞. Note that(r1, r2) = (1, 1)
reduces to the homogeneous case, and the larger(r1, r2) is
deviated from(1, 1), the more the heterogeneity is induced. To
summarize, the heterogeneous network in this study is parameter-
ized by the tuple(N, ξinter, r1, r2).

We next describe the system parameters for a homogeneous
network. For a fair comparison between homogeneous and hetero-
geneous networks, we impose the following constraint:

ξ =

∑N
a=1

∑N
b=1,b6=a ξk(a),k(b)

N(N − 1)
. (25)

Here, the left-hand side is the infection rate in a homogeneous
network, which equals the per-pair averaged infection ratein a
heterogeneous network on the right-hand side. Thus, a heteroge-
neous network with(N, ξinter, r1, r2) and a homogeneous network
with (N, ξ) are fairly comparable if

ξ =
ξinter

2(N − 1)

{(

N

2
− 1

)

(r1 + r2) +N

}

. (26)

With the help of Theorems 2 and 3 concerning the scaling of
ξ and N , we can characterize and generalize the impact of
heterogeneity by only observing a specific set of(ξ,N). Hence,
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Fig. 3. Comparison of the guaranteed time Gα,β between het-
erogeneous and homogeneous networks for β = 0.9 and α ∈
{0.3, 0.5, 0.7, 1.0}: if (r1, r2) ∈ Γα,β , then heterogeneity with the level
(r1, r2) accelerates the information spread (i.e., reduces the guaranteed
time Gα,β). If (r1, r2) /∈ Γα,β , then heterogeneity slows down the
information spread.

we fix (ξ,N) = (1, 40) in this study, and let(r1, r2) vary in the
range0 ≤ r1, r2 ≤ 20.7

Using our framework, we obtain the guaranteed timeGα,β for
each(r1, r2) and compare it with the homogeneous counterpart.
Fig. 3 shows the result. In the figure,Γα,β is the region such
that (r1, r2) ∈ Γα,β if and only if heterogeneity with the level
(r1, r2) yields reduced guaranteed timeGα,β compared to the
homogeneous case. Hence, the regionΓα,β can be interpreted as
the area where heterogeneity accelerates the information spread.
From the figure, we can have the following observations and
interpretations:

(1) For a fixedβ, the regionΓα,β becomes reduced asα in-
creases, i.e.,Γα1,β ⊂ Γα2,β for α1 ≥ α2. Hence, for a
fixed (r1, r2), there exists a thresholdαth ∈ [0, 1] such that
(r1, r2) ∈ Γα,β if α ≤ αth and(r1, r2) /∈ Γα,β if α > αth.
This implies that heterogeneity in infection rates accelerates
the spread at the beginning phase of the spread process (i.e.,
α ≤ αth), whereas slowing down the spread at the ending
phase (i.e.,α > αth). In addition, the thresholdαth decreases
as(r1, r2) deviates from (1,1) meaning that the time portion
of the acceleration becomes shorter with more heterogeneity.

(2) For α ∈ {0.3, 0.5, 0.7, 1.0}, the region
⋂

α Γα,β is non-
empty. This shows that there is anoptimal heterogeneity level
for information spread which always accelerates the spread
entirely from the beginning to the end of the spread process
(i.e., αth = 1). Such an optimal heterogeneity level can be
found in the intersection

⋂

α Γα,β(= Γ1,β).
(3) For anyα, we haveΓα,β

⋂

{(r1, r2) : r1<r2} = ∅. Hence,
in the region{(r1, r2) : r1<r2}, heterogeneity always slows
down the information spread from the beginning to the end of
the spread process. This observation indicates that if the seeder
is chosen from a less infective community, then heterogeneity
never accelerates the information spread.

In the following, we support the above observations for a special
case when the inter-class infection rate is determined fromthe
intra-class infection rates byξinter = (ξ1,1 + ξ2,2)/2. In this case,
the rate matrixΛ in (24) is further simplified as

Λ = ξinter

(

r1 1
1 2− r1

)

.

7. Then, from the constraint (26), we can computeξinter for each(r1, r2),
which in turn determines uniquely the rate matrixΛ in (24).
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Fig. 4. The guaranteed time Gα,β for β = 0.1 (left) and β = 0.9 (right):
(r1, r2) = (1, 1) reduces to the homogeneous case, and the larger
(r1, r2) is deviated from (1, 1), the more the heterogeneity is induced.

In this study, we fix(ξ,N) = (1, 40) as above and varyr1 in the
range{1.0, 1.3, 1.6, 1.8}. Here, we setr1 ≥ 1 (i.e., ξ1,1 ≥ ξ2,2)
so that the seeder is chosen from a more infective community.
Under this system setup and parameters, we obtain the(α, β)-
guaranteed timeGα,β for α ∈ [0, 1], β ∈ {0.1, 0.9} and show
the result in Fig. 4. From the figure, we confirm that heterogeneity
indeed accelerates the spread for smaller penetration (i.e., for low
α) but slows down it for higher penetration.

4.4 Heterogeneity Advantage on Spread

To assist understanding of our numerical observations in Sec-
tion 4.3, we investigate the rates at which the spread process leaves
each leveli (i = 1, 2, . . . , N − 1), i.e., the rate of informing one
additional node provided thati nodes have been informed. Letµi

be the rate of leaving the leveli in a homogeneous network. Then,
we have

µi = ξi(N − i).

Different from the homogeneous case, we have multiple phases for
each level in a heterogeneous network, and the rate of leaving a
level varies depending upon which phase realizes the level.Hence,
in the case of a heterogeneous network, we defineµ̂i,X to be the
rate of leaving the leveli when the associated phase isX .

Let i be fixed. Then, we haveX = Xi ∈ {1, . . . , |Fi|}. For
eachXi = j ∈ {1, . . . , |Fi|}, the rateµ̂i,j can be obtained by
adding the transition rate from level-phase state(i, j) to (i+1, j′)
(i.e., adding the(j, j′)th element of the matrixRi) for all 1 ≤
j′ ≤ |Fi+1| as follows:

µ̂i,j =
∑

1≤j′≤|Fi+1|

[Ri]j,j′ = (N − f)(fΛ)T , (27)

wheref = X−1(i, j) andAT denotes the transpose of a matrix
(or a vector)A, and where the second equality comes from (10).
Hence, the collection of̂µi,j (j = 1, 2, . . . , |Fi|) for a giveni can
be obtained fromRi as

(µ̂i,j)j=1,2,...,|Fi| = (Rie)
T .

It follows from the theory of absorbing Markov chains [15] that
the probability distribution ofXi on {1, 2, . . . , |Fi|} is

(P(Xi = j))j=1,2,...,|Fi| = hα(−Fα)
−1











0

...
0

R⌈αN⌉−1











, (28)
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Fig. 5. Average rate µ̂i of leaving each level i for the spread parameters
in (30).

whereα = i
N .8 Hence, the expectation of̂µi,X accommodating

all the possibilities of the phaseX(= Xi) for a given leveli is

µ̂i , E[µ̂i,X ] =

|Fi|
∑

j=1

P(Xi = j)µ̂i,j

= h i
N

(

−F i
N

)−1











0

...
0

Ri−1











Rie. (29)

The metricµ̂i represents the average rate of information flow (or
dispersion) passing through susceptible nodes fromi informed
nodes, which we call flux. Based on (29), we compare the fluxµ̂i

with µi for i = 1, 2, . . . , N − 1 and show the result in Fig. 5.
In the figure, we useN = 40 andξ = 1 for homogeneous case.
For heterogeneous case, we use the following three sets of spread
parameters:

(Set 1) N = (20, 20), Λ =

[

1.9 1
1 0.1

]

,

(Set 2) N = (10, 30), Λ = 1.63

[

1.9 1
1 0.1

]

,

(Set 3) N = (5, 35), Λ = 2.74

[

1.9 1
1 0.1

]

.

(30)

For a fair comparison, those parameters are chosen to satisfy
the constraint in (26). In all three cases, we choose one seeder
randomly from nodes in a more infective community (i.e., class 1).

We can observe that at the beginning of the spread, the
average fluxµ̂i in the heterogeneous network is larger than that
of the homogeneous network. This trend becomes flipped after
a certain moment as shown in Fig. 5. This phenomenon can be
understood intuitively given that heterogeneity allows a wider
range of mobility and contact patterns resulting in speedy spread
together with procrastinatory spread.

From the discussion above, we form a conjecture that there
existsN̂ ≤ N such that

µ̂i > µi if i < N̂,

µ̂i < µi if i > N̂.
(31)

8. In terms of the level-phase process{(L(t), J(t)); t ≥ 0}, the probability
P(Xi = j) in (28) can be rewritten as P(J(t) = j|L(t) = i).

Due to technical difficulty in handling the inverse matrix
(Fi/N )−1 analytically, we prove this conjecture in a simplified
case whereK = 2, N1 = N2 and the rate matrixΛ is given by

Λ = ξinter

(

r1 1
1 2− r1

)

. (32)

This is the model underlying Fig. 4 of Section 4.3. The het-
erogeneity parameterr1 is in the range[1, 2). When r1 = 1,
it reduces to the homogeneous case. Asr1 increases, the more
the heterogeneity is induced. The following theorem presents the
relation between̂µi andµi.

Theorem 4. SupposeK = 2, N1 = N2, s = (1, 0), and the rate
matrixΛ is given by (32). Then, the average rateµ̂i of leaving the
level i satisfies

µ̂i = µi + c(r1 − 1)

(

N

2
− i

)

, i = 1, 2, . . . , N − 1,

wherec > 0 is a constant.
Proof: See Appendix H.

The result in Theorem 4 implies that (i) due to variability
in r1, the average flux̂µi can be deviated fromµi. (ii) The more
the heterogeneity is induced, the largerµ̂i is deviated fromµi.
(iii) Concerning the conjecture, we havêµi > µi if i < N

2 and
µ̂i < µi if i > N

2 , showing thatN̂ in (31) is N
2 .

4.5 Implication

How to optimally distribute given resources to nodes in a network
to minimize the time for information spread is of an important
research question. Our results on heterogeneity provide key under-
standing to this question. We note that there exists a small region
of Λ with heterogeneous contact rates, which always make the
spread faster than a homogeneous network for a targetβ as shown
in Fig. 3. This implies that when utilizing a vehicular network for
information delivery (e.g., DieselNet [17]) or a social network for
advertising a product,Λ can be manipulated to be heterogeneous
by allocating uneven fuel to vehicles or providing distinguished
incentive to users. How to realize suchΛ from fuel or incentive
distribution needs experimental study that is beyond the scope of
this paper.

5 SIMULATION STUDY

5.1 Contact Statistics of a Vehicular Network

We study the efficacy of our framework and characterizations
using a vehicular mobility trace obtained from more than a
thousand taxies in Shanghai, China [18]. The experimental trace
tracked GPS coordinates of taxies at every 30 seconds during28
days in Shanghai. The trace was previously analyzed in [19],and it
was shown that the taxies have exponentially distributed pairwise
inter-contact time, which is well aligned with our CTMC-based
framework.

Figs. 6 (a), (b), and (c) characterize the statistics of the taxi
network with 1000 randomly chosen taxies in the aspect of number
of contacts, number of neighbors in a communication range
(50 meter in our analysis), and contact duration, respectively.
We apply these three factors for evaluating the infection rates
λeff
a,b = λa,bϕaψb in (2), where the infectivityϕa is 1 and the

susceptibilityψb is derived from how many infection (i.e., data
transmission) opportunities a contact duration can hold out of all
neighboring nodes who are willing to infect others. The results
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Fig. 6. (a) Number of contacts of a vehicle with all other vehicles during 28 days. (b) Average number of neighbors when a vehicle is in a contact
with another vehicle. (c) CDF of aggregated contact durations between all taxi pairs.
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0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

α

(α
,β

)−
gu

ar
an

te
ed

 ti
m

e 
(h

)

 

 

99% (β = 0.99)
90% (β = 0.90)
50% (β = 0.50)

(c) Gα,β with 20 seeders
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(d) Gα,β with 1 seeder
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Fig. 7. Distribution of (α, β)-guaranteed time for α ∈ [0, 1] and β = {0.5, 0.9, 0.99} with (a) 1 seeder, (b) 10 seeders, and (c) 20 seeders in a
homogeneous network and with (d) 1 seeder, (e) 10 seeders, and (f) 20 seeders in a heterogeneous network with two classes.
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(a) 3-D plot ofGα,β with 1 seeder

0

0.5

1

0.2
0.4

0.6
0.8

0

100

200

300

αβ

(α
,β

)−
gu

ar
an

te
ed

 ti
m

e 
(h

)

(b) 3-D plot ofGα,β with 10 seeders
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(c) 3-D plot ofGα,β with 20 seeders
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Fig. 8. (α, β)-guaranteed time for α ∈ [0, 1] and β ∈ [0.1, 0.99] with (a) 1 seeder, (b) 10 seeders, and (c) 20 seeders in a homogeneous network
and contour maps of Gα,β with (d) 1 seeder, (e) 10 seeders, and (f) 20 seeders.
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are summarized in Table 2 for a homogeneous network and a
heterogeneous network withK = 2. Note that the infection
rates in Table 2 satisfy the constraint in (25) that was introduced
for a fair comparison between a homogeneous model and a
heterogeneous model.

TABLE 2
Infection rates for a homogeneous network and for a heterogeneous

network with two classes of taxies

Homogeneous case Heterogeneous case

ξ ξ1,1 ξ2,2 ξ1,2 (= ξ2,1)

4.14 × 10−4 7.17× 10−4 1.93× 10−4 3.72× 10−4

Based on the statistics in Table 2, it is possible to predict
the information spread time and to find out efficient methods for
properly allocating resources to the taxi network. To this end,
we simulate probabilistic guarantees for the completion time in a
homogeneous and a heterogeneous network, each with 100 taxies.
We assume an application scenario of a firmware update to be
distributed for mobile devices, which will take around 90 seconds
demanding 1.15 number of contacts on average. In our simulation,
the number of taxies is limited to be 100 due to computational
complexity involved in the matrix operations.

5.2 Information Spread Time in a Vehicular Network

We first study the spread time in a homogeneous network. Figs.7
(a), (b), and (c) show the(α, β)-guaranteed time forα ∈ [0, 1]
andβ ∈ {0.5, 0.9, 0.99} with the number of seeders given by
1, 10, and 20, respectively. The figures tell that if we target90%
penetration with 99% confidence (i.e.,(α, β) = (0.9, 0.99)), then
the taxi network with a single seeder is estimated to take about
11.6 days (i.e., 278 hours) to achieve the target level of information
spread. This estimation largely differs from the existing estimation
of the average time to achieve 90% of penetration, which is close
to 7 days. This clarifies that designing plans associated with the
successful spread to 90% of nodes should incorporate about 4.6
additional days. If someone wants to avoid the associated plans
being delayed, our framework is able to suggest adding more
seeders to the network as shown in Figs. 7 (b) and (c). As the
number of seeders increases to 10 or 20, the time required for
90% penetration with 99% confidence reduces from 278 hours to
137 hours (5.7 days) and 113 hours (4.7 days), respectively.

Similarly, we can study a heterogeneous network with two
classes. Figs. 7 (d), (e), and (f) show the(α, β)-guaranteed time
for α ∈ [0, 1] andβ ∈ {0.5, 0.9, 0.99}with 1, 10, and 20 seeders,
respectively. Direct comparison between Figs. 7 (a), (b), (c) and
Figs. 7 (d), (e), (f) confirms our claims in Section 4.3. The claims
tell that the(α, β)-guaranteed time in a heterogeneous network is
faster than a homogeneous network for lowerα, and is slower for
higherα close to 1. This implies that if it is mandatory to achieve
100% penetration, making the properties of nodes in a network
to be more homogeneous (e.g., by providing more resources to
inactive groups of nodes) can be helpful in spreading information.

5.3 Effective Penetration of Information

We further analyze detailed cases of a homogeneous network
with α andβ parameters in the ranges of[0, 1] and [0.1, 0.99],
respectively. Figs. 8 (a), (b), and (c) show the 3-D plots ofGα,β

with different number of seeders. These 3-D plots commonly show
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Fig. 9. Effective penetration of information,α×β, over time from 1 seeder
in a homogeneous network of infection rate ξ = 4.14× 10−4.

that approaching toα = 1 or β = 1 significantly extends the
corresponding(α, β)-guaranteed time. Especially, achieving both
α = 1 andβ = 0.99 is shown to require much longer time. It is
intriguing to note that the ratio of guaranteed times of achieving
(α, β) = (1, 0.99) and achieving(α, β) = (0.5, 0.5) gets larger
as the number of seeders increases. This tells that full penetration
of information to a network is relatively hard to improve whereas
a moderate penetration (e.g., half penetration with 50% guarantee)
is much easier to speed up by adding more seeders.

Figs. 8 (d), (e), and (f) show contour maps of Figs. 8 (a),
(b), and (c), respectively. The lines in the contour maps connect
the combinations ofα and β parameters that yield the same
guaranteed timeGα,β . The resulting lines provide us useful
guidance on designing an information spread system. For instance,
Fig. 8 (d) shows that the contour lines are changing from concave
to convex as the time of spread proceeds. In addition, the convexity
of the lines gets steeper as the time proceeds. These patterns that
are also observed in Figs. 8 (e) and (f) clarify that targeting to
balanceα and β is more effective than aiming at an extreme
α or β, especially when maximizing theeffective penetration of
information defined asα × β. More intuitively speaking in the
context of Fig. 8 (d), spreading to 60% of population with 60%of
guarantee takes the same amount of time with spreading to 82%of
population with 30% of guarantee, but the former is more efficient
in terms of the effective penetration. The choice ofα andβ surely
depends on the application scenarios and the system designer’s
goals. However, given time budget, it is highly recommendedfor
the system designers to adjustα or β slightly to see if they can
achieve higher effective penetration without deviating too much
from their original goals.

Fig. 9 details the changing pattern of the maximum effec-
tive penetration at a given information delivery time wherethe
maximum ofα × β is taken from the contour line of the same
time. As it is aforementioned, the pattern of changing from
concavity to convexity makes the maximum effective penetration
look like a sigmoid function. This sigmoid function well captures
the information spreading behavior in a network as the speedof
penetration goes up and then down as the numbers of infected
and uninfected nodes become balanced and then again unbal-
anced (with only few remaining uninfected). When balanced (e.g.,
50:50), the possibility of infection is surely maximized. Fig. 9 can
also work as a quick reference for checking the minimum required
time for anyα × β. For instance, achieving effective penetration
α × β = 0.25 would take at least 120 hours no matter how we
combineα andβ.
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(b) Gα,β with β = 0.90 for K = 1, 2, 5, 10.
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(c) Gα,β with β = 0.99 for K = 1, 2, 5, 10.

Fig. 10. (α, β)-guaranteed time with β ∈ {0.50, 0.90, 0.99} for various number of classes K. Larger K (i.e., stronger heterogeneity) helps spreading
at the beginning, but delays spreading at the end.

5.4 Impact of Multi-classes

In this section, we study the impact of multi-classes on the spread
time with increasing number of classesK. In practice, how
to classify nodes in a network may be of a difficult question.
Given the notion and the definition of a class (i.e., all nodesin
a class keep homogeneity), segregating humans or vehicles into
multiple exclusive classes is infeasible since even the most similar
behaviors of humans or vehicles in a class cannot statistically
guarantee their homogeneity. This implies that classifying nodes
is mainly for improving mathematical tractability and reducing
the computational complexity in predicting spreading patterns.
We here test the impact of grouping nodes with various number
of classes fromK = 1 (i.e., totally homogeneous) toK = 10
(i.e., totally heterogeneous) for a network consisting of 10 nodes.
Infectivity upon a contact is set to be 0.25 for capturing a wide
variety of spreading patterns. Fig. 10 shows howGα,β changes
for different number of classes. Note that the rate matrixΛ

for 10 nodes are captured from the most active taxies in the
Shanghai trace. Inter and intra contact rates for differentclasses
are assigned by taking the average behavior of nodes in each
class, since all nodes in a class are assumed to be homogeneous.
From the figure, we can observe that largerK leads to quicker
spread at the beginning, but procrastinatory spread at the end.
This behavior is aligned with the heterogeneity advantage on the
spread time presented in Section 4.3, as largerK induces more
heterogeneity. For those 10 taxies, we run a trace driven simulation
using the trajectories for those taxies included in the Shanghai
trace. In order to make the statistical property of the tracedriven
simulation close to that of numerical analysis, we applied the same
infectivity and collected 50,000 sample paths. Fig. 11 shows the
50%, 90%, and 99% guaranteed spread time for variousα values.
Note thatβ guaranteed time is equivalent toβ quantile spread
time from all sample paths. The comparison between Fig. 10 and
Fig. 11 supports that the totally heterogeneous case (K = 10) that
went through minimum approximation captures the real spreading
patterns in the most accurate manner for all testedβ values.

6 DISCUSSION

A computational problem can be encountered when applying (12),
(13), and (14) in Theorem 1, especially when computing the
matrix exponentialexp(Fαt). The matrixFα in the theorem is a
square matrix of ordern (i.e.,Fα ∈ R

n×n), wheren is the num-
ber of states in our Markov chain and scales asO(α(1 + N

K )K).
Hence, for each fixedN , the computational complexity increases
withK andα, and the worst case occurs whenα = 1 andK = N
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Fig. 11. Trace driven simulation results from 50,000 sample paths of
information spread with 10 most active Shangai taxies.

(i.e., targeting 100% penetration in a totally heterogeneous case)
yieldingn = 2N .

Nonetheless, the matrixFα has an extra property that we can
take advantage of:Fα is a highlysparsematrix. According to (10),
it allows non-zero transition rates only between state vectors that
differ in one component. Consequently,Fα becomes a banded
upper triangular matrix and more than half of its elements are
zero, as shown in (6). This property enables us to exploit the
existing technique, calledKrylov approximation(e.g., [20]–[22]
and references therein), and a ready-to-use software package,
called EXPOKIT [23], to resolve the computational problem as
described below.

There have been extensive studies on the numerical algo-
rithms for computing matrix exponentials in mathematics and
physics [24]. The case where the matrix is of moderate dimension
has benefited from the classical methods such as Padé approxima-
tion and Taylor series approximation. For a large sparse matrix,
Krylov subspace projection technique has been shown to provide
robust reduction of computational burden in exponentiating such
matrix, especially for the one arising in Markov chains [20].
Its substantial performance gain has been justified by theoretical
characterizations as well as practical studies [21], [22],[25].

Let us explain briefly the underlying principle of Krylov
subspace projection technique. The gist of Krylov approximation
is that the original large sparse problem (of sizen) is converted to
a small dense problem (of sizem≪ n) by incorporating the well-
known Arnoldi algorithm [26]. Practically,m ≤ 50 whereasn can
exceed thousands. The underlying technique is to approximate

w(t) , exp(Fαt)e = e+
(Fαt)

1!
e+

(Fαt)
2

2!
e+ . . .

by an element of the Krylov subspaceKm(Fαt, e) =
Span{e, (Fαt)e, . . . , (Fαt)

m−1e}, wherem is the dimension
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of Krylov subspace. Thus, Krylov approximation gives

w̃(t) = γVm exp(Hmt)e1,

whereVm ∈ R
n×m andHm ∈ R

m×m are, respectively, the
orthonormal basis of the Krylov subspaceKm(Fαt, e) and the
upper Hessenberg matrix resulting from Arnoldi process, and γ ,

||e||2.9 Usually, the dimensionm of Hm is much smaller than
that n of Fα. As m increases, Krylov approximation becomes
more accurate. It is proven that the error in the approximation
behaves like [21]

||w(t) − w̃(t)||2 = O
(

e−||Fα||2t
(

||Fα||2t
e

m

)m)

,

for m ≥ 2t||Fα||2. EXPOKIT is a software package that pro-
vides a set of ready-to-use routines (in Matlab and Fortran 77)
for computing matrix exponentials and is available online [27].
One of the component, EXPOKIT/dmexpv(m), implements Krylov
subspace technique to cope with a large sparse matrix in Markov
chains. A full description can be found in [23]. The computational
complexity involved in our work can be reduced with help of this
software.

7 CONCLUSION

In this paper, we characterize the probabilistic guaranteeon
the time for information spread in opportunistic networks by
developing a two-dimensional CTMC-based analytical framework
and introducing the metricGα,β . Our characterization includes
understanding of the temporal scaling behavior of information
spread through a set of various spread measures. We also introduce
various examples of application scenarios and demonstratewith
Shanghai taxi traces that our framework enables us to estimate
proper amount of resource for information spread by providing
the detailed statistics of the guaranteed time for given penetration
targets. We believe our framework can be viewed as an important
first step in the design of highly sophisticated acceleration methods
for information spread or prevention methods for epidemics.
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APPENDIX A
PROOF OF LEMMA 1
Suppose that at timet0, the system enters state(L(t0), J(t0)) =
(i, j). Let Ik(i, j) and Sk(i, j) denote, respectively, the index
sets of infected nodes and susceptible nodes in classk for the
given level-phase(i, j). If i = N , thenSk(i, j) = ∅ for all
k = 1, . . . ,K, and thus the system stops evolving. From now on,
we consideri ≤ N − 1. Define

Ω(i, j) ,
{

m : X−1(i+ 1,m)=X−1(i, j) + ek for somek
}

,

that denotes the collection of phases to which the very next
transition from state(i, j) can occur.

For j′ ∈ {1, 2, . . . , |Fi+1|}, let Y(i,j)→(i+1,j′) denote the
time required to jump from(i, j) to (i + 1, j′). If j′ /∈ Ω(i, j),
then the transition never happens, i.e.,

Y(i,j)→(i+1,j′) =∞, if j′ /∈ Ω(i, j). (33)

If j′ ∈ Ω(i, j), then there existsk′ such thatX−1(i + 1, j′) =
X−1(i, j) + ek′ , andY(i,j)→(i+1,j′) becomes the time to have
one more infected node in classk′. Note that at timet0, there are
Ik(i, j) infected nodes in each classk andSk′(i, j) susceptible
nodes in classk′. Hence, we obtain

Y(i,j)→(i+1,j′) = min
a∈

⋃
K
k=1

Ik(i,j), b∈Sk′(i,j)

{

M eff
a,b

}

,

if j′ ∈ Ω(i, j). (34)

Hence, by (2),Y(i,j)→(i+1,j′) becomes an exponential random
variable. The sojourn time of state(i, j) is the minimum among
Y(i,j)→(i+1,j′) for all j′ ∈ {1, 2, . . . , |Fi+1|}. Thus, by (33) and
(34), it follows an exponential distribution. Therefore, the joint
level-phase process is a CTMC.

APPENDIX B
PROOF OF LEMMA 3
In this proof, we use the same notation as in the proof of Lemma1,
unless otherwise mentioned. Let[Ri]j,j′ denote the(j, j′)th
element of the matrixRi. Then, it represents the transition rate
from (i, j) to (i + 1, j′). From (33), we obtain[Ri]j,j′ = 0 if
j′ /∈ Ω(i, j). In addition, from (34), the transition rate[Ri]j,j′ for
the casej′ ∈ Ω(i, j) can be derived as

[Ri]j,j′ =
∑

a∈
⋃

K
k=1

Ik(i,j), b∈Sk′(i,j)

ξk(a),k(b)

= |Sk′(i, j)|
K
∑

k=1

|Ik(i, j)|ξk,k′ (35)

Let f , X−1(i, j) and g , X−1(i + 1, j′). Then, we can
rewrite the conditionj′ ∈ Ω(i, j) asg = f + ek′ . In addition,
|Ik(i, j)| and |Sk(i, j)| can be expressed as|Ik(i, j)| = (f)k
and |Sk(i, j)| = Nk − |Ik(i, j)| = (N − f)k, respectively.
Hence, (35) is simplified as

|Sk′ (i, j)|
K
∑

k=1

|Ik(i, j)|ξk,k′ = (N − f)k′

K
∑

k=1

(f)kξk,k′

= (N − f)k′ (fΛ)k′ . (36)

Combining (10) and (36) gives

[Ri]j,j′ = λ(f , g) = λ(X−1(i, j),X−1(i+ 1, j′)).

APPENDIX C
PROOF OF REMARK 1
Since Fα is an upper triangular matrix, its diagonal entries
become the eigenvalues ofFα [28]. If the diagonal entries of
Fα are all distinct (that is,Fα has no repeated eigenvalues),
then the matrixFα hasM linearly independent eigenvectors,
and consequently it is diagonalizable asFα = V DV −1 where
D , diag

(

(−ζ1, . . . ,−ζM )
)

[28]. Thus, we obtain

exp(Fαt) = exp(V (Dt)V −1) = V exp(Dt)V −1,

where the second equality follows from the property of the
matrix exponential thatexp(Y XY −1) = Y exp(X)Y −1 for
an invertible matrixY . Furthermore,exp(Dt) reduces to

exp(Dt) = diag
(

(e−ζ1t, . . . , e−ζM t)
)

.

APPENDIX D
PROOF OF THEOREM 2
In this proof, we introduce a symbol∧ over a variable, saŷx,
to denote the value ofx computed with the scaled infection rate
λξk,k′ . Since the infection rateξk,k′ is multiplied by γ for all
1 ≤ k, k′ ≤ K, the rate matrix satisfieŝΛ = γΛ. Hence, by (35)
and (36) in the proof of Lemma 3, we obtain̂Ri = γRi for all
1 ≤ i ≤ N − 1, which in turn givesF̂α = γFα by (6). Applying
F̂α = γFα to (12) in Theorem 1, we obtain

P(T̂α > t) = hα(s) exp(F̂αt)e = hα(s) exp(Fα(γt))e

= P(Tα > γt) = P(γ−1Tα > t).
(37)

Since (37) holds for anyt ≥ 0, we haveT̂α
d
= γ−1Tα. Let

Ĥα(t) , P(T̂α ≤ t) denote the CDF of̂Tα. Then, (37) gives
Ĥα(t) = Hα(γt), and thus we havêH−1

α (t) = γ−1H−1
α (t).

From (13) of Theorem 1,̂Gα,β is then obtained byĜα,β =

Ĥ−1
α (β) = γ−1H−1

α (β) = γ−1Gα,β . SinceT̂α
d
= γ−1Tα, we

have E[T̂α] = γ−1E[Tα]. Hence,R̂α,β =
Ĝα,β

E[T̂α]
= Rα,β.

APPENDIX E
PROOF OF EQUATION (21)
Since

∑

k Ik(t) takes on only natural numbers from 1 toN ,
M(t) can be obtained byM(t) =

∑N
i=1 P(

∑

k Ik(t) ≥ i).
Note that by Definition 1, the event{

∑

k Ik(t) ≥ i} is equivalent
to {Ti/N ≤ t}. Hence, we haveM(t) =

∑N
i=1 P(Ti/N ≤ t).

Similarly, M̂(t) is given byM̂(t) =
∑N

i=1 P(T̂i/N ≤ t) =
∑N

i=1 P(Ti/N ≤ γt), where the second equality comes from
Theorem 2. Therefore, we obtain̂M(t) =M(γt).

APPENDIX F
PROOF OF THEOREM 3
In this proof, we add a subscriptN orN + 1 to Tα andGα,β in
order to explicitly denote the underlying network size.

Proof of Theorem 3. (1):We first consider a network withN
nodes. From (15) withα = 1 ands1 = 1, we have

E[Tα,N ] =
N−1
∑

i=1

1

Ri
= ξ−1

N−1
∑

i=1

1

i(N − i)
. (38)
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Similarly, for a network withN+1 nodes, we have E[Tα,N+1] =

ξ−1
∑N

i=1
1

i(N+1−i) . Hence, for anyN ∈ N, we obtain

E[Tα,N+1]− E[Tα,N ] = ξ−1

(

1

N
+

N−1
∑

i=1

1

N−i

( 1

i+1
−

1

i

)

)

< ξ−1

(

1

N
+

1

N−1

N−1
∑

i=1

( 1

i+1
−

1

i

)

)

= ξ−1

(

1

N
−

1

N

)

= 0. (39)

That is, the averageα-completion time E[Tα,N ] is strictly decreas-
ing with an increasingN .

Next, we prove (22). Suppose thatN is an odd number. When
N is an even number, we can prove similarly and thus omit the
detailed proof. For an oddN , E[Tα,N ] in (38) can be rewritten as

E[Tα,N ] = 2ξ−1

N−1

2
∑

i=1

1

i(N − i)
. (40)

Let f be a function defined byf(x) , 1
x(N−x) for 0 < x < N .

Sincef is a strictly decreasing convex function for0 < x ≤ N
2 ,

the expectation in (40) is bounded above as

E[Tα,N ] = 2ξ−1

N−1

2
∑

i=1

f(i) ≤ 2ξ−1

{

f(1) +

∫
N−1

2

1
f(x) dx

}

.

It is straightforward to obtainf(1) +
∫

N−1

2

1 f(x) dx = 1
N−1 +

1
N ln (N−1)2

N+1 , which gives E[Tα,N ] = O(ξ−1N−1 lnN). By the
same reason, the expectation in (40) is bounded below as

E[Tα,N ] ≥ 2ξ−1

∫
N+1

2

1
f(x) dx = 2(ξN)−1 ln(N + 1),

which gives E[Tα,N ] = Ω(ξ−1N−1 lnN). Therefore, we have
E[Tα,N ] = Θ(ξ−1N−1 lnN).

Proof of Theorem 3. (2):For two random variablesA andB, let
A � B denote P(A > x) ≤ P(B > x) for all x ∈ R. From (15),
it is clear thatTα,N � Z1, i.e.,

P(Tα,N > t) ≥ P(Z1 > t) = exp(−ξ(N − 1)t). (41)

Similarly, we have Tα,N+1 � Erlang(N, ξN), where
Erlang(k, λ) denotes the Erlang random variable with shape
k ∈ N and rateλ > 0. Hence,

P(Tα,N+1 > t) ≤ P(Erlang(N, ξN) > t)

= exp(−ξNt)
N−1
∑

i=0

(ξNt)i

i!
.

(42)

From (42) and (41), we obtain

lim
t→∞

P(Tα,N+1 > t)

P(Tα,N > t)
≤ lim

t→∞
exp(−ξt)

N−1
∑

i=0

(ξNt)i

i!
= 0.

Accordingly, there existst0 (≥ 0) such that P(Tα,N+1 > t) <
P(Tα,N > t) for all t ≥ t0. Let β0 , P(Tα,N ≤ t0). Then,β0 <
1 and, as shown in Fig. 12, we haveGα,β,N > Gα,β,N+1 for
β ≥ β0. That is, the guaranteed timeGα,β,N is strictly decreasing
with an increasingN for β ≥ β0.

Next, we prove (23). Suppose thatN is an odd number. When
N is an even number, we can prove similarly and thus omit the

detailed proof. For an oddN , theα-completion timeTα,N in (15)
can be rewritten as

Tα,N =

N−1

2
∑

i=1

Zi +
N−1
∑

i=N+1

2

Zi =

N−1

2
∑

i=1

Zi +

N−1

2
∑

i=1

ZN−i. (43)

Then, we can derive upper and lower bounds onTα,N as

Tlower � Tα,N � Tupper, (44)

whereTupper ,
∑N−1

i=1 Zu
i andTlower ,

∑N−1
i=1 Z l

i , and where
Zu
i andZ l

i are independent exponential random variables with
ratesξNi/4 and ξNi, respectively. Note that the rate ofZi is
greater than that ofZu

2i if and only if i ≤ N
2 . Hence, we have

Zi � Z
u
2i for i = 1, 2, . . . , (N − 1)/2. (45)

SinceZN−i
d
= Zi andZu

2i � Z
u
2i−1 for all i, we further have

ZN−i � Z
u
2i−1 for i = 1, 2, . . . , (N − 1)/2. (46)

Combining (45) and (46) yields
∑

N−1

2

i=1 Zi +
∑

N−1

2

i=1 ZN−i �
∑N−1

i=1 Zu
i . This provesTα,N � Tupper. By using a similar

approach, we can proveTlower � Tα,N . Due to similarity, we
omit the details. Lettupper, 4(ξN)−1{ln(N − 1)− ln(ln β−1)}
andtlower ,

1
4 tupper. In the following, we will show that

lim
N→∞

P(Tlower > tlower) = 1− β, (47a)

lim
N→∞

P(Tupper> tupper) = 1− β. (47b)

The results in (44), (47a), and (47b) imply that there existsN0 ∈
N such thattlower ≤ Gα,β,N ≤ tupper for all N ≥ N0, which
givesGα,β,N = Θ

(

ξ−1N−1(lnN − ln(lnβ−1))
)

.
Equations (47a) and (47b) remain to be proven. It is well-

known that the sumS of n independent exponential random
variables with ratesri (i = 1, . . . , n) follows the generalized
Erlang distribution. Whenri 6= rj for all i 6= j, e.g., in the
caseri = ξNi, the generalized Erlang distribution is given by

P(S > t) =
n
∑

i=1

( n
∏

j=1,j 6=i

rj
rj − ri

)

exp(−rit). (48)

Replacingri by ξNi and simplifying (48) yields

P(Tlower > t) =
N−1
∑

i=1

(−1)i−1

(

N − 1

i

)

exp(−ξNit).

Hence, we obtain

P(Tlower > tlower) =
N−1
∑

i=1

(−1)i−1

(

N − 1

i

)

(

lnβ−1

N − 1

)i

= 1−
N−1
∑

i=0

(

N − 1

i

)

(

lnβ

N − 1

)i

= 1−

(

1 +
lnβ

N − 1

)N−1

. (49)

By takingN to∞ in (49), we havelimN→∞ P(Tlower > tlower) =
1 − exp(ln β) = 1− β, which proves (47a). Similarly as above,
we can prove (47b) and omit the details.
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Fig. 12. Proof of Theorem 3. (2): Gα,β,N > Gα,β,N+1 for β ≥ β0

APPENDIX G
PROOF OF REMARK 4
Our framework is applicable for the analysis of the non-
cooperative spread model. The only change occurs at Step 3 in
the computation ofRi. The functionλ(f , g) in (10) now should
be replaced byλo(f , g) as follows:

λo(f , g) ,

{

(N − f)k(sΛ)k if g = f + ek for somek,

0 otherwise.

With this replacement, we can prove Remark 4 by applying the
technique used in the proof of Theorem 3. Due to similarity, we
give only a sketch of the proof and omit the details.

Proof of Remark 4. (1):Let T o
α,N be theα-completion time in a

network consisting ofN non-cooperative nodes. Then,

T o
α,N =

N−1
∑

i=1

Zo
i , (50)

whereZo
i are independent exponential random variables with rates

ξi. Hence, we have E[T o
α,N ] = ξ−1

∑N−1
i=1

1
i , which is strictly

increasing withN and scales asΘ(ξ−1 lnN).

Proof of Remark 4. (2):SinceT o
α,N+1

d
= T o

α,N + Zo
N by (50),

we have P(T o
α,N > t) < P(T o

α,N+1 > t) for all t > 0.
Hence,Gα,β,N is strictly increasing with an increasingN for
any β ∈ [0, 1]. Also, by applying the formula (48), we can
derive P(T o

α,N > t) =
∑N−1

i=1 (−1)i−1
(N−1

i

)

exp(−ξit). Let
to , ξ−1{ln(N − 1)− ln(lnβ−1)}. Then, we have

P(T o
α,N > to) = 1−

(

1 +
lnβ

N − 1

)N−1

,

which giveslimN→∞ P(T o
α,N > to) = 1− exp(ln β) = 1− β.

Therefore, we haveGα,β,N = Θ(ξ−1(lnN − ln(ln β−1))).

APPENDIX H
PROOF OF THEOREM 4
In the caseK = 2, we can set the phaseXi to be the number
of infected nodes in class 1 for the leveli, as it can specify
uniquely which sample instance realizes the level. Then, wehave
X−1(i, j) = (j, i − j), and Eq. (27) leads to

µ̂i,j = µi + 2ξinter

(

j −
i

2

)

(r1 − 1)

(

N

2
− i

)

.

The expectation̂µi is thus obtained by

µ̂i = µi + c(r1 − 1)

(

N

2
− i

)

,

wherec , 2ξinter(E[Xi]−
i
2 ). Using mathematical induction, we

prove thatc > 0 for all i = 1, 2, . . . , N − 1, as follows.
We first rewrite E[Xi+1] by conditioning onXi as

E[Xi+1] =
∑

j

P(Xi = j)E[Xi+1|Xi = j]. (51)

SinceXi represents the number of infected nodes in class 1 when
there arei infected nodes in the network, we have eitherXi+1 =
Xi+1 (i.e., newly infected node belongs to class 1) orXi+1 = Xi

(i.e., newly infected node belongs to class 2) at the very next level.
Hence,

E[Xi+1|Xi = j] = (j + 1)P(Xi+1 = j + 1|Xi = j)

+ jP(Xi+1 = j|Xi = j)

= j + P(Xi+1 = j + 1|Xi = j). (52)

Substituting (52) into (51) gives

E[Xi+1] = E[Xi] +
∑

j

P(Xi = j)P(Xi+1 = j + 1|Xi = j).

(53)

In the following, we will show that the second probability onthe
right-hand side of (53) is bounded by

P(Xi+1 = j + 1|Xi = j) ≥
N
2 − j

N − i
. (54)

Let Y(i,j)→(i+1,j′) denote the time required to jump from level-
phase state(i, j) to (i + 1, j′) (as we defined in Appendix A).
Then, as shown in Appendices A and B,Y(i,j)→(i+1,j′) follows an
exponential distribution whose rate is[Ri]j,j′ and can be obtained
from (10) as

[Ri]j,j′ =























(N2 − j)
[

j i− j
]

[

Λ1,1

Λ2,1

]

if j′ = j + 1,

(N2 − i+ j)
[

j i− j
]

[

Λ1,2

Λ2,2

]

if j′ = j,

whereΛi,j denotes the(i, j)th element of the rate matrixΛ.
Note thatΛ1,1 ≥ Λ2,1 = Λ1,2 ≥ Λ2,2, and thus the rate above
is bounded by

[Ri]j,j′ ≥ (
N

2
− j)

[

j i− j
]

[

Λ2,1

Λ2,1

]

= (
N

2
− j)iΛ2,1

if j′ = j + 1,

[Ri]j,j′ ≤ (
N

2
− i+ j)

[

j i− j
]

[

Λ2,1

Λ2,1

]

= (
N

2
−i+j)iΛ2,1

if j′ = j.

Note that the event{Xi+1 = Xi + 1} occurs if and only if
Y(i,j)→(i+1,j+1) < Y(i,j)→(i+1,j) . Hence,

P(Xi+1 = j + 1|Xi = j)

= P(Y(i,j)→(i+1,j+1) < Y(i,j)→(i+1,j))

=
[Ri]j,j+1

[Ri]j,j+1 + [Ri]j,j

≥
(N2 − j)iΛ2,1

(N2 − j)iΛ2,1 + (N2 − i+ j)iΛ2,1

=
N
2 − j

N − i
.
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This proves (54). Combining (53) and (54) yields

E[Xi+1] ≥ E[Xi] +
∑

j

P(Xi = j)
N
2 − j

N − i

= E[Xi] +
N
2 − E[Xi]

N − i

=
(N − i− 1)E[Xi] +

N
2

N − i
. (55)

If E[Xi] >
i
2 , then the last equation in (55) is further bounded by

E[Xi+1] >
(N − i− 1) i

2 + N
2

N − i
=
i+ 1

2
.

That is, if E[Xi] >
i
2 , then E[Xi+1] >

i+1
2 . Moreover, since

the seeder is selected from class 1, we have E[X1] = 1 > 1
2 .

By mathematical induction, we therefore have E[Xi] >
i
2 for all

i = 1, 2, . . . , N − 1. This competes the proof.


