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Distributed Signal Decorrelation and Detection in
Multi View Camera Networks Using the Vector

Sparse Matrix Transform
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Shroff, Fellow, IEEE

Abstract— This paper introduces the vector sparse ma-
trix transform (vector SMT), a new decorrelating transform
suitable for performing distributed processing of high dimen-
sional signals in sensor networks. We assume that each sensor
in the network encodes its measurements into vector outputs
instead of scalar ones. The proposed transform decorrelates
a sequence of pairs of vector outputs, until these vectors are
decorrelated. In our experiments, we simulate distributed
anomaly detection by a network of cameras monitoring
a spatial region. Each camera records an image of the
monitored environment from its particular viewpoint and
outputs a vector encoding the image. Our results, with both
artificial and real data, show that the proposed vector SMT
transform effectively decorrelates image measurements from
the multiple cameras in the network while maintaining low
overall communication energy consumption. Since it enables
joint processing of the multiple vector outputs, our method
provides significant improvements to anomaly detection ac-
curacy when compared to the baseline case when the images
are processed independently.

Index Terms—Sparse Matrix Transform, Wireless Sensor
Networks, Smart Camera Networks, Distributed Signal Pro-
cessing, Distributed Anomaly Detection, Multi View Image
Processing, Pattern Recognition

I. INTRODUCTION

In recent years, there has been significant interest in
distributed monitoring using sensor [1], [2], and camera
networks [3], [4]. Consider the scenario where all cameras
collectively monitor the same environment. Each camera
registers an image of the environment from its specific
viewpoint and encodes it into a vector output. As the
number of deployed cameras grows, so does the combined
data generated from all cameras. Since these cameras
usually operate under limited battery power and narrow
communication bandwidth, this data deluge created in large
networks imposes serious challenges to the way data is
communicated and processed.
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Fig. 1: A camera network where each camera captures an image of the environment
from one viewpoint and encodes the image into a vector output. The aggregated
outputs from all cameras form the high-dimensional vector, x. Cameras i and j
have overlapping views. Since outputs from cameras with overlapping views tend
to be correlated, so does the aggregated vector x.

Event detection and more specifically anomaly detection
are important applications for many sensor networks [5].
In general, the vector outputs from all sensors in a network
can be concatenated to form a single p-dimensional vector
x, and then the goal of anomaly detection is to determine if
x corresponds to a typical or anomalous event. Fig. 1 illus-
trates this scenario for a network of cameras. The vector
outputs from different cameras in the network are likely
to be correlated, particularly when the cameras capture
overlapping portions of the scene; so for best detection
accuracy, vector x should be decorrelated as part of the
detection process.

One possible approach to decorrelate x is to have all
cameras send their vector outputs to a sink node. This
approach has several problems because it puts a dispro-
portional and unscalable burden on the sink and on the
communication links leading to it. One possible solution
is to design a more powerful sink node. Unfortunately,
this solution is not suitable for the many applications that
require nodes to operate in an ad hoc manner [6], [7], re-
arranging themselves dynamically.

Alternatively, each sensor can compute the likelihood of
its vector measurement independently and send a single
(scalar) likelihood value to the sink, which then combines
the likelihoods computed by all sensors and makes a de-
tection decision. While requiring minimal communication
energy, this approach does not model correlations between
camera outputs, potentially leading to poor detection accu-



racy.
Because of the limitations above, there is a need for

distributed algorithms which can decorrelate vector camera
outputs without using a sink, while keeping the communi-
cation among sensors low.

In this paper, we propose the vector sparse matrix
transform (vector SMT) [8], a novel algorithm suited for
distributed signal decorrelation in sensor networks where
each sensor outputs a vector. It generalizes the concept of
the scalar sparse matrix transform in [9] to decorrelation
of vectors. This novel algorithm operates on pairs of
sensor outputs. In particular, the vector SMT decorrelating
transform is defined as an orthonormal transformation con-
strained to be formed by a product of pairwise transforms
between pairs of vectors, and it is designed using a greedy
optimization of the likelihood function of x. Once this
transform is designed, the associated pairwise transforms
are applied to sensor outputs distributed over the network,
without the need of a powerful sink node. By constraining
the total number of pairwise transforms to be small, our
method imposes a sparsity constraint to the data. When
this sparsity constraint holds for the data being processed,
the vector SMT can substantially improve the accuracy of
the resulting decorrelating transform even when a limited
number of training samples is available.

Distributed decorrelation with limited communication
is an important characteristic of our method. In multi
view camera networks, camera pairs that are far apart
can generate highly correlated outputs [10]. Our method
models inherent energy constraints in the sensor network
by imposing that the total communication required for
distributed correlation remains under a specific budget.
As a result, during the design of the decorrelating trans-
formation, our method selects sensor pairs based on the
correlation between their outputs while penalizing the ones
that are several hops apart.

We introduce the concept of a correlation score, a
generalization of the concept of correlation coefficient to
measure correlation between pairs of random vectors. We
use this score to select pairs of most correlated sensor
outputs during the design of the vector SMT decorrelat-
ing transform. This correlation score is closely related to
the concepts of mutual information between two random
vectors [11], and their total correlation [12].

To validate our method, we describe experiments using
simulated data, as well as both artificial and real multi view
image data. We use the vector SMT to decorrelate the multi
view data in a simulated camera network for the purpose
of anomaly detection. We compare our method against
centralized and independent approaches for processing
camera outputs. The centralized approach relies on a sink
node to decorrelate all outputs and requires large amounts
of communication. The independent approach relies on
each camera computing the partial likelihood of its output
independently and communicating the resulting value to the
sink that makes the final detection decision. While mini-
mizing communication, this independent approach leads to
poor detection accuracy since it does not take into account
correlations between camera outputs. Our results show that
the vector SMT decorrelation enables consistently more
accurate anomaly detection across the experiments while

keeping low the communication required for distributed
decorrelation.

The rest of this paper is organized as follows. Sec. II
reviews the relevant related work. Sec. III describes the
main concepts of the scalar SMT. Sec. IV introduces the
vector SMT algorithm, designed to perform distributed
decorrelation of vector sensor outputs in a sensor network.
Sec. V shows how to use the vector SMT to enable
distributed detection in a sensor network. Sec. VI shows
experimental results of detection using data from multi-
camera views of objects as well as simulated data. Finally,
the main conclusions and future work are discussed in
Sec. VII.

II. RELATED WORK

Several methods to compute distributed Karhunen-Loéve
transform (KLT) and principal components analysis (PCA)
in sensor networks have been proposed. The distributed
PCA algorithms in [13] [14] operate on scalar sensor
outputs, and constrain communication by assuming con-
ditional independence of a sensor output given its neigh-
boring sensor outputs. A distributed KLT algorithm in [15],
[16], [17], [18] compresses/encodes vector sensor outputs
for an aggregated reconstruction at the sink with minimal
mean-square error. Distributed decorrelation using wavelet
transforms with lifting has been studied for sensor networks
with several topologies: linear [19], two-dimensional [20],
and tree [21]. While assuming specific network topologies
and correlation models for scalar sensor outputs, these
methods focus mainly on efficient data gathering and
routing. None of these methods takes into consideration
that sensors located multiple hops apart can generate highly
correlated outputs, as in the case of two cameras pointing
to the same event, as argued in [10].

Distributed detection have been studied since the early
1980s [22]. Most approaches rely on encoding scalar sen-
sor outputs for efficient transmission over low bandwidth
links to a sink that makes final detection decisions. More
recently, detection of volume anomalies in networks have
been studied in [23], [24], [25]. These approaches focus
on scalar measurements in network links and rely on
centralized data processing. Several methods for video
anomaly detection have been proposed (see [26] for a
survey). The method in [25] uses multi view images of
a highway system to detect traffic anomalies, with each
view monitoring a different road segment or intersection.
The processing of the multiple views is non-distributed and
the method does not model any correlations between views.

Accurate anomaly detection requires decorrelation of
the background signal [27]. In order to decorrelate the
background, we need an accurate estimate of its covariance
matrix. Several methods to estimate covariances of high-
dimensional signals have been proposed recently [28], [29],
[30], [31], [9], [32]. Among these methods, the sparse
matrix transform (SMT) [9], here referred to as the scalar
SMT, has been shown to be effective, providing full-rank
covariance estimates of signals even when the number n
of training samples is much smaller than the dimension p
of a data sample. Furthermore, the associated decorrelating
transform consists of a product of O(p) Givens rotations,
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and therefore, it is computationally inexpensive to apply.
The scalar SMT has been used in detection and classifica-
tion of high-dimensional signals [33], [34], [35] and Givens
rotations have been used in ICA [36]. Since it involves
only operations between coordinate pairs, it is well-suited
to distributed decorrelation of scalar sensor outputs [37].

III. THE SCALAR SPARSE MATRIX TRANSFORM

Let x be a p-dimensional random vector from a mul-
tivariate, Gaussian distribution, N (0, R). Moreover, the
covariance matrix, R can be decomposed into R = EΛEt,
where Λ is a diagonal matrix and E is orthonormal. The
Sparse Matrix Transform (SMT) [9] models the orthonor-
mal matrix E as the product of K sparse matrices, EK , so
that

E =

K∏

k=1

Ek = E1 · · ·EK . (1)

In (1), each sparse matrix Ek, known as a Givens rota-
tion, is a planar rotation over a coordinate pair (ik, jk)
parametrized by an angle θk, i.e,

Ek = I +Θ(ik, jk, θk) , (2)

where

[Θ]ij =





cos(θk)− 1 if i = j = ik or i = j = jk
sin(θk) if i = ik and j = jk
− sin(θk) if i = jk and j = ik
0 otherwise

. (3)

This SMT model assumes that K Givens rotations in (1)
are sufficient to decorrelate the vector x. Each matrix, Ek

operates on a single coordinate pair of x, playing a role
analogous to the decorrelating “butterfly” in the fast Fourier
Transform (FFT). Since both the ordering of coordinate
pairs (ik, jk), and the values of rotation angles θk are
unconstrained, the SMT can model a much larger class of
signal covariances than the FFT. In fact, the scalar SMT is a
generalization of both the FFT and the orthonormal wavelet
transform. Figs. 2(b) and (c) make a visual comparison
of the FFT and the Scalar SMT. The SMT rotations can
operate on pairs of coordinates in any order, while in
the FFT, the butterflies are constrained to a well-defined
sequence with specific rotation angles.

The scalar SMT design consists in learning the product
in (1) from a set of n independent and identically dis-
tributed training vectors, X = [x1, · · · , xn], from N (0, R).
Assuming that R = EΛEt, the maximum likelihood
estimates of E and Λ are given by

Ê=arg min
E∈ΩK

{∣∣diag(EtSE)
∣∣} (4)

Λ̂=diag(ÊtSÊ) , (5)

where S = 1
nXXt, and ΩK is the set of allowed or-

thonormal transforms. The functions diag(·) and | · | are
the diagonal and determinant, respectively, of a matrix ar-
gument. With the SMT model assumption, the orthonormal
transforms in ΩK are in the form of (1), and the total
number of planar rotations, K is the model order parameter.

When performing an unconstrained minimization of (4)
by allowing the set ΩK to contain all orthonormal trans-

forms, when n > p, the minimizer,Ê is the orthonor-
mal matrix that diagonalizes the sample covariance, i.e.,

ÊΛ̂Êt = S. However, S is a poor estimate of R when
n < p. As shown in [9], the greedy optimization of (4)
under the constraint that the allowed transforms are in the
form of (1) yields accurate estimates even when n ≪ p.

The constraint in (1) is non-convex with no obvious
closed form solution. In [9], we use a greedy optimization
approach in which we select each Givens rotation, Ek,
independently, in sequence to minimize the cost in (4). The
model order parameter K can be estimated using cross-
validation over the training set [38], [39] or using the
minimum description length (MDL) [35].

Typically, the average number of rotations per coordi-
nate, K/p is small (< 5), so that the computation to apply
the SMT to a vector of data is very low, i.e, 2(K/p) + 1
floating-point operations per coordinate. Finally, when
K =

(
p
2

)
, the SMT factorization of R is equal to its exact

diagonalization, a process known as Givens QR.

IV. DISTRIBUTED DECORRELATION WITH THE VECTOR

SPARSE MATRIX TRANSFORM

Our goal is to decorrelate the p-dimensional vector x
aggregated from outputs of all sensors, where each of the
L sensors outputs an h-dimensional sub-vector of x. The
vector SMT operates on x by decorrelating a sequence of
pairs of its sub-vectors. This vector SMT generalizes the
concept of the scalar SMT in Sec. III to the decorrelation
of pairs of vectors instead of pairs of coordinates.

A. The Vector SMT Model

Let the p-dimensional vector x be partitioned into L sub-
vectors,

x =



x(1)

...

x(L)


 ,

where each sub-vector, x(i) is an h-dimensional vector
output from a sensor i = 1, · · · , L in a sensor network. A
vector SMT is an orthonormal p× p transform, T , written
as the product of M orthonormal, sparse matrices,

T =
M∏

m=1

Tm , (6)

where each pairwise transform, Tm ∈ R
p×p, is a block-

wise sparse, orthonormal matrix that operates exclusively
on the 2h-dimensional subspace of the sub-vector pair
x(im), x(jm), as illustrated in Fig. 2(a). The decorrelating
transform is then formed by the product of the M pairwise
transforms, where M is a model order parameter.

Each Tm is a generalization of a Givens rotation in (2)
to a transform that operates on pairs of sub-vectors instead
of coordinates. Similarly, the vector SMT in (6) generalizes
the concept of the scalar SMT in Sec. III: it decorrelates a
high-dimensional vector by decorrelating its pairs of sub-
vectors instead of pairs of coordinates. Figs. 2(b) and (d)
compare the vector and the scalar SMTs approaches graph-
ically. In the scalar SMT, each Givens rotation Ek plays the
role of a “decorrelating butterfly” (Fig. 2(b)) that together
decorrelate x. In the vector SMT, each orthonormal matrix
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Tm corresponds to series of decorrelating butterflies that
operate exclusively on coordinates of a single pair of sub-
vectors of x. Finally, the sequence in (6), illustrated in
Fig. 2(d), decorrelates M pairs of sub-vectors of x, until
the decorrelated vector x̃ is obtained.

In a sensor network, we compute the distributed decor-
relation of x by distributing the application of transforms
Tm from the product (6) across multiple sensors. Before
the decorrelation, each sub-vector x(i) of x is the output
of a sensor i and is stored locally in that sensor. Applying
each Tm to sub-vectors x(im), x(jm) requires point-to-point
communication of one h-dimensional sub-vector between
sensors im and jm, consuming an amount of energy,
E(h, im, jm), proportional to some measure of the distance
between these sensors. After applying Tm, the resulting
decorrelated sub-vectors x̃(im) and x̃(jm) are cached at the
sensor used to compute this pairwise decorrelation, avoid-
ing communicating one sub-vector back to its originating
sensor. Finally, the total communication energy required
for the entire decorrelation is given by

E(h, i1, · · · , iM , j1, · · · , jM ) =

M∑

m=1

E(h, im, jm). (7)

B. The Design of the Vector SMT

We design the vector SMT decorrelating transform from
training data, using the maximum likelihood estimation of
the data covariance matrix. Let X = [x1, · · · , xn] ∈ R

p×n,
be a p×n matrix where each column, xi is a p-dimensional
zero mean Gaussian random vector with covariance R. In
general, a covariance can be decomposed as R = TΛT t,
where Λ is the diagonal eigenvalue matrix and T is an
orthonormal matrix. In this case, the log likelihood of X
given T and Λ is given by

log p(T,Λ)(X) = −
n

2
tr[diag(T tST )Λ−1]−

n

2
log(2π)p|Λ| ,

(8)
where S = 1

nXXt . When constraining T to be of
the product form of (6), the joint maximum likelihood

estimates Λ̂ and T̂ are given by

T̂ =arg min
T=
∏

M
m=1 Tm

{∣∣diag(T tST )
∣∣} (9)

Λ̂=diag(T̂ tST̂ ) . (10)

Since the minimization in (9) has a non-convex constraint,
its global minimizer is difficult to find. Therefore, we
use a greedy procedure that designs each new Tm, m =
1, · · · ,M , independently while keeping the others fixed.
We start by setting S1 = S and X1 = X , and iterate over
the following steps:

T̂m=arg min
Tm∈Ω

{∣∣diag(T t
mSmTm)

∣∣} (11)

Sm+1= T̂ t
mSmT̂m (12)

Xm+1= T̂ t
mXm , (13)

where Ω is the set of all allowed pairwise transforms. Since
Tm operates exclusively on x(im) and x(jm), once the pair
(im, jm) is selected, the design of Tm involves only the
components of Xm associated with these sub-vectors. Let

X
(im)
m and X

(jm)
m be h×n sub-matrices of Xm associated

with the sub-vector pair (im, jm). Their associated 2h×2h
sample covariance is then given by

S(im,jm)
m =

1

n

[
X

(im)
m

X
(jm)
m

] [
X(im)t

m |X(jm)t
m

]
. (14)

The minimization in (11) for a fixed subvector pair
(im, jm) can be recast in terms of S(im,jm), and the 2h×2h
orthonormal matrix E,

Em = arg min
E∈Ω2h×2h

{
|diag(EtS(im,jm)

m E)|
}

, (15)

where Ω2h×2h is the set of all valid 2h× 2h orthonormal
transforms. In practice, the optimization of E is precisely
the same problem as the scalar SMT design presented in
Sec. III. Once Em is selected, we partition it into four h×h
blocks,

Em =

[
E

(1,1)
m E

(1,2)
m

E
(2,1)
m E

(2,2)
m

]
,

and then we obtain the transform Tm using Kronecker
product ⊗ as

Tm=J (im,im) ⊗ E(1,1)
m + J (im,jm) ⊗ E(1,2)

m

+J (jm,im) ⊗ E(2,2)
m + J (jm,jm) ⊗ E(2,1)

m , (16)

+ Ip×p − (J (im,im) + J (jm,jm))⊗ Ih×h

where J (i,j) is a L× L matrix given by
[
J (i,j)

]
i′j′

=

{
1 if i′ = i and j′ = j
0otherwise

. (17)

Fig. 3(a) illustrates the relationship between the 2h × 2h
orthonormal transform Em, and the block sparse, p × p
orthonormal transform Tm. The four blocks of Em are
inserted in the appropriate block locations to form the
larger, block sparse matrix Tm. The overall change in
the log likelihood in (8) due to applying Tm to Xm and

maximized with respect to Λ̂(Tm) is given by (see App. A)

∆log p(Tm,Λ̂(Tm))(Xm)=−
n

2
log

|diag(T t
mSmTm)|

|diag(Sm)|

=−
n

2
log

|diag(Et
mS

(im,jm)
m Em)|

|diag(S
(im,jm)
m )|

=−
n

2
log

(
1− F 2

imjm

)
, (18)

where we introduce the concept of a “correlation score”,
Fim,jm , defined by

Fim,jm =

√√√√1−
|diag(Et

mS
(im,jm)
m Em)|

|diag(S
(im,jm)
m )|

.

In App. B, we show that the correlation score generalizes
the concept of the correlation coefficient to pairs of random
vectors and derive its main properties. The pair of sub-
vectors with the largest value of Fimjm produces the largest
increase in the log likelihood in (18). Therefore, we use the
maximum value of Fimjm as the criterion for selecting the

pair (im, jm) during the design of T̂m in (11). Finally, the
algorithm in Fig. 3(b) summarizes this greedy procedure
to design the vector SMT.
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Fig. 2: (a) In the product x̃ = T t
mx, the p× p block-wise sparse transform Tm operates over the p-dimensional vector x, changing only the 2h components associated

with the h-dimensional sub-vectors x(im), x(jm) (shaded). (b) scalar SMT decorrelation, x̃ = Etx. Each Ek plays the role of a decorrelating “butterfly”, operating
on a single pair of coordinates. (c) 8-point FFT, seen as a particular case of the scalar SMT where the butterflies are constrained in their ordering and rotation angles. (d)
Vector SMT decorrelation, x̃ = T tx, with each Tm decorrelating a sub-vector pair of x instead of a single coordinate pair. Tm is an instance of the scalar SMT with
decorrelating butterflies operating only on coordinates of a single pair of sub-vectors.

!"
#$%$&' !"

#$%(&'

!"
#(%$&' !"

#(%(&'

)"' *"'

)"'

*"'

!"'

+"'

!"
#$%$&'

!"

!"

!"

!"

!"
#$%(&'

!"
#(%$&' !"

#(%(&'

(a)

//Initialization
forall the 1 ≤ i ≤ L and 1 ≤ j ≤ L do

S(i,j) ← 1
n

[

X(i)

X(j)

]

[

X(i)t|X(j)t
]

E ← ComputeScalarSMT (S(i,j))

Fij ←

(

1 −
|diag(EtS(i,j)E)|

|diag(S(i,j))|

) 1
2

end
//Main Loop
for m = 1, · · · ,M do

(im, jm) ← arg maxFij

Em ← ComputeScalarSMT (S(im,jm))
Tm ← MapToPairwiseTransform(Em, im, jm)
Update matrix Fij

S
(i,j)
m ← Et

mS(im,jm)Em
end

(b)
Fig. 3: (a) Mapping from the 2h × 2h orthonormal matrix, E to the p × p block-wise sparse matrix Tm associated with the (im, jm) sub-vector pair. (b) The vector
SMT design algorithm.

C. The Vector SMT Design with Communication Energy
Constraints

We extend the vector SMT design in Sec. IV-B to
account for the communication energy required for dis-
tributed decorrelation in a sensor network. When each Tm

operates on x(im) and x(jm) in a sensor network, it requires
an amount, E(h, im, jm) of energy for communication.
In a scenario with a constrained energy budget, selecting
sensors im and jm based on the largest Fimjm can be
prohibitive if these sensors are several hops apart in the
network. We augment the likelihood in (8) with a linear
penalization term associated with the total communication
energy required for distributed decorrelation. The aug-
mented log likelihood is given by

L(T,Λ)(X) = log p(T,Λ)(X)− µ

M∑

m=1

E(h, im, jm) . (19)

The parameter µ has units of log likelihood/energy, and
controls the weight given to the communication energy
when maximizing the likelihood. When µ = 0, the de-
sign becomes the unconstrained vector SMT design in
Sec. IV-B. When we apply Tm to Xm and maximize (19)

with respect to Λ̂(Tm), the overall change in the augmented

likelihood is given by

∆L(Tm,Λ̂(Tm))(Xm)=L(Tm,Λ̂(Tm))(Xm)− L(I,Λ̂(I))(Xm)

=−
n

2
log

{
|diag(T t

mSmTm)|

|diag(Sm)|

}

−µE(h, im, jm) (20)

=−
n

2
log

(
1− F 2

imjm

)
− µE(h, im, jm)

Therefore, when designing T̂m with energy constraints, we
select the pair of sub-vectors (im, jm) with the smallest

value of (1−F 2
im,jm

)e2µE(h,im,jm)/n , i.e., the pair (im, jm)
that simultaneously maximizes the correlation coefficient,
Fimjm and minimizes the communication energy penalty,
µE(h, im, jm) in order to increase the augmented log
likelihood in (20) by the largest amount.

D. Model Order Identification

Let MM be a vector SMT model with decorrelating

transform T =
∏M

m=1 Tm. Here, we discuss three alterna-
tives for selecting the model order parameter, M .

1) Fixed Maximum Energy: We select M such that
the total energy required for the distributed decorrela-
tion, T tx does not exceed some fixed threshold E0, i.e.,
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∑M
m=1 E(h, im, jm) ≤ E0. This threshold, E0 is fixed based

on a pre-established maximum energy budget allowed for
the distributed decorrelation.

2) Cross-Validation: We partition the p × n data sam-
ple matrix X into K, p × nk matrices X(k), X =
[X(1)| · · · |X(K)], and define X̄(k) as a matrix containing the
samples in X that are not in X(k). For each k = 1, · · · ,K,

we design MM from X̄(k), and compute its log likelihood

over Xk, i.e., log pMM
(X(k)|X̄(k)). We select M so that it

maximizes the average cross-validated log likelihood [40],

L(MM ) =
1

K

K∑

i=1

log pMM
(X(k)|X̄(k)) . (21)

3) Minimum Description Length (MDL) Criterion:
Based on the MDL principle [41], [42], [43], we select
M such that the model MM has the shortest encoding,
among all models, of both its parameters and the sample
matrix, X . The total description length of MM in nats is
given by

ℓM =− log pMM
(X) +

1

2
MK log(pn) + 2MK log(2h)

+2M log(L) , (22)

where − log pMM
(X) nats are used to encode X ,

1
2MK log(pn) nats are used to encode the MK real-valued
angles of the Givens rotations across all M pairwise trans-
forms, 2MK log(2h) nats are used for the MK rotation
coordinate pairs, and finally, 2M log(L) nats are used for
the indices of sub-vector pairs of the M pairwise trans-
forms. Our goal is then to select M such that it minimizes
ℓM in (22). Initially, ℓM decreases with M because it is
dominated by the likelihood term, log pMM

(X). However,
when M is large, the other terms dominate ℓM causing it
to increase as M increases. Therefore, we select M that
minimizes ℓM by picking the first value of M such that

ℓM+1 − ℓM =− log
pMM+1

(X)

pMM
(X)

+
1

2
K log(pn)

+2K log(2h) + 2 log(L)

=−
n

2
log(1− F 2

im,jm) +
1

2
K log(pn)

+2K log(2h) + 2 log(L) ≥ 0 .

This condition leads to this new stop condition for the main
loop of the algorithm in Fig. 3(b),

F 2
im,jm ≥ 1− e

K log(pn)+4K log(2h)+4 log(L)
n . (23)

It is easy to generalize ℓM in (22) to the case where each
pairwise transform, Tm has a different number of Givens
rotations, Km, resulting in

ℓ
(general)
M =− log pMM

(X) +
1

2

M∑

m=1

Km log(pn)

+2

M∑

m=1

Km log(2h) + 2M log(L) . (24)

Finally, when ℓ
(general)
M+1 − ℓ

(general)
M ≥ 0 is satisfied, the

new stop condition for the loop in Fig. 3(b) is given by

F 2
im,jm ≥ 1− e

Km+1 log(pn)+4Km+1 log(2h)+4 log(L)

n . (25)

V. ANOMALY DETECTION

We use the vector SMT to compute the covariance

estimate, R̂ of the p-dimensional vector, x for the pur-
pose of performing anomaly detection using the Neyman-
Pearson framework [27]. Here, we first formulate the
anomaly detection problem, and then describe the ellipsoid
volume measure of detection accuracy [44] used in the
experimental section.

A. Problem Formulation

Let the p-dimensional vector x be an aggregated mea-
surement from all L sensors in the network. We presume
that x is typical (non-anomalous) if it is sampled from a
multivariate Gaussian distribution, N (0, R) or anomalous
if it is sampled from a uniform distribution U(x) = c, for
some constant c [45], [46]. Formally, we have the following
hypotheses,

H0 :x ∼ N (0, R)
H1 :x ∼ U , (26)

where H0 and H1 are the null and alternative hy-
potheses respectively. According to the Neyman-Pearson
lemma [27], the optimal classifier has the form of the log
likelihood ratio test,

Γ(x) = log

{
p(x;H1)

p(x;H0)

}
= log c− log p(x;H0)

= log c+
p

2
log 2π +

1

2
log |R|+

1

2
xtR−1x ≷ Γ0 .

(27)

This likelihood ratio test maximizes the probability of
detection, p(H1;H1) for a fixed probability of false alarm,
p(H1;H0), which is controlled by the threshold Γ0. We
incorporate all the constant terms into a new threshold, η2,
such that the test in (27) becomes

DR(x) = xtR−1x ≷ η2. (28)

If we further assume that R = TΛT t, where T and Λ are
orthonormal and diagonal matrices respectively, the test in
(27) can be written as a weighted sum of p uncorrelated
coordinates,

D̃Λ(x̃) =

p∑

i=1

x̃2
i

λi
≷ η2 (29)

where x̃ = T tx, and λi ≡ [Λ]ii (1 ≤ i ≤ p). Finally,
because the sum in (29) involves only independent terms,
it can be evaluated distributedly across a sensor network
while requiring minimum communication.

B. Ellipsoid Volume as a Measure of Detection Accuracy

The ellipsoid volume approach [35], [44], [47] mea-
sures anomaly detection accuracy without requiring la-
beled anomalous samples. Because anomalies are rare
and loosely defined events, we often lack enough test
samples labeled as anomalous to estimate the probability
of detection, p(H1;H1) required for ROC analysis [27].
Instead of relying on anomalous samples, the ellipsoid
volume approach seeks to measure detection accuracy by

characterizing how well a covariance estimate, R̂ models
the typical data samples. It evaluates the volume of the
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region within the ellipsoid, xtR̂−1x ≤ η2 for a certain
probability of false alarm controlled by η. Such a volume
is evaluated by

V (R̂, η) =
πp/2

Γ(1 + p/2)
ηp
√

|R̂| . (30)

We use V (R̂, η) as a proxy for the probability of missed de-

tection, 1−p(H1;H1). Smaller values of V (R̂, η) indicate
smaller chances of an anomalous sample lying within this
ellipsoid, and therefore being wrongly classified as typical.
Therefore, for a fixed probability of false alarm, smaller

values of V (R̂, η) indicate higher detection accuracy.

VI. EXPERIMENTAL RESULTS

We provide experimental results using simulated and
real data to quantify the effectiveness of our proposed
method. In all experiments, we assume communications
occur between sensors connected in a hierarchical network
with binary tree topology, and that communication of one
scalar value between adjacent sensors uses one unit of
energy. We compare the vector SMT decorrelation with
two other approaches for processing the sensor outputs,
a centralized and an independent one. In the centralized
approach, all sensors communicate their h-dimensional
vector outputs to the root of the tree. This approach is
very communication intensive, but once all the data is
centrally located, any decorrelation algorithm can be used
to decorrelate x. We choose the scalar SMT algorithm
because it has been shown to provide accurate decorrelation
from limited training data since it approximates the max-
imum likelihood estimate. In the independent approach,
each sensor computes a partial likelihood of its output
independently and communicates it to the root of the tree.
The root sensor adds the partial likelihoods from all sen-
sors and makes a detection decision without decorrelating
the sensor outputs. This requires the least communication
among all approaches compared. Fig. 4(a) summarizes
these approaches in terms of their main computation and
communication characteristics. Finally, Fig. 4(b) shows the
event detection simulation steps by a camera network in
several of our experiments. Each camera sensor records
an image and encodes its h-dimensional vector output
using principal component analysis (PCA). We process the
outputs using one of the approaches in Fig. 4(a) before
making a detection decision.

A. Simulation experiments using artificial model data

In these experiments, we study how the vector SMT
model accuracy changes with (i) different choices of
decorrelating transforms used as the pairwise transform
between two sensor outputs, and (ii) different values of
the energy constraint parameter, µ used in the constrained
design in Sec. IV-C. We simulate a network with L = 31
sensors, in which each sensor i outputs a vector, x(i)

with h = 25 dimensions. These sensor vector outputs
are correlated. Fig. 5 shows how we generate a data
sample x, aggregated from correlated sensor outputs x(i),
i = 1, · · · , 31. First, we draw each x(i) independently, from
the N (0, R) distribution, with the h×h covariance matrix,

Processing/Decorrelation Methods
Method Algorithm Communication Decorrelation

Vector SMT Vector SMT Between pairs of sub-vector pairs
(distributed) nodes / caching in network
Centralized Scalar SMT Vector outputs to coordinate pairs

centralized node at single node
Independent None Partial likelihoods –

to centralized node
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Fig. 4: The experimental setup: (a) Summary of the several approaches to sensor
output decorrelation compared and their main properties. (b) Steps for decorrelation
and anomaly detection used in our experimental results. Each sensor encodes its
output as an h-dimensional vector using PCA. Experiments with artificial data
replace the sensor vector outputs with artificially generated random vector data.
The outputs are processed in the network before a detection decision is made.
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Fig. 5: Generation of a data sample, x aggregated from correlated h-dimensional

sensor outputs x(i), i = 1, · · · , L, using an artifical model. (a) First we draw

each x(i) independently from the N (0, R) distribution, with [R]rs = ρ|r−s|.

Then, we permute individual coordinates of x across all x(i), i = 1, · · · , L to

spread correlations among all sensor outputs. (b) Each x(i) is the output of a sensor
i connected to other sensors in a hierarchical network with binary tree topology.

[R]rs = ρ|r−s|, where ρ = 0.7. Then we perform random
permutations of the individual coordinates of x across all
x(i), i = 1, · · · , 31, to spread correlations among all sensor
outputs. Finally, each x(i) is the output of a sensor i
interconnected in a hierarchical network with binary tree
topology.

Fig. 6 shows the vector SMT model accuracy vs. com-
munication energy required for decorrelation for three
different choices of pairwise transforms: scalar SMT with
fixed number of Givens rotations, scalar SMT with MDL
criterion, and Karhunen-Loève (eigenvector matrix from
the exact diagonalization of the pairwise sample covari-
ance). We measure accuracy by the average log-likelihood
of the vector SMT model over n = 300 testing samples
(Fig. 6(a)), and the ellipsoid log-volume covering 99% of
the testing samples, i.e., for 1% false alarm rate (Fig. 6(b)).
In general the model accuracy improves to an optimal level
and then starts to decrease as more energy is spent with
pairwise transforms. This decrease in accuracy happens
because vector SMT models with a large number of pair-
wise transforms tend to overfit the training data. For scalar
SMT-MDL pairwise transforms, the MDL criterion adjusts
the number of Givens rotations for each new pairwise
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Fig. 6: Vector SMT model accuracy vs. communication energy consumption using
100 training data samples from an artificial model. Comparison of different vector
SMT pairwise transforms for a range of communication energies: (a) average log-
likelihood over 300 test samples; (b) ellipsoid log-volume covering 99% of the test
samples (1% false alarm rate). The choice of scalar SMT MDL produces the best
increase in accuracy, measured by both metrics. Here, a unit of energy is the energy
amount required to transfer one scalar value in one hop.
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Fig. 7: Comparison of vector SMT energy constraint parameter values for a range of
communication energies using 100 training data samples from an artificial model.
(a) average log-likelihood over 300 test samples; (b) ellipsoid log-volume covering
99% of the test samples (1% false alarm rate). Vector SMT models with larger
µ are the most accurate for fixed small energy values. For large energy values,
the constrained models tend to exhibit sub-optimal accuracies compared to the
unconstrained vector SMT. Here, a unit of energy is the energy amount required
to transfer one scalar value in one hop.

transform according to an estimate of the correlation still
present in the data [9], helping to prevent overfitting. Since
it is overall the most accurate, the scalar SMT-MDL is our
pairwise transform of choice during all other experiments
in this paper.

Fig. 7 shows model accuracy vs. communication energy
for three choices of the energy constraint parameter µ.
The accuracy is measured by average model log-likelihood
(Fig. 7(a)) and ellipsoid log-volume covering 99% of the
testing samples (Fig. 7(b)). The parameter µ selects the
trade-off between model accuracy and energy consumption.
For a small fixed energy value, the vector SMT with largest
µ value produces the most accurate model. For large values
of energy, the constrained vector SMT accuracy tends to
level out at sub-optimal values while the unconstrained
vector SMT has the highest accuracy.

B. Simulation experiments using artificial moving sphere
images

In this experiment, we apply the vector SMT to decorre-
late two simultaneous camera views for anomaly detection.
We generate artificial images of a 3D sphere placed at
random positions along two straight diagonal lines over
a plane, as illustrated in Figs. 8(a) and (b). We refer to
sphere positions along the line in Fig. 8(a) as typical ones,
while referring to positions along the mirrored diagonal
line in Fig. 8(b) as anomalous ones. Two cameras (L = 2)
monitor the sphere locations in the 3D region. Fig. 8(c)
shows the top (X-Y) view captured by camera 1, while
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Fig. 8: Simulated 3D space with bouncing sphere: the sphere takes random positions
along the line indicated by the double arrow (a) typical behavior; (b) anomalous
behavior. The camera views: (c) top (X-Y dimensions); (d) side (X-Z dimensions).
The detection accuracies using independent processing and vector SMT joint
processing: (e) ROC curve; (f) “coverage plot” with log-volume of ellipsoid vs.
probability of false alarm.

Fig. 8(d) shows the side (X-Z) view captured by camera
2. Note that it is impossible to tell anomalous from typical
sphere positions by looking at the views in Figs. 8(c) and
(d) separately. Instead, one needs to process both views
together to extract useful discriminant information. Each
camera outputs a vector of h = 10 dimensions with
its largest PCA components. The joint output from both
cameras form a sample. We use 100 typical samples to
train the detectors using vector SMT decorrelation and
independent processing of the views. During testing, we
use 200 samples, disjoint from the training set, with 100
typical, and another 100 anomalous samples.

Figs. 8(e) and (f) compare the detection accuracy using
both independent processing and vector SMT to decorrelate
the joint camera outputs. Both the ROC analysis (Fig. 8(e))
and ellipsoid log-volume coverage plot (Fig. 8(f)) suggest
that when the two views are processed independently,
the detector cannot distinguish anomalous from typical
samples. However, when the vector SMT decorrelates both
views, anomaly detection is very accurate.

Fig. 9 shows sets with five eigen-images associated with
the largest eigenvalues for both the independent (Fig. 9(a))
and the vector SMT (Fig. 9(b)) processing approaches.
In the independent processing case, each eigen-image is
associated with a single camera view. On the other hand,
the vector SMT processing produces eigen-images, each
modeling both camera views jointly.
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(a)

(b)

Fig. 9: Eigen-images of the moving sphere experiment. The five eigen-images
(columns) are associated with the five largest eigenvalues in decreasing order (left-to-
right). Each eigen-image has two views (top and bottom rows). (a) when the camera
views are processed independently, each eigenvector models a single view; (b) when
the camera views are processed jointly using the vector SMT, each eigenvector
models both views together.

C. Simulation experiments using artificial 3D sphere cloud
images

In this experiment, we monitor clouds of spheres using
twelve simultaneous camera views for the purpose of
anomaly detection. We artificially generate sphere clouds
randomly positioned in the 3D space, each containing 30
spheres. There are two types of clouds according to the
sphere position distribution: (i) typical: the sphere positions
are generated from the N (0, I3×3) distribution, but only
positions with distance from the origin exceeding a fixed
threshold are selected, so that the resulting cloud is hollow;
and (ii) anomalous: the random positions for the spheres
are drawn from the N (0, I3×3) distribution without further
selection so that the resulting cloud is dense. We monitor
the same 3D cloud using L = 12 different cameras from
different viewpoints, and each camera encodes its output
using PCA to a vector of h = 10 dimensions. Fig. 10 shows
the twelve camera views for both a typical cloud sample
(Fig. 10(a)), and for an anomalous one (Fig. 10(b)). Each
data sample is formed by aggregating the twelve camera
outputs. We generate 100 typical samples to train the
detectors, and another 200 test samples, with 100 typical,
and 100 anomalous.

Fig. 11 shows anomaly detection accuracy based on
ROC analysis (Fig. 11(a)), and log-volume of ellipsoid
(Fig. 11(b)). Among all methods compared, detection using
independent processing is the least accurate, while both
the centralized processing using scalar SMT and the dis-
tributed processing using vector SMT lead to high detection
accuracies. Intuitively, as the views in Fig. 10 suggest, it
is difficult to distinguish between typical and anomalous
samples by processing each view independently. Instead,
the information that helps distinguishing an anomalous
cloud from the typical ones is contained in the joint view
of the camera images.

Fig. 11(c) shows the ellipsoid log-volume for 1% false
alarm rate vs. the communication energy for the different
approaches compared. Independent processing is the least
accurate while requiring the minimum energy among all

TABLE I: Correlation score values for all pairs of views in the courtyard dataset.
The correlation score measures the correlation of camera outputs between pairs of
camera views. Pairs of cameras capturing the same events simultaneously have the
highest correlation scores.

1 2 3 4 5 6 7 8
1 1.00 0.72 0.59 0.66 0.61 0.74 0.72 0.00
2 - 1.00 0.59 0.66 0.59 0.70 0.76 0.00
3 - - 1.00 0.61 0.49 0.59 0.62 0.00
4 - - - 1.00 0.57 0.66 0.68 0.00
5 - - - - 1.00 0.59 0.60 0.00
6 - - - - - 1.00 0.72 0.00
7 - - - - - - 1.00 0.00
8 - - - - - - - 1.00

approaches. The centralized approach is very accurate,
but it requires significant communication energy. In the
vector SMT decorrelation, each pairwise decorrelation
increases the detection accuracy while consuming more
energy. There is a trade-off between detection accuracy
and energy consumption, and one can choose the number of
pairwise transforms to apply based on the desired accuracy
and available energy budget. Finally, detection is more
accurate when using vector SMT decorrelation compared
to the scalar SMT for the same energy consumption. This
difference in accuracy is due to the inherent constraint of
the vector SMT decorrelating pairs of vectors, which tends
to produce better models of a distribution when a limited
number of training samples is available.

D. Simulation experiments using real multi-camera images

Fig. 12 shows L = 8 camera views of a courtyard,
constructed from video sequences from the UCR Vide-
oweb Activities Dataset [48]. Each camera records a video
sequence of approximately 4.2 min, with 30 frames/sec,
generating a total of 7600 frames. The sequences are
synchronized, so that multiple cameras capture events
simultaneously. We subsample 1 in 3 frames from the 7600-
frame sequence, and use 800 of the selected samples to
compute the encoding PCA transforms for each camera
view. The final courtyard dataset has 1734 samples of
p = 160 dimensions, with each view encoded in a sub-
vector of h = 20 dimensions.

Table I shows correlation score values for all view pairs.
Pairs of highly correlated views, capturing mostly the same
events (as with cameras 1 and 6), receive higher score
values than weakly correlated view pairs. The events cap-
tured by camera 8 are unrelated, and therefore uncorrelated,
to the events captured by the other cameras, resulting in
negligible correlation score values.

Fig. 13 shows two eigen-images associated with the
two largest eigenvalues for both the independent and vec-
tor SMT approaches. In the independent processing case
(Fig. 13(a)), each eigen-image corresponds to a single
camera view, containing no information regarding the re-
lationship between different views. On the other hand,
the vector SMT eigen-images (Fig. 13(b)) contain joint
information of the correlated views. Since camera view 8
is not correlated with any other view, it does not appear
together with others in the same eigen-image.

Fig. 14 compares the accuracy of all approaches mea-
sured by the log-volume of the ellipsoid covering test
samples. We split the samples into a training set, with 300
samples, and a test set, with 1434 samples. Fig. 14(a) shows
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(a) (b)
Fig. 10: The twelve camera views of a 3D sphere cloud sample: (a) a typical sample (hollow cloud); (b) an anomalous sample (dense cloud). It is difficult to discriminate
anomalous from typical samples by processing each view independently. Instead, the discriminant information is contained in the joint camera views.
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Fig. 11: Anomaly detection accuracy using the sphere cloud data: (a) ROC analysis;
(b) log-volume of ellipsoid vs. probability of false alarm. Vector SMT decorrelation
yields to the most accurate detection results for all false alarm rates. (c) log-volume
of ellipsoid for 1% false alarm rate, i.e., 99% coverage vs. communication energy.
Here, a unit of energy is the energy amount required to transfer one scalar value in
one hop.

the ellipsoid log-volume computed for all false alarm rates.
The vector SMT is the most accurate approach, with its
volumes being the smallest across all false alarm rates. The
vector SMT volumes are also smaller than the scalar SMT
volumes. As discussed in Sec. VI-C, the vector SMT is
more accurate than the scalar SMT because of the nature
of its constrained decorrelating transform when trained with
a small training set. Fig. 14(b) shows results of the same
experiment as in Fig. 14(a) with the vector SMT model
order selected so that the distributed decorrelation con-
sumes only 50% of the energy required for the centralized
approach. Fig. 14(c) shows the ellipsoid log-volume for a
fixed false alarm rate (0.8%) vs. communication energy.
We observe the same trends observed in the sphere cloud
experiment in Sec. VI-C. The independent approach has
low accuracy while requiring low communication energy.
The centralized decorrelation is highly accurate, but it re-
quires large amounts of communication energy. The vector
SMT increases the detection accuracy after each pairwise
transform. Finally, the vector SMT approach has similar
accuracy to the centralized approach for all false alarm rates

while requiring significantly less communication energy.

Figs. 15(a)-(c) show ROC curves for detection of anoma-
lous samples generated by an artificial 4-fold increase in
the largest component of the vector output of a single
camera view, and injected in views 2, 6, and 8, respectively.
We use 200 typical samples to learn the decorrelating
transform and the remaining samples for testing. Since
views 2 and 6 are correlated with other views (see Table I),
detection of anomalies in these views is accurate when we
decorrelate the views using the vector and scalar SMT
approaches, and very inaccurate when we process the
views independently. Because view 8 is uncorrelated with
other views, decorrelation does not help improve detection
accuracy and all approaches are inaccurate.

Figs. 15(d)-(f) show the ROC curves for detection of
what we call the “Ocean’s Eleven” anomaly, injected into
the camera views 2, 6, and 8, respectively. This anomaly
is generated by swapping images of a single view between
two samples captured at different instants. We refer to it as
the Ocean’s Eleven anomaly because of the resemblance
with the anomaly created to trick the surveillance cameras
during the casino robbery in the Ocean’s Eleven film [49].
Since views 2 and 6 are correlated with other views, detec-
tion is accurate when we decorrelate the views with scalar
and vector SMTs, and very inaccurate when we process
the views independently. Because view 8 is uncorrelated
with the other views, decorrelation does not help improve
detection accuracy and all approaches are inaccurate.

Fig. 15(g) shows the ROC curves for detection of a
suspicious (anomalous) activity where people coalesce in
at the center of the courtyard. Fig. 16 shows the typical and
anomalous samples used in this experiment. We select 200
samples where a group of people coalesces at the center of
the courtyard and label them as anomalous, while selecting
another 200 samples where the group does not coalesce and
label them as typical. We use another 300 typical samples
to train the vector SMT. The vector SMT decorrelation in
this experiment consumes 60% of the communication en-
ergy required for the scalar SMT. Detection is very accurate
when using vector and scalar SMTs for view decorrelation,
and inaccurate when processing the views independently,
specially for low probabilities of false alarm. Similarly to
the detection of dense clouds (see Sec. VI-C), it is difficult
to detect people coalescing when processing camera views
independently. Instead, one needs to to consider the views
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Fig. 12: The courtyard dataset from the UCR Videoweb Activities Dataset: eight cameras, with ids 1 to 8 from left to right, monitor a courtyard from different viewpoints.
Several activities in the courtyard are captured simultaneously by several cameras.

(a) (b)
Fig. 13: Two eigen-images from the eight camera views of the courtyard dataset. Each eigen-image has eight views (columns) associated to it. (a) independent processing
of camera views: each eigen-image corresponds to a single view and does not contain correlation information among multiple views; (b) joint processing modeled by the
vector SMT: each eigen-image contains joint information of all correlated views.
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Fig. 14: Detection accuracy measured by the ellipsoid log-volume for the courtyard
data set. Coverage plots showing the log-volume vs. probability of false alarm:
(a) model order, M = 7, matching the energy of centralized processing, (b)
model order, M = 4, matching 50% of the energy consumed for the centralized
processing; (c) log-volume vs. communication energy for fixed probability of false
alarm, PFA = 0.008. When the communication energy is equal to the level
required to execute the scalar SMT at a centralized node, the vector SMT has better
detection accuracy. When the energy level is 50% of the level required by the
centralized approach, the vector SMT has similar accuracy. Here, a unit of energy
is the energy amount required to transfer one scalar value in one hop.

jointly for good detection accuracy.

VII. CONCLUSIONS

We have proposed a novel method for decorrelation of
vector measurements distributed across sensor networks.
The new method is based on the constrained maximum
likelihood estimation of the joint covariance of the mea-
surements. It generalizes the concept of the previously
proposed sparse matrix transform to the decorrelation of
vectors. We have demonstrated the effectiveness of the new
approach using both artificial and real data sets. In addition
to providing accurate decorrelating transforms and enabling
accurate anomaly detection, our method offers advantages

in terms operating distributedly, under communication en-
ergy constraints. In future work, we plan to provide a
distributed algorithm to design the decorrelating transform
in-network.

APPENDIX

A. Change in likelihood due to the decorrelating transform,
T

Let X be a p× n matrix with n p-dimensional samples
with covariance R. Assuming the covariance can be de-
composed into R = TΛT t, where Λ is diagonal and T is
orthonormal, the Gaussian log likelihood of X is given by

log p(T,Λ)(X) = −
n

2
tr[diag(T tST )Λ−1]−

n

2
log(2π)p|Λ| ,

(31)
where S = 1

nXXt is the sample covariance. The maximum
likelihood estimate of Λ given T is

Λ̂(T ) = diag(T̂ tST̂ ) .
The log likelihood in (31) maximized with respect to Λ is
given by

log p(T,Λ̂(T ))(X) = −
np

2
−
np

2
log(2π)−

n

2
log |diag(T tST )| .

(32)
Similarly, for T = I , where I is the p× p identity,

log p(T,Λ̂(I))(X) = −
np

2
−

np

2
log(2π)−

n

2
log |diag(S)| .

(33)
Therefore, the change in likelihood due to T is given by
the difference between (32) and (33):

∆log p(T,Λ̂(T ))(X)= log p(T,Λ̂(T ))(X)− log p(I,Λ̂(I))(X)

=−
n

2
log

|diag(T tST )|

|diag(S)|
. (34)

B. The Correlation Score

The correlation score is a measure of correlation between
two vectors. This correlation score is used in Sec. IV-B to
select the most correlated pair of sensor vector output for
decorrelation.

11
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(g)

Fig. 15: ROC analysis of detection accuracy: (a)-(c) artificially generated anomalies by a 4-fold increase in the largest eigenvalue of a single view for views 2, 6 and 8,
respectively. (d)-(f) Ocean’s Eleven anomalies, generated by swapping images of a single camera view between samples for views 2, 6 and 8, respectively. Decorrelation
improves detection accuracy when anomalies appear in correlated camera views (2 and 6). When the anomaly is inserted in a uncorrelative view (8), decorrelation methods
do not improve the detection accuracy. (g) people coalescing in the middle of a courtyard: scalar and vector SMTs are highly accurate for small probabilities of false alarm
with vector SMT consuming approximately 60% of communication energy required for the scalar SMT.

(a)

(b)
Fig. 16: Samples used in the experiment detecting people coalescing in the middle of
the courtyard: (a) Typical samples; (b) Anomalous samples, with images of people
coalescing.

Definition Let x and y be two vectors with covariances Rx

and Ry respectively, and joint covariance Rxy. The vector
correlation coefficient between x and y is

Fxy =

√
1−

|Rxy|

|Rx||Ry|
.

Proposition A.1: Let x and y be p-dimensional Gaussian
random vectors. The mutual information 1 I(x, y) between
x and y in terms of their vector correlation coefficient is

I(x; y) = −
1

2
log

(
1− F 2

xy

)
.

1Total correlation is a related concept [12], generalizing the concept of
mutual information to multiple random variables.

Proof:

I(x; y)=h(x) + h(y)− h(x, y) (35)

=
1

2
log[(2πe)p|Rx|] +

1

2
log[(2πe)p|Ry|]

−
1

2
log[(2πe)2p|Rxy|] (36)

=
1

2
log

[
|Rx||Ry|

|Rxy|

]
(37)

=−
1

2
log[1− F 2

xy] (38)

Proposition A.2: Let x and y be both unidimensional
(scalar) Guassian random variables with covariances σ2

x
and σ2

y , respectively, and correlation coefficient ρxy . Then,

Fxy = |ρxy|.
Proof: We have that |Rx| = σ2

x and |Ry| = σ2
y .

The covariance of the joint distribution of x and y is

Rxy =

[
σ2
x ρxyσxσy

ρxyσxσy σ2
y

]
.

Fxy =

√
1−

|Rxy|

|Rx||Ry|
(39)

=

√
1−

σ2
xσ

2
y − ρ2xyσ

2
xσ

2
y

σ2
xσ

2
y

(40)

=
√

1− (1− ρ2xy) (41)

=
√

ρ2xy (42)

= |ρxy| (43)
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