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Abstract—The smart grid is the new generation of electricity | Extemal
grid that can efficiently facilitate new distributed sources of | ™
energy (e.g., harvested renewable energy), and allow for dynamic
electricity price. In this paper, we investigate the cost minimiza-
tion problem for an end-user, such as a home, community, or a
business, which is equipped with renewable energy devices when
electrical appliances allow different levels of delay tolerance. The D
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varying price of electricity presents an opportunity to reduce the :
electricity bill from an end-user’s point of view by leveraging the iIV(t)
flexibility to schedule operations of various appliances and HYAC | ,@ -
systems. We assume that the end user has an energy storage () w(t)

battery as well as an energy harvesting device so that harvested
renewable energy can be stored and later used when the price
is high. The energy storage battery can also draw energy from
the external grid. The problem we formulate here is to minimize

the cost of the energy from the external grid while usage of )
appliances are subject to individual delay constraints and a long- appliances at an end user. We assume that some tasks are delay

term average delay constraint. The resulting algorithm requires tolerant, that is, they do not need to be activated immediately
some future information regarding electricity prices, but achieves pon their arrival, such as washer and dish washer. They can
provable performance without requiring future knowledge of o onhornistically scheduled when the electricity price is
either the power demands or the task arrival process. . - . - .
relatively low in order to reduce cost. For instance, if the price
|. INTRODUCTION is high around 7pm and low around 2am, then some delay-

. - . tolerant tasks, such as dish washer, can be postponed to be
The next-generation electricity grid, known as the “smar? Postp

fid”. provides both liers and consumers with full vi scheduled around 2am. The power demand is met by drawing
grid’,-provides both SUppliers and consumers u .Sénergy from the battery, or purchasing extra energy from the
!b'“ty and pervasive control over their a_sset_s_ and SEIVICEE side grid. We also allow the battery to charge energy from
in order to achieve economy and sustainability [1]. Belnﬁ]e grid, because the battery can purchase and store energy

able to incorporate renewable energy sources (e.g., solarW len the price is low, and discharge when the price is high.

wind) is one of the key objectives of the smart grid [2]. In In this work, we are interested in developing an optimal

addmon, the ut!ht.y companies are allowed to dynamlcall¥ask scheduling algorithm that minimizes the total price cost
adjust the electricity price in order to control the power usages o energy drawn from the external grid subject to delay

For example, prices of electricity increase during high dema%gnstraints. The customer has full control over all electricity

periods, and decrease during low demand periods. Consumaeﬂﬁliances. The algorithm can exploit the delay flexibility and

thu; can avoid the premium for using eleptrlcny at high PricE e advantage of time-varying prices.
periods when they are aware of the price for some future
period. A. State-of-the-art

In this paper, we consider an end-user equipped With|n power networks, there have been some literature that
renewable energy devices in smart gird, where the electricifs focused on scheduling delay-tolerant tasks. Koutsopoulos
price is time varying. The renewable energy devices consigid Tassiulas [3] investigate an off-line version and an on-
of an energy storage battery and an energy harvesting devigg version of the task scheduling problem. The authors
Renewable energy can be harvested and stored in the batt§fypose two algorithms under these two cases, respectively,
We assume that the arrivals of demands for electrical appling provide a provable performance bound. However, these
ances is a stochastic process (from now on, we use the teiAge-horizon problems are proven to be NP-hard, and the
appliance and task interchangeably). Fig. 1 shows some typiggjorithms only achieve optimality when the delay constraint

is arbitrarily loose. In [4], the authors develop an ener
This work has been funded in part by the Army Research Office MURI y [ ] P ol

award W911NF-08-1-0238, National Science Foundation awards Eccalocation algorithm to minimize the total electricity cost.
1232118 and NSF grants CNS-0831919. However, they do not allow renewable energy to be saved for

Fig. 1. Demand and Supply
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Fig. 2.  An example of battery’s influence on task scheduling
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future use, which our work takes into account. In addition, we
provide individual delay constraints to all tasks, instead of tHdg. 3. 5-minute average spot market price during the week of 10/10/2011-
universal worst-case delay constraint which is likely to be vefy14/2011 for Columbus Area from CAISO [9]

large. Some works adopt dynamic programming techniques,
e.g. [5]. They can achieve optimality only if the distribution

of the power demand is known a priori. There are also some
other works that have formulated problems using game theory,
e.g., [6]. The authors in [7] [8] develop a scheduling scheme )
to achieve an optimized upper bound on the power peak load.

function of delay for each task, and we require the long-
term average dissatisfaction to be less than a threshold.
This is a generalization of the average delay constraint.
We propose a simple algorithm that can achieve provable
performance, which is within a bounded distance of the
B. Our Contributions optimum. Note that our algorithm does not require future
knowledge of the power demand and the task arrival
process.

We validate our algorithm using real electricity price
traces to compute realistic savings. We show that our

In this paper, we address the task scheduling problem while
tasks are subject to individual hard delay constraints and
average delay constraints. To the best of our knowledge, it3)
is the first work that takes into account these two different ) ) .
types of delay constraints in the area of smart grid. If there is algorithm can |_ndeed reduce cost under various system
no average delay constraint, a greedy algorithm could achieve parameter settings.
the optimal solution. We, however, also take into account theOur paper is organized as follows: In Section II, we discuss
average delay constraint, which is an important quality &ur system model. In Section Ill, we formulate our cost min-
service metric, but makes the problem challenging. Furth&hization problem with various delay constraints. In Section
having a battery brings about significant differences. TH¥, we develop our task scheduling algorithm and show its
reason is that the battery can draw energy from external gR@rformance. After presenting simulation results in Section V,
when the electricity price is low and discharges energy wh&¢ conclude our paper in Section VI.
the price is high. Fig. 2 shows a simple example, where a task
(the boxes illustrated in the figure) requires a service period
of two slots. If there is no battery, we can see that the optimalwe consider a set of appliances connected to the external
way is to schedule during time slot 2 and slot 3 (the red boXgmart grid. Time is assumed to be slotted. The price of
resulting in a total cost of 10 dollars. However, with the helplectricity is time varying and denoted by (t) in time slot
of a battery, we can store some energy in time 8lsince the ¢. As an example, Fig. 3 shows the average five-minute spot
electricity price is low during this time slot. For simplicity of market prices for the Columbus area obtained from CAISO
exposition, we assume that the maximum energy that is stofell Let N, represent the set of tasks that arrive in time sJot
in one slot can be used to support up to one-slot service. Nayhile n, represents the number of taskshh, i.e.,n; = | Vg,
let us consider an alternate schedule, where the power demmre| - | denotes the cardinality of a set. For simplicity of
during time slot 5 is met from the stored energy in slot 3 angkposition, we assume that all tasks arrive at the beginning of
the demand during time slot 6 is met from the external grigach slot.
as shown by the shadowed blue box. It can be seen that thgye note that there are two types of tasks, delay-tolerant
total cost under this scheduling policy is 7 dollars, which ignd delay-intolerant tasks. Le} denote the required service
the optimal. time for each task € N,. Also, there is a deadline associated

We summarize our main contributions as follows: with each taski € Ny, i.e., the maximum number of time

1) We consider different types of delay constraints in owlots allowed for finishing the job from its arrival time

model. First, each task has a hard delay constraint, whidenoted byd:. The deadline is a hard constraint, namely the
cannot be violated. Further, there is a “dissatisfactiortask needs to be completed before time d:. We call the

Il. SYSTEM MODEL



task delay-intolerant it} = df, and delay-tolerant it! < d:.

For a delay-intolerant task, the only choice that we have Electricity
is to activate it immediately upon its arrival. However, for  Price (§)
delay-tolerant tasks, we can opportunistically schedule them

in order to make use of the fluctuating nature of the electricity

price. Our goal here is to find the optimal “postponing” time ZTEQP(J'H*SS)

st so that the total cost is minimized subject to the delay o— Deadine
constraints. Clearly, for the delay—int.olerant tasks, we have to | f [ Task |1
setst = 0. Let d,,, denote the maximum delay allowed for t ts) trsirel  thdy Tin:e

any task, i.e.d,.. = max;; dt. Notice that(c!, st, dt), Vt, Vi

are integers. It is assumed that we have an accurate short-term
estimation of the electricity price. More precisely, we know
P, 2 P(t),P(t+1), -+, P(t + dmaz)-. It is worth pointing

out that this is a reasonable assumption because the short-tgfarefore, the constraints arft) are given by
estimation of electricity price can be obtained from the history

Fig. 4. Example of the scheduling of one task N

[10]. [v(t)| < Vmaa 3)
Let h(t) denote the harvested renewable energy in time slot v(t) < B(t), 4)
t, and letr(¢t) denote our energy storage decision, i.e., the v(t) < wl(t), (5)

actual energy that is stored into the battery. For simplicity ofh h q . hat the all d
exposition, we assume thatt) amount of energy is stored Where the second constraint means that the allocated energy

in the battery at the end of slaét First, it is convenient for from the battery should be less than or equal to the current

us to assume that battery has infinite capacity. We will Sho@\\//allablehenergyc;n thedbatterya decisi de during fi
later that our algorithm only requires a reasonably sized finit Note thatw(t) depends on the decisions made during time

battery. A natural constraint of(¢) is slot¢ up to time slott — dpmao + 1, we have

t N+

wt)= Y. Y ml(r+s]+c] >t&T+s] <t),
T=t—dmaz+11=1

(6)

The reason that we keep(t) and h(t) different is due \here1(r+s7+c7 > t&r+s7 < t) is the indicator function.
to some teqhn_u_:al issues used in our proof. We assume thag, goal is decidér (t), st, v(t)) at each time slot such that
[ne, cf, h(t)] is i.i.d. over slots. the total price cost of the energy drawn from the external grid
Let w(t) represent the total power demand in time slas minimized. We do not explicitly consider some practical
t. We assume that each taske NN; consumes energy at aissues, such as energy leakage in the battery or DC/AC
constant rater!, namely the power consumption for task conversion loss, but we can readily incorporate them into our
stays the same during its activation period. In this paper, witodel. We summarize the notations in Table I.
only consider the case where the activation period of any task

r(t) < h(?). 1)

is a contiguous chunk of time, and we do not consider the NTOATBA'T‘E,LS

case where the activation period of tasks can be interrupted

and resumed. We notice that partw®ft) is met by utilizing ct Required service time for taske N;
energy from the battery, while the other part will be drawn dt Deadline for task € N;

from the grid. Letg(¢t) and v(¢) represent the amounts of st Delay for taski € N,

energy that are drawn from the outside grid and the battery in P(t) || Electricity price in time slot

time slott, respectively. Because the supply always needs to w(t) || Power demand in time slat

balance the demand, we hangt) = g(t) + v(t) as shown in g(t) || Energy drawn from the grid in time slat
Fig. 1. In addition, we also allow the battery to charge energy v(t) || Energy drawn from the battery in time slbt
from the grid, which means that(¢) could be negative. In h(t) || Harvested renewable energy in time sfot
particular, the battery discharges/charges energy if we have r(t) || Actual energy stored into battery in time slot
v(t) = 0. We denotey,,,,,, as a maximal rate of either charging B(t) || Battery level in time slot

or discharging from the battery. We ud#(t) to denote the
battery level at the beginning of time slat and the energy

dynamics can be formulated as follows: Ill. PROBLEM FORMULATION

Suppose that there is an increasing convex functip(s),
satisfying U} (0) = 0, which reflects the dissatisfaction asso-
ciated with delays for taski € N,. The convexity models
a typical user for whom the rate of increase in dissatisfac-
Since we haveg(t) > 0, it follows that v(t) < w(t). tion increases with delay. Notice that!(-) is different for

B(t+1) = B(t) + r(t) — v(t). @)



heterogeneous tasks. We assume that the long-term averag®/irtual Queue
dissatisfaction should be no greater than some threshpld | ot ;s construct an auxiliary virtual queu@

(t), whose
that is,

input and output are)_*, Uf(st) and « respectively. The

3

gueueing dynamics is depicted as
lim sup — Z Z Ut (7)
T TS Q(t +1) = max{Q(t) + ZUt ~a,0}  (13)
For any taski € N, since we have to finish it before the

deadline, it yields Lemma 1. Lemma 1: If the virtual queue is rate stable,

st 4+t < gt i.e., limsupr_, . Q(t)/t = 0 with probability 1, then the
Lot constraint (7) is satisfied.
Therefore, the constraint for the postponing tisiés given Proof: The proof is similar to Lemma 1 in [11], we refer
by to our technical report [12] for thproof. ]
0<s;<di—ci (8) B. Lower Bound the Minimum Cost

Hence, the cost minimization problem can be formulated asIn this subsection, we will obtain a lower bound on the
minimum cost of ProblenB. The following lemma shows

ProblemA: min lim *Z]E ) that the performance achieved by using a stationary and
Cor(),sto(t) T—oo T randomized algorithm forms a lower bound.
st (1),(3) (4) (5), (7, (8) Let c°Pt be the minimum cost to Proble®. And let ¢ be

the minimum cost to the following Probleq.
where P(t)g(t) represents the total price of the energy drawn .

. . . T g
from the grid during time slot. . —
Since g(t) = w(t) — v(t), we can rewrite ProblenA as ProblemC: r(timn Am z; {Z_: a mP(j +si+1)
follows: ==
1 & }
r(Orsto(t) TI%EEW)P(@ —v®P@]  10) st. <1>,<3>7<7>,<8>.
st (1),(3),(4),(5),(7),(8). Lemma 2 c¢°P* is lower bounded by, i.e., ¢ < ¢

_ T Further, ¢ can be achieved by an optimal stationary and
Notice thatlimr o >_,_; w(t)P(t) represents the total randomized policy, that is, the control actl();r(t), 5L, 5(t)) i
cost of the power demand, which is equal to the summatie@ach time slot is only a function of, ct, k(t)]. In particular,

of the cost for all tasks. That is, we have
T ne C - ne ci—l
Jim " w(®)P(t) = lim ZZZﬂtPj—i-t—Fs) B[ Y mPG+t+) - P = 4
_>00t:1 _>00t 14=1 5=0 i=1 j=0
(11) N
P | | E[> UG - o] <0, (15)
where > 'L, mi P(j +t + s}) is the cost of task € N; as i1
depicted in Fig. 4. E[F(t) — f,(tﬂ >0, (16)
Now, we can reformulate the optimization problem as
follows: Proof: The proof argument is similar to the one in [4],

. We refer to our technical report [12] for th@roof. ]
a D In the lemma, Eqn. (15) means that the long-term average
eI P ILECETEY chiew

ProblemB:  min = lim - dissatisfaction achieved by the stationary policy is no greater

r(t),st,v(t) T*>OO

=tiEh =0 than . Egn. (16) implies that the average allocated energy
- P(t)v(t)} (12) from the battery is no greater than the stored energy.
st (1),(3),(4),(5),(7), (8). C. HTSA: Heterogeneous Task Scheduling Algorithm
Now we aim at finding the optimal solution to ProbleBn We define the Lyapunov functio(t) = 1(Q(t)* +

We adopt the Lyapunov optimization approach [4] to solve itB(t) — #)?), where § is a parameter specified later. The
intuition behind it is that, by minimizing the drift of the
Lyapunov function, we forceB(t) to approachd. We also
In this section, we propose a task scheduling policy amtfine several constamﬁmx = maxy N, Mgz = maxy h(t),
show that its performance is within a bounded distance of thg,., = max;c}, andU,,q, = max;; Ul (dt), whereU,,q,

?

optimum asT tends to infinity. reflects the maX|mum dissatisfaction among all tasks.

IV. TASK SCHEDULING PoLIcY



Let Z(t) = (Q(¢), B(t)). The conditional Lyapunov drift wherew(t) is determined by Eqgn. (6).

is given byE{(L(t + 1) — L(t)|Z(t)}. We will show some
properties of the drift via the following lemma.
Lemma 3 The conditional Lyapunov drift satisfies that

B(L(1+1) ~ L(0)|Z(0)) <
D+ QB[ UL(s!) ~ ] 2(0)

+(B(t) = OE[r(t) —v(t)|Z(1)],
whereD £ (n2 U2 .+ o+ 12, +02,.,).
Proof: We refer to our technical report [12] for theroof.
[ |
By addingVE(3 ", 351, ml P(j+si+t)~P(t)u()| Z(1)
on both sides of Egn. (17), we have
E[(L(t+1) - L(®)|Z(?)]
ny c;—1
+VE > wlP(j+ st +1t) — P(t)o(t)| Z(t)]

i=1 j=0
< D+ QME[Y_Ui(st) - alZ ()]

+(B(t) = O)E[r(t) — v(®)| Z(1)]
ne cﬁ—l

+VE[Y Y miP(j+ st +t) — P(t)v(t)| Z(t)]

= D —aQ(t) + (B(t) — O)E[r(t)|Z(t)] +

17)

t
c;—1

S E[QUULS) + V3 7P+ st )12(0)

j=0
+ (0 — B(t) — VP(t))E[v(t)| Z(t)],
whereV is a control parameter.

(18)

We now describe our schemiegterogeneous task schedul

ing algorithm (HTSA) The idea ofHTSAIis to minimize the

right-hand side (RHS) of Eqgn. (18) subject to the energ

availability constraint (4) angs).
Heterogeneoustask scheduling algorithm (HTSA):
« In each time slot, the harvested energy(t) is deter-
mined by

if B(t)—6 <0,
otherwise

(19)

« In each time slot, the postponing time! for taski € NV,
is determined by:

Define a constan®,,,, as the highest electricity price, i.e.,
Prax = max; P(t). By settingf = vpae + V Prgz, from
Eqgn. (21), we can see that whéht) < v, it always has
6 — B(t) — VP(¢t) > 0. In other words, the battery always
draws energy from the grid, namely(t) = —v;q., When
the battery level is less tham,,,,. This implies that when
the battery discharges, there is always enough energy in the
battery, i.e..B(t) > vmaz. Therefore, the energy constraint of
Eqn. (4) is indeededundant

D. Performance Analysis

In this subsection, we will prove thaldTSA achieves a
performance that is within a bounded distance of the optimum
via the following theorem.

Theorem 1. By settingf = 40 + V Prae @and B(0) = 6,
HTSAhas the following property:

1) The battery leveB(t) satisfies:
B(t) < 0+ vmas + hmaa- (22)

2) There exists\f > 0, such thatQ(¢) is bounded byM
for all ¢, whereM is a constant.
3) The cost achieved bMTSAsatisfies:

T ne 02—1
. 1 t . * *
limsup 75 thl E [ Zi:l j}:o: T P(j + 57 +1) — P(t)v*(t)

D+ (Umam + hmam)2
% .

Proof: We refer to our technical report [12] for theroof.
]
From part (2) in Theorem 1, sin€g(¢) is bounded, combin-
ing with lemma 1, we can see that the average delay constraint,
i.e., Eqn. (7), is satisfied. Part (3) in Theorem 1 shows that the
cost induced by our algorithm is within a bounded distance
f the optimum by setting the parameférto be sufficiently
arge. It is worth pointing out that the algorithm does not
require the future knowledge of the statistics of power demand

and the task arrival process.

< Pt + PrazVmas +

V. CASE STuDY

We adopt the 5-minute average spot market prices for
Columbus Area from CAISO [9]. The profile depicted in
Fig. 3 shows the electricity price for the period 10/10/2011-
10/14/2011. The arrival process of all tasks here are assumed
to be Poisson process with different intensity, although
Theorem 1 holds for any general arrival process. Without loss

QUUL(sh) +V Z Tt P(j +t+s§).0f generality, we consider four types of appliances in our

simulations. The first three tasks are delay-tolerant, while the
last one is delay-intolerant. The arrival intensities for these

« In each time slot, the battery charge/discharge is giveli@Sks are set to be 2, 0.5, 0.035 and 100, respectively. And

1

tx .
S, = ar min

! 8 0<st<dl—ct =

(20)
by:
o (1) = min{vmqqz, w(t)},
—Umaz, otherwise

(21)

the energy consumption rate for these tasksare set to be
5.2kw, 3.5kw, 2.4kw and 60w. The “dissatisfaction” functions

if & — B(t) - VP(t) <0, are assumed to b (z) = z2. The average delay constraint

thresholda is set to be 1000, and the parametéris set to
be 100.
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to be2v,,4: + V Prae + himas- Fig. 6 depicts the percentage
reduction in cost versus,,.... We can see that the percentage
reduction in cost increases ag,, grows, i.e., the battery size
grows. This is because a large battery can lead to a higher
shaved cost.

In Fig. 7, we illustrate the relationship between the percent-
age of reduced cost and the paraméfert can be seen that
whenV is small, the reduced cost is less than the counterpart
whenV is large. The reason is that the tefRi-(Umazthmas)®
in Theorem 1 cannot be neglected whéns small.

VI. CONCLUSION

In this paper, we investigate the cost minimization problem
for an end-user, which is equipped with renewable energy
devices when electrical appliances allow different levels of
delay tolerance. The problem we formulate here is to minimize
the cost of the energy from the external grid while usage of
appliances are subject to individual delay constraints and a
long-term average delay constraint. Our proposed algorithm,
HTSA requires some future information of the electricity
price, but achieves provable performance without requiring
future knowledge of either the power demands or the task
arrival process.
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