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Abstract— We study the problem of joint congestion
control and scheduling in wireless networks. We model the
wireless network as a directed graph G = (V,E), where V
denotes the set of nodes and E denotes the set of wireless
links between the nodes. We propose a joint congestion
control and scheduling scheme that achieves a fraction
dI(G) of the capacity region, where dI(G) depends on
certain structural properties of graph G as well as the
nature of interference constraints. For specific families of
graphs, which can represent a wide variety of wireless
networks, dI(G) has been upper bounded by a factor
independent of the number of nodes in the network for a
wide range of interference models. The scheduling element
of our joint congestion control and scheduling scheme
is the maximal scheduling policy considered in many of
the earlier works. Although, it is widely believed to be
amenable to distributed implementation, no algorithms
have been proposed for its implementation, except under
the node-exclusive interference model which is suitable
only for networks in which adjacent nodes can transmit
over non-interfering channels. We propose a randomized
algorithm for implementing maximal scheduling policy
under a 2-hop interference model which is suitable for
networks with a limited number of non-interfering chan-
nels (e.g., IEEE 802.11 DSSS networks).

I. INTRODUCTION

Wireless networks have become a ubiquitous part of
all modern day communication systems. Unlike wireline
networks, where bandwidth and other resources are
available in plenty, wireless networks are highly resource
constrained. An efficient utilization of the resources is
therefore a necessity in case of wireless networts. A
seminal contribution in this direction was made in [24],
where the authors characterized the capacity region of
constrained queuing systems, such as a wireless network.
They developed a queue length based scheduling scheme
that is throughput-optimal, i.e., it stabilizes the network
provided the user rates fall within the capacity region of

the network, where the capacity region is defined to be
the set of user arrival rates under which the network is
stable (the queue lengths at all the nodes are bounded).

Unlike wireline networks, where all links have fixed
capacities, the capacity of a wireless link varies with
channel variations due to fading; changes in power
allocation, link scheduling, or routing; and changes in
network topology etc. This results in the capacity region
of a wireless network having a joint dependence on
routing, power allocation, link scheduling, and channel
variations. In order to maximize the capacity region of
the network, one must therefore develop algorithms that
can perform jointly optimal routing, link scheduling, and
power control under possibly varying channel conditions
and network topology. This has spurred recent interest
in developing cross-layer optimization algorithms (see,
for example, [26], [16], [15], [23], [5]).

Motivated by the works on fair resource allocation in
wireline networks [8], [20], [12], [2], [27], researchers
have also incorporated congestion control into the cross-
layer optimization framework [3], [10], [9], [14], [25],
[22], [28], [17]. The congestion control component con-
trols the rate at which users inject data into the network
so as to ensure that the user rates fall within the capacity
region of the network.

The main component of all the above cross-layer
optimization schemes is the optimal scheduler that solves
a very difficult global optimization problem of the form:

maximize
∑
l∈L

plrl (1)

subject to r ∈ ∆

where L denotes the set of wireless links; r is the vector
of link rates rl, l ∈ L; pl, l ∈ L, is the congestion price or
possibly some function of the backlog at link l; and ∆ is
the capacity region of the network. The main difficulty



in solving the above optimization problem is that the
capacity region ∆ depends on the complete network
topology and, in general, has no simple representation
in terms of the power constraints at the individual links
or nodes. The above optimization problem is, in general,
NP-Complete and Non-Approximable∗.

The above scheduling problem has been considered
under several special scenarios of interest, e.g. scenar-
ios with simplified interference models and no power
control. The interference models studied in the literature
include the node-exclusive interference model [7], [1],
[4], [10], [3], [24], [23], [17] and IEEE 802.11 type
interference model [25], [21], [6].

In our previous work [19], [18], we introduced the
notion of a K-hop interference model. An interference
model is termed a K-hop interference model if the
only constraint imposed on the set of simultaneously
transmitting links is that no two links within the set
should be within K hops from each other. By varying
K, one can capture the interference characteristics of
a broad range of wireless networks. The node-exclusive
interference model (commonly used model for Bluetooth
and FH-CDMA networks [13], [1], [7]) and IEEE 802.11
type interference model (commonly used model for IEEE
802.11 DSSS networks [25], [6]) studied in earlier works
correspond to a 1-hop and 2-hop interference model,
respectively.

Although, the optimal scheduling problem is polyno-
mial time solvable under the 1-hop interference model,
it is NP-Hard and Non-Approximable under all K-hop
interference models with K > 1 (see [19]). However, it
was shown in [18] that the optimal scheduling problem
can be approximated within a constant factor under
all K-hop interference models for wireless networks
whose connectivity graph is geometric. Similar results
can be derived for disk graphs and (r, s)-civilized graphs.
These results are quite encouraging as wide variety of
wireless networks can be well represented using the
above families of graphs.

In this paper, we first propose a joint congestion
control and scheduling scheme that is guaranteed to
achieve a constant fraction of the capacity region for a
wide class of wireless networks. The scheduling element
of our joint congestion control and scheduling algorithm
is the maximal scheduling scheme considered in many
of the earlier works [4], [25], [10]. We also provide
a randomized distributed algorithm for implementing

∗A problem in said to be Non-Approximable if it does not admit
any constant factor polynomial time approximation algorithm.

maximal scheduling policy under the 2-hop interference
model.

The rest of the paper is organized as follows. System
model and related work are described in Section II.
An upper bound on the capacity region is provided
in Section III. A novel joint congestion control and
scheduling algorithm is proposed and a lower bound on
its performance is provided in Section IV. A distributed
randomized algorithm for maximal scheduling is pro-
posed in Section V and an upper bound on its running
time is provided in case of geometric graphs. Finally,
concluding remarks are presented in Section VI.

II. SYSTEM MODEL AND RELATED WORK

We consider a set V of nodes, labeled 1, 2, ..., |V |,
communicating with each other using wireless means.
The link (u, v) from node u to node v exists if node u
can successfully transmit to node v, provided no other
node in the network transmits at the same time. The
set of links so formed is denoted by E. Note that the
existence of a link between any two nodes depends
on many factors (e.g., noise variance at the receiving
node, coding and modulation scheme used by the nodes).
Although, we do not consider channel variation in this
paper, it can easily be incorporated into our model. We
refer the interested reader to [16], [15], [11] for related
results.

We consider users of K types, labeled 1, 2, ..., K,
sending data over the network. We assume that the arrival
process for the type k users is Poisson with rate λk.
Further, we assume that each user of type k, brings with
it a file of size 1/µk to be transferred over the network.
We assume that users of each type send their data over
the same, loop-free route. The extension to the multi-
route case is straightforward; we refer the reader to [16],
[15], [11], [23] for related results. The user routes are
stored in an incidence matrix [H l

k], where H l
k = 1 if the

route of type k users contains link l; and 0 otherwise.
The interference constraints are modeled using a con-

tention matrix [Cij ]i,j∈E . More precisely, link i is said
to interfere with link j if Cij = 1; no two links which
interfere with each other can be scheduled at the same
time. All diagonal entries of C are set to 1. The time is
divided into slots of unit duration. Link l can transmit
at rate cl during a slot if no other interfering link is
scheduled to transmit during the same slot. Such an
interference model has been widely used in the literature
(see, for example, [4]), and the interference models used
in many other works [19], [18], [10], [9], [11], [4],
[25], [3] can be obtained by imposing some additional



restrictions on the contention matrix. For simplicity of
exposition, we assume that Cij is symmetric; i.e., link i
interferes with link j if and only if link j interferes with
link i.

Let �λ = (λ1, λ2, ..., λK) be the vector of user arrival
rates. Let nk(t) and Ql(t) denote the number of type k
users and queue backlog at link l in the network at time
t, respectively. As in [10], [16], we say that the network
is stable if

lim sup
t→∞

1
t

∫ t

0
1{∑K

k=1 nk(t)+
∑

l∈E Ql(t)>N}dt → 0 (2)

as N → ∞. The capacity region of the network is
defined to be set of user arrival rate vectors for which the
network can be stabilized under some scheduling policy.
The capacity region of constrained queuing systems,
such as a wireless network, has been well characterized
in [24]. For our model, the capacity region is given by
the set

Ω =


�λ :

[
K∑

k=1

H l
kλk

µkcl

]
l∈E

∈ Co(S)


 , (3)

where Co(S) represents the convex hull of all link sched-
ules S that satisfy the interference constraints imposed
by our model.

A scheduling scheme is said to be throughput-optimal
if it can stabilize the network for all arrival rate vectors
within Ω. Tassiulas and Ephremides [24] proposed a
queue length based scheduling scheme and showed that
it is throughput-optimal. However, the proposed scheme
requires centralized computation and is NP-Hard in most
cases of interest. Since it is difficult to do centralized
computation in an ad hoc setting, a considerable amount
of effort has been put forth in devising simple distributed
schemes that can achieve a certain fraction of the capac-
ity region.

A scheduling scheme that has been widely studied in
the literature in this context is the so-called maximal
scheduling scheme [10], [4], [18], [25]†. In [10] and
[25], the performance of maximal scheduling scheme is
studied under a joint congestion control and scheduling
framework in a multi-hop traffic setting with 1-hop
interference model and 2-hop interference model, respec-
tively. In [4] and [18], a more restrictive setting with
single-hop traffic and no congestion control is considered
with contention matrix based interference model and K-

†Note that the terminologies used in these works and some minor
details of the schemes differ slightly from each other, but the main
idea is the same.

hop interference models, respectively.
Although, maximal scheduling scheme has been stud-

ied in the literature from the point of view of being
amenable to distributed implementation, no explicit dis-
tributed algorithms have been proposed for its implemen-
tation.

The main contributions of this work are as follows.

• We propose a joint congestion control and schedul-
ing algorithm based on maximal scheduling scheme
under a multi-hop setting and study its perfor-
mance under the contention matrix based interfer-
ence model. In doing so, we extend the earlier
results of Chaporkar et al. [4] for a single-hop
(MAC layer) setting to a multi-hop setting.

• We then restrict our attention to wireless networks
whose connectivity graph is geometric and consider
K-hop interference models introduced in our ear-
lier work [18]. In this setting, we show that our
joint congestion control and scheduling algorithm is
within a constant factor of the optimal for all values
of K. Similar results can be obtained for wireless
networks whose connectivity graph is a disk graph
or a (r, s)-civilized graph. These results extend our
earlier results in [18].

• We provide a randomized distributed algorithm for
implementing the maximal scheduling scheme un-
der the 2-hop interference model. We show that
the algorithm runs in O(log2 |V |) rounds in case
of geometric graphs. Note that the commonly used
IEEE 802.11 RTS/CTS communication scheme cor-
responds to a 2-hop interference model. Moreover,
numerical results in [18] indicate that of all the
K-hop interference models, the 2-hop interference
model yields best performance in IEEE 802.11
DSSS PHY based networks under a wide range of
node densities.

III. AN UPPER BOUND ON THE CAPACITY
REGION

In this section, we derive an upper bound on the
capacity region under the contention matrix based in-
terference model. The upper bound will be in terms of
the interference degree of the network graph which we
define formally next (see also [4] and [18]).

Definition 1. The interference set I(e) of link e is the
set of links that interfere with link e, i.e.,

I(e) = {l ∈ E : Cel = 1} .



Definition 2. A set of links A is said to be a non-
interfering set if it does not contain any interfering links,
i.e., for each pair of links u, v ∈ A with u �= v, we have
Cuv = 0.

Definition 3. The interference degree dI(e) of link e is
the maximum number of links belonging to its interfer-
ence set which do not interfere with each other, i.e.,

dI(e) = max
A⊆I(e):A is a non-interfering set

|A|.

Definition 4. The interference degree dI(G) of graph
G = (V, E) is the maximum interference degree across
its constituent links, i.e., dI(G) = maxe∈E dI(G).

We are now ready to upper bound the capacity region.

Theorem 1. The capacity region Ω specified by
(3) consists of arrival rate vectors �λ that satisfy∑

l∈I(e)

∑K
k=1

Hl
kλk

µkcl
≤ dI(e) for all e ∈ E.

Proof: Let S be a link schedule that activates the
same set of non-interfering links AS during every slot.
Consider a link e ∈ E. Since the set of links AS is non-
interfering, it contains at most dI(e) links from I(e).
Thus, the link rate vectors [xl]l∈E under AS must satisfy∑

l∈I(e)

xl

cl
≤ dI(e) for all e ∈ E. (4)

Since this result holds for all link schedules that satisfy
the interference constraints, it follows that all feasible
link rate vectors under the contention matrix based in-
terference model must satisfy the constraints given in (4).
The result now follows by noting that a packet arrival rate
vector �λ incduces an average load of

∑K
k=1 H l

kλk/µk on
link l.

The following result is a direct consequence of The-
orem 1 and the fact that dI(G) = maxe∈E dI(e).

Corollary 1. The capacity region Ω specified by
(3) consists of arrival rate vectors �λ that satisfy∑

l∈I(e)

∑K
k=1

Hl
kλk

µkcl
≤ dI(G) for all e ∈ E.

IV. JOINT CONGESTION CONTROL
AND SCHEDULING SCHEME

We now propose a joint congestion control and
scheduling scheme that is guaranteed to achieve a frac-
tion dI(G) of the capacity region. The scheme uses
congestion prices ql(t), l ∈ E to maintain an estimate
of the congestion level in the network at time t. The
congestion control and scheduling are performed using
these congestion prices. T ime is divided into slots of
unit duration, and both congestion prices and user rates

are updated at the beginning of each slot. The detailed
description of the scheme is as follows:

• Congestion price update: The congestion prices are
updated as follows:

ql(t + 1) = (ql(t) + α∆ql(t))
+ , (5)

where

∆ql(t) =
∑

j∈I(l)

[
K∑

k=1

Hj
k

∫ t+1

t

nk(t)xk(t)
cj

− 1j∈S(t)

]
,

and S(t) denotes the set of links that are scheduled
to transmit during the time slot beginning at time t.

• User rate update: The data rates of type k users are
updated as follows:

xk(t + 1) = min


 1∑

l∈E ql(t + 1)
∑

j∈I(l)
Hj

k

cj

,Mk


 ,

where Mk is the maximum data rate of type k
users.

• Transmission scheduling: The link transmissions are
scheduled in accordance with the maximal schedul-
ing scheme, i.e., the subset of edges M chosen for
transmission during any slot satisfies that for each
edge e ∈ E, either I(e) ∩ M �= Φ or qe ≤ 1.

We note that the above scheme is similar in spirit to a
scheme proposed in [10] under the node exclusive in-
terference model. However, our scheme is more general
and works for all contention matrix based interference
models, including the node exclusive interference model.
Some salient features of our scheme are worth noting:
(i) the congestion price of a link depends not only on
its own backlog, but also that of the links belonging
to its interference set; (ii) the data rate of type k users
depends on the congestion prices of all those links that
either belong to the route of type k users or interfere
with such a link. It is this proper choice of user rate
and congestion price update that allows our scheme to
achieve a fraction dI(G) of the capacity region.

Theorem 2. If the stepsize α is small enough, the above
joint congestion control and scheduling scheme stabilizes
the network for all arrival rate vectors that belong to
Ωo/dI(G), where Ωo denotes the interior of set Ω.

Proof: The main idea of the proof is to construct
an appropriate Lyapunov function with a negative drift.
We shall use the Lyapunov function V (�n, �q) = Vn(�n) +
Vq(�q), where Vn(�n) =

∑K
k=1

βn2
k

2λk
and Vq(�q) =

∑
l∈E

q2
l

2α .



Let

∆Vq = E [Vq(�q(t + 1)) − Vq(�q(t))|�n(t), �q(t)]

and

∆Vn = E [Vn(�n(t + 1)) − Vn(�n(t))|�n(t), �q(t)] .

Since all scheduled links l must have a congestion price
ql ≥ 1, the projection operator in (5) is not required
provided α ≤ 1. Using some algebraic manipulations, it
can be shown that

∆Vq ≤ C1α
K∑

k=1

∫ t+1

t

E
[
n2

k(t)x2
k(t)|�n(t), �q(t)

]
dt

+ C2 −
∑
l∈E

ql(t)1{ql(t)>1}+ (6)

∑
l∈E

ql(t)
∑

j∈I(l)

K∑
k=1

Hj
k

cj

∫ t+1

t

E [nk(t)xk(t)|�n(t), �q(t)] dt.

Following the line of analysis in [10] used to prove
Theorem 7, it can be shown that

∆Vn ≤
∑
l∈E

ql(t)
∑

j∈I(l)

K∑
k=1

βλkHj
k

µkcj
(7)

−
∑
l∈E

ql(t)
∑

j∈I(l)

K∑
k=1

Hj
k

cj

∫ t+1

t

E [nk(t)xk(t)|�n(t), �q(t)] dt

− (β − 1)
K∑

k=1

∫ t+1

t

E [nk(t)|�n(t), �q(t)] dt + C3

−
K∑

k=1

µk

4λkMk

∫ t+1

t

E
[
n2

k(t)x2
k(t)|�n(t), �q(t)

]
dt

Observe that∑
l∈E

ql(t)1{ql(t)>1} ≥
∑
l∈E

ql(t) − |E|. (8)

Also, for all λ ∈ Ωo/dI(G), we have

∑
j∈I(l)

K∑
k=1

βλkH
j
k

µkcj
< 1 for all l ∈ E. (9)

Using (6)-(9), it follows that given any ε > 0 we can
choose β > 1 and α > 0 such that

∆Vn + ∆Vq ≤ C4 − ε

(∑
l∈E

ql(t) +

∫ t+1

t

E [nk(t)|�n(t), �q(t)] dt

)
.

The result now follows using Theorem 2 in [16] and
observing that Ql(t) = ql(t)/α for l ∈ E.

Theorem 3 provides a lower bound on the performance
of our joint congestion control and scheduling scheme in
general wireless networks. We now consider its perfor-
mance in case of wireless networks whose connectivity

graph is a geometric graph. Note that if same power
level is used for all transmissions and the noise vari-
ance is same at all the nodes in the network, then the
connectivity graph is indeed a geometric graph. Such
conditions are often assumed in the literature. Further, we
shall restrict our attention to K-hop interference models.
We have the following result:

Theorem 3. If the underlying connectivity graph of the
network is a geometric graph and the stepsize α is
small enough, the above joint congestion control and
scheduling scheme stabilizes the network for all arrival
rate vectors that belong to Ωo/49 under all K-hop
interference models.

Similar performance bounds can be shown to hold for
disk graphs and (r, s)-civilized graphs; the details are
omitted for want of space.

V. RANDOMIZED DISTRIBUTED MAXIMAL
SCHEDULING UNDER 2-HOP INTERFERENCE

MODEL

Although the performance of maximal scheduling has
been analyzed under various interference models [10],
[4], [18], an explicit distributed implementation has not
been provided in the literature. Moreover, the overhead
in implementing such an algorithm has been ignored in
most of previous works. We now propose a randomized
distributed algorithm for implementing maximal schedul-
ing under the 2-hop interference model (see [18]). We
next describe our distributed computing model.

As in [6] and other related works, we assume a syn-
chronous message passing distributed computing model,
which is a variation of the standard models used in
the distributed computing literature. The main difference
is the broadcast feature in the model which is typical
of wireless networks. More precisely, the distributed
computing architecture is modeled as a graph with
undirected edges (we assume bidirectional links between
the nodes as required by the 2-hop interference model).
Each node has a unique ID. The clocks at all the nodes
are synchronized and the communication takes place
in rounds, each occupying a slot. Each slot is further
divided into six subslots. A node can transmit a control
packet of length O(1) during each subslot. A packet
transmission from node u is heard by all nodes w in
its neighborhood, henceforth denoted by N(u), unless
the node w itself transmits or some node in N(w) other
than u transmits.

We now define some terminology to be used in the
sequel. A directed link from u to v will be denoted by



O − Other

RTS COL COL RES RESCTS

S S R R S,R O

R − ReceiverS − Sender

Fig. 1. The sequence of control packets exchanged during a slot.

(u, v); and a bidirectional link will be denoted by uv or
vu. The congestion price of link (u, v) will be denoted
by qu,v. The set of nodes v ∈ N(u) such that qu,v > 1
will be denoted by NQ(v). We are now ready to describe
our algorithm.

Distributed Maximal Scheduling(G =
(V, E), q : E → R

+, M)
1) M := φ and b(u) = −1, u ∈ V .
2) while b(u) �= −1∀u do
3) Each node u with b(u) = 0 decides to

transmit with probability 1
|NQ(u)|+1 . Upon

deciding to transmit, it chooses a node
at random from NQ(u) and sends a RTS
message to that node during the first sub-
slot.

4) If a sender node detects any other transmis-
sion then it sends a COL packet during the
second subslot.

5) If a receiver node successfully receives
the RTS packet and does not hear a COL
packet (or a collision due to multiple such
packets), then it sends a CTS message
during the third subslot.

6) If a receiver node detects any other trans-
mission then it sends a COL packet during
the fourth subslot.

7) If no COL packet is sent during the fourth
subslot, the sender u and receiver v both
send a MC packet during the fifth subslot
and set b(u) = b(v) = 1. M := M∪(u, v).

8) All nodes w hearing a MC packet set
b(w) = 0 and further transmit a copy of
it during the sixth subslot.

9) A node x with w ∈ NQ(x) where b(w) =
0 deletes node w from NQ(x).

The algorithm requires that each node should know the
network topology within its two hop neighborhood. The
main feature of our algorithm is the careful exchange
of control packets that ensures that no two links within
two hops of each other decide to transmit at the same
time (see Figure 1). A node that wishes to transmit,

first sends a ready to send (RTS) packet. If it detects
an ongoing transmission while sending the RTS packet,
it sends a collision (COL) packet during the next subslot.
Successful reception of an RTS packet by the receiver
guarantees that no other transmitter can be within one
hop of the receiver. Further, no collision packet being
sent guarantees that no two nodes within one hop can
decide to transmit at the same time.

If the receiver does not hear a COL packet or a
collision due to multiple such packets, it sends a clear to
send (CTS) packet during the third subslot. If it detects
an ongoing transmission while sending the CTS packet,
it sends a COL packet during the fourth subslot. Thus
no collision packet being sent guarantees that no two
nodes within one hop can decide to receive at the same
time. If no collision packet is transmitted, both sender
and receiver transmit a reservation (RES) packet during
the next subslot. All nodes which hear the RES packet,
further transmit a copy of it during the next subslot. The
RES packet contains the IDs of sender and receiver. Each
two hop neighbor v of the sender and the receiver uses its
knowledge of its two hop topology to determine which
of its one hop neighbors are also one hop neighbors of
the senser or the receiver, and removes them from its
neighborhood NQ(v).

It is clear from the above discussion that when the
algorithm terminates it returns a maximal matching sat-
isfying the 2-hop interference constraints. We can show
the following bound on the running time of the above
algorithm in case of geometric graphs; the details of the
proof will appear in a companion paper.

Theorem 4. The Distributed Maximal Scheduling ter-
minates in O(log2 |V |)-rounds with high probability in
case of geometric graphs.

The same performance bound holds for disk graphs as
well as (r, s)-civilized graphs. We further believe that a
similar performance bound may hold in case of general
graphs.

VI. CONCLUDING REMARKS

We considered the problem of throughput-optimal
cross-layer design of wireless networks. We provided an
upper bound on the capacity region of wireless networks
under all contention matrix based interference models.
We then proposed a joint congestion control and schedul-
ing algorithm and showed a lower bound of dI(G) on its
performance. The lower bound dI(G) depends on certain
structural properties of the connectivity graph of the
wireless network. We have previously shown that dI(G)



can be upper bounded by 49 in case of all geometric
graphs and under all K-hop interference models. Thus,
our joint congestion control and scheduling algorithm
performs within a constant factor of the optimal in
case of geometric graphs under all K-hop interference
models.

We also proposed a distributed randomized algorithm
for maximal scheduling under the 2-hop interference
model. We showed that the algorithm runs in O(log2 |V |)
time in case of geometric graphs. We beleive that a
similar performance bound may hold in case of general
graphs. We plan to investigate this issue further in our
future work. It is for the first time in the literature that
an explicit distributed algorithm for implementing the
maximal scheduling has been proposed. The overhead
of implementing the maximal scheduling has so far been
ignored in the literature. However, the overhead might be
significant in case of large networks and must therefore
be properly accounted for in the analysis.

An interesting direction for future research would be
to develop distributed algorithms for maximal scheduling
under some other interference models. Also, it would be
interesting to determine the minimal overhead required
for implementing maximal scheduling under various
network settings and interference models. Further, we
would like to investigate if one can develop cross-
layer algorithms that offer better performance than the
algorithm proposed in this paper.
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