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ABSTRACT
In this work, we investigate the use of epidemic routing in
energy constrained Delay Tolerant Networks (DTNs). In
DTNs, connected paths between source and destination rarely
occur due to sparse density and mobility of nodes. Epidemic
routing is ideally suited in this environment for its simplicity
and fully distributed implementation. In epidemic routing,
messages are relayed by intermediate nodes through con-
tact opportunities, i.e., when pairs of nodes come within
transmission range. Each node needs to decide whether to
forward its message upon contact with a new node based on
its residual energy level and the age of that message.

We mathematically characterize the fundamental trade-
off between energy conservation and forwarding efficacy as
a heterogeneous dynamic energy-dependent optimal control
problem. We prove, somewhat surprisingly given the com-
plex nature of the problem, that in the mean field regime, the
optimal dynamic forwarding decisions follow simple threshold-
based structures, in which the forwarding threshold for each
node depends on its current remaining energy. We analyti-
cally establish this result under generalized classes of utility
functions for DTNs. We then characterize the nature of the
dependence of these thresholds on the value of the current
remaining energy reserves in each node.

1. INTRODUCTION

Motivation
Delay Tolerant Networks (DTNs) are comprised of spatially
distributed mobile nodes whose communication range is much
smaller than their roaming area; hence, end-to-end con-
nectivity is rare. In such networks, messages are typically
relayed by intermediate nodes through random contacts,
which are instances of spatial proximity of pairs of nodes.
Specifically, a time-stamped message from a source node can
flood the network for a chance to contact its destination
node [18] within the time frame of relevance of the message.
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Examples of DTNs include disaster response and mili-
tary/tactical networks where communication devices are car-
ried by disaster relief personnel and soldiers and environ-
mental surveillance, where sensors can be mounted on roam-
ing animals. Opportunistic networking based on DTNs is
envisioned to assist ad hoc or infrastructure based commu-
nication in next generation networks whenever end-to-end
connectivity is hard to achieve. In most of these cases, the
intermediate mobile nodes are constrained in their battery
reserves. Simple epidemic forwarding schemes that rely on
flooding as a method of message propagation may have a
detrimental impact on the energy reserves of the interme-
diate nodes, which can adversely affect the performance of
the network. A depleted node, or one left with critically low
battery reserve, will not be able to relay new messages in
the future. This reduction in the number of relay nodes will
in turn undermine the long term throughput of the network,
specially for time sensitive messages. On the other hand, an
overly conservative strategy would compromise the delivery
of the message to the destination in a timely manner. Hence,
there is an inherent trade-off between delay-sentive message
throughput and energy conservation. In such networks, re-
placing/recharging the batteries of drained nodes is usually
infeasible and/or not cost-efficient. Also, in practice, nodes
have distinct levels of remaining energy, hence a forward-
ing decision that is optimal for a node may be harmful for
another. Each node can readily measure its own remain-
ing energy at any given time. The trade-off between energy
conservation in each node and message throughput, along
with the heterogeneity of the remaining battery reserves of
the nodes motivates heterogeneous energy-dependent con-
trol, which is the subject of this paper. The state of the
art either ignores energy constraints [4, 11, 18], or does not
directly utilize current energy-state information in making
forwarding decisions [1, 5, 13,16].

Contributions
We formulate the trade-off between energy conservation and
forwarding efficacy as a dynamic energy-dependent optimal
control problem: at any given time, each node decides on its
forwarding probability based on its current remaining en-
ergy. Since the residual energy decreases with transmissions
and receptions, the forwarding decisions vary with time.
They must, therefore, be determined so as to control the evo-
lution of network states that capture the fraction of nodes
holding a copy of the message and the remaining battery re-
serves of the nodes. We consider two generalized classes of



objective functions. These objective functions characterize
metrics for end-to-end quality of service and general penalty
functions for the final distribution of energies. These func-
tions are defined in the context of an epidemiological model
based on mean-field approximation of Markov processes to
represent the evolution of the network states (§§2.1, 2.2).

Our main contribution is to prove that dynamic opti-
mal strategies follow simple threshold-based rules (§3, The-
orem 1). That is, a node in possession of a copy of the
message forwards the message to nodes it encounters that
have not yet received it until a certain threshold time that
depends on its current remaining energy. As the node for-
wards the message, it loses energy, and its forwarding time
threshold changes accordingly. If the age of the message is
past a threshold time corresponding to its current level of
energy, the node stops forwarding the message to others,
and will only transmit a copy to the destination of the mes-
sage. The simplicity of the analytically-derived strategies
is somewhat surprising given that the system dynamics in-
volve non-linear transitions and a vector of controls, and our
objective functions are non-linear and time-dependent (the
system is therefore non-autonomous). The proofs for opti-
mality of threshold type policies in such cases do not follow
from existing optimal control results.

Our third contribution is to characterize the nature of
the dependence of the thresholds on the energy levels. In-
tuitively, the less energy a node has, the more reluctant it
should be to transmit the message, as the transmission will
drive it closer to critically low battery levels (which in turn
will impair timely delivery of future messages). However,
surprisingly, our investigations reveal that this intuition can
only be confirmed when the penalty associated with low fi-
nal remaining energies is convex (§3, Theorem 2), and it
does not hold in general otherwise. That is, in the former
case, higher remaining energy levels lead to longer durations
of forwarding, but the monotonicity of the thresholds is not
necessarily preserved otherwise.

Finally, our optimal dynamic policy provides a missing
benchmark for forwarding policies in large networks in which
no information about the mobility pattern of the individual
nodes is available. This benchmark allows us to identify
some even simpler heuristic policies that perform close to
the optimal, and also those that substantially compromise
performance for simplicity (§4).

Related Literature
Heuristic based routing policies for DTNs involving mobile
nodes are proposed in [3,4,11,12,14,17]. In the routing pro-
tocol PROPHET introduced in [11], each node maintains
a vector of probabilities of delivery and the message is for-
warded from lower delivery probability nodes to nodes with
higher probability of delivery. Heuristics that take energy
consumption into account include NECTAR, proposed in [5],
which tries to find a desirable path based on the contact his-
tory of the nodes, [3], which proposes the introduction of
fixed nodes (“throwboxes”) for energy efficient routing, and
Spray and Wait [17], which proposes spreading a specific
number of copies of the message initially and then waiting
for delivery. Encounter-based Routing [14] builds upon the
above by having nodes make the decision to spread the lim-
ited number of copies of a message contingent on the contact
history of an encountered node. Finally, [12] limits trans-
missions to times when a node has a minimum number of
neighbours, which is of limited use when contacts are sparse.

Such protocols may lead to large calculations and messaging
overhead in the network, while also providing no analytical
guarantee on the QoS or energy usage.

In [10], Krifa et al. consider another limitation of DTNs:
the storage buffers of nodes. Here, if the storage capacities
are not constrained, then the best policy is to keep a copy
of all of the messages (to be delivered to their destinations
upon future contact) before they are dropped at expiration
of their time-to-live value (TTL). However, if the storage
buffer is full when a new message arrives, a decision needs
to be made about which message (from the set of the existing
messages in the buffer plus the newly arrived one) should be
dropped. The decision rule is referred to as a buffer manage-
ment policy. The paper derives policies that approximately
optimize for average delay and average throughput.

The problem of finding optimal dynamic forwarding poli-
cies in DTNs considering the resource overhead of replica-
tions has been investigated in [1,2, 13,16,19] among others.
These papers either impose an indirect constraint, e.g. re-
stricting the total number of copies of the message in the
network to control the energy overhead, or directly consider
a cost for the overall energy usage. However, the forwarding
rules in these papers do not utilize the current energy levels
of the nodes, and are identical for all nodes irrespective of
their remaining energy levels. Specifically, the parts of their
objective functions that consider the energy overhead only
represent the total units of energy used during the process
of forwarding copies of a message before its TTL is expired,
and the solution is indifferent to the distribution of the resid-
ual energy reserves. In the state of the art models, if a node
has started with a low energy, or has lost a large portion of
its battery reserves during multiple transmissions, it still has
to abide by the general rule that is identical for all nodes.
However, it is of importance to the network how the aggre-
gate remaining energy is distributed among the nodes, as
nodes with critically low remaining energy will compromise
the long run performance of the network. Motivated by
these two observations, we propose a new framework that
yields optimal forwarding policies attaining custom trade-
offs between QoS and the desirability of the distribution of
the residual energy reserves among the nodes.

2. SYSTEM MODEL
In §2.1, we develop our system dynamics model based on

mean-field deterministic ODEs. Subsequently, in §2.2 we
consider two general classes of utility functions that cogently
combine a measure of QoS with a penalty for the impact of
the policy on the residual energy of the nodes. We present
the model for a single-delivery setting. Particularly, each
message is destined for a single destination and it is suffi-
cient for only one copy of the message to be delivered to its
destination.1

1The single-delivery setting can also capture cases where
there are multiple destinations that are, unlike the source
and the intermediate nodes, inter-connected through a back-
bone network. An example of such a setting is where the
final destination is (a group of) base stations in a cellular
network. Note that in the latter case there is no additional
benefit in delivering more than one copy of the message to
one of the destinations, since once one destination receives
the message, it can instantly inform the other destinations of
its reception using the high-speed backbone network. So we
can assume all destination nodes receive the message vir-
tually simultaneously. The only modification in our mod-
eling would be a re-scaling of the rate of contact between



2.1 System Dynamics
We begin with some definitions: a node that has received

a copy of the message and is not its destination is referred
to as an infective; a (non-destination) node that has not
yet received a copy of the message is called a susceptible.
The maximum energy capacity of a node is B units for each
node. Transmission of the message between a pair of nodes
consumes τ units of available energy in the transmitter and
r units in the receiver. Naturally, r ≤ τ . When an infective
node contacts a susceptible at time t, the message is trans-
mitted with a certain forwarding probability if the infective
(transmitter) and susceptible (receiver) have at least τ and
r units of reserve energy, respectively.

Two nodes contact each other at rate β̂. We assume that
inter-contact times are exponentially distributed and uni-
form among nodes, an assumption common to many mobil-
ity models (e.g. Random Walker, Random Waypoint, Ran-
dom Direction, etc. [7]). Moreover, it is shown in [7] that

β̂ ∝ average relative speed of nodes× communication ranges

the roaming area
(1)

We define Si(t) (resp., Ii(t)) to be the fraction of the sus-
ceptible (resp., infective) nodes that have i energy units at

time t. Hence, for t ∈ [0, T ]:
∑B
i=0 (Si(t) + Ii(t)) = 1.

At any given time, each node can directly observe its own
level of available energy, and its forwarding decision should,
in general, utilize such information. Hence, upon an instance
of contact between a susceptible node with i units of energy
and an infective node with j units of energy at time t, as
long as i ≥ r and j ≥ τ , the message is passed with proba-
bility ui(t) (0 ≤ ui ≤ 1). Consequently, the susceptible node
transforms to an infective node with i− r units of energy,
and the infective node to an infective node with j − τ units
of energy. We assume that upon contact between an infec-
tive and another node, the infective can identify (through
a low-load exchange of control messages) whether the other
node has a copy of the message (i.e., is infective), or does not
(i.e., is susceptible), and also whether the contacted node is
a destination. We assume that each instance of such ex-
changes consumes an insignificant amount of energy.

Let N be the total number of nodes and define β := Nβ̂.

Following (1), β̂ is inversely proportional to the roaming
area, that scales with N . Hence, if we can define a density
of nodes, β has a nontrivial value. The system dynamics
in the mean-field regime (i.e., for large N) over any finite
interval can be approximated as follows ([6, Theorem 1]):

Ṡi = −βSi
B∑
j=τ

ujIj r ≤ i ≤ B (2a)

İi = −βuiIi
B∑
j=r

Sj B − r < i ≤ B (2b)

İi = βSi+r

B∑
j=τ

ujIj − βuiIi
B∑
j=r

Sj B − τ < i ≤ B − r (2c)

İi = βSi+r

B∑
j=τ

ujIj + βui+τIi+τ

B∑
j=r

Sj − βuiIi
B∑
j=r

Sj

τ ≤ i ≤ B − τ (2d)

a mobile node and the destination by the number of these
inter-connected sinks (Base Stations).

Ṡi = 0 i < r, i = 0 (2e)

İi = βSi+r

B∑
j=τ

ujIj + βuj+τIi+τ

B∑
j=r

Sj i < τ (2f)

Note that in the above differential equations and in the rest
of the paper, whenever not ambiguous, the dependence on t
is made implicit. Each differential equation of the above set
is explained in the following:2

(2a): The rate of decrease in the fraction of susceptible nodes
with energy level i is proportional to the rate of contacts be-
tween those nodes and the infective nodes with energy levels
equal to or higher than τ .
(2b): The rate of decrease in the fraction of infective nodes
with energy level i such that i > B − r is proportional to
their rate of contact with any susceptible with more than
r units of energy. No susceptible or infective can be trans-
formed to an infective with such a high level of energy.
(2c): Similarly, the rate of change in the fraction of infec-
tives with energy level i such that B − τ < i ≤ B − r is
due to the transformation of susceptibles with energy level
i + r upon contact with infectives that have τ units of en-
ergy, along with the mechanism in (2b). No infective can be
transformed to an infective of such a high energy level.
(2d): This is the non-marginal equation for the evolution of
the infectives. Here, three mechanisms are in place: (2b),(2c)
and one more: infectives of energy level i+ τ convert to in-
fectives with energy level i upon contact with susceptibles
that have sufficient energy for message exchange.
(2e): Susceptibles with less than r units of energy cannot
convert to infectives.
(2f): Infectives with less than τ units of energy cannot con-
vert to any other type.

The initial conditions are

S(0) = S0 := (S01, . . . , S0B) & I(0) = I0 := (I01, . . . , I0B) (3)

and the state constraints are

S � 0, I � 0,

B∑
i=0

(Si(t) + Ii(t)) = 1, ∀t ∈ [0, T ]. (4)

2.2 Objective functions
The objective function of the network represents both a

measure of the efficacy of the policy in ensuring the timely
delivery of the message and the effect of the policy on the
residual energy reserves of the nodes. In what follows, we
first develop each of the components of the objective func-
tion separately, and then we combine them to yield the over-
all objective function of the network.

Measure of timely delivery. One plausible measure of QoS
in the context of the DTN is to maximize the probability of
the delivery of a message to the destination before a dead-
line time T . At time T , which is the time after which the
message is irrelevant, all infectives will drop the message.

2The system dynamics for the single-delivery case can ig-
nore the single instance of the delivery of the message to
the destination. This is because in the mean-field regime,
i.e. for large N , and when the state is represented as the
fraction of nodes of each type, the change in the energy dis-
tributions as a result of a single transmission of the message
is negligible. Note that in the single-delivery scenario, once
the destination receives the message, subsequent contacts
between infectives and the destination will not result in any
transmission of the message.



We will go further than just representing the probability of
delivery in this fixed time window in that, within this time
interval, we assign more reward for earlier message delivery.
In an alternative scenario, the time-frame of delivery of the
message is flexible, but instead, a minimum probability of
delivery is mandated on the message. In this case, the goal
is to meet this requirement as soon as possible. In what
follows, we formally present these two cases.

Let t = 0 mark the moment of message generation. The
network achieves g(t) units of reward if a copy of the message
is delivered to the destination at time t, where 0 ≤ t ≤ T .
There is no reward for deliveries later than T , hence g(t)
can be taken to be zero for t > T . g(t) is a non-increasing
function of t over [0, T ], since we associate more reward for
earlier delivery of the message. That is, the sooner the mes-
sage is delivered, the better. We also assume g(t) to be
differentiable; hence g′(t) ≤ 0 for 0 < t < T .

Mathematically, let the random variable σ represent the
time at which a copy of the message is delivered to the desti-
nation. The reward associated with the delivery of the mes-
sage can be represented by the random variable g(t)1σ=t,

where 1 is the indicator function. Let β̂0 be the rate of con-
tact of a node with the destination node, potentially different

from β̂, and define β0 := Nβ̂0. Following the exponential
distribution of the inter-contact times, the expected reward,
R, to be maximized is given by:

R := E{g(t)1σ=t} =

∫ T

0

g(t)P(σ = t) dt =∫ T

0

g(t) exp

(
−β̂0

∫ t

0

B∑
i=τ

NIi(ξ) dξ

)
· β̂0

B∑
i=τ

NIi(t) dt.

Note that similar to (1), β̂0 is inversely proportional to the
roaming area, which itself scales with N . Theferore, as long
as we can define a meaningful density (number of nodes
divided by the total roaming area of nodes), this probability
is nontrivial. Another point to notice is that the summation
inside the integral starts from index τ , since infective nodes
with less than τ units of energy cannot forward their message
to the destination upon potential contact. In order to change
the form of the integration to something more conducive to
analysis, we use integration by parts:

R =g(0)− g(T )e−β0
∫ T
0

∑B
i=τ Ii(t) dt

+

∫ T

0

g′(t)e−β0
∫ t
0

∑B
i=τ Ii(ξ) dξ dt.

The alternative measure of timely delivery of the message,
instead of maximizing the probability of the delivery within
a given time interval, involves the stricter notion of enforcing
a minimum probability of delivery but in a flexible window
of time. Subject to this probability, the goal is to minimize
a penalty associated with the time it takes to satisfy such
a requirement (along with the adverse effects on the resid-
ual energy of the nodes, which we will discuss next). This
can be interpreted as an optimal stopping time problem. In
what follows, we mathematically represent this alternative
framework. The constraint P(delivery) ≥ p in our case is:

1− exp
(
−
∫ T

0
β0

∑B
i=τ Ii(t) dt

)
≥ p, which is equivalent to:

∫ T

0

B∑
i=τ

Ii(t) dt ≥ − ln(1− p)/β0. (5)

Let us represent the cost associated with the time T it takes
to satisfy the above throughput constraint in general to be
f(T ). The only necessary property for f(T ) to be a mean-
ingful penalty function for delay is that it should be non-
decreasing in T . We further assume that f(t) is differentiable
w.r.t T (hence, f ′(T ) ≥ 0).

Energy cost of the policy. In the simplest representation
of the trade-off with the energy overhead, one can think of
maximizing the aggregate remaining energy in the network
at T , irrespective of how it is distributed. But, as we men-
tioned in the introduction, it is desirable for the network
to avoid creating nodes with critically low energy reserves.
Specifically, nodes with lower residual energy can contribute
in relaying and/or generating future messages for shorter
durations. In the extreme case, a sizable fraction of de-
pleted nodes can gravely jeopardies the functionality of the
network. We capture the impact of a forwarding policy on
the residual energy reserves of the nodes by penalizing the
nodes that have lower energy levels. Specifically, the overall
penalty associated with the distribution of the residual ener-
gies of the nodes is captured by:

∑B
i=0 ai (Si(T ) + Ii(T )), in

which, ai is a decreasing sequence in i, i.e., a higher penalty
is associated with lower residual energies at T .

The trade-offs should now be clear: by using a more ag-
gressive forwarding policy (i.e., higher ui(t)s and for longer
durations), the message propagates at a faster rate and hence
there is a greater chance of delivering the message to the
destination earlier. However, this will lead to lesser over-
all remaining energy in the nodes upon delivery of the mes-
sage, and it will potentially push the energy reserves of some
nodes toward critically low levels, which can degrade future
performance of the network.

Overall Objective and Problem Statements. The overall
utility of the system is a (weighted) summation of the above
two components (a measure of quality of service along with
the effect of the policy on residual energies). We now con-
cisely state the two optimization problems.

Problem 1: Fixed Terminal Time The system seeks
to maximize the following overall utility function:

R = g(0)− g(T )e−β0nD
∫ T
0

∑B
i=τ Ii(t) dt (6)

+

∫ T

0

g′(t)e−β0nD
∫ t
0

∑B
i=τ Ii(ξ) dξ dt−

B∑
i=0

ai (Si(T ) + Ii(T ))

by dynamically selecting the vector (uτ (t), . . . , uB(t)) sub-
ject to the state dynamics of (2), and the control constraints
0 ≤ ui ≤ 1 for all τ ≤ i ≤ B and all 0 ≤ t ≤ T , the initial
state conditions (3), and the state constraints in (4).

Problem 2: Optimal Stopping Time Similarly, the
system’s objective is to maximize the overall utility function:

R = max
0≤ui≤1

−f(T )−
B∑
i=0

ai(Si(T ) + Ii(T )) (7)

by dynamically regulating (uτ (t), . . . , uB(t)) subject to sat-
isfying the QoS requirement of (5), state equations (2), con-
trol constraints 0 ≤ ui ≤ 1 for all τ ≤ i ≤ B and all
0 ≤ t ≤ T , and the state constraints in (4), given the initial
state conditions in (3).

3. OPTIMAL FORWARDING POLICIES



In what follows for both of the problems developed in the
previous section, we establish that the optimal dynamic for-
warding decisions follow a simple structure. Specifically, we
show that the nodes should opportunistically forward the
message to any node that they encounter until a thresh-
old time that depends on the current remaining energy of
the node. Once the threshold is passed, they should com-
pletely cease forwarding until the time-to-live of the message
is reached.3 In the language of control theory, we show that
optimal controls for each energy level are bang-bang with at
most one jump from maximum to zero.4

Theorem 1. For all i, an optimal control ui is in the
class of U(t − ti) where U(t) is the reverse step function5

and 0 ≤ ti < T .6’ 7

In what follows we provide the proof of the theorem us-
ing tools from classical optimal control theory, specifically
Pontryagin’s Maximum Principle. We provide the full proof
for the fixed terminal time scenario (6) in §3.1, and specify
the modifications in the proof for the optimal stopping time
problem in §3.2.

3.1 Fixed Terminal Time Scenario
This theorem is proved in the following two steps:

1- Using optimal control theory we are able to show that
each optimal control assumes the maximum value (1) when
a switching function is positive, and the minimum value (0)
when the switching function is negative. Standard optimal
control results, however, do not specify the nature of the
optimal control when the corresponding switching function
is at 0. It is also not a priori clear whether these switching
functions even have a finite number of zero-crossing points.
2- The main contribution in this part is to establish, using
the specifics of the problem, that each switching function
is 0 only at, at most, one point and is positive before its
(potential) zero-crossing epoch and negative subsequently.
This is achieved by showing that the time derivative of the
switching function will be strictly negative at all (potential)
zero-crossing points. Hence, each optimal control will have
a bang-bang structure with one drop from 1 to 0 in [0, T ].

Proof. Consider the system in (2) and the objective func-
tion in (6). To make the formulation better suited to Pon-
3Implicit is the assumption that any node with sufficient en-
ergy that contacts the destination node at any time delivers
the message if the destination has not yet received it.
4Note that as infective nodes transmit, their energy level
sinks; the threshold of each infective should therefore be
measured with regards to the current level of energy (and
not, for example, the starting level). The optimal control is
indeed expected to be non-increasing in time: if the control
is increasing over a segment, just flipping that part of the
control in time would result in earlier propagation of the
message and a higher throughput with the same final state
energies.The following result, however, goes beyond that in-
tuition in that it establishes that the optimal controls are at
their maximum value for a period and then drop abruptly
to zero, none of which is a priori clear.
5A function that is 1 from [0, t) and 0 from [t, T ]
6Note that the theorem does not exclude the possibility of
ti = 0 but excludes ti = T . That is, nodes of some energy
levels might never forward the message, but nodes of all
energy levels cease forwarding it before the time-to-live.
7At times when Ii(t) = 0, the optimal control ui(t) can take
any arbitrary value, so our ui(t) can still have the above
structure. As Ii(t) = 0 makes ui(t) trivial, henceforth we
concern ourselves with ui(t) at times when Ii(t) 6= 0.

tryagin’s Maximum Principle, we introduce the following
new state variable:

Ė =

B∑
i=τ

Ii, E(0) = 0.

Step 1: Using the above defined state, the Hamiltonian is

H := g′(t)e−β0nDE −
B∑
i=r

[βλiSi

B∑
j=τ

ujIj ]

+

B∑
i=r

[βρi−rSi

B∑
j=τ

ujIj ] +

B∑
i=τ

[βuiρi−τIi

B∑
j=r

Sj ]

−
B∑
i=τ

[βuiρiIi

B∑
j=r

Sj ] + λE

B∑
i=τ

Ii

(8)

where the co-state functions λi, ρi and λE satisfy

λ̇i =− ∂H
∂Si

= βλi

B∑
j=τ

ujIj − βρi−r
B∑
j=τ

ujIj

− β
B∑
j=τ

ujρj−τIj + β

B∑
j=τ

ujρjIj r ≤ i ≤ B

λ̇i =− ∂H
∂Si

= 0 i < r

ρ̇i =− ∂H
∂Ii

= −λE + βui

B∑
j=r

λjSj − βui
B∑
j=r

ρj−rSj

− βuiρi−τ
B∑
j=r

Sj + βuiρi

B∑
j=r

Sj τ ≤ i ≤ B

ρ̇i =− ∂H
∂Ii

= 0 i < τ

λ̇E =− ∂H
∂E

= g′(t)β0nDe
−β0nDE (9)

with the final constraints:

λi(T ) = −ai, ρi(T ) = −ai, ∀i = 0, . . . , B

λE(T ) = β0nDg(T )e−β0nDE(T ).
(10)

Maximization of the Hamiltonian yields:

ui = 1 for ϕi > 0 & ui = 0 for ϕi < 0 (11)

where the ϕi’s, called switching functions, are defined as:

ϕi :=
∂H
∂ui

= βIi

[
−

B∑
j=r

λjSj +

B∑
j=r

ρj−rSj + ρi−τ

B∑
j=r

Sj − ρi
B∑
j=r

Sj

]

for τ ≤ i ≤ B, or more simply:

ϕi = βIi

(
B∑
j=r

(−λj + ρj−r + ρi−τ − ρi)Sj

)
τ ≤ i ≤ B.

(12)

This reveals an accessible intuition about the logic behind
the decision process: at any given time, by activating ui,
through contacts between infectives with energy level i and
susceptible of any energy level greater than r, infectives with
energy i turn into infectives with energy i − τ , and suscep-
tibles of energy level j turn into infectives of energy level
j − r. The optimal control provides the answer to whether



such an action is beneficial, taking into account the advan-
tages (positive terms) and disadvantages (negative terms).

At t = T , for τ ≤ i ≤ B, we have:

ϕi(T ) = βIi(T )

B∑
j=r

(aj − aj−r − ai−τ + ai)Sj(T ). (13)

Recall that ai is a decreasing sequence in i. Hence, for all i,
ϕi(T ) < 0.8 This shows that ui(t) = 0 in a subinterval that
extends till t = T .

Step 2: This step is accomplished in 2 parts: First, the
derivative of the switching function at a (potential) zero
crossing point is computed, and after simplification, it is
upper-bounded using the definition of the switching func-
tion. Then, the upper-bound is shown to be negative, thus
forcing the time derivative of the switching function (at a
potential zero crossing point) to be negative. The last part
follows from the key insight that it is not possible to con-
vert all of the susceptibles to infectives in a finite interval of
time and hence, the total fraction of infectives (with energy
reserves at terminal time) is strictly less than the sum of the
susceptibles and infectives with energy reserves greater than
r, τ at any time before T .

The theorem is deduced from the following lemma and (11).

Lemma 1. For all i, ϕi is never zero on an interval of
non-zero length, it crosses zero, at most, at one point, and
ends at a strictly negative value.

Proof. All ϕi are continuous and piecewise differentiable
functions of time, with potential points of non-differentiability
at their potential zero-crossing points.

In what follows, we show that the time derivative of ϕi
at a potential zero point is strictly negative. Note that this,
together with ϕi(T ) < 0, is sufficient to yield the statement
of the lemma. We have:

ϕ̇i =İi
ϕi

Ii
− ϕiβ

B∑
j=τ

ujIj + βIi

B∑
j=r

(−λ̇j + ρ̇j−r + ρ̇i−τ − ρ̇i)Sj .

Therefore, at a time at which ϕi = 0, we have:

ϕ̇i|ϕi=0 =βIi

B∑
j=r

(−λ̇j + ρ̇j−r + ρ̇i−τ − ρ̇i)Sj . (14)

From the expressions for the time derivative of the co-states
in (9) combined with the expression for the switching func-
tions in (12), we can write:

ϕ̇i|ϕi=0 =βIi

B∑
j=r

(
− λ̇j − λE −

ϕj−ruj−r
Ij−r

− λE

− ϕi−τui−τ
Ii−τ

+ λE +
ϕiui
Ii

)
Sj

=βIi

B∑
j=r

(
− λ̇j − λE −

ϕj−ruj−r
Ij−r

− ϕi−τui−τ
Ii−τ

)
Sj

≤βIi
B∑
j=r

(−λ̇j − λE)Sj

= βIi(t)

(
H(t)− g′(t)e−β0nDE − λE

B∑
j=τ

Ii − λE
B∑
j=r

Sj

)
.

8To see this, note that each term is negative as aj−r ≥ aj
and ai−τ ≥ ai.

The inequality follows because terms ϕj−ruj−r/Ij−r and
ϕi−τui−τ/Ii−τ are non-negative, as imposed by the opti-
mizations in (11)– to see this, note that ui = 0 is a feasible
solution of the optimization. The equality follows from ex-
panding the summation and regrouping, noting that (from (8)),

B∑
j=r

−λ̇j(t)Sj(t) = H(t)− g′(t)e−β0nDE(t) − λE(t)

B∑
j=τ

Ij(t).

Theferore, all we need to show in order to finish the proof
of the lemma, is the following lemma, which we will prove
next.9

Lemma 2. For all t ∈ [0, T ), we have:

H(t)− g′(t)e−β0nDE − λE
B∑
j=τ

Ii − λE
B∑
j=r

Sj < 0. (15)

Proof. Note that for a general g(t), the system is not
autonomous10 as the Hamiltonian has explicit dependence
on t. Nevertheless, in general we have [15, p.86] that the

Hamiltonian is continuous in time and
dH
dt

=
∂H
∂t

, i.e., the

time derivative of H is equal to the partial derivative of H
with respect to t (when only explicit dependence on t is con-

sidered). Therefore, in our case:
dH
dt

(t) = g′′(t)e−β0nDE(t).

This yields:

H(t) =H(T )−
∫ T

t

g′′(ν)e−β0nDE(ν) dν

=H(T ) + g′(t)e−β0nDE(t) − g′(T )e−β0nDE(T )

+

∫ T

t

g′(ν)β0nDĖ(ν)e−β0nDE(ν) dν (16)

where the second equality follows from integration by parts.
Following the discussion after (13), ui(T ) = 0 for all i, and
therefore from (8), H(T ) simplifies to

H(T ) = g′(T )e−β0nDE(T ) + λE(T )

B∑
i=τ

Ii(T ). (17)

Also, for λE(t) we have:

λE(t) = λE(T )−
∫ T

t

g′(ν)β0nDe
−β0nDE(ν) dν. (18)

From (16), (17) and (18), the expression in (15) becomes

λE(T )

(
B∑
i=τ

Ii(T )−
B∑
i=r

Si(t)−
B∑
i=τ

Ii(t)

)
(19a)

+

∫ T

t

g′(ν)β0nD

B∑
i=τ

Ii(ν)e−β0nDE(ν) dν (19b)

+(

B∑
j=r

Sj +
B∑
i=τ

Ii)

∫ T

t

g′(ν)β0nDe
−β0nDE(ν) dν. (19c)

The lemma now follows from the observations below:
(A)

∑B
i=τ Ii(T ) −

∑B
i=r Si(t) −

∑B
i=τ Ii(t) < 0. This the

result whose intuition was given in the preliminary outline

9Note that for Ii(t) = 0, the value of ui(t) is irrelevant.
10An autonomous optimal control is one whose dynamic dif-
ferential equations and its objective function do not have
parameters which explicitly vary with time t.



of the proof. To see why this holds mathematically, observe
that we have

B∑
i=τ

Ii(T ) ≤
B∑
i=τ

Ii(t) +

B∑
i=r

Si(t)−
B∑
i=r

Si(T ), and

d

dt

B∑
i=r

Si(t) = −β
B∑
i=r

Si

B∑
j=τ

ujIj ≤ −β
B∑
i=r

Si

⇒
B∑
i=r

Si(T ) ≥

(
B∑
i=r

Si(t)

)
e−β(T−t) > 0.

This demonstrates the negativity of (19a).
(B) g′(t) ≤ 0 , which shows that both (19b) and (19c) are
non-positive.

This concludes the proof of the theorem.
We now investigate the relationship between the threshold-

times for optimal controls corresponding to different energy-
levels. Since lower levels of residual energies are penalized
more and the energy consumed in each transmission and re-
ception is the same irrespective of the energy levels of the
nodes, it may appear that the threshold-times will be mono-
tonically increasing functions of the energy levels. We now
prove that this is indeed the case if the terminal-time penalty
sequence is strictly convex (i.e., the difference between the
penalties associated with consecutive energy levels increases
with a decrease in energy levels). Interestingly enough, in
§4 we construct counter-examples, using partly convex and
partly concave and also fully concave sequences, such that
this intuition is negated and the monotonically increasing
order of the threshold times is violated. This demonstrates
that indeed naive intuition is misleading and the order pre-
dicted by the theorem does not extend in general when the
strict convexity condition is absent.

Theorem 2. Assuming that sequence ai in (6) is non-
negative, decreasing and strictly convex, then the sequence
of ti in Theorem 1 is increasing in i.

Proof. It suffices to show that if ϕi(t) = 0, we have
ϕk(t) ≤ 0 for any k ≤ i. It then follows from the proof of
the previous theorem that the threshold time for optimal
control uk(·), if any, precedes that of ui(·).

We show that if ϕi(t) = 0 for t = σi, then ϕk equals:

βIk

(
B∑
j=r

(−ρi−τ + ρi + ρk−τ − ρk)Sj

)∣∣∣∣
t=σi

.

We subsequently show that for each j, the term that multi-
plies Sj is non-positive at each time later than or equal to
the zero-crossing point referred to above. We show that the
above is non-positive at t = T (utilizing the convexity of the
penalty sequence {ai}), and subsequently prove that this
holds for all times after, and including, t = σi. This argu-
ment does not follow from standard optimal control theory,
and it is therefore one of the theoretical contributions of this
paper.

We now proceed with the proof: From (12) we have:

ϕi(σi) = βIi

(
B∑
j=r

(−λj + ρj−r + ρi−τ − ρi)Sj

)∣∣∣∣
t=σi

= 0.

Therefore, at t = σi we can write11

B∑
j=r

(−λj + ρj−r)Sj = −
B∑
j=r

(ρi−τ − ρi)Sj

Evaluating ϕk at σi, using the above replacement yields:

ϕk(σi) =βIk

(
B∑
j=r

(−λj + ρj−r + ρk−τ − ρk)Sj

)∣∣∣∣
t=σi

=βIk

(
B∑
j=r

(−ρi−τ + ρi + ρk−τ − ρk)Sj

)∣∣∣∣
t=σi

.

For 0 ≤ k ≤ i, define:

ψi,k(σi) :=

{
−ρi−τ + ρi + ρk−τ − ρk τ ≤ k
−ρi−τ + ρi − ρk 0 ≤ k ≤ τ

The theorem now follows from the following lemma.

Lemma 3. For any k ≤ i, we have ψi,k(σi) ≤ 0.

Proof. We present the proof for k ≥ 2τ . The case of
0 ≤ k ≤ 2τ follows similarly. At t = T following (10), we
have:

ψi,k(T ) =− ρi−τ (T ) + ρi(T ) + ρk−τ (T )− ρk(T )

=ai−τ − ai − (ak−τ − ak)

which following the properties assumed for ai (ai being de-
creasing and strictly convex in i), yields ψi,k(T ) < 0. This
also holds on a sub-interval of nonzero length that extends
to t = T , owing to the time-continuity of ψi,k. We prove the
lemma by contradiction:Going backward in time from t = T
towards t = σi, suppose the lemma is violated first at time
σ̄, that is, for at least one k < i we have:

(−ρi−τ + ρi + ρk−τ − ρk) < 0 for σi < σ̄ < t ≤ T ; and

(−ρi−τ + ρi + ρk−τ − ρk) = 0 at σ̄

and the inequality holds for the rest of the levels. In what fol-
lows we show that the time derivative of ψi,k is non-negative
over the interval of [σ̄, T ]. Note that this leads to a contra-
diction with the existence of σ̄ and hence proves the lemma,
since:

ψi,k(σ̄) = ψi,k(T )−
∫ T

t=σ̄

ψ̇i,k(ν) dν ⇒ ψi,k(σ̄) ≤ ψi,k(T ) < 0.

We now investigate ψ̇i,k over [σ̄, T ]:

ψ̇i,k =− ρ̇i−τ + ρ̇i + ρ̇k−τ − ρ̇k

=(λE +
ϕi−τui−τ
Ii−τ

) + (−λE −
ϕiui
Ii

)

+ (−λE −
ϕk−τuk−τ
Ik−τ

) + (λE +
ϕkuk
Ik

)

=
ϕi−τui−τ
Ii−τ

−ϕiui
Ii
− ϕk−τuk−τ

Ik−τ
+
ϕkuk
Ik
≥ −ϕiui

Ii
− ϕk−τuk−τ

Ik−τ
.

The last inequality follows from (11). For the remaining
terms, note that following from the definition of σi and as
we showed in the proof of Theorem 1, we have ϕi(t) ≤ 0
over the interval of [σi, T ]. Now we show that ϕk−τ (t) ≤ 0

11unless Ii = 0, for which the control, ui, is irrelevant.



over the interval of [σ̄, T ]. From (12), we have:ϕi = βIi
(∑B

j=r (−λj + ρj−r + ρi−τ − ρi)Sj
)

ϕk−τ = βIk−τ
(∑B

j=r (−λj + ρj−r + ρk−2τ − ρk−τ )Sj
)

Following the definition of σ̄, we have ρk−2τ−ρk−τ ≤ ρi−τ−
ρi over the interval of [σ̄, T ]. Hence:

B∑
j=r

(−λj + ρj−r + ρi−τ − ρi)Sj ≤ 0

⇒
B∑
j=r

(−λj + ρj−r + ρk−2τ − ρk−τ )Sj ≤ 0,

and therefore, ϕi ≤ 0 ⇒ ϕk−τ ≤ 0. This concludes the
lemma, and hence the theorem.

3.2 Optimal Stopping Time Scenario
We will use the variable final time version of Pontryagin’s

Maximum Principle for the optimal stopping time version of
the problem. First, we transform the path constraint in (5)
to a final state constraint, which is better suited to the PMP
formulation. This can be done simply by introducing a new
variable, E, such that:

Ė =

B∑
i=τ

Ii(t), E(0) = 0, E(T ) ≥ − ln(1− p)/β0.

Now consider a new Hamiltonian identical to (8) with the
exception that the first term is removed. According to PMP,

there exist absolutely continuous co-state functions ~λ, ~ρ, λE
and a constant λ0 ≥ 0 such that at any given time, an
optimal ui is a maximizer of the new Hamiltonian. The
co-state functions satisfy the same differential equations as
in (9), with the exception that here we have λ̇E = 0.

The final conditions for the co-states also change to the
following:

λi(T ) = −λ0ai, ρi(T ) = −λ0ai, ∀i = 0, . . . , B (20a)

λE(T ) ≥ 0, λE(T )(E(T ) + ln(1− p)/β0) = 0 (20b)

together with H(T ) = λ0f
′(T ) and for every t ∈ [0, T ]:

(λ0, ~λ(t), ~ρ(t), γ(t)) 6= ~0. (21)

The last condition along with λ0 ≥ 0 leads to λ0 > 0. Max-
imization of the Hamiltonian yields:

ui =

{
1 ϕi > 0

0 ϕi < 0
(22)

where ϕis, the switching functions, are defined as before,
and with a similar argument it can be shown that ϕi(T ) < 0.

Therefore, we have H(T ) = λE(T )
∑B
i=τ Ii(T ). Hence,

λ0f
′(T ) = λE(T )

B∑
i=τ

Ii(T ) (23)

Now, we claim that both Theorems 1 and 2 apply in this
case as well. The proofs are almost identical. Here we only
list the alterations.

� Changes in the proof of Theorem 1:
The proof is identical up to the following point, which we

develop onward:

ϕ̇i|ϕi=0 ≤βIi
B∑
j=r

(−λ̇j − λE)Sj = βIi

B∑
j=r

(−λ̇jSj − λESj)

=βIi(H− λE
B∑
i=τ

Ii − λE
B∑
j=r

Sj)

=βIi(H(T )− λE
B∑
i=τ

Ii − λE
B∑
j=r

Sj)

=βIi(γ(T )

B∑
i=τ

Ii(T )− λE
B∑
i=τ

Ii − λE
B∑
j=r

Sj).

Note that λ̇E = 0 and hence λE is a constant, i.e., λE =
λE(T ). Furthermore, it is a strictly positive constant be-
cause first λE(T ) ≥ 0 from (20b); and second, λE cannot be
zero, because if it is, following (23), it implies λE = λ0 ≡
0, which together with the ODE of the co-state functions

and (20a), leads to (λ0, ~λ(T ), ~ρ(T ), λE) = ~0. This would
contradict (21). Hence ϕ̇i|ϕi=0 < 0, and the rest of the
proof is similar to the one presented in the previous section.

� Changes in the proof of Theorem 2:
Everything remains the same except that the final value of
ψi,k(T ) is multiplied by λ0, that is

ψi,k(T ) = λ0 (ai−τ − ai − (ak−τ − ak)) .

As we argued in the previous item, we have λ0 > 0 and
henceforth, the rest of the arguments follow identically.

Practical Issues and Implementation
A corollary of Theorem 1 is that the forwarding policy can
be completely represented by a vector of threshold times
corresponding to different energy levels. This vector is of
size B − τ and can be calculated once at the source node
of the message and added to it as a small overhead. Each
node that receives the message simply retrieves the thresh-
old levels and forwards the message if its age is less than the
threshold entry corresponding to its current energy level.
The one-time calculation of the threshold levels for each
message at the origin can be done by estimating the cur-
rent distribution of the energy levels in the network. Note
that the required information is the fractions of nodes with
each level of energy, and not the identity of the nodes. This
estimation can be done if the distribution of the energies
at the time at which the network starts operation is known
(e.g. all nodes start with full batteries) and origin nodes
keep a history of the past messages. The robustness of our
policy with respect to inaccuracy in the estimation of the
initial energy profile of the network is an interesting direc-
tion for future research. The search for optimum thresholds
is now an optimization with only B−τ variables. Moreover,
following Theorem 2, the search can be limited to a small
subset of the space of [0, T ]B−τ . Finally, as we show in our
numerical section, heuristically, a common threshold for all
energy levels can be first optimized and its solution used as
a good initial solution for the multi-variable optimization.
Qualitatively, our results show that each node should have
different modes of action depending on its residual battery,
and that these modes of actions themselves vary for each
newly generated message. These observations should give
clues to improving state-of-the-art DTN routing policies.

In developing our theoretical model, as for any analyt-
ical model, we made a series of technical assumptions for



tractability and/or avoidance of unnecessary clutter. (a) We
ignored the energy dissipated in scanning the media in search
of new nodes. Incorporating the media scanning energy dis-
sipation is straightforward, however it would unduly compli-
cate the model and is left to our future research. (b) homo-
geneous mixing, i.e., the assumption that the inter-contact
times are similarly distributed for all pairs, which may not
hold in practice. This assumption can partly be addressed
technically by using the ideas in [9], which suggest that our
results likely generalize to spatially inhomogeneous cases.
(c) We assumed that during the interval [0, T ], only one mes-
sage is routed in the network. This assumption is valid if the
load in the network is low and the routing time intervals of
different messages do not overlap (i.e., the interval between
the generation of new messages is longer than T ). General-
ization to the routing of multiple messages with overlapping
routing intervals can be a future direction of research.

4. NUMERICAL INVESTIGATIONS
In this section, we investigate the structure of the optimal

control in systems with the above dynamics. We investi-
gated the single-delivery fixed terminal time problem with
g(t) = 1, i.e., no time discrimination in [0, T ], in the sim-
ulations, and unless otherwise stated, our test system has
parameters: B = 5 (i.e., five energy levels), τ = 2, r = 1,
and T = 10. Note that τ > r, as demanded by our system
model. For β (and β0), our benchmark is 0.223 (motivated
by [8]). It is instructive to note that βT denotes the average
number of contacts of each node in the system in the time
interval [0, T ], and therefore our choice of β is limited by
the time-to-live (T ) of the message. In our case, each node
contacts more than two other nodes on average within the
TTL of the message, a not-unreasonable assumption.
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Figure 1: An illustrative example for Theorems 1 and 2.

The controls are plotted for a system with parameters:

B = 5, r = 1, t = 2. The initial distribution is I0 =

(0, 0, 0.25, 0.02, 0.02, 0.01) and S0 = (0, 0, 0, 0.2, 0.3, 0.2), and the

battery penalties are ai = κ(B − i)2, with κ = 0.005.

First, we illustrate Theorems 1 and 2 by examining a sys-
tem with 5 energy levels and convex final-state cost coef-
ficients (fig. 1). As can be seen, the optimal control for
each energy level demonstrates bang-bang behavior with one
drop-off point, and furthermore, because of the convexity of
the final state costs and in accordance with Theorem 2, the
drop-off times of the different energy level controls follow
the ordering of the energy levels.

Then, we investigate the case where the final state costs
are not convex. One sample configuration is when we have a
sharp drop-off between two terminal-time coefficients, with
coefficients on either side being close to each other. The
motivation for such a setting could be the case where we
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Figure 2: In this example, the parameters were exactly the

same as those used in fig. 1, with the difference that the final

state coefficients were a0 = 4.4, a1 = 4.2, a2 = 4, a3 = 1.2,

a4 = 1.1, a5 = 1. As can be seen, the drop-off in final state

costs between energy levels 3 and 2 motivates nodes in level

3 to be more conservative in propagating the message.

Drop-off Times of Controls
Energy Level 3 Energy Level 2

κ = 0.5 9.6 9.8
κ = 1.5 9.6 9
κ = 2 9.6 8.4

Table 1: An example for non-ordered drop-off points of

the optimal controls for concave final state coefficients in the

settings of Theorem 2. Here we construct the final-state cost

coefficients in the form ai = κ(B − i)α with T = 10, B =

3, r = 0, t = 1 and κ = 0.01, and vary α over the values

{0.5, 1.5, 2}. The initial distribution is I0 = (0.1, 0.1, 0.1, 0.2) and

S0 = (0, 0, 0.2, 0.3). As can be seen, for α = 0.5, where the final

cost coefficients become concave, the ordering of the drop-off

in energy levels 2 and 3 is reversed. For α = {1.5, 2}, where

the final costs are strictly convex, the ordering is preserved,

as predicted by Theorem 2.

only care about having a certain fixed amount of energy at
terminal time, and any variation above or below that value
is of very little importance to us. It can be seen in fig. 2
that Theorem 2 does not necessarily hold for such a setting,
as nodes on either side of the drop-off would be incentivised
to propagate the message (because of the low loss incurred
for propagation in terms of final states), but those nodes in
states on the cusp of the drop-off in final state coefficients
would be extremely conservative, as there is a large penalty
associated with any further propagation of the message.

Subsequently, it is shown that Theorem 2 does not hold
for even wholly concave terminal-time state coefficients. To
this end, a concave cost function is constructed that has an
optimal control whose drop-off times are not ordered (Ta-
ble 1). Therefore, the convexity of the final cost coefficients
is integral to the result of Theorem 2.

To better illustrate the efficacy of the bang-bang controls,
the performance of the system is compared with that of 3
heuristic algorithms:
1. The control is constant throughout [0, T ] uniformly for all
energy levels (Static in Time and Across Energy Levels).
2. The control can vary within the field of uniform one-
jump bang-bang controls for all uniform energy levels (Static
Across Energy Levels).
3. The control can vary between energy levels, but the con-
trols of each are constant in time (Static in Time)
In fig. 3, the system utility of the optimal control and the
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Figure 3: The performance of the heuristics is compared

with the dynamic (bang-bang) optimum for different relative

weights κ of the utility function for a system with parameters

B = 5, r = 1, t = 2 and with the same initial distribution and

utility function as the system in fig. 1. Here, we took β to be

0.78, so that each user has, on average, around 8 contacts in

the time period. As κ goes to both extremes (0 and infinity),

the utility function becomes trivial and the performance of

the heuristics matches the optimal.

heuristics are plotted as a function of the relative weighting
of the two parts of the utility function for a sample sys-
tem. It turns out that the difference in utility becomes
large whenever the drop-off times of the optimal controls
are spread out across T , forcing the heuristics into choosing
overly conservative policies. It is instructive to note that
the static-in-time heuristic, which can take different actions
for different energy levels, is outperforming the other heuris-
tics throughout, which further emphasizing the importance
of having separate controls for different energy levels, a key
feature of our approach. It can be seen that this policy can
be chosen as a simple approximation to the optimal without
a significant loss in performance.
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Figure 4: In this figure, β (the mean rate of contact) is

varied and the performance of the optimal control and the

heuristics are studied. The same parameters as those outlined

in fig. 1 are used for the utility function and the initial states.

For low rates of contact, the optimality of the control is less

important as contacts are too infrequent to affect the energy

distribution significantly. As β increases, any constraint on

the policy translates to sub-optimality in the controls. As

can be seen, the static-in-time heuristic again performs much

better than the other two heuristics, but the sub-optimality

of even this heuristic increases with an increase in β.

Finally, to better understand the structure of the opti-
mal control, the relative performance of the optimal policy
and the heuristics are illustrated in fig. 4 for a case where
β is varied. It can be seen that the sub-optimality of all
the heuristics increases with β, which illustrates the added
importance of optimal decision-making at each instance in
situations where there are more contacts.

5. CONCLUSION
We formulated the problem of optimal energy-dependent

message forwarding in energy-constrained DTNs as a multi-
variable optimal control problem using a deterministic strat-
ified epidemic model. We analytically established that opti-
mal forwarding decisions for two generalized notions of QoS
are composed of simple threshold-based policies, where the
thresholds depend on the current value of the remaining en-
ergies in each node. We then analytically characterized the
dependence of these thresholds on the remaining energy re-
serves of the nodes.
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