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Abstract—Recent work has shown that retransmission-
s can cause heavy-tailed transmission delays even when
packet sizes are light-tailed. Moreover, the impact of heavy
tailed delays persist even when packets are of finite size.
The key question we study in this paper is how the use
of coding techniques to transmit information could miti-
gate delays. To investigate this problem, we consider an
important communication channel called the Binary Era-
sure Channel, where transmitted bits are either received
successfully or lost (called an erasure). This model is a
good abstraction of not only the wireless channel but also
the higher layer link, where erasure errors can happen.
Many coding schemes, known as erasure codes, have been
designed for this channel. Specifically, we focus on the fixed
rate coding scheme, where decoding is said to be successful
if a certain fraction 3 of the codeword is received correctly.
We study two different scenarios: (I) A codeword of length
L. is retransmitted as a unit until the receiver successfully
receives more than L. bits in the last transmission. (II) All
successfully received bits from every (re)transmissions are
buffered at the receiver according to their positions in the
codeword, and the transmission completes once the received
bits become decodable for the first time.

Our studies reveal that complicated and surprising rela-
tionships exist between the coding complexity and the trans-
mission delay/throughput. From a theoretical perspective,
our results provide a benchmark to quantify the tradeoffs
between coding complexity and transmission throughput
for receivers that use memory to buffer (re)transmissions
until success and those that do not buffer intermediate
transmissions.

[. INTRODUCTION

The use of retransmissions is a fundamental mechanism
to ensure reliable transfer of data over communication
channels and networks [1]. Recent studies [2], [3],
[4] have revealed that all retransmission-based protocols
could cause heavy-tailed transmission delays, resulting in
very long delays and possibly zero throughput. Moreover,
the distribution of the delay could have a large heavy
tailed component, even when packets are bounded. In
this paper, we investigate the use of coding techniques
to transmit information, which could substantially reduce
the delay and improve the throughput.
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In our analysis, we consider an important communi-
cation channel called the Binary Erasure Channel. The
Binary erasure channel, first introduced by Elias [5] in
1954, has been found to be invaluable in characterizing
a number of typical communication channels. Erasures oc-
cur when the bits are not received successfully during the
transmission while the positions of the erroneous bits are
known in the received stream. This model describes the
situation when information may get lost due to a variety
of factors (e.g., signal fading, interference, obstructions,
contention with other nodes and node mobility). The Bi-
nary erasure channel captures these errors in a direct way:
the binary bit transmitted is either received successfully
or lost.

Erasures in communication systems can arise in differ-
ent layers. At the physical layer, if the received signal falls
outside acceptable bounds, it is declared as an erasure. At
the data link layer, some packets may be dropped because
of checksum errors. At the network layer, packets that
traverse through the network may be dropped because of
the buffer overflow at intermediate nodes and therefore
never reach the destination [6]. All these errors can result
in erasures in the received bit stream.

It is well known that the capacity of a binary erasure
channel with erasure probability of 1 — v is equal to v
[71, which is difficult to achieve using only feedback and
retransmissions. Therefore, many coding schemes, known
as erasure codes, have been designed for this channel.
Using erasure codes, even when some portions of the
codeword are lost, it is still possible for the receiver
to recover the corresponding message using the rest of
successfully received bits. Roughly speaking, the encoder
transforms a message of L symbols into a longer code-
word of L. symbols, where the ratio 5. = L/L. is called
the code rate. An erasure code is said to be near optimal
if it requires slightly more than L symbols, say (1 +¢)L
ones (¢ > 0), to recover the message, where ¢ can be
made arbitrary small at the cost of increased encoding
and decoding complexity. Until now, many elegant low
complexity erasure codes have been designed for erasure
channels. They can be divided into two broad categories:
fixed rate and rateless codes. Fixed rate erasure code, e.g.
Tornado Code [8], is named so because the code rate j. is



fixed during the transmission. On the other hand, rateless
erasure codes, also known as fountain codes, e.g. LT-code
[9] and Raptor code [6], takes a different approach. It
generates infinite output blocks for an input message of
length L, which results in a variable code rate. Yet it
can still guarantee that any successfully received (1+¢)L
number of bits result in successful decoding.

In terms of the time complexity for encoding and decod-
ing, the best erasure code is of the order O ((log1/¢)L/f.)
[8][6]. Throughout this paper, we only focus on fixed
rate codes, where decoding is said to be successful if a
fixed fraction 8 £ B.(1 + ¢) of the codeword is received
correctly.

Specifically, we study two different scenarios in this
paper. (I) Without memory: A codeword of length L.
is retransmitted as a unit until the receiver successful-
ly receives more than SL. number of bits in the last
transmission. This is the typical scenario in most current
communication paradigms, where the receiver does not
keep track of which bits were received successfully. This
scenario occurs because receivers may not have the req-
uisite computation/storage power to keep track of all the
erasure positions and the bits that have been successfully
received, especially when the receiver is responsible for
handling a large number of flows simultaneously. (II)
With memory: All successfully received bits from every
(re)transmissions are buffered at the receiver according
to their positions in the codeword, and the transmission
completes once the received bits become decodable for
the first time. With increasing processor and memory
speeds, this scenario is likely to become standard in future
communications.

The main contributions of our work can be summarized
as follows: Our studies reveal complicated relationships
between the coding complexity (determined by 3) and the
transmission delay/throughput. For example, although a
smaller 8 implies a higher coding/decoding complexity
and a longer codeword, a longer codeword does not
necessarily cause a longer transmission delay. However,
we note that if a codeword is too long it degrades the
throughput as well, since the throughput goes to zero
when 8 — 0. Under a general Markov erasure channel
(correlated channel) with a codeword length having an
exponential (light) tail, we show that, when the receiver
cannot utilize the successfully received bits from previ-
ous transmissions of the same codeword (memoryless
case), the system exhibits an intriguing phase transition
phenomenon: the transmission delay follows power law
distribution if 8 > + (recalling that v is the erasure
channel capacity) and exponential distribution if 8 < ~.
This phase transition phenomenon may have an important
impact on the channel throughput: the system will ex-
perience a zero throughput when the transmission delay
follows a power law with index less than one; the delay
will have less variability if the delay distribution is light-
tailed, which is more desirable if the decay rate of this

distribution is large. For both cases, we characterize the
distribution of the delay in Theorem 1, and show how
they are related to the channel dynamics and codeword
length variability.! On the other hand, if the receiver
can combine the received bits of the same codeword
from all (re)transmissions, the delay distribution is always
exponential, with a complicated decay rate that depends
on both codewords and channel dynamics. The computa-
tion of this decay rate involves an optimization problem,
which can be solved using numerical methods. From a
theoretical perspective, our results provide benchmarks
to quantify the tradeoffs between coding complexity and
transmission throughput for receivers with and without
memory.

The remainder of this paper is structured as follows:
after the model description in Section II, we provide
the results for the situation without memory in Section
1T, where a phase transition phenomenon for the delay
distribution is presented. Then, in Section IV, we investi-
gate the situation with memory, and show that the delay
distribution is light tailed. All the proofs are presented
in Section VI. Finally, in Section V, we provide numerical
studies to verify our main results.

II. SYSTEM MODEL

We denote the number of bits of the codeword by L.,
which has a lower bound I3, with I, £ inf{z : P[L, >
x] < 1}. We model the channel dynamics as a slotted
system such that within each time slot only one bit can
be transmitted. Furthermore, we assume that the slotted
channel is characterized by a binary stochastic process
{Xn}n>1, where X,, = 1 corresponds to the situation
when the bit transmitted at time slot n is successfully
received, and X,, = 0 when the bit is lost (called an
erasure). We focus on the fixed rate codes, where decod-
ing is successful when a fixed fraction 0 < § < 1 of the
codeword is received correctly.

In practice, the channel dynamics are often temporarily
correlated. To this end, we investigate the situation where
the current channel status distribution only depends on
the preceding £ > 0 time slots. More precisely, for
Fn = {Xiti<n,m > 1 and fixed k& > 0, we define
Hp ={Xn, +, Xn_ky1} forn >k > 1withH, = {0,Q}
for k = 0, and assume throughout this paper that P[X,, =
1|Fn-1] = P[X,, = 1|H,—1] for all n > k. In other words,
the augmented state Y,, 2 (X,,, -+, X,,_%),n > k form a
Markov chain. Denote by II the transition matrix (2* by
2F) of this Markov chain {Y;,},>x+1, where

IT = (m(s, U))s,ue{o,l}k Y]

1As an aside, it should be noted that although bounded packet sizes
result in the tail of the delay distribution being eventually exponential,
the main body of the distribution, as shown in [10], can still follow a
power law (i.e., heavy tailed). Moreover, as shown in [10], the heavy
tailed main body could dominate even for relatively small values of the
maximum packet size. This implies that the impact of retransmissions
on delays needs to be carefully examined and controlled.



with 7 (s, u) being the one-step transition probability from
state s to state u. Throughout this paper, we assume that
IT is irreducible and aperiodic, which ensures that this
Markov chain is ergodic [11]. Therefore, for any initial
value Hy, the parameter v is well defined

v = lim P[X, =1],

n— oo

and, from the ergodic theorem (see Theorem 1.10.2 in

[11D), .
B tim =i

n—00 n

=1

Note that the value of the current channel state X,, is
equal to the first element of the vector Y,,. Thus, we define
the function f(-) that returns this element for a vector
drawn from the set {0,1}*, i.e.,

f ([Xna e aXn—k—&-lD

= X,.

Codeword unit

Erasure Channel

Resend

No

l Erased bit
|:| Received bit

Fig. 1. Codewords sent over erasure channel

We investigate two scenarios: with and without mem-
ory, as discussed in the Introduction.

Definition 1 (Without memory). The total number of
transmissions for a codeword of length L. is defined as

L.
Nf £ inf {TI, : ZX(nfl)Lc+i > BLC} s

i=1
and, the total transmission time is Ty = Ny L,.

Definition 2 (With memory). The total number of trans-
missions for a codeword of length L. is defined as

Zl ZX(] 1)L, +LZ]- >6L ’

2 N, L.

A
= inf

and, the total transmission time is T,,

In Sections III and IV, we will investigate the delay
asymptotics of the retransmission system for each of the
above cases. However, we first study the failure probabil-
ity of just a single transmission.

A. Failure probability of a single transmission

We first investigate the failure probability of a single
transmission P[N; > 1] when L. is a fixed value, i.e.,
L. =1, and f is very close to v (more general relation-
ships between [ and ~ are studied in later sections). The
following result characterizes the relationship between
(which determines the code rate and complexity) and the
failure probability for one transmission P[N; > 1].

Proposition 1. If {X,};>1 is an i.i.d. sequence and =

Y(1+ av/v/(Bl.))~! for some fixed a, then, for 0 < v < 1,
Jim PNy > 1= @ (av/3(1=7) 7).

where Q(z) = [ 1/ 2me=v 2 du,

Proof: For the Bernoulli channel model,

lim P[Ny > 1] = lim IP’[ZX < Bl,

le—00
= lim Z’L 1 X ’Yl (6 - ’7)lc
le %00 Vi Var(X \/lCVar(X)

(v =BVl —
llgnooQ< Var(X)>@(a AT=)7T).

|

We can prove a similar result for the more general
Markov channel. Due to limited space, we present it in
the technical report [12]. Since Q(x) decreases very fast,
choosing § close to v, according to Proposition 1, gives a
good balance between complexity and failure probability.
On the other hand, the preceding result shows that the
failure probability P[N; > 1] is very sensitive to «, which
implies that the error from estimating ~ can change the
failure probaility of a single transmission dramatically if
choosing 8 ~ . Note that lim;__,~, /7 = 1 in Proposi-
tion 1; see Example 1 in Section V for more discussions.

ITI. RECEIVER WITHOUT MEMORY

For receivers that do not have the required computa-
tion/storage power, it is difficult to keep track of all the
erasure positions and the bits that have been successfully
received. In this section we study the situation when
the transmission only completes when the number of
successfully received bits in the last transmission exceeds
3 fraction of the codeword.

Interestingly, we observe an intriguing phase transmis-
sion phenomenon for this situation. We show that, under
a general Markov channel model, when the length of the
codeword has an exponential tail, the transmission delay
is light-tailed (exponential) only if v > [, and heavy-
tailed (power law) if v < 3.

In order to present the results, we first introduce some
necessary definitions. Recalling Equation (1) and the



function f(-) defined afterwards, for a real number 6 and
k > 1, we define a matrix Iy = (my(s,u)) by

mo(s,u) = n(s,u)e?* W s ue {0,1}* k> 1,
and for £ = 0 (when {X;};>; is an i.i.d. sequence),
mo(s,u) = P[X; = u]e? ™ s ue {0,1},k=0.

Definition 3. Let p(my) denote the Perron-Frobenius eigen-
value (see Theorem 3.1.1 in [13]) of the matrix Ily, which
is the largest eigenvalue of Tl,.

Theorem 1 (Phase Transition Phenomenon). If there
exists A > 0 and z > 0, such that,

logPlzx < L, < z + 2]
m

li = - 2)
T—00 T
we obtain:
1) If B > ~, then
lim log P[Ny > n]
n—o0 logn
. logP[Ty >t] A
- t1l>Igo logt A(B)’ (3)
where A(3) £ supy {03 — log p(mg)}.
2) If B <, then,
fm g BRI A @) A @)
lmin—00 t—00 t

Remark 1.1. The tail distribution of the transmission
delay changes from power law (3) to exponential (4),
depending on the relationship between the parameters
B8 and ~. If A\/A(B) < 1, the system even has a zero
throughput. The study of the critical case 8 = v requires
a more refined scaling, which is related to Proposition 1.
Equation (4) assumes that I, is large, which is a fact in
many real communication systems. Condition (2) can be
relaxed to z = o(log x); we avoid this generalization due
to limited space.

Proof: See Section VI. [ |

For the special case when {X;} is an i.i.d. sequence

(k = 0), we can compute A(3) explicitly, as shown in the
following corollary.

Corollary 1.1. Under the assumptions of Theorem 1 and
that {X,};>1 are i.i.d., we obtain

A(ﬁ)zﬁloggﬂl—ﬁ)logi_i-

Proof: Since 7(1,0) = 1 — y,7(1,1) = ~,7(0,1) =
~v,m(0,0) = 1 — ~, we obtain

_ 0
m- (177 7).

1—v ~ef
Then, to compute A() is straightforward. ]

IV. RECEIVER WITH MEMORY

For some applications, the receiver is equipped with
powerful devices that have the ability to keep track of all
the erasure positions and the bits that have been success-
fully received from all the (re)transmissions of the same
codeword. Different from the situation without memory,
we show that the transmission delays will be light-tailed
and have no phase transition under the general Markov
channel model. To compute the decay rate is complicated
for general Markov channels, and therefore, we study
the problem under the more restricted condition when
{X.;}i>1 is an i.i.d. sequence. The decay rate of the delay
distribution involves a complicated optimization problem.
We use numerical methods to solve it in Example 4 of
Section V.

When {X;};>; are i.i.d., using large deviation results
(e.g., Exercise 1.17 in [14], we know that, for z € (0,1)
and € > 0,

n

lim S logP | =3 (1 - X,) € (21 — ), (1 + €))

noeen it
- w(1_5><12f<x<1+e> Ay),
where
Ac(x):xlogli Jr(lfx)loglim (5)

To present our result, we introduce some necessary
notation. For a sequence {3;};>1,0 < f; < 1, we let
Vj £ H?:l ﬂj,i > 1 with Vg = 1.

Theorem 2. Under condition (2), there exists h,d > 0 such
that

P[T,, > t] < he™°". (6)

In addition, if {X;};>1 are i.i.d., then

lim log P[Tm > ] = —min{A°, A}, )

t— 00 t
where

Ly]
A° = inf y ! A(Bj)vj—1 + A
y>1

Remark 2.1. Equation (6) shows that, when the receiv-
er can combine all the bits from each (re)transmission
of the codeword, the delay is light-tailed (the distribu-
tion is upper bounded by an exponential function) for
general Markov channel. From the result (7), we see
that if A° > )\, then, combining all the bits from each
(re)transmissions can dramatically improve the system
performance, since it results in a delay distribution that
is of the same order of the distribution of L., which is
optimal in view of T,,, > L..

Proof: See Section VI [ ]
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Fig. 2. Illustration for Example 1

V. NUMERICAL AND SIMULATION EXAMPLES

In this section, we conduct simulation results to verify
our main results. As is evident from the following figures,
the simulations match theoretical results quite well. In
addition, when an explicit expression of the analytical re-
sult is not possible, e.g., for Theorem 2, we use numerical
methods to solve the optimization problem for computing
the asymptote.

Example 1: This example verifies Proposition 1, where
the codeword length I. is fixed. We choose a Markov
channel with £ = 3, v = 04706 and Bl. = 1000.
According to the result, if 3 = v(1+ ay/v/(Bl.)) !, then
limy, 00 P[Ny > 1] = Q(éax), where ¢ has an complicated
explicit expression (due to the limited space, we present
the details in the technical report [12]). Here we directly
present the numerical result £ = 1.782 that is computed
using the transition matrix (8 x 8, not shown here) of
the Markov channel. We plot Q(£«) and the simulated
result for P[N; > 1] in Figure 2. From the figure, it is
clear that the Q(¢a) function approximates P[N; > 1]
closely. Note that P[N; > 1] is sensitive with respect
to «. On the other hand, the corresponding code rate
B =1/(2.125+ 0.04610c) is not sensitive to «. Therefore,
carefully choosing 3 compared to v is very important in
practice, especially when it may be difficult to obtain an
accurate estimate of ~y

Example 2: In this example, we illustrate the interesting
phase transition phenomenon that occurs when receivers
do not combine previously received bits to decode (mem-
oryless case). We choose a Bernoulli channel where {X;}
is an i.i.d. sequence with v = E[X;] = 0.2 and assume
that the codeword length L. is geometrically distributed
with mean 100.

First, in Figure 3, we show that the delay distribution
follows a power law distribution when g < ~. This exper-
iment takes 3 sets of code rate: 5, = 0.24, 82 = 0.25, 33 =
0.26. By Theorem 1 (or Corrollary 1), P[Ny > n] follows
power law distribution with exponent equal to —2.095,
—1.355 and —0.9503, respectively. We plot the simulation
results for 10° samples and the corresponding asymptotes
on the log-log scale in Figure 3. As you can see, they
match very well for large n.

Dl - - ﬁ‘:0‘24 Simulation
$,=0.25 Simulation
S R B,=0.26 Simulation

X siinl o4 By=0.24 Asymptote

V*\.‘ * |32=0.25Asymptole
X

x: |33=0.26 Asymptote

10°F : s ’X&
L
X
10° 0 ‘2 3 ‘4 5
10 10 10 10 10 10
Number of retransmissions: n
Fig. 3. Illustration for Example 2
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1072k 53 + |33=0_175 Asymptote |
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Fig. 4. Illustration for Example 2

Next, we show that the delay distribution is expo-
nential when S > ~. We take three sets of code rate:
81 = 0.100,8; = 0.170, 83 = 0.175. According to The-
orem 1, for these three settings, — min{A(5), A} is equal
to —0.0043, —0.0029 and —0.0020, respectively. Notice that
A > A(B2), A > A(B3) and A < A(f51). We plot the results
in Figure 4. Again, they match very well.

Example 3: In this experiment we verify Theorem 1
when channel dynamics are correlated with & = 1.
Assume that the codeword length L. is geometrically
distributed with mean 100. Let P[X;;1 = 1|X; = 0] =
p01,IP’[XZ+1 = 0/X; = 1] = p1o, and we choose two sets
of pl,,ply,j = 1,2. For pt) = 0.2,p{)) = 0.8 and p{? =
0.1 pio) = 0.4, it is clear that v = p(J)/(p((n) +p9)) =02
for j = 1,2. Assuming code rate § = 0.25, we know,
by Theorem 1, that the distribution of the number of
retransmisions and delay will both follow power laws.
Using numerical method, we can compute the power law
decay rates —1.3546 and —4.1661, repectively. We plot
them in Figure 5.

Example 4: For receivers that can combine all the
received bits from all (re)transmissions, the delay dis-
tribution is always light-tailed, as shown in Theorem 2.
However, the computation of the decay rate involves
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a complicated optimization problem. In order to verify
this result, we assume that the codeword length L. is
geometrically distributed with mean 100, and choose four
different sets of parameters: 5, = 0.55,v; = 0.1,5; =
0.75,72 = 0.1,83 = 0.55,v3 = 0.2, and B4 = 0.75,74 =
0.2. The corresponding decay rates — min{A°, A} can be
computed by solving the optimization problem numeri-
cally, —5.4287 x 10~%, —3.1599 x 10~4, —1.1000 x 10~3,
—6.2042 x 10~*. From Figure 6, we can see that the
asymptotic results are quite accurate.

VI. PROOFS

A. Proof of Theorem 1

In order to the prove Theorem 1, we need the following
lemma that covers the case 8 > v and 3 < ~, respectively.

Lemma 2.1. For ¢ > 0, j > 1 and any values of
{Xi}G—1)i+1<i<(j—1)1+k> there exists [c > 0 such that, for
all 1 > 1,

1) If B > ~, then

p[z

X; > Bl] > ABATIL (8)
i=(j—1)I+k+1

X, > Bl — k] < e ABA=9L - (9)

PL_( 5

J—1)l+k+1
2) If 8 <, then

Pli

X; sm] > AR+ (10)
i=(j—1)l+k+1

Pli

X, < pl— k] < e AAA=9l - (17)
i=(j—1)l+k+1

Proof: This lemma is a direct application of Theorem
3.1.2in [13]. |

Proof of Theorem 1: 1) Observe the event that the
transmission of L. fails in the first n > 1 times is
equivalent to

L. 2L, nle
D Xi<BLe, », Xi<BLe-oy . X <PLe,
i=1 i=L.+1 i=(n—1)L.+1
implying that
7LC
PNy >n|L]=P| ) > Xi<BLcyp|Le
1<j<n | i=(j—1)L.+1

Due to the dependencies along the sequence {X;}, the

T .
g:(j—l)LC+1Xi <BL.t, 1 < j < n are not
independent. Now, we will construct upper and lower
bounds where we can decouple these events.

First, we prove the lower bound. Note that, for L. > k,

events

jLec
N > Xi<BL
1<j<n | i=(—1)Le+1
JjLc
>N >, Xi<BL.—ky, (12
1<j<n i=(—1)Le+k+1

therefore, if we ignore the first & bits for each transmission
of L., we get a lower bound to P[N > n|L.],

P[N; > n | L >P[N; >n,Le > k | L] >

JLe
P|Le>k, ) > Xi<PBL.—ky|L
1<j<n \i=(j—1)Lo+1+k

Let & = {X¢-nrer1 - XGnrenh, 1 <7 < n
Due to the memoryless property of Markov chain,
we know that, conditional on ¢&,, the events

T
ﬂ1gjgn71 {ZZ:(J‘—1)LC+1+1¢ Xi < BLc— k} and



[k (o-ip.t11x Xi < BLc — k} are independent.

Therefore,
JjLc
P|Le>k, () > Xi<PBLe—ky|Le
1<j<n i=(i—1)Lo+1+k
) lIP’ L.>k,
JjLc
1<j<n—1 \i=(j—1)L.+1+k
nlL.
xP|L. >k, > XigﬁLc—k;LC,é‘n]L
i=(n—1)Lo+14k
(13)
Now, in view of (9), for ¢ > 0 and [, chosen in

Lemma 2.1, we have, using (9) and the independence
of L. and {X;}i>1,

nl.

>

i=(n—1)L.+1+k
nle.

>

i=(n—1)Lot+1+k
> 1(Le > L) (]. - eiA(B)(lfe)LC) ,

P[Lc>k, X; <BL.—k|L., €&,

>P LC>ZE, XigﬁLc_kchgn

which, in combination with (13), implies that

JjLc
P|Le>k, ) > X; <BL.—k % |Le.
1<j<n | i=(j—1)Lo+1+k
JLec
ZP[LC>16, N { > XigﬁLc—k:} Lc]
1<j<n—1 \i=(j—1)L.+1+k
x (1= eM@0-9 ) (14)

By the same approach to condition on &,_;, we can
repeat the preceding argument to prove that

jLC
P|Le>le, () Y. Xi<PLeg|Le
1<j<n—1 | i=(j—1)L.+1+k
JjLc
>P|Le> 1, () { > XZSBLC}LC
1<j<n—2 \i=(j—1)Lo+1+k
« (1 _ e—A(ﬂ)(l—e)Lc>2
which, by further conditioning on &,,_», - -, results in

P[N; >n| L >1[Le > 1] (1 _ ewa)(H)LC)”.

Therefore, recalling condition (2) and unconditioning

on L., we obtain, for n large enough,

P[N; >n] =E[P[N; >n | L]
> E {Lc > 1., (1 - 67A<ﬂ)(176)LC) }
logn logn
2B <Le<ima_o %
{A(ﬁ)(l —€) AB)(1— o)
(1 A(B)(1—e€) ) }
logn log n
2B\ <Le<ima 5 T
[A(ﬁ)(l —6) A(ﬁ)(l—e)
(1 _ e_(10gn)> }
> €7>\(1+6)% (1 o e_(IOgn))n

Taking logarithms on both sides of the preceding inequal-

ity, we get

log P[Ny > n]
logn

A+
AB)(1 —¢)’

which, when € — 0, results in the lower bound.
Next, we prove the upper bound. Note that

lim sup
n—oo

JLe
m Z X; < BL.
1<j<n | i=(j—1)Le+1
JLec
1<j<n | i=(j—1)Lc+k+1

which implies that

jLe

>

i=(j—1)Le+1+k

PNy >n]<P| ) X; < BL,

1<j<n

Using the same technique as in the proof of the lower
bound and Equation (8), we can prove

P[N; > n] <P [LC > 1., (1 - e—A(ﬁ)(l-&—e)Lc)n}
+IP’[Nf >n, L, <]

(l—e <1+6>) P[L.

=1,

< =1 +0(e*"),
l

since P[Ny > n, L. <]
Condition (2) implies that P[L
l > 1., and thus

PNy >n] <O (/ (1 — e*/\(ﬂ)(lﬁ)w)" eA(1e)g;dx)
0

+O0(e™t).

= O(et") for some & > 0.
e = 1] < e M=l for

Computing the integrated in the preceding inequality, we
obtain
lim flogIP’[Nf>n] <_

'n,*)oo logn

A1 —¢)
AB) (1 +€)

which, with € — 0, proves the upper bound.




Now, we prove the result for P[T; > t]. The upper
bound follows by noting that

P[Tt > t] <P[NyL. >t,L. < hlogt] +P[L. > hlogt]
< P[Ny > t/(hlogt)] + P[L. > hlogt],

where lim;_, . logP[N; > t/(hlogt)]/logt = X/A(B),
and P[L. > hlogt] = o(P[Ny >t/(hlogt)]) for h large
enough.

The lower bound follows by noting that, for some Iy >
l1 >0with P[l; < L. < l3] >0,

P[Tf > t] > ]P’[NfLC > t,ll <L.< lg]
> P[Nf > t/ll]P[ll <L.< 12],

since this part is standard, we present the details in the
technical report due to the limited space.

2) In this part, we prove the equation (4). Define N(I)
to be the number of retransmissions for a packet of length
[ over the channel {X;}, and we obtain

P[Tf > t] =
l:leinJ

PIT > t,L. =

[t]

< Y P[T>tL.=1]+P[L >t

l:leinJ
[t]

P [N(l) > t} PlL. >+ P[L. > 1. (15)

I=lmin]

l

Noting
; [t/ (1
{N(Z) > l} =N {ZX(j—l)H-i < 5l}
j=1 li=1

and using the same approach as the proof of Equation (3)
to decouple the dependencies, we obtain, by (10), for
min(A, A(B)) >e>0,1> 1,

[t/l]-1
P {N(l) > t] < H e~ (AB)=l < o= (AB)=)t
j=1
implying
[t]
P < Z e~ (MB) =t ==l < (e—(A(ﬁ)—e)t) .
1=Imin]

Combining the preceding inequality, the fact that
lim;_, oo log P[T" > t]/t = —), and recalling (15), we finish
the proof of the upper bound for (4). The lower bound
follows by noting that

P[Ty > 1] > max { max <}P’ [N(l) > } P[L. = l]) :

P[L. > t]}.

B. Proof of Theorem 2

Since the proof of Equation (6) is relatively easy, we
present it in [12] due to limited space. Now, we focus on
the proof of (7). Let E; denote the number of erasure bits
immediately after the j’th retransmission; let £y = L.. To
ease our presentation, we let Yj; € {0,1} be sequences of
i.i.d. Bernoulli processes with parameter 1 — v. Let N (k)
be the number of transmissions to successfully transmit a
codeword of length k.

We begin with the proof of the upper bound. For ¢ >
lmin, We obtain

L]
PT>t< > PT,>tL =]
I=|t/c|
+P[T, >t,c< L. <t/
Lc]
+ Z P[T}, > t, L. = I] + P[L. > t]
I=lmin

2 Pi(t) + Po(t) + Ps(t) + O (e‘(l‘g)”) - (16)

Now, for € > 0 and a sequence {3;};>1,0 < 3; < 1, we
obtain, by the i.i.d. assumption of {X;};>1,

1t]

Pty < Y
1=[t/c)
1t] /4

< Z max HIP’

I=|t/c| HJLt:/llJ Bj=1-8 j=1

P [N(l) > ;] e M=

Bil—eEj1 <

Ej71
Z }/37 < ﬁj(l + E)E]‘_l eiA(lié)l
i=1
c+e I.yJ
< max P|Bi(1—€)E;j_1 <
/1 g ) ﬁjzlfﬂj[[l ! !
Ej 1
Z Yji < Bj(1+e)Ej_q |e M9 vqy. (17)
i=1

For A¢(z) in (5), it is easy to check that, there exists
0 < ¢ < oo such that

inf

A(z) —Ce <
( ) g T z(l—e)<y<z(1l4e€)

A(y) < A%(z).
Recalling v; = H§:1 Bj,1 > 1 with vy = 1. The inequali-
ty (17), by Cramer’s Theorem [13], implies

max
1<y<c+e

Lv] .
max H6—<A“(m)—<e>ug~71(1—e>H56——*“;5”
T15% 8;>1-8 5

<(c+e)

Pi(t) < (c+e)

max max
ISySeter]is, pz1-5

e_y*1 (Z:\}TiJl((AC(Bj)_Ce)V]‘—l(1_6)C)+>\(1_6))t. (18)



Next, we evaluate P,(¢). Let the number of j’s (j > 1)
with E; < E;_1(1—¢) be equal to n.. Note that before the
codeword can be decoded, at least 1 — 3 fraction of bits
have erasure errors. Therefore, (1—¢€)™ > 1— 3, implying
ne < log(1 — B)/log(1l — €). Thus, choosing ¢ = log(1 —
B)/(elog(1l — ¢€)), we know that n. < et/c conditional on
{L. < t/c} U{T,, > t}. Therefore, for ¢t > ¢ and using
Cramér’s theorem, we obtain

Lt/c]

Py(t)< > P [N(l) > ﬂ e A1=ol
I=|c]|
lt/c] [ (1=p) T
<) P Y (1-Y)<d e A=
I=|c]| i=1
Lt/c]

¢ 5 (o)
1=[c|
0 (e_Ac(l—fﬁxl—e)(l—ﬁﬂ). (19)

Using a similar approach as in proving (19), we can
show that

Ps(t) S O (6(1_5)(1_\_ﬂlminj/lmin)log(l_')/)t> .
Combining (16), (18), (19), (20), noting that
lim A°(1 = ¢/(1 = B)) = —log(1 =),

using the continuity, and passing ¢ — 0, yields

(20)

log P (t
lim sup 28 1)
t—o0
2
— 1 1 -1 c . .
mln{ . ;I{l,ﬁ y E A(Bjvji + A |,
j:lyJZ—l ]:1

— (1= B)log(1 = 7). A},
which, by verifying that
ly)

Jim y~! ZIAC(/BJ-MA +A | =—(1—B)log(1—7),
=
implies
lim sup log P[Tm > ] < —min{A° A}
t—o0 t

Due to limited space, the proof of the lower bound, which
follows similar arguments as in the proof of the upper
bound, is presented in the technical report [12]. O

VII. CONCLUSION

In this paper, we characterize the performance of cod-
ing schemes on mitigating delays in a communication
system with retransmissions. We consider an important
communication channel called the Binary Erasure Chan-
nel, where transmitted bits are either received successfully

or lost and focus on the fixed rate coding scheme, where
decoding is said to be successful if a certain fraction of
the codeword is received correctly. We study two different
scenarios: (I) A codeword of length L. is retransmitted
as a unit until the receiver successfully receives more
than L. bits in the last transmission. (IT) All successfully
received bits from every (re)transmissions are buffered at
the receiver according to their positions in the codeword,
and the transmission completes once the received bits
become decodable for the first time.

Our studies reveal that there is a clear cost benefit
tradeoff between delay and control complexity. We find
that either by using a powerful codeword or by designing
a system that keeps track of all received information in
prior transmissions, the delay due to retransmissions can
be shown to decay exponentially fast rather than have a
slow power-law decay. These results provide a benchmark
to quantify the tradeoffs between coding complexity and
transmission throughput for receivers that use memory to
buffer (re)transmissions until success and those that do
not buffer intermediate transmissions, and could be used
as guidelines for network designers.
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