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Abstract—The smart grid is the new generation of electricity
grid that can efficiently facilitate new distributed sources of
energy (e.g., harvested renewable energy), and allow for dynamic
electricity price. In this paper, we investigate the cost minimiza-
tion problem for an end-user, such as a home, community, or a
business, which is equipped with renewable energy devices when
electrical appliances allow different levels of delay tolerance. The
varying price of electricity presents an opportunity to reduce the
electricity bill from an end-user’s point of view by leveraging the
flexibility to schedule operations of various appliances and HVAC
systems. We assume that the end user has an energy storage
battery as well as an energy harvesting device so that harvested
renewable energy can be stored and later used when the price
is high. The energy storage battery can also draw energy from
the external grid. The problem we formulate here is to minimize
the cost of the energy from the external grid while usage of
appliances are subject to individual delay constraints and a long-
term average delay constraint. The resulting algorithm requires
some future information regarding electricity prices, but achieves
provable performance without requiring future knowledge of
either the power demands or the task arrival process.

I. I NTRODUCTION

The next-generation electricity grid, known as the “smart
grid”, provides both suppliers and consumers with full vis-
ibility and pervasive control over their assets and services
in order to achieve economy and sustainability [1]. Being
able to incorporate renewable energy sources (e.g., solar or
wind) is one of the key objectives of the smart grid [2]. In
addition, the utility companies are allowed to dynamically
adjust the electricity price in order to control the power usage.
For example, prices of electricity increase during high demand
periods, and decrease during low demand periods. Consumers
thus can avoid the premium for using electricity at high price
periods when they are aware of the price for some future
period.

In this paper, we consider an end-user equipped with
renewable energy devices in smart gird, where the electricity
price is time varying. The renewable energy devices consist
of an energy storage battery and an energy harvesting device.
Renewable energy can be harvested and stored in the battery.
We assume that the arrivals of demands for electrical appli-
ances is a stochastic process (from now on, we use the terms
appliance and task interchangeably). Fig. 1 shows some typical
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appliances at an end user. We assume that some tasks are delay
tolerant, that is, they do not need to be activated immediately
upon their arrival, such as washer and dish washer. They can
be opportunistically scheduled when the electricity price is
relatively low in order to reduce cost. For instance, if the price
is high around 7pm and low around 2am, then some delay-
tolerant tasks, such as dish washer, can be postponed to be
scheduled around 2am. The power demand is met by drawing
energy from the battery, or purchasing extra energy from the
outside grid. We also allow the battery to charge energy from
the grid, because the battery can purchase and store energy
when the price is low, and discharge when the price is high.

In this work, we are interested in developing an optimal
task scheduling algorithm that minimizes the total price cost
of the energy drawn from the external grid subject to delay
constraints. The customer has full control over all electricity
appliances. The algorithm can exploit the delay flexibility and
take advantage of time-varying prices.

A. State-of-the-art

In power networks, there have been some literature that
has focused on scheduling delay-tolerant tasks. Koutsopoulos
and Tassiulas [3] investigate an off-line version and an on-
line version of the task scheduling problem. The authors
propose two algorithms under these two cases, respectively,
and provide a provable performance bound. However, these
finite-horizon problems are proven to be NP-hard, and the
algorithms only achieve optimality when the delay constraint
is arbitrarily loose. In [4], the authors develop an energy
allocation algorithm to minimize the total electricity cost.
However, they do not allow renewable energy to be saved for
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Fig. 2. An example of battery’s influence on task scheduling

future use, which our work takes into account. In addition, we
provide individual delay constraints to all tasks, instead of the
universal worst-case delay constraint which is likely to be very
large. Some works adopt dynamic programming techniques,
e.g. [5]. They can achieve optimality only if the distribution
of the power demand is known a priori. There are also some
other works that have formulated problems using game theory,
e.g., [6]. The authors in [7] [8] develop a scheduling scheme
to achieve an optimized upper bound on the power peak load.

B. Our Contributions

In this paper, we address the task scheduling problem while
tasks are subject to individual hard delay constraints and
average delay constraints. To the best of our knowledge, it
is the first work that takes into account these two different
types of delay constraints in the area of smart grid. If there is
no average delay constraint, a greedy algorithm could achieve
the optimal solution. We, however, also take into account the
average delay constraint, which is an important quality of
service metric, but makes the problem challenging. Further,
having a battery brings about significant differences. The
reason is that the battery can draw energy from external grid
when the electricity price is low and discharges energy when
the price is high. Fig. 2 shows a simple example, where a task
(the boxes illustrated in the figure) requires a service period
of two slots. If there is no battery, we can see that the optimal
way is to schedule during time slot 2 and slot 3 (the red box),
resulting in a total cost of 10 dollars. However, with the help
of a battery, we can store some energy in time slot3 since the
electricity price is low during this time slot. For simplicity of
exposition, we assume that the maximum energy that is stored
in one slot can be used to support up to one-slot service. Now,
let us consider an alternate schedule, where the power demand
during time slot 5 is met from the stored energy in slot 3 and
the demand during time slot 6 is met from the external grid,
as shown by the shadowed blue box. It can be seen that the
total cost under this scheduling policy is 7 dollars, which is
the optimal.

We summarize our main contributions as follows:

1) We consider different types of delay constraints in our
model. First, each task has a hard delay constraint, which
cannot be violated. Further, there is a “dissatisfaction”
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Fig. 3. 5-minute average spot market price during the week of 10/10/2011-
10/14/2011 for Columbus Area from CAISO [9]

function of delay for each task, and we require the long-
term average dissatisfaction to be less than a threshold.
This is a generalization of the average delay constraint.

2) We propose a simple algorithm that can achieve provable
performance, which is within a bounded distance of the
optimum. Note that our algorithm does not require future
knowledge of the power demand and the task arrival
process.

3) We validate our algorithm using real electricity price
traces to compute realistic savings. We show that our
algorithm can indeed reduce cost under various system
parameter settings.

Our paper is organized as follows: In Section II, we discuss
our system model. In Section III, we formulate our cost min-
imization problem with various delay constraints. In Section
IV, we develop our task scheduling algorithm and show its
performance. After presenting simulation results in Section V,
we conclude our paper in Section VI.

II. SYSTEM MODEL

We consider a set of appliances connected to the external
smart grid. Time is assumed to be slotted. The price of
electricity is time varying and denoted byP (t) in time slot
t. As an example, Fig. 3 shows the average five-minute spot
market prices for the Columbus area obtained from CAISO
[9]. Let Nt represent the set of tasks that arrive in time slott,
while nt represents the number of tasks inNt, i.e.,nt = |Nt|,
where | · | denotes the cardinality of a set. For simplicity of
exposition, we assume that all tasks arrive at the beginning of
each slot.

We note that there are two types of tasks, delay-tolerant
and delay-intolerant tasks. Letcti denote the required service
time for each taski ∈ Nt. Also, there is a deadline associated
with each taski ∈ Nt, i.e., the maximum number of time
slots allowed for finishing the job from its arrival timet,
denoted bydti. The deadline is a hard constraint, namely the
task needs to be completed before timet + dti. We call the



task delay-intolerant ifcti = dti, and delay-tolerant ifcti < dti.
For a delay-intolerant task, the only choice that we have
is to activate it immediately upon its arrival. However, for
delay-tolerant tasks, we can opportunistically schedule them
in order to make use of the fluctuating nature of the electricity
price. Our goal here is to find the optimal “postponing” time
sti so that the total cost is minimized subject to the delay
constraints. Clearly, for the delay-intolerant tasks, we have to
setsti = 0. Let dmax denote the maximum delay allowed for
any task, i.e.,dmax , maxt,i d

t
i. Notice that(cti, s

t
i, d

t
i), ∀t, ∀i

are integers. It is assumed that we have an accurate short-term
estimation of the electricity price. More precisely, we know
~Pt , P (t), P (t + 1), · · · , P (t + dmax). It is worth pointing
out that this is a reasonable assumption because the short-term
estimation of electricity price can be obtained from the history
[10].

Let h(t) denote the harvested renewable energy in time slot
t, and let r(t) denote our energy storage decision, i.e., the
actual energy that is stored into the battery. For simplicity of
exposition, we assume thatr(t) amount of energy is stored
in the battery at the end of slott. First, it is convenient for
us to assume that battery has infinite capacity. We will show
later that our algorithm only requires a reasonably sized finite
battery. A natural constraint ofr(t) is

r(t) ≤ h(t). (1)

The reason that we keepr(t) and h(t) different is due
to some technical issues used in our proof. We assume that
[nt, cti, h(t)] is i.i.d. over slots.

Let w(t) represent the total power demand in time slot
t. We assume that each taski ∈ Nt consumes energy at a
constant rateπti , namely the power consumption for taski
stays the same during its activation period. In this paper, we
only consider the case where the activation period of any task
is a contiguous chunk of time, and we do not consider the
case where the activation period of tasks can be interrupted
and resumed. We notice that part ofw(t) is met by utilizing
energy from the battery, while the other part will be drawn
from the grid. Letg(t) and v(t) represent the amounts of
energy that are drawn from the outside grid and the battery in
time slot t, respectively. Because the supply always needs to
balance the demand, we havew(t) = g(t) + v(t) as shown in
Fig. 1. In addition, we also allow the battery to charge energy
from the grid, which means thatv(t) could be negative. In
particular, the battery discharges/charges energy if we have
v(t) ≷ 0. We denotevmax as a maximal rate of either charging
or discharging from the battery. We useB(t) to denote the
battery level at the beginning of time slott, and the energy
dynamics can be formulated as follows:

B(t+ 1) = B(t) + r(t)− v(t). (2)

Since we haveg(t) ≥ 0, it follows that v(t) ≤ w(t).
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Fig. 4. Example of the scheduling of one taski ∈ Nt

Therefore, the constraints onv(t) are given by

|v(t)| ≤ vmax (3)

v(t) ≤ B(t), (4)

v(t) ≤ w(t), (5)

where the second constraint means that the allocated energy
from the battery should be less than or equal to the current
available energy in the battery.

Note thatw(t) depends on the decisions made during time
slot t up to time slott− dmax + 1, we have

w(t) =

t∑

τ=t−dmax+1

nτ∑

i=1

πτi 1(τ + sτi + cτi > t& τ + sτi ≤ t),

(6)

where1(τ+sτi +cτi > t&τ+sτi ≤ t) is the indicator function.
Our goal is decide(r(t), sti, v(t)) at each time slot such that

the total price cost of the energy drawn from the external grid
is minimized. We do not explicitly consider some practical
issues, such as energy leakage in the battery or DC/AC
conversion loss, but we can readily incorporate them into our
model. We summarize the notations in Table I.

TABLE I
NOTATIONS

cti Required service time for taski ∈ Nt
dti Deadline for taski ∈ Nt
sti Delay for taski ∈ Nt
P (t) Electricity price in time slott

w(t) Power demand in time slott

g(t) Energy drawn from the grid in time slott

v(t) Energy drawn from the battery in time slott

h(t) Harvested renewable energy in time slott

r(t) Actual energy stored into battery in time slott

B(t) Battery level in time slott

III. PROBLEM FORMULATION

Suppose that there is an increasing convex functionU ti (s),
satisfyingU ti (0) = 0, which reflects the dissatisfaction asso-
ciated with delays for task i ∈ Nt. The convexity models
a typical user for whom the rate of increase in dissatisfac-
tion increases with delay. Notice thatU ti (·) is different for



heterogeneous tasks. We assume that the long-term average
dissatisfaction should be no greater than some thresholdα,
that is,

lim sup
T→∞

1

T

T∑

t=1

nt∑

i=1

U ti (s
t
i) ≤ α. (7)

For any taski ∈ Nt, since we have to finish it before the
deadline, it yields

sti + cti ≤ d
t
i.

Therefore, the constraint for the postponing timesti is given
by

0 ≤ sti ≤ d
t
i − c

t
i. (8)

Hence, the cost minimization problem can be formulated as

ProblemA: min
r(t),st

i
,v(t)

lim
T→∞

1

T

T∑

t=1

E
[
g(t)P (t)

]
(9)

s.t. (1), (3), (4), (5), (7), (8),

whereP (t)g(t) represents the total price of the energy drawn
from the grid during time slott.

Since g(t) = w(t) − v(t), we can rewrite ProblemA as
follows:

min
r(t),st

i
,v(t)

lim
T→∞

1

T

T∑

t=1

E
[
w(t)P (t)− v(t)P (t)

]
(10)

s.t. (1), (3), (4), (5), (7), (8).

Notice that limT→∞
∑T
t=1 w(t)P (t) represents the total

cost of the power demand, which is equal to the summation
of the cost for all tasks. That is,

lim
T→∞

T∑

t=1

w(t)P (t) = lim
T→∞

T∑

t=1

nt∑

i=1

cti−1∑

j=0

πtiP (j + t+ sti),

(11)

where
∑cti−1
j=0 πtiP (j + t + sti) is the cost of taski ∈ Nt as

depicted in Fig. 4.
Now, we can reformulate the optimization problem as

follows:

ProblemB: min
r(t),st

i
,v(t)

lim
T→∞

1

T

T∑

t=1

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)

− P (t)v(t)
]

(12)

s.t. (1), (3), (4), (5), (7), (8).

Now we aim at finding the optimal solution to ProblemB.
We adopt the Lyapunov optimization approach [4] to solve it.

IV. TASK SCHEDULING POLICY

In this section, we propose a task scheduling policy and
show that its performance is within a bounded distance of the
optimum asT tends to infinity.

A. Virtual Queue

Let us construct an auxiliary virtual queueQ(t), whose
input and output are

∑nt
i=1 U

t
i (s

t
i) and α respectively. The

queueing dynamics is depicted as

Q(t+ 1) = max{Q(t) +

nt∑

i=1

U ti (s
t
i)− α, 0} (13)

Lemma 1: Lemma 1: If the virtual queue is rate stable,
i.e., lim supT→∞Q(t)/t = 0 with probability 1, then the
constraint (7) is satisfied.

Proof: The proof is similar to Lemma 1 in [11], we refer
to our technical report [12] for theproof.

B. Lower Bound the Minimum Cost

In this subsection, we will obtain a lower bound on the
minimum cost of ProblemB. The following lemma shows
that the performance achieved by using a stationary and
randomized algorithm forms a lower bound.

Let copt be the minimum cost to ProblemB. And let c̃ be
the minimum cost to the following ProblemC.

ProblemC: min
r(t),st

i
,v(t)

lim
T→∞

1

T

T∑

t=1

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)

− P (t)v(t)
]

s.t. (1), (3), (7), (8).

Lemma 2: copt is lower bounded bỹc, i.e., c̃ ≤ copt.
Further, c̃ can be achieved by an optimal stationary and
randomized policy, that is, the control action(r̃(t), s̃ti, ṽ(t)) in
each time slot is only a function of [nt, cti, h(t)]. In particular,
we have

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + t+ s̃ti)− P (t)ṽ(t)
]

= c̃, (14)

E
[ nt∑

i=1

U ti (s̃
t
i)− α

]
≤ 0, (15)

E
[
r̃(t)− ṽ(t)

]
≥ 0, (16)

Proof: The proof argument is similar to the one in [4],
We refer to our technical report [12] for theproof.

In the lemma, Eqn. (15) means that the long-term average
dissatisfaction achieved by the stationary policy is no greater
than α. Eqn. (16) implies that the average allocated energy
from the battery is no greater than the stored energy.

C. HTSA: Heterogeneous Task Scheduling Algorithm

We define the Lyapunov functionL(t) = 1
2 (Q(t)2 +

(B(t) − θ)2), where θ is a parameter specified later. The
intuition behind it is that, by minimizing the drift of the
Lyapunov function, we forceB(t) to approachθ. We also
define several constantsnmax = maxt nt, hmax = maxt h(t),
cmax = maxt,i c

t
i, andUmax = maxt,i U

t
i (d

t
i), whereUmax

reflects the maximum dissatisfaction among all tasks.



Let Z(t) = (Q(t), B(t)). The conditional Lyapunov drift
is given byE{(L(t + 1) − L(t)|Z(t)}. We will show some
properties of the drift via the following lemma.

Lemma 3: The conditional Lyapunov drift satisfies that

E{(L(t+ 1)− L(t)|Z(t)} ≤

D +Q(t)E
[ nt∑

i=1

U ti (s
t
i)− α|Z(t)

]

+ (B(t)− θ)E
[
r(t)− v(t)|Z(t)

]
, (17)

whereD , 1
2 (n2

maxU
2
max + α2 + r2

max + v2
max).

Proof: We refer to our technical report [12] for theproof.

By addingV E[
∑nt
i=1

∑cti−1
j=0 πtiP (j+sti+t)−P (t)v(t)|Z(t)]

on both sides of Eqn. (17), we have

E[(L(t+ 1)− L(t)|Z(t)]

+ V E[

nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)− P (t)v(t)|Z(t)]

≤ D +Q(t)E
[ nt∑

i=1

U ti (s
t
i)− α|Z(t)

]

+ (B(t)− θ)E
[
r(t)− v(t)|Z(t)

]

+ V E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)− P (t)v(t)|Z(t)
]

= D − αQ(t) + (B(t)− θ)E
[
r(t)|Z(t)

]
+

nt∑

i=1

E
[
Q(t)U ti (s

t
i) + V

cti−1∑

j=0

πtiP (j + sti + t)|Z(t)
]

+ (θ −B(t)− V P (t))E
[
v(t)|Z(t)

]
, (18)

whereV is a control parameter.
We now describe our scheme,heterogeneous task schedul-

ing algorithm (HTSA). The idea ofHTSA is to minimize the
right-hand side (RHS) of Eqn. (18) subject to the energy-
availability constraint (4) and(5).

Heterogeneoustask scheduling algorithm (HTSA):
• In each time slott, the harvested energyr∗(t) is deter-

mined by

r∗(t) =

{
h(t), if B(t)− θ < 0,

0, otherwise.
(19)

• In each time slott, the postponing timesti for taski ∈ Nt
is determined by:

st∗i = arg min
0≤st

i
≤dt

i
−ct

i

Q(t)U ti (s
t
i) + V

cti−1∑

j=0

πtiP (j + t+ sti).

(20)

• In each time slott, the battery charge/discharge is given
by:

v∗(t) =

{
min{vmax, w(t)}, if θ −B(t)− V P (t) < 0,

−vmax, otherwise,
(21)

wherew(t) is determined by Eqn. (6).
Define a constantPmax as the highest electricity price, i.e.,

Pmax = maxt P (t). By setting θ = vmax + V Pmax, from
Eqn. (21), we can see that whenB(t) < vmax, it always has
θ − B(t) − V P (t) > 0. In other words, the battery always
draws energy from the grid, namelyv(t) = −vmax, when
the battery level is less thanvmax. This implies that when
the battery discharges, there is always enough energy in the
battery, i.e.,B(t) > vmax. Therefore, the energy constraint of
Eqn. (4) is indeedredundant.

D. Performance Analysis

In this subsection, we will prove thatHTSA achieves a
performance that is within a bounded distance of the optimum
via the following theorem.

Theorem 1: By settingθ = vmax +V Pmax andB(0) = θ,
HTSAhas the following property:

1) The battery levelB(t) satisfies:

B(t) ≤ θ + vmax + hmax. (22)

2) There existsM > 0, such thatQ(t) is bounded byM
for all t, whereM is a constant.

3) The cost achieved byHTSAsatisfies:

lim sup
T→∞

1

T

T∑

t=1

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + s∗i + t)− P (t)v∗(t)
]

≤ copt + Pmaxvmax +
D + (vmax + hmax)2

V
.

Proof: We refer to our technical report [12] for theproof.

From part (2) in Theorem 1, sinceQ(t) is bounded, combin-
ing with lemma 1, we can see that the average delay constraint,
i.e., Eqn. (7), is satisfied. Part (3) in Theorem 1 shows that the
cost induced by our algorithm is within a bounded distance
of the optimum by setting the parameterV to be sufficiently
large. It is worth pointing out that the algorithm does not
require the future knowledge of the statistics of power demand
and the task arrival process.

V. CASE STUDY

We adopt the 5-minute average spot market prices for
Columbus Area from CAISO [9]. The profile depicted in
Fig. 3 shows the electricity price for the period 10/10/2011-
10/14/2011. The arrival process of all tasks here are assumed
to be Poisson process with different intensityλi, although
Theorem 1 holds for any general arrival process. Without loss
of generality, we consider four types of appliances in our
simulations. The first three tasks are delay-tolerant, while the
last one is delay-intolerant. The arrival intensities for these
tasks are set to be 2, 0.5, 0.035 and 100, respectively. And
the energy consumption rate for these tasksπti are set to be
5.2kw, 3.5kw, 2.4kw and 60w. The “dissatisfaction” functions
are assumed to beU(x) = x2. The average delay constraint
thresholdα is set to be 1000, and the parameterV is set to
be 100.
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We start by comparing our algorithm and a naive scheme,
which activates the task immediately upon its arrival. Consider
the first type of delay-tolerant task, which has a deadline of
100 slots, while the required service time is two slots. Fig.
5 shows the cost reduced for scheduling this type of task
using our algorithm. The total cost saved in these five days is
$35.4033, which is19.82% of the total cost. If we extend the
hard delay deadline to 200 slots, the corresponding percentage
of saved cost increases to27.20%. This is because if we have
a less stringent delay constraint, we can gain more benefit.

Next, we will show how the battery influences the perfor-
mance. The deadline for other two types of delay-tolerant tasks
are set to be 10 and 20, respectively. We set the battery size

to be2vmax + V Pmax + hmax. Fig. 6 depicts the percentage
reduction in cost versusvmax. We can see that the percentage
reduction in cost increases asvmax grows, i.e., the battery size
grows. This is because a large battery can lead to a higher
shaved cost.

In Fig. 7, we illustrate the relationship between the percent-
age of reduced cost and the parameterV . It can be seen that
whenV is small, the reduced cost is less than the counterpart
whenV is large. The reason is that the termD+(vmax+hmax)2

V

in Theorem 1 cannot be neglected whenV is small.

VI. CONCLUSION

In this paper, we investigate the cost minimization problem
for an end-user, which is equipped with renewable energy
devices when electrical appliances allow different levels of
delay tolerance. The problem we formulate here is to minimize
the cost of the energy from the external grid while usage of
appliances are subject to individual delay constraints and a
long-term average delay constraint. Our proposed algorithm,
HTSA, requires some future information of the electricity
price, but achieves provable performance without requiring
future knowledge of either the power demands or the task
arrival process.
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