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ABSTRACT

For a multicast group of n receivers, existing techniques ei-
ther achieve high throughput at the cost of prohibitively
large (e.g., O(n)) feedback overhead, or achieve low feed-
back overhead but without either optimal or near-optimal
throughput guarantees. Simultaneously achieving good thro-
ughput guarantees and low feedback overhead has been an
open problem and could be the key reason why wireless mul-
ticast has not been successfully deployed in practice. In
this paper, we develop a novel anonymous-query based rate
control, which approaches the optimal throughput with a
constant feedback overhead independent of the number of
receivers. In addition to our theoretical results, through im-
plementation on a software-defined ratio platform, we show
that the anonymous-query based algorithm achieves low-
overhead and robustness in practice.

CCS Concepts

eNetworks — Network protocol design; Network control al-
gorithms;

Keywords
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1. INTRODUCTION

Mobile video is expected to contribute 70% of all the mo-
bile traffic by the end of 2018 [1]. Wireless multicast, which
leverages the shared nature of the wireless medium, is an ef-
ficient way to distribute the popular video streams to many
clients.

In a wireless communication system, the channel condi-
tion fluctuates over time due to factors such as multipath,
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shadowing, mobility, etc. Adapting the physical layer trans-
mission rate according to the channel conditions of the re-
ceiver(s), referred to as rate control, is an essential com-
ponent in the protocol stack in terms of achieving a high
throughput. The rate control problem has been extensively
studied for wireless unicast, e.g., [2][3][4][5][6]. The rate con-
trol in a wireless multicast scenario faces additional chal-
lenges: the channel quality of each receiver may correspond
to a different stochastic process. As a result, adapting the
rate to one particular receiver as in the unicast case may
substantially degrade the throughput of the other receivers.
Therefore, an appropriate rate control for multicast may
need to carefully balance all the receivers by jointly con-
sidering the channel state information (CSI) or the channel
distribution information (CDI) of all the receivers.

In practice, both the CSI and CDI are only locally avail-
able at each receiver. Conventionally, to select the appro-
priate transmission rate, the transmitter needs to collect the
CSI or CDI from all the receivers. For a multicast group of n
receivers, existing techniques either achieve high throughput
at the cost of prohibitively large (O(n)) feedback overhead
[7][8], or provide schemes [9][10][11] with low overhead, but
without good throughput guarantees.

Thus, simultaneously achieving good throughput guaran-
tees and low feedback overhead has been a long-standing
open problem. In this work, we make significant progress
towards developing a scheme that achieves high throughput
with constant feedback overhead.

The contributions of this paper are summarized as follows.

e We begin with a static multicast rate control prob-
lem. We develop a novel Anonymous-Query mecha-
nism that approaches the e-neighborhood of the op-
timal static rate with a communication overhead of
O(log 1/€), which is not only independent of the num-
ber of receivers n, but also order optimal in terms of e.
Our method works as if the receivers were to collabo-
ratively inform the transmitter the optimal rate bit by
bit, but without any prior knowledge of CSI or CDI at
the transmitter.

e We then compare the achievable throughput of the
optimal static rate control with the genie-aided dy-
namic rate control solution, where the CSI of all re-
ceivers are known non-causally at the transmitter and
the rate at each time-slot is selected to maximize the



long-term average system throughput. We show that
under some mild conditions, the throughput gain of
the optimal genie-aided control over the optimal static
rate control method becomes negligible as the number
of receivers increases. In particular, when the num-
ber of rates the transmitter can choose from is finite,
the throughput gain of the optimal genie-aided control
decreases exponentially with the number of receivers.
This suggests that, compared with the optimal static
rate control method, the benefits of exploiting chan-
nel realization information from receivers is negligi-
ble when the number of receivers is moderately large.
Therefore, in a network with a large number of re-
ceivers, the static rate control method we propose is
able to achieve a throughput close to the throughput
of the optimal genie-aided rate control, while incur-
ring a small constant communication overhead inde-
pendent of the number of receivers. To the best of our
knowledge, our rate control method is the first which
approaches the optimal throughput in multicast with a
constant communication overhead independent of the
number of receivers.

e Our theoretical results are validated by numerical sim-
ulations. Furthermore, via a software defined radio
implementation we show the low-overhead and robust-
ness features of the anonymous-query based algorithm.

The rest of this paper is organized as follows. In Section 2,
we introduce some related works. In Section 3, we describe
the system model and formulate the static rate control prob-
lem. In Section 4, we propose an anonymous-query based
algorithm to solve the static rate control problem. In Sec-
tion 5, we compare the achievable throughput of the optimal
static rate control with the genie-aided dynamic rate con-
trol solution. In Section 6, we evaluate the performance of
our method through both numerical simulations and system-
level implementations. Finally, in Section 7, we conclude the
paper.

2. RELATED WORK

In wireless unicast, the rate control problem has been
extensively studied, e.g., [2][3][4][5][6]. Most existing tech-
niques, such as [2][3], adjust the transmission rate according
to either the CSI or CDI from the receiver. Recently, Strider
code [4] and Spinal code [5] have been proposed, in which no
CSI or CDI from the receiver is required before transmission
and the transmission rate is determined by the acknowledge-
ment information from the receiver. However, there are two
issues with this approach: (i) As shown in a recent work
[6], even for a single receiver, the feedback overhead to de-
termine the rate without CSI or CDI still occupies 5 — 10%
of the total time, and thus is non-negligible. (ii) It is not
clear whether these new advancements could be successfully
applied to a wireless multicast with a large number of re-
ceivers.

In wireless multicast, the channel qualities of receivers of-
ten correspond to different stochastic processes. One intu-
itive way of choosing the transmission rate, e.g., [10], is to
guarantee the successful reception of every packet at all the
receivers. However, as the number of receivers increases, it
becomes more and more likely that there exists a receiver(s)
whose instantaneous channel happens to be poor. As a re-
sult, the achievable throughput of the intuitive method may

degrade substantially as the number of receivers increases.
A scalable rate control for multicast should allow receivers
to occasionally fail to receive packets when their channel
conditions are poor. In light of this, there has been a rich
body of literatures that study different ways to reliably dis-
seminate information under the broadcast erasure channel
model. For example, rateless codes such as LT codes [12],
Raptor codes [13] and more recent network coding schemes
[14][15][16] allow one to achieve the capacity of broadcast
erasure channel. The required feedback overhead in [15][16]
can be quite small even when there are a large number of
receivers. Note that the transmission rate, e.g., modula-
tion or coding rate in the physical layer, is given a priori in
these works. In this work, we focus on devising an efficient
multicast rate adaptation in the physical layer, which, by
combining with the techniques described above, can achieve
a high throughput.

Existing studies about rate control in wireless multicast
are either CDI-based or CSl-based. The static multicast
rate control problem was formulated and studied in [7]. It is
assumed that the transmitter has perfect knowledge about
the CDI of the receivers. In [8], the authors optimized trans-
mission rate for multicasting video streams according to CSI
of the receivers. Note that the communication overhead for
the transmitter to collect CDI or CSI from all the receivers
increases linear with respect to the number of receivers n,
which could be prohibitive in a large network. To avoid
the scalability problem, the method in [9] partitions the re-
ceivers into clusters and only selects a subset of the receivers
to report CSI or CDI to the transmitter. Yet, it requires
precise location information of all the receivers, making it
difficult to apply to a network with a large number of mobile
clients. In [10], the duration of a busy tone signal is used
to indicate the maximum of the instantaneous supportable
rate of all receivers. Although the communication overhead
of the busy tone can be small even when there are a large
number of receivers, the achievable throughput of this ap-
proach degrades with the number of receivers, as explained
earlier for the intuitive rate control approach. In [11], a
rate adaptation method is proposed which could empirically
achieve high throughput and low feedback overhead, but it
is not clear whether the method is close to the optimal so-
lution. To the best of our knowledge, this is the first work
that approaches the optimal throughput (for a large wireless
multicast group) with a constant communication overhead
independent of the number of receivers.

3. SYSTEM MODEL AND PROBLEM FOR-
MULATION

3.1 System Model

We consider a multicast setting, where we have one trans-
mitter that needs to send a stream of common information
to n receivers.

Typical wireless transceivers have multi-rate capabilities.
For example, in 802.11ac, the transmitter has the flexibility
of choosing between 10 transmission rates from 32.5 Mbit/s
to 433.3 Mbit /s by selecting different combinations of modu-
lation and channel coding configurations. Let R denote the
set of transmission rates available at the transmitter. To
capture the physical layer capability, we let 7min = min{R}
and rmax = max{R}.



‘We consider a slotted system, where the channel between
the transmitter and each of the receivers is assumed to be
block fading, where the channel states remain the same
within each slot, and vary from one slot to another. Note
that a transmission rate would correspond to an associated
SNR threshold. Hence, in a time slot ¢ given the channel
gain from the transmitter to receiver i, we can find a maxi-
mum transmission rate under which the packets sent by the
transmitter in slot ¢ can be successfully received by receiver
1. We denote such a rate by R;[t]. Across different time slots,
R;[t] would vary with the fluctuation of the channel quality.
Since, for each receiver i, there is a one-to-one correspon-
dence between the channel gain and the maximum achiev-
able transmission rate [17], the channel process of a receiver
i can be fully captured by the dynamics of { R;[t] }+en. In this
paper, we assume that {R;[t]}en is a stationary stochastic
process, and we use the random variable R; to capture its
distribution.

We assume that the transmitter has no knowledge of ei-
ther the distribution or the realization of {R;[t]}i1<i<n,ten,
while each receiver i has perfect knowledge of its own chan-
nel, i.e., the distribution of {R;[t]}+en as well as its instan-
taneous realization. This is a practical assumption, since
the CSI or CDI can be easily acquired at each receiver by
measuring the probing signals sent by the transmitter.

The objective of the transmitter is to maximize the long-
term throughput of the common information flow to all the
receivers by controlling its transmission rate.

3.2 Static Multicast Rate Control

From the definition of R;[t], we know that given the trans-
mission rate r € R, the packet sent in slot ¢ can be success-
fully received by receiver i if and only if R;[t] > r. Thus, if
the transmitter transmits at a constant rate » € R and the
system has only a single receiver ¢, the long term average
throughput of the system can be expressed as a product of
the transmission rate r and probability that receiver i can
successfully receive a packet at rate r, which we denote as

Ti(r)=rP(Ri>7). (1)

We also call T;(r) the throughput function of receiver i.

Note that P (R; > r) is a decreasing function of r. From
Equation (1), neither a very high rate r nor a very low rate r
is desirable to achieve a large throughput, for a high rate r,
P (R; > r) could be close to zero leading to a low throughput;
a low rate r may correspond to the case of P (R; > r) being
close to one, but now he throughput is limited by r which is
low. In this paper, we make the assumption that T;(r) is a
continuous unimodal® function in 7. Note that this is a mild
assumption. For instance, the assumption is true when R;[t]
is calculated based on the Shannon equation and the SNR
distribution conforms to either Rayleigh or Rician fading.
Two examples of T;(r) are shown in Figure 1.

When the transmitter sends common information to more
than one receiver using a constant rate r, the long term
throughput of the system is limited by the weakest receiver
under rate r. More precisely, the long term average system
throughput under the constant transmission rate r, which
we denote as T'(r), can be expressed as

T(r)= 1r§nii£nﬂ~(r). (2)

IThere exists a unique maximum.
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Figure 1: Two examples of T;(r) with Rayleigh and
Rician faded channel models and R;[t] = Wlog(l +
SNR) with W =5MH z.

Since the minimization operation preserves unimodality, 7'(r)
is also a unimodal function.

Note that the throughput in Equation (2) is achievable
using many different schemes. For example, rateless codes
such as LT codes [12], Raptor codes [13] and more recent
network coding schemes [14][16] can be applied in the ap-
plication layer to achieve the capacity of broadcast erasure
channel. In this paper, we limit our attention on the rate
adaptation in the physical layer.

The static multicast rate control problem is to find the
transmission rate r that maximizes the throughput of the
network, which is formulated in Equation (3).

max T(r) = max min T;i(r). (3)

It can be observed from Equation (3) that the static rate
control problem is a max-min optimization problem. Since
T'(r) is a unimodal function, there is a unique solution r* €
R to Equation (3). Solving this problem is straightforward
if the complete information about the throughput functions
{T;(r)}1<i<n is given (e.g., using search techniques such as
Golden Section Search or Fibonacci Search), yet the chal-
lenge lies in the fact that T;(r) is known only locally at
receiver ¢. For the transmitter to find the optimal rate r*,
conventional approaches require the transmitter to collect
information about T;(r) from every receiver 1 < i < n. In
other words, receivers have to feed back information using
orthogonal channel resources (either in time or frequency)
as shown in Figure 2(a). Consequently, as the number of
receivers n increases, the communication overhead of con-
ventional approaches increases proportionally with n. For
example, one naive method to approach an e-neighborhood
of the optimal rate, i.e., [r* —€/2,r* + €/2], is to let each
receiver i feed back a number of (Fmax — 7min)/€ samples of
Ti(r). The number of bits that needs to be exchanged be-
tween the transmitter and all the receivers is in the order? of
at least ©(n/¢), which is prohibitive when there are a large
number of receivers in the network or when we desire the so-
lution to be close to the optimal. This is the key motivation
of the paper: to find a method to approach r* with much
less communication overhead.

In Section 5, we compare the performance of the static
rate control solution with the genie-aided dynamic rate con-

We say z, = O(y,) if there exist z1,z2 > 0 such that
zl\yng < |zn| < 22|yn| for two real-valued sequences {z}
Y

an b
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Figure 2: A comparison of traditional information
gathering and Anonymous-Query based information
gathering.

trol solution, where the channel realizations { R;[t] }1<i<n,ten
are known non-causally at the transmitter and the rate of
transmission at each time-slot is selected to maximize the
long-term average system throughput. Surprisingly, we show
that under some mild conditions, the throughput gain of
the optimal genie-aided control over the static rate control
method vanishes as the number of receivers n increases.

4. ANONYMOUS-QUERY BASED MULTI-
CAST RATE CONTROL

In this section, we introduce a novel Anonymous Queries
mechanism, based on which an algorithm is developed to
solve the static multicast rate control problem. The salient
feature of the proposed algorithm is that the transmitter can
approach an e-neighborhood of the optimal solution with a
communication overhead O(log1/€), which is not only inde-
pendent of the number of receivers n, but also order optimal
in terms of €.

4.1 Anonymous Queries-based Signalling

We propose a novel Anonymous Queries mechanism as
illustrated in Figure 2(b). In Anonymous Queries, the trans-
mitter and the receivers communicate interactively in rounds.
One round of anonymous query is defined as follows.

DEFINITION 1. (Anonymous Query) One round of anony-
mous query consists of the following two consecutive stages.

Stage1l: The transmitter broadcasts a question to a group
of n receivers using the lowest data rate®, where
the question follows the following format: “Is there
any receiver that satisfies a property P?”. Whether
or not the property P is satisfied depends only on
information locally available at each receiver.

Stage 2: In response to the question broadcasted by the
transmitter, a receiver will send out a beacon sig-
nal if the receiver satisfies the property P specified
in the question. If a receiver does not satisfy the
property P, it keeps in the receiving mode prepar-
ing to receive the next query from the transmitter.

3The lowest data rate is used to ensure that all the receivers
could receive the question reliably.

At the same time, the transmitter enters the re-
ceiving mode and detects the existence of beacon
signal from the receivers.

For each round of anonymous query, the transmitter could
learn 1 bit information about whether there is any receiver
1 < i < n satisfying the property P. This learning process
is anonymous in the sense that the transmitter cannot learn
the actually id of the receiver(s) satisfying the property. The
result of the previously sent queries will determine whether
more queries are necessary and what query will be sent next.

Since the transmitter can easily detect the existence of
beacon signal(s) by energy detection, the receivers satisfy-
ing property P could send the beacon signals in the same
channel and do not need to be precisely synchronized or co-
ordinated. This leads to a salient feature of the anonymous
queries: the communication overhead of each round of query
is constant for any number of receivers n. The key challenge
is to design an Anonymous-Query based algorithm to learn
the optimal rate r* of Problem (3) using as few queries as
possible.

4.2 Anonymous-Query based Rate Control

In this subsection, we present the rate control algorithm
based on anonymous queries. For ease of presentation, we
first consider the case when the transmitter can choose any
rate in the set R = [Fmin, Tmax]. Later we shall do a minor
adjustment to make our algorithm applicable to the case
when R is any finite set.

First, we show that the straightforward incorporations of
Anonymous Queries with existing search techniques such as
Golden Section Search and Fibonacci Search [18] are not effi-
cient. Given the evaluations of T'(r), Golden Section Search
or Fibonacci Search can find the maximum of a one dimen-
sional unimodal function 7'(r). Since rmin < 7 < Tmax 18
bounded, the convergence speed of these methods is known
to be order optimal [19], if T'(r) is known a priori. We show a
toy example in Figure 3(a), in which there are two receivers.
The idea of Golden Section Search or Fibonacci Search is
that in one iteration, two rates rmin < 71 < T2 < Tmax are
picked. Suppose we know that T'(r1) > T'(r2), then based on
the fact T'(r) is unimodal, the search region for r* can be nar-
rowed down to [rmim 7“2]. In our problem, however, for a spe-
cific r, the evaluation of T'(r) = min;<;<, T;(r) is not readily
known by the transmitter, and the value of T'(r) can only be
approximated by a bisection search using rounds of Anony-
mous Queries. For the example shown in Figure 2(b), the
transmitter queries about “Is there any receiver 1 < i < n
with T;(40) < 327”7. Since T>(40) = 27,7,(40) = 30, the
transmitter detects the beacon signal in this round. In the
next round, the transmitter may query “Is there any receiver
1 <4 < n with T;(40) < 167”. In this way, the search re-
gion for T'(40) can be narrowed down. Unfortunately, to
learn which one among T'(r1) and T'(r2) is larger, a good
number of Anonymous queries may be necessary, especially
when T'(r1) and T'(rz) are close. In the worst case, to ap-
proach an e-neighborhood of the optimal solution, the num-
ber of required queries is ©(log 1/€) in each iteration of the
search algorithm. Since the search algorithm terminates af-
ter ©(log 1/€) iterations, the worst communication overhead
of the straightforward incorporation of Anonymous Queries
can be O((log1/¢)?) to learn an e-neighborhood of the op-
timal solution. Note that even though the communication
overhead is independent of the number of receivers n com-
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Figure 3: Comparison of different Anonymous-
Query based algorithms in a toy network with two
receivers.

pared with a complexity of O(n) using conventional meth-
ods, the overhead can still be quite high when € is small.
Next, we propose our Anonymous Query method which
will learn the optimal rate much more efficiently.
To begin with, we define the concept of a superlevel set

DEFINITION 2. (Superlevel set) A set of the form
Lc(Tz) = {T S [Tminy'r'nmx”Ti (7") > C} (4)
is called a superlevel set of function T;(r) at level c.

The idea to solve Problem (3) using anonymous queries is
to search for r* and T'(r*) at the same time. A lower bound
rr, and an upper bound 7y for r* are maintained. Similarly,
a lower bound ¢z, and an upper bound cy for T'(r*) are main-
tained. The anonymous queries are designed such that from
the results of queries in each iteration, either the search re-
gion [rr,ry] for r* or the search region [cr, cy] for T'(r*) can
be narrowed down by half. The details of the anonymous-
query based rate control scheme are given in Algorithm 1.
In lines 2-3, [rr,rv] and [cr, cy] are initialized. In each it-
eration of Algorithm 1, r)s and ¢y are set to be the middle
points of [rz, rv] and [cr, cu] respectively, as shown in line 7.
Then, the transmitter sends two anonymous queries to the
receivers on the superlevel sets with the level cas for [rr, i)
and [rar, Tu] respectively (lines 9-10 and lines 18-19). In re-
sponse to the anonymous query, a receiver ¢ sends a beacon
signal if it satisfies the queried property (lines 11-14, lines 20-
23). By detecting the existence of beacon signals for the two
queries, the transmitter learns two bits information ar, and

Algorithm 1: Anonymous-Query based Rate Control

1------- Initializations - - - - - - - - - - - - - -
2 T'L = Tmin} TU ‘= Tmax;

3 cr :=0; cu ‘= Tmax;

4 TF = Tmin;

5 ------ Anonymous queries - - - - - - - - - - -
while ry —rp > € and cy — ¢ > € do

rv o= 2(re 4+ ru); em o= 2 (cL + cv)
—————— Anonymous query for [rp,ra]--------
Tx broadcasts an anonymous query:

10 3 Rx ¢ such that Lc,, (T:) N [re,ram] = 07
11 foreach Rz i€ {1,...,n} do

12 if Ti(r) < ¢, Vr € [ro, ] then
13 send out a beacon signal;
14 end
15 Tx detects the existence of beacon signal;
16 if beacon signal is detected then ayr, := 1; else
ar, := 0;
17 | ------ Anonymous query for [ra,ry] --------
18 Tx broadcasts an anonymous query:

19 3 Rx ¢ such that L.,, (T;) N [ra, ru] = 07
20 foreach Rz i€ {1,...,n} do

21 if T5(r) < cm,Vr € [ry,ru] then
22 send out a beacon signal;
23 end
24 Tx detects the existence of beacon signal;
25 if beacon signal is detected then ay := 1; else
ay = 0;
26 | ------ Tx updates for the new queries - - - - - - - -
27 switch ar,ay do
28 casear =1 andayv =1 cuy = cum;
29 casear =0 and ay =0 cL :=cm; TF =T,
30 casear =1 anday =0 rp :=ru;
31 casear =0 andayv =1 1y :=ru;
32 end
33 end
34 if ry —rp < ethen 7 :=rr; else 7 :=rp;
35 - ---- Starting data transmission - - - - - - - - - -

36 Transmit packets at rate 7.

ayu, which altogether determine the updates of the search
regions for [rp,ry] and [cr, cu], as shown in lines 27-32. rp
is a rate which always guarantees that T'(rr) > cr. Anony-
mous queries are sent until either ry —rp < eorcy—cr <e.
In the end (lines 34-36), depending on whether ry — rr < €,
the transmitter sets up its transmission rate # among rz, and
rr. For the toy network shown in Figure 3(b) that consists
of two receivers, after two rounds of Anonymous Queries,
ar, =0 and ay = 0. As a result, the search region for T'(r*)
can be cut by half (For the mathematical reasoning, please
refer to Theorem 1 and its proof in Appendix A.).

We define the communication overhead of Algorithm 1 as
follows.

DEFINITION 3. (communication overhead) The commu-
nication overhead of Algorithm 1 is defined as the number
of required anonymous queries.

Theorem 1 characterizes the convergence rate of Algo-
rithm 1.

THEOREM 1. To achieve an e-neighborhood of the optimal
rate r* or the throughput T'(r*), that is either we find a rate



rL € [Fmin, Tmaz] Such that r* —e < rp < r* or we find a
rate rp € [Fmin, "maz] Such that |T(rp) — T(r*)| < €, the
communication overhead of Algorithm 1 scales as O(log %)

PROOF. See Appendix A. [J

REMARK 1.1. By Theorem 1, the communication over-
head of Algorithm 1 is independent of the number of receivers
n.

REMARK 1.2. Getting to know the e-neighborhood of the
optimal rate v is equivalent to acquire the first @(log%)
bits of r* in the binary number system. Thus, the com-
munication overhead of any algorithm which could learn the
e-neighborhood of r* is trivially lower bounded by ©(log 1).
By Theorem 1, Algorithm 1 is order optimal in terms of e.

REMARK 1.3. The key idea behind Theorem 1 is to show
that at the end of every iteration of Algorithm 1, we have
c <T(rp) <cv andry <7r* <ry,c <TE") < cv.
Since in each iteration of Algorithm 1, either the search re-
gion [rr,ru] for r™ or the search region [cL, cu] for T(r*) can
be narrowed down by half, after [log, Tme=—"min]  [log, *maz]
iterations of Algorithm 1, either ry —rp <€ orcu —cr < €.
Thus, if rv — rr. < €, we know that 1 is within the e-
neighborhood of an optimal rate r*, i.e., |rp —r*| <e, oth-
erwise we know a rate rg, the throughput of which is in
an e-neighborhood of the throughput of an optimal rate, i.e.,
T(re) — T(r*)| < c.

REMARK 1.4. It can be easily shown that T(+) > T(r*)—e
always holds. Hence, the throughput under the rate # calcu-
lated by Algorithm 1 is close to the throughput under the
optimal state rate r*.

To see this, by Theorem 1, for the rate 7 calculated by
Algorithm 1, we have either T(r*) — T(f) < € orr* —e <
7 < r*. Given that r* — e < 7 < 1", from Equation (1), we
have for any 1 <i<n

Ti(T*) — TZ(TA) = T*HD(RZ‘ 2 ’I“*) — ﬂP(RZ 2 f)
(a)
< P(R; >7)(r" —7) <k,
where step (a) follows from the fact P(R; > ) is a decreasing
function in r. By the definition in Equation (2), we have
T(r")—=T(7) = min Ti(r*) — min T;(7)
< min (T;(7) + €) — min T;(7) = e.

~ 1<i<n 1<i<n

Thus, T(r*) —T() < € holds.

To allow Algorithm 1 to work with a finite R, a minor ad-
justment on Algorithm 1 is sufficient: Rather than updating
ry to be %(TL +7ry) in line 7, set ras to be the median of the
set RN [rr,ru]. As a direct corollary of Theorem 1, with a
communication overhead of O(log % +logm), either we find
the optimal rate r* € R, or we find a rate rp € R such that
T(re) — T()] < e.

S. COMPARISON WITH GENIE-AIDED RATE

CONTROL

In this section, we compare the achievable throughput of
our rate control method with the genie-aided dynamic rate
control solution, in which the channel state realizations are

known non-causally at the transmitter and the rate at each
time-slot is selected to maximize the long-term average sys-
tem throughput. We show that under some mild conditions,
the throughput gain of the optimal genie-aided control over
our rate control method vanishes as the number of receivers
n increases. In a network with a large number of receivers,
the static rate control method given by Algorithm 1 is able to
achieve a throughput close to the throughput of the optimal
genie-aided rate control, while incurring a small constant
communication overhead independent of the number of re-
cewvers.

5.1 Genie-aided Rate Control

In the genie-aided rate control, we allow the transmitter
to be very powerful and even foresee the channel realizations
of all the receivers in all the time slots, i.e., { R;[t] }1<i<n,ten.
As a result, it could then select the transmission rate 7 =
{r[t]}+en according to the channel realizations. Under a spe-
cific vector of rate ¥ = {r[t]}+en, the achievable throughput
of any receiver ¢ can be expressed as

t
. 1
TZG(F) = hzn sup — Z TITI1R; (1> (7] (5)
—oo L

where 14 is the indicator function for event A.

The optimal genie-aided rate control finds the transmis-
sion rate ¥ which maximizes the throughput of the network
as formulated in Equation (6).

"2 TY(F) = in T 6

e = e 2, T O

where T™ is the achievable throughput of the optimal genie-
aided rate control.

5.2 Performance Limits of Genie-aided Rate
Control

We assume that for any receiver 4, its channel states across
different time slots are independently distributed. For any
pair of receivers i1 # i2, {Ri; [t|}ten and {Ri,[t]}ten are
independent. We assume that there are K classes of re-
ceivers, C1,Ca,...,Cx. The distributions of R; for the re-
ceivers in the same class ¢ € Ci are the same and we use
the random variable R¢, to denote its distribution, i.e., for
any receiver ¢ € Ci, P(R; >r) = P(Re, >r),Vr € R.
For any two classes Cx and Cys, the corresponding chan-
nel distributions follow a stochastic order, that is either
P(Rc, > 1) < P(Rck, > r) ,Vr € R (denoted as Re, <
Re,,) or P(Re, > 1) > P(Re,, >7),¥r € R (denoted as
Re, = Rc,,). Note that the stochastic order of different
classes of channels is a mild condition. For example, if the
channel distribution follows the commonly adopted Rayleigh
distribution, the stochastic ordering is satisfied, since the
Rayleigh fading model is determined by a single parameter.
Without loss of generality, we assume R¢, < Rec, < ... <
Re,, . Thus, C1 corresponds the bottleneck class of receivers.

Let nc, denote the number of receivers in class Cr. Then,
Eszl nc, = n. We assume that nc, is non-decreasing with
n and ne, — oo asn — oo for any 1 <k < K.

It can be expected that the achievable throughput of the
network under the genie-aided rate control to be higher than
our static rate control policy in Algorithm 1, as the static
rate control is just a special case of the genie-aided control.
In this subsection, we characterize the throughput gain of
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AQ with Golden Section Search
THEOREM 2. Let 7 € R denote the rate calculated by Al-

gorithm 1. Given that the rate set R that the transmitter o 107F
can choose from is countable, the throughput gain of the op- [ 1 i
timal genie-aided rate control over the rate control method N by
(with the rate calculated by Algorithm 1), i.e., {r[t] = 7}ien Ourproposed AQ -y
is no more than € as n — oo, where € is independent of [ ¥ .
n and can be made arbitrarily small at the cost of O(log%) 10 T T I 100 200 250 30 30 am s

commumnication overhead.

lim T* < T(F) + e

n—o0o

w.p.1, (8)
in which w.p.1 denotes “with probability 1”.
PRrROOF. See Appendix B. []

REMARK 2.1. The genie-aided rate control may achieve
a higher throughput than the optimal static rate control be-
cause of the opportunistic gains. However, Theorem 2 sug-
gests that for wireless multicast, the opportunistic gains of
the genie-aided rate control vanishes as n increases. This is
in sharp contrast to wireless unicasts, where the opportunis-
tic gains increases as n increases [20].

REMARK 2.2. To prove Theorem 2, by Theorem 1 and
Remark 1.4, it suffices to prove that the throughput gain of
the optimal genie-aided rate control over the optimal static
rate control policy, i.e., {r[t] = r* }+en vanishes as n — co.

lim T" =T(r") w.p.1. 9)
n— oo

THEOREM 3. Let 7 € R denote the rate calculated by Al-
gorithm 1. If the rate set R the transmitter can choose from
is finite, and there exists 0 < Kk < 1 such that kn < ne, <
kn + 1, the throughput gain of the optimal genie-aided rate
control over the rate control method (with the rate calculated
by Algorithm 1), i.e., {r[t] = 7}+en, decreases exponentially
fast with respect to n.

e—I(’R)nn+o(n) < T _ T(f) < e—I(R)ﬁn+o(n) +e (10)

Here*, ¢ is independent of n and can be made arbitrarily
small at the cost of O(log%) communication overhead, and
the decay rate I1(R) is strictly greater than 0, given by Equa-
tion (7).

PROOF. See Appendix C. [

REMARK 3.1. Theorem 3 considers a finite rate set R,
which is the case in practice. It implies that, for moderately
large n, the throughput gain of the genie-aided rate control
has become negligible.

‘We say z, = o(yn) if limp oo E—:ll = 0 for two real-valued

sequences {z,} and {yn}.

Rounds of Anonymous Queries (AQ)

Figure 4: Evolution of the communication overhead
to approach the e-neighborhood of r*.

REMARK 3.2. To prove Theorem 3, by Theorem 1 and
Remark 1.4, it suffices to prove that the throughput gain of
the optimal genie-aided rate control over the optimal static

rate control policy, i.e., {r[t] = r*}ien decreases exponen-
tially fast with respect to n.
T _ T(T’*) _ e—I('R)nn-‘—o(n). (11)

The proof of Equation (11) is composed of three parts. First,
we prove a lemma which characterizes the probability that
some rate 7 # r* will lead to a higher sum throughput of re-
cetvers in class C1 than the static optimal rate r*. Secondly,
based on the lemma, we obtain an asymptotic upper bound
of the throughput gain for any genie-aided rate control pol-
icy. Lastly, we construct a specific genie-aided rate control
policy, whose throughput gain achieves the asymptotic upper
bound.

REMARK 3.3. By Equation (7) in Theorem 8, the decay
rate of the throughput gain of the optimal genie-aided rate
control depends on the available rate set R as well as the
distribution P(Rc, > r),Vr € R. Since in Equation (7)
the mazimization is taken over all possible 7 # r*,7 € R,
giwen the same r*, the decay rate is non-increasing with the
increase of the number of available rates in set R. This sug-
gests that, for the optimal genie-aided rate control, the chan-
nel realization information could bring a higher throughput
gain over the static rate control method when there are more
available rates in R.

6. EXPERIMENTAL RESULTS

In this section, we first present some simulations results to
validate the theoretical results. Then, via a software defined
radio implementation we show the low-overhead and robust-
ness features of the anonymous-query based algorithm.

6.1 Numerical Results

In Figure 4, we compare the communication overhead of
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Figure 5: Throughput gain of the optimal genie-
aided rate control with respect to the number of
receivers n, when there is a single class of receivers.
Here, m is the number of rates in set R that the
transmitter may choose from.

our proposed rate control in Algorithm (1) with a straight-
forward incorporation of Anonymous Query with the Golden
Section Search [18] (discussed in Section 4). In the exper-
iment, the network contains 100 receivers, the channel of
which is modeled by either Rayleigh fading or Rician fad-
ing with random coefficients. Given the SNR at the re-
ceiver, R;[t] is calculated by the Shannon capacity with a
bandwidth of 20 MHz. Initially, rmin = 0Mbps and rmax =
200Mbps. For fair comparison, we record the number of re-
quired anonymous queries to narrow the search region for r*
below € x 200Mbps. It can be observed that the convergence
rate of our method is much faster than the Golden Section
Search method. With less than 40 rounds of anonymous
queries, our method could achieve a 2Mbps neighborhood
of the optimal rate r*. The reason why both methods have
a staircase shaped curve in Figure 4 is the following. For
our proposed method, the staircase exists since after one it-
eration of Algorithm 1, either the search region for r* or the
search region for T'(r*) is guaranteed to be narrowed down.
For the Golden Section Search, the staircase exists because
it may require multiple rounds to learn the relationship be-
tween T'(r1) and T'(r2) before the search region (separated
by 71, r2) can be narrowed down, as explained in Section 4.2.

Figure 5 plots the throughput gain of the optimal genie-
aided rate control over the optimal static rate control as
a function of the number of receivers n, when the trans-
mitter has m rates to choose from. Note that only when
all receivers are in the same class, the optimal genie-aided
rate control policy is known explicitly, which selects the rate
maximizing the sum throughput of all receivers in each time
slot. Thus, to show the achievable throughput of the opti-
mal genie-aided rate control, all the receivers belong to the
same class in this experiment. From the Figure 5, we have
the following observations. First, the throughput gain of the
optimal genie-aided rate control decreases fast with respect
to m. Second, for sufficiently large n, the throughput gain
decays exponentially and matches the predicted asymptotic
decay rate from Equation (7). Third, the decay rate is non-
increasing with the increase of the number of available rates
in set R, which is consistent with what is indicated in Re-
mark 3.3.

Send last
a,a, Receive new a; Receive new 4, J iteNrEeit)?tDn
D, >2max{D,}+D, | D,
Tx:
Hardwa'®  \ / m Time
delay N\ 47 send / /'send
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delay N I \, delby 4y delay /‘[

Rx: +
| Dy Time
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Figure 6: Implementation of anonymous queries in
Algorithm 1.
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Figure 7: Impact of beacon duration and the number
of simultaneous transmitted beacon signals on the
probability of beacon detection errors.

6.2 System Implementation

To understand the overhead and the robustness of the
anonymous queries-based algorithm in practice, we build a
proof-of-concept system on the NI SDR platform [21]. The
transceivers send signals on a 20 MHz channel at 2.4 GHz.
Figure 6 illustrates how we implemented one iteration of
anonymous queries in Algorithm 1. In the beginning of the
iteration, the transmitter broadcasts ar,ay, which are the
2-bits information that the transmitter has learned in the
last iteration. Following the procedure of Algorithm 1, a
receiver could then know the two anonymous queries in the
new iteration. In response, a receiver decides whether or
not to send a beacon signal by checking the property in
the anonymous query. At the same time, the transmitter
listens on the channel for a time window Dgp. Dpg is set
to be larger than twice the maximum possible propagation
delay Dp in the network plus the time Dz required to send
a beacon signal. In our experiment, a large proportion of
Dr is caused by the hardware. For example, there is a
delay to exchange information between the analog front and
the digital front. Remember that there are two anonymous
queries in one iteration of Algorithm 1. To guarantee that
the second beacon won’t interfere the first beacon at the
transmitter, a receiver could not start sending the second
beacon until a delay of Dg. In our implementation, the
receivers do not need to be precisely synchronized and only
need to follow a local time schedule.

Since the anonymous query mechanism depends on the
beacon signal being correctly detected, we study the impact
of beacon duration and the number of simultaneous trans-
mitted beacon signals on the probability of beacon detection
errors. Detection error rate, measured by the false positive
rate (FPR) plus the false negative rate (FNR), is shown in
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Figure 8: Achievable multicast throughput of ran-
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Figure 7. It can be observed that the detection error rate
drops with the increase of the number of simultaneous trans-
mitted beacon signals. It makes sense since when multiple
receivers send beacons, it is easier for the transmitter to de-
tect an energy impulse. By properly setting the duration
of a beacon signal, the detection error probability can be
kept under a negligible level. Hence, the anonymous-queries
based algorithm can be quite robust in practice.

We implement anonymous queries on a system with one
transmitter and 11 receivers. To emulate a Wi-Fi network,
the receivers are randomly deployed within 20 meters to the
transmitter. With our specific implementation, Algorithm 1
could converge within 0.5 ms. Note that in practice, the
channel distribution of a receiver also changes over time.
Thus, Algorithm 1 needs to be performed once for every pe-
riod of time when there might be a noticeable change in the
channel distribution of a receiver. The communication over-
head, compared with the time period is essentially negligible
in a Wi-Fi system.

Finally, we compare the achievable throughput of our rate
control method with two existing baseline methods through
trace-driven simulations. First, the throughput functions
{T;(r)}:; are obtained through experimental measurements
of receivers under different channel conditions, e.g., differ-
ent SNR levels and different mobility status. We imple-
ment the 802.11a protocol which supports 8 possible rates,
ie., {6,9,12,18,24,36,48,54} Mbit/s. Then, the traces of
{Ti(r)}: are fed into the simulator and 1000 networks with
50 receivers are generated, where each receiver may conform
to one of the traces randomly. For each network generated,
we compare our rate control method and two baseline meth-
ods. The first baseline method is to transmit at the lowest
rate, which is 6 Mbps. The second baseline method [10] is
to transmit at the highest supportable rate of all receivers
at any given time. In Figure 8, we show the CDF of the
achievable throughput of different methods. It can be ob-
served that the second baseline only outperforms the first
baseline method slightly. This is because the probability
that there exists one receiver whose channel condition hap-
pens to be poor is high. Compared with the two baseline
methods, Anonymous Query based method achieves a much
higher throughput. It is worthy to note that the communi-
cation overhead of our method is extremely low. With 20
rounds of anonymous queries, the transmitter has been able

to find the optimal static rate most of the time. Even af-
ter 5 rounds of anonymous queries, our method significantly
outperforms the highest supportable rate control method in
terms of throughput.

7. CONCLUSION

In this paper, we develop a novel anonymous-query based
rate control for wireless multicast, which approaches the op-
timal throughput with a constant feedback overhead inde-
pendent of the number of receivers. Through implementa-
tion on a software-defined ratio platform, we show that the
anonymous-query based algorithm achieves low-overhead and
robustness in practice.
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APPENDIX

A. PROOF OF THEOREM 1

The key to prove Theorem 1 is to show that at the end
of every iteration of Algorithm 1, it is guaranteed that ¢, <
T(r*) < cv, e, <T(rr) < cv and rr < r* < ry. Be-
fore delving into the proof, we provides some preliminary
properties regarding the superlevel sets.

By definition of superlevel set and T'(r) in Equation (2),

Le(T) = () Le(To). (12)

A throughput ¢ € [0, rmax] is achievable by the network, i.e.,
¢ <T(r*), if and only if Lo(T) # 0. For any 0 < ¢ < T(r*),
since by Equations (1) and (3) Ti(r*) > ¢, it follows that
r* € L(T).

LEMMA 1. At the end of every iteration of Algorithm 1,

rp <r* <ry. (13)
PROOF. See Appendix D. [J

LEMMA 2. At the end of every iteration of Algorithm 1,

e <T(r") < cv, (14)
CL, S T(’I’F) S Cy. (15)
PROOF. See Appendix E. [J

In each iteration of Algorithm 1, depending on the results
of the two Anonymous Queries ar, ay, either the search re-
gion [rr,ry] for r* or the search region [cr, cy] for T'(r*) is
narrowed down by half. Therefore, after [log, fmex—Tmin] 4
[log, "m2x] jterations of Algorithm 1, we have either ry —
rp <eorcy—cr <e Ifry—rr <eg, it follows from
Lemma 1 that »* —r;, < ry — rrp < € and thus we know
that 7z, is within the e-neighborhood of an optimal rate r*,
If rov —rr > €, we must have cy — ¢, < e. In this case, it
follows from Lemma 2 that |T(rp) = T(r*)| < cv —cr <€
and thus we know a rate rr, the throughput of which is in
an e-neighborhood of the throughput of the optimal rate r*.

Note that in each iteration of Algorithm 1, there are two
rounds of Anonymous Queries, the number of Anonymous
Queries needed to guarantee the above precision is
2[log, Mmex—Tmin] 4 2[log, ™m2x ] the theorem is proved.

B. PROOF OF THEOREM 2

By Theorem 1 and Remark 1.4, it suffices to prove Equa-
tion (9).

Let us denote NE(r) as the number of receivers in class
C that can support rate r in time slot t. More precisely,
NE(r) £ 3 cc 1R, j>r- Since {R;[t]} is i.i.d. across receivers
in the same class, for any » € R and any time slot ¢, we have,
according to the strong law of large numbers,

t
lim e (r) =rP(Rc > r). w.p.l
ng—oo nc
Given that R is a countable set, we further have, for any
time slot ¢,

Nt
riNe(r) =maxrP(R¢ > r). w.p.1,
nc re€R

lim max
ng—o0o reR

which, by applying the Lebesgue dominated convergence
theorem, yields

t
lim E |:max M}

ne—00 reER nc
N¢
=E { lim max L(T)} = maxrP(R¢ > ). (16)
ne—o00 r€R ne reR

Let us first focus on the genie-aided rate control problem.
Based on Equation (6), we have

t

. o1
T = e B0, i 5 D vl et
1 1<
< in — lim = g,
—fz{lﬁt?fteN 1?}?%1}( ne, 4z <t31§o t ZIT[T] RZ[‘F]>T[T]>
k3 k T=

1~ TN, (r[7])

= max min lim —
F={r[t]} teN1<k<K t—oo f ne,
T= ¢
- [TIN¢, (r[7])
. . T Cr T\T
< min lim - max ——~——=
1<k<K t—oo t r[r]eR ne,,
=1
0
. rNe, (r)
= min E |max —*—~| as. a7
1<k<K rER  ngc,

By combining Equation (16), and the fact that n¢, — oo as
n — oo for any 1 < k < K, we obtain,

lim 7" < min maxrP(Re, >7)
n—oo 1<k<K reR

=max rP(Re, > ). (18)

The last equality in the above equation holds because of the
assumption that the random variables {Re, }1<k<xk follow
the stochastic ordering of Re, < Re, < ... < Rey, .

Next, let us shift our focus to the static rate control prob-
lem. From Equation (3), the throughput using the optimal
static rate control can be expressed as

max T'(r) = max min T;(r) =max min min 7;(r)
rER reR 1<i<n reR 1<k<K i€Cy

=max min rP(Rc, > )
rER 1<k<K

= max rP(Re, > ). (19)

Again, the last equality is due to the stochastic ordering
assumption of {Re, hi<k<k-



Remember that r* = arg max,cr T'(r). From Equation (18)
and Equation (19), we know that lim,, oo 7" < max,er T(r),
which, by combining with the fact that 7" > max,ecr T(r)
for any n, Equation (9) holds and the proof is completed.

C. PROOF OF THEOREM 3

By Theorem 1 and Remark 1.4, it suffices to prove Equa-
tion (11).

The proof is composed of three parts. First, we prove a
lemma which characterizes the probability that some rate
7 # r* will lead to a higher sum throughput of receivers in
class C; than the static optimal rate r*. Secondly, based
on the lemma, we obtain an asymptotic upper bound of
the throughput gain for any genie-aided rate control policy.
Lastly, we construct a specific genie-aided rate control pol-
icy, whose throughput gain achieves the asymptotic upper
bound.

Let us focus on the receivers in the class C;. Lemma 3
characterizes the probability that the sum throughput of
receivers ¢ € C; under a rate 7 is higher the sum throughput
under the optimal static rate r* by nc, v in an arbitrary time
slot ¢, where v > 0.

LEMMA 3. In any time slot t, the probability that the sum
throughput of all receivers i € C1 under a rate ¥ # r* is
higher than the sum throughput under the static optimal rate
r* by ne,v forv > 0 decays exponentially with respect to nc, ,
— lim !

ncl — 00 ncl

log P (FN¢, (7) > r*N&, () + neyv) = L(7),
(20)

where the decay rate I,,(7) is a positive number given by

I,(7) = sup 4 — logE (e“"(“Ri[tJZf—“1R1;[t12r*—”))} (21)
O0eR

Atv =0, if 7 > 1",
Io(7) = =tog (1= /7) "7 (i) T

>

P(r* < Re, < 7)'" 5 P(Re, > 7)F +P(Re, < ).
Atv =0, if 7 <77,
Io(7) = = log (1= #/r") """ (5 /r) T/ x
P(7 < Re, < r*)" "™ P(Re, > r*)7™ +P(Re, < f)). (22)
In addition,

lim I, (7) = Io(r). (23)

v—0t

PROOF. See Appendix F. []

Provided with the above lemma and remember that r* =
arg maxrer 1'(r), our next task is to show

T _ HIG@I%(T(T) < e*I(R)K/VLJrO(n). (24)

From Equation (17) in the proof of Theorem 2 we know

that
rNS (r
T* < min E |max Ck():|
1<k<K rER  ng,
NO
<E {max 7“671(7")}
reER neq
NO *NO *
<P (r* = argmaxr 01(7“)> E {T c(r )} +
r€ER  Ney ne,y
NO
P (r* # arg max Tcil(r)) Fmax
TER ne,
*NO * NO
<E |:Tc71('r):| +P (r* # arg max TC71(7”)> P
ne, TER ne,

NO
=T(r")+P (r* # arg max 7"071(1")) Fmax-
TER ne,

Thus, to prove Equation (24), it suffices to show that®

rNg (r

P (’f'* ?é arg max C1( )) < e*MR)”"H’O(nCl),
TER ne,

which can be obtained by using Lemma 3, as showed in the

equation below.

NO

P (r* # arg max M)
reER ne,
(a)
< Y B(FNG,(7) 2 rNE, (7))
TET*
<mmax {P (FN¢, (7) > 7"Ne, (")) }
<:b>m max e~ T0(Pncy +olney)
TET*

—m . e~ WMinezer {Io(P}nc, +olne,)

© ~I(R)nc, +o(nc;) (25)

(i)e—I(R)nn-&-o(n) (26)

where step (a) uses the union bound; in step (b), Equa-
tion (20) with v = 0 is applied; step (c) uses the definition
of I(R) in Equation (7), the definition of Io(r) in Equa-
tion (22) and the fact that m is independent of nc, ; step (d)
uses the facts that kn < ne;, < kn + 1.

To complete the proof, as the last step, we need to show
that

T* — max T(r) > ¢ ! FIntoln)
TER

It suffices to show that, for any given ¢y > 0, there exists

a specific genie-aided rate control policy 7= {r[t]}+en with

TG(’I_") _ T('I’*) > ef(I(R)ﬁ»cD)nn#»o(n). (27)

Let 7 £ argmin,c ..~ Jo(r). By Equation (23) in Lemma 3,
for any eo > 0, we can find v > 0 such that I, (7)—Io(7) < €o.
For any such (e, v) pair, we can construct a genie-aided rate
control policy which determines the rate r[t] in slot ¢ accord-

®Here we abuse notation slightly by representing — lim,_c0
Llog f(z) > I as f(x) < e '#Hol®),



ing to the following rule.

] = Foif NG (F) > r*NE, (r*) 4+ ne,v
"= 7 otherwise

Then, for the receivers i € Cq,

T (F) — T(r*) = vP (FN&, (F) > 7 N¢, (") + ne,v)

@ o= Tu(Pne +olne) Y o~ (R)+eone, +olne,)

14

© e~ I(R)+eo)rnto(n) (28)

where step (a) uses Lemma 3, step (b) uses the facts that
I,(F) — In(F) < €0 and Io(7) = I(R), and step (c) uses the
fact v is independent of nc, .

For the receivers i € C, with k # 1,

TS @) - T()
> (1 =P (7N¢, (7F) > r*N¢, (r*) + ne,v)) Ti(r™) — T(r")
> (1 e Ometeed ) (1) ~ ()

Since T;(r*) — T'(r*) > 0 for any receiver ¢ € C, with k # 1,
by combining the above equation with Equation (28), we
can obtain Equation (27), which completes the whole proof.

D. PROOF OF LEMMA 1

We prove by induction. Initially, 7, = Tmin, U = Tmax
and thus Equation (13) trivially holds.

Suppose Equation (13) holds for the previous iteration.
According to Algorithm 1, in the cases of ar, = 1,ay =
1 and ar = 0,ay = 0, r,rv are not updated and thus
Equation (13) would still hold for the new iteration. We only
need to focus on the other two cases when ar, = 1,ay =0
and ar, = 0,ay = 1. Since the two cases are symmetric,
without loss of generality, we consider one of the cases, ar, =
1,ay = 0. There are two possibilities, when the throughput
cm can be achieved by the network and when the throughput
cum is not achievable for the network.

Case 1: the throughput ¢, can be achieved by
the network.

When the throughput cjs can be achieved by the network, by
the property shown with Equation (12), we have L., (T) #
¢ and r* € Le,,(T). By the assumption of induction, r; <
r* < ry. Thus, it follows that

Ley (T) N [re,ru] # 0. (29)

By the design of Anonymous Queries in Algorithm 1, ar, =
1 implies that, there exists some receiver i such that

Le¢,, (Tl) N [TL7 7“1»1] = 0. (30)
From Equations (12) and (30), we have
Ley, (T) n [TL’ TM] =0, (31)

which implies r* ¢ [rr,rv]. Together with our assumption
that 7* € [rr,ru], it follows that r* € [rar, ry]. Since in the
new interation r := ra, Equation (13) still holds in this
case.

Case 2: the throughput cj; cannot be achieved
by the network.

When the throughput cps is not achievable for the network,
by the property shown with Equation (12), it follows that
Ly, (T) = 0.

By the design of Anonymous Queries in Algorithm 1, ay =
0 equivalently implies that, for any receiver 1 < i < n, we
have

Ley, (T’L) N [TMv TU] #0, (32)

Since T;j(r)1<i<n is a unimodal function in r, we can ex-
press the superlevel set as an closed interval

Lo(T) N [rp,ro] 2 [th(c), I Vo <e<en, (33)

where Jit(c) and Jf"%(c) correspond to the starting and
end points of the closed interval L.(T;) N [rr,rv]. Note that
J#t(c) and J¥(c) are well defined for 0 < ¢ < cu, since
Lo(T) N [re,ru] # 0 from Equation (32). Besides, J{*(c)
is non-decreasing and Jf”d(c) is non-increasing with respect
to c. Since for any 1 < i < n, T;(r) is a continuous function
of r, by the definition in Equation (33), J&*(c) and JE™4(c)
are continuous functions of ¢ when 0 < ¢ < ¢jpy.

For 0 < ¢ < cum, define J*(¢) £ maxi<;<n J&(c) and
Jc) & minycicn JENe). I T (cmr) < JY(ewr), it
follows that J*‘(ca) € Le,, (T) contradicting with the as-
sumption that L.,, (T) = (). Thus, we must have J* (cas) >
J(car). From Equations (32)(33), Je™¥(car) > rar for
any receiver 1 < i < n. It follows that

Jend(CM) 2 TM - (34)

Since ¢y is not an achievable throughput by our assump-
tion, we have T(r*) < car. Since T'(r) is a unimodal func-
tion with the unique r* which achieves the maximum T'(r"),
we have J* (T(r*)) = J"(T(r*)) = r*. By the mono-
tonic property of J°"?(c) and Equation (34), J*"*(T(r*)) >
J(epr) > rar. Thus, we have r* = JH(T(r*)) > ra.
Combining with the assumption that r»* € [rr,ry], it fol-
lows that " € [ra,ru]. Note that in the new iteration
rr = ru, Equation (13) also holds in this case.

By induction, the proof is complete.

E. PROOF OF LEMMA 2

We prove by induction. Initially, ¢z = 0,cv = Tmax, "F =
Tmin. From Equations (1) and (2), Equations (14) and (15)
must hold.

Suppose Equations (14) and (15) holds for the previous it-
eration. According Algorithm 1, in the cases of ar, = 1,ay =
0 and ar, = 0,av = 1, c,cu,rr are not updated and thus
Equations (14) and (15) would still hold for the new itera-
tion. We only need to focus on the other two cases when
ar =0,ay =0 and ar, = 1,ay = 1.

Case 1: ar, = 0,ay = 0.
Now we discuss the case that ar = 0,ay = 0. By the
design of Anonymous Queries in Algorithm 1, ar, = 0,ay =
0 equivalently implies that for any 1 < i < n,
Loy, (Ti) N [ro,rar] # 0, (35)
LCM (Tl) N [T]\/[,TU] # 0. (36)



Since Tj(r)1<i<n is a unimodal function in 7, a non-empty
superlevel set of T;(r) must be an interval. From Equa-
tions (35) and (36), it follows that

v € Ley, (Th), V1 < i <n. (37)
Thus, N

* 1 Ley (Ti) # 0. By Equation (12), car is achiev-
able for the network. Thus, cpr < T(r*) < cy. Since in the
new iteration, cr := ¢y, Equation (14) still holds. Also, in
the new iteration, rr := ra. By Equation (37), we have
T(rm) > cm. Together with the fact that T'(ra) < T <
cu, Equation (15) holds for the new iteration as well.

Case 2: ar, = 1,ay = 1.

Next we discuss the case that ar, = 1,ay = 1. By the
design of Anonymous Queries in Algorithm 1, ar, = 1,av =
1 equivalently means that there exist some 41,42 € {1,...,n}
(i1 might be equal to i2.) such that

Lepy (Tiy) N [ro,ra] = 0, (38)
Ley Tiy) N [rag, ru] = 0. (39)
It follows that,
<ﬂ Ley, (Ti)> ﬂ[m, TU]
=1
C Ly (Tiy) N Ly, (Tiy) N (e, v U [rag, o) = 0 (40)

By Lemma 1, we have r, < r* < ry. If ¢y is achiev-
able for the network, r* € (I_, Lc,,(T3) due to the prop-
erty shown with Equation (12). However, this contradicts
Equation (40). Hence, cas is not achievable for the network.
CL, S T(T*) S CM -

In the new iteration, cy := cum, by the conclusion we draw
above, Equation (14) still holds. Notice that rr,CL are not
updated. Together with the fact that T'(rr) < T(r*) < cu,
Equation (15) holds for the new iteration as well.

By induction, the proof is complete.

F. PROOF OF LEMMA 3
By the definition of N&(r),

P (FNél (7) > T*Né1 (r*) + ne, l/)

—P (Z (Flrigsr — 7" Lry e — V) > o) . (42)

1€Cq

(41)

Notice that {71g,;>7—7" 1R, [1)>r* —V }icc, are @.i.d. random
variables and T;(r*) > T;(7) for i € C1, we have

E(71R;(>r — 7" 1R, [>r — V)

—iP(Rit] _ZTF) PR > ) —v < v < 0. (43)

According to the Cramer’s Theorem (see Theorem 2.1.24 in
[22]), there exists I,,(7) > 0 such that

: (Z (Flri =7 — " LR, 2ee — V) 2 O) =~ neaTeine,
i€Cy

(44)

where I, (7) is the rate function defined in Equation (21).
Thus, Equation (21) is proved.

When v = 0, we prove the case when 7 > r*, and the case
when 7 < r* can be proved in the same way. Combining

7 > r* with Equation (21), we have

—log (P(Ri[t] > 7)e 0 4

P(r* < Ri[t] < 7)e’ + P(Ri[t] < r*))} . (46)

To find the supreme of Equation (46), we let its first deriva-
tive to be zero. There is a unique 6; where the supreme in
Equation (46) is achieved, given by

o — 7110 P(r* < Ri[t] < 7)r*
0T TF OSBRI > ) — )
Inserting Equation (47) back to Equation (46)

Equation (22) is proved.
It is easy to verify that

. (47)

, when 7 > r*,

P(r* < Re, <)~ P(Re, > 7) 7
LN LN il
g(l - %) (%) (P(r* < Re, <) +P(Re, > 7)),

(48)

where the equality holds when FP(R¢, > 7) = r*P(R¢, >
r*). Since T'(r*) > T(7), the equality in Equation (48) does
not hold.

Combining Equations (48) and (22), it follows that the
decay rate is strictly positive, Io(7) > 0.

Lastly, we prove Equation (23). Again, we prove the case
when 7 > r*, and the case when 7 < r* can be proved in the
same way. Combining 7 > r* with Equation (21), we have

1(7) = sup { —log (]P’(Ri[t] > F)e 0 =y
HeR?

P(r* < Rift] < 7)) L P(Rilt] < 7"*)69")} . (49)
Let 0] be the 6 where the supreme of Equation (49) is
achieved, denoted as 0 = A#, + 0;. The first derivative
of Equation (49) on 6} is zero, i.e.,

—(F =" —V)P(Ri[t] > F)e T4

(r* 4+ V)P(r* < Ry[t] < #)e’ ") — UP(Ry[t] < r)e’ = 0.
(50)

Noting Equation (50) holds for 5 when v = 0. From Equa-
tion (50), we could derive Equation (45).

To simplify Equation (45), in the following, we use H to
denote

H &7 (7 = ") TP(Re, 2 ) TP(r™ < Rey <7)'7 7
(51)
Clearly, H is independent of v.
On the other hand, by Equation (50), if A6, > 0, for any
0<v<7—r" wehave

(7 —r* —V)P(Ri[t] > 7)e ) L uP(Rilt] < r*)
(r* +v)P(r < Ri[t] < 7)
(F — r)P(Ri[t] > 7)e %07 4 (7 — r*)P(Ri[t] < 7*)

e@;r* _

(a)
<

r*P(r* < Rift] < 7)
éA-‘m (52)

where step (a) uses the assumption that 0;, = A8, +65 > 5.



*
r_
I3

T*l—%(f _ T*)%P<RC1 Z f) ]P)('f'* S Rcl < f)l_% (eAeyr* . e—AQV(F—r*))

=v (IP’(R,- [t] <r*) —P(r* < Rift] < #)e™" —P(R[t] > f)e_g'*'(’:_'"*)) < vP(Ri[t] < ) £ vBo. (45)

It follows from Equations (45) and (52) that
H (eAéyr* . 6—A0,,(F—r*))

>v (*]P(r* < Ri[t] < 7)Ay — P(R;[t] > ?;)8793(;,“))

L vB;. (53)
By Equation (50), if Ag; <0, for any 0 < v < (7 — %),
we have

e 0s =) _ (A V)BT < Rift] < Pe’™ — vP(Ri[t] < 17)
- (F—r* —V)P(R;[t] > 7)
@ (r* + AP < Rift] < Fefor”

G-rpmrizn o Y

where step (a) uses the assumption that 0}, = A8, +6; < 65.
It follows from Equations (45) and (54) that

H (eAGVT* o e—AG,,(F—r*))

> (711»(7“* < Rilt] < 7)) — P(Ri[t] > f)A_) 2 _yB,.
(55)
From Equations (45), (53) and (55), for small enough

v< %(f — "), there exists A = max{Bo, B1, B2} > 0 inde-
pendent of v such that

’H (eAe”T* — e_Ae”(F_T*))’ < VA, (56)

Notice that the left side of Equation (56) is a continuous
function of A, which is equal to 0 when and only when
A0, = 0. By Equation (56), as v — 0%, Af, — 0 and
0, — 05.

Together with Equation (49), Equation (23) is proved.



