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Abstract—The problem of online packet scheduling with hard
deadlines has been studied extensively in the single hop setting,
whereas it is notoriously difficult in the multihop setting. This
difficulty stems from the fact that packet scheduling decisions at
each hop influences and are influenced by decisions on other hops
and only a few provably efficient online scheduling algorithms
exist in the multihop setting. We consider a multihop wired
network (interference free and full duplex transmissions)in which
packets with various deadlines and weights arrive at and are
destined to different nodes through given routes. We study the
problem of joint admission control and packet scheduling inorder
to maximize the cumulative weights of the packets that reach
their destinations within their deadlines. We first focus onuplink
transmissions in the tree topology and show that the well known
earliest deadline first algorithm achieves the same performance
as the optimal off-line algorithm for any feasible arrival pattern.
We then address the general topology with multiple source-
destination pairs, develop a simple online algorithm and show that
it is O(PM logPM )-competitive wherePM is the maximum route
length among all packets. Our algorithm only requires information
along the route of each packet and our result is valid for general
arrival samples. Moreover, we show thatO(logPM )-competitive
is the best any online algorithm can do. Via numerical results,
we also show that our algorithm achieves performance that is
comparable to the non-causal optimal off-line algorithm. To the
best of our knowledge, this is the first algorithm with a provable
(based on a sample-path construction) competitive ratio, subject
to hard deadline constraints for general network topologies.1

I. I NTRODUCTION

We consider a multihop wired network in which nodes
receive packets with various (hard) deadlines, enqueued atthe
intermediate nodes through multiple hops along given routes
to given destinations. We assume a time slotted system in
which each packet has an identical (unit) length and each
link in the network can serve an integer number of packets
at a given time slot. Each packet has a certain weight and
a deadline and we address the problem of scheduler design
in order to maximize the total weight over the packets that
are successfully transferred to their destinations withintheir
deadlines. We first focus on the tree topology and show that
the Earliest Deadline First (EDF) algorithm achieves the same
performance as the optimal off-line algorithm for any feasible

1This work was funded in part through the ARO MURI grant W911NF-
08-1-0238, and National Science Foundation grants: CNS-1012700, and CNS-
1012700.

or under-loadednetwork arrival pattern2. Next, we study the
general topology with multiple source-destination pairs.We
develop a low-complexity on-line joint admission control and
packet scheduling scheme and evaluate its competitive ratio
with respect to the cumulative weight achieved by the optimal
off-line algorithm. Our scheme only requires information of
the packet queues along the route of each packet and is
competitively optimal among all online algorithms. To the best
of our knowledge, this is the first scheme with a provable (based
on a sample-path construction) competitive ratio in general
network topologies.

The on-line packet scheduling problem with hard deadlines
is gaining increasing importance with the emergence of cloud
computing, large data centers, and grid communications. In
such applications, a large amount of time-sensitive information
needs to be carried among servers and users over a mainly-
wired infrastructure. Meeting the deadline requirements of these
packets with an efficient use of resources requires a careful
design of schedulers that decide on how and when data should
be transferred over the network. Due to the large volume of
data, the complexity of schedulers should be kept low to reduce
the amount of energy consumed by these data centers. To that
end, our objective is to develop a low-complexity and provably
efficient scheduler and an associated admission controllerfor
deadline-constrained data.

On-line packet scheduling has been a widely-studied prob-
lem. Since the seminal work in [1], various versions of the
problem for single hop systems have been considered. It has
been shown that EDF has the same performance as the optimal
off-line algorithm [1, 2] for the scenario in which the system is
under-loaded. When considering over-loaded arrivals (i.e., the
case when even the best off-line policy drops some packets),
there is the additional question of whether the controller needs
to decide to accept or reject a packet upon arrival time,
i.e., admission control. With the constraint that the admission
controller and the scheduler do not have to decide on a
packet’s admission into the system and the period that it is
scheduled upon arrival time, it is shown in [3] that1

4 is the
best competitive ratio among all on-line algorithms and an
online algorithm is provided [4] to achieve this ratio. With
this constraint the problem is addressed in [5, 6]. In addition
to immediate decisions, the model studied in [7] imposes a

2Note that a network arrival pattern is said to be under-loaded if there
exists an off-line algorithm under which all packets can be served before their
deadlines.
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penalty on the unfinished workload, and the authors propose
an on-line algorithm with competitive ratio3 − 2

√
2 and

show that this ratio is the best achievable ratio for all on-line
algorithms. Within the single hop setting, similar problems of
packet scheduling have been studied in [8–12] for the scenario
with parallel processors, where the controller needs to decide
which machine to process each packet as well as scheduling and
admission control. An on-line algorithm requiring immediate
decision upon packet arrival time is proposed in [9] with an
asymptotic competitive ratioe−1

e
. It is later shown in [10]

that this ratio is the maximum achievable ratio for any on-line
algorithm. In [11, 12] a penalty-based model is introduced for
unfinished workload and competitive ratios were derived for
various algorithms.

All of the works mentioned above require continuous pro-
cessing of packets, i.e., each packet can be processed, paused,
and restarted at any point in timepreemptively. In [13], a slotted
single queue system is considered in which all packets have
unit length and uniform weights, and it is shown that EDF
has the same performance as the optimal off-line algorithm.
In [14, 15], the same discrete model is considered with packets
having heterogenous weights and it is shown that the achievable
competitive ratio is within[0.5,

√
5−1
2 ]. Furthermore, it is shown

that the lower bound0.5 is achieved by the largest weight first
policy and a lex-optimal scheduling policy is provided.

There have also been a few works that have investigated the
problem of scheduling packets with deadlines in the multihop
setting. In [16], the authors investigate the problem of online
scheduling of sessions with known injection rates, given dead-
lines and fixed routes. They first give a necessary condition
for feasibility of sessions and then propose an algorithm under
which most sessions are scheduled without violating the dead-
line with high probability when the necessary condition for
feasibility is satisfied. The algorithm they proposed is called
coordinated EDF. The main idea of coordinated EDF is to
assign virtual deadline within certain region (that is related to
the session parameters such as injection rate, the actual arrival
time and deadline) for the first hop of each packet uniformly
at random, and then assign virtual deadlines of the remaining
hops based on the virtual deadline of first hop regulated by
constants that are related to the session parameters. Upon
packet scheduling for each link, the packet with earliest virtual
deadline of the hop index at that link is transmitted. In [17],
it has been shown that a modified version of EDF achieves
the same performance as the optimal off-line algorithm for
any arrival sample path over an uplink tree with uniform link
capacities and packet weights.

In the first part of our paper, we consider under-loaded
arrivals but allow links to haveheterogenous link capacities
and show that EDF has the same performance as that of the
optimal off-line algorithm. In the second part, we considera
general multihop network, where simple heuristics such as EDF,
minimum number of remaining hops first, minimum remaining
time till expiration first, or Largest Weight First do not have
provable efficiency. Achieving provable efficiency in a general

network topology requires a joint consideration of the factors
such as deadlines, packet weights, and path lengths etc. Our
approach to the problem with the general multihop topology is
motivated by competitive routing in virtual circuit network [18].
In the competitive routing model, link bandwidth is the resource
to be allocated. By viewing the time slots as resources, the
packet scheduling problem can be transformed into a resource
allocation problem. Our approach has a couple of fundamental
differences with the one in [16]. Firstly, our scheme is not based
on the prior knowledge of the packet injection rates, as is the
case in [16]. Secondly, we investigate both under-loaded and
over-loaded arrivals, whereas in [16], the authors study under-
loaded arrivals.

To summarize our main contributions in this paper:

• We show that EDF has the same performance of the
optimal off-line algorithm under an uplink tree with het-
erogenous link capacities for any under-loaded arrivals.

• We develop a competitive ratio based admission control
and packet scheduling framework that has low complexity
and isO(PM logPM )-competitive3 under certain condi-
tions4 on PM , stated in Section V, wherePM is the
maximum route length among all packets, under general
multihop network topologies and arrival samples. More-
over, we show that no online algorithm can achieve a
performance scaling better thanO(logPM ).

II. PROBLEM STATEMENT

We study the packet scheduling problem with hard deadlines
in a general multihop network topology represented by a
directed graph, as shown in Fig. 1. We assume a time slotted
system. The arrival sample path consists ofK packets, where
each packeti ∈ {1, 2, . . . ,K} (the packet set is indexed in the
order of arrival times of the packets) is associated with four
parameters(ai, di, ρi, Pi). Here,ai anddi are the arrival time
and the deadline, respectively, both of which are given in slot
indices (important notations are summarized in Table I). We
allow each packeti to have a weightρi, which is an arbitrary
real number that represents the importance of the packet. We
assume that each packeti is routed through a predetermined
path5 Pi from its source node to its destination, wherePi

denotes the set of links through which the packet traverses in
order. We assume infinite packet buffers at all nodes. If packet
i is still at a non-destination node by the end of slotdi, then its
timer expires and it is deleted from the network. Note that the
arrival sample consists of finite number of packets, when all
packets have finite deadlines, the packet queues in the network
will always remain bounded. We assume that each packet has an
identical (unit) length and each link in the network can serve an
integer number (possibly different for different links) ofpackets
at a given time slot.

3O(x)-competitive means the competitive ratio goes to 0 at least as fast
asx → ∞.

4The conditions are mild.
5Our framework can be generalized when there are multiple candidate

routes to choose.
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TABLE I
L IST OF SYMBOLS

K number of packets
ai arrival time of packeti
di deadline of packeti
ρi weight of packeti
Pi routing path of packeti
1pi indicator of packeti being successfully received under policyp
Rp revenue of policyp
rp competitive ratio of policyp
si average slack time per hop for packeti

Il(i, j) indicator of packetj using unit resource of packeti
cl(i, j) cost of packetj using unit resource of packeti
Si maximum possible per hop delay of packeti

Ĩl(i, j) indicator of packetj may use unit resource of packeti
hl(i) hop index of linkl in the route of packeti
tl(i) reserved time slot fore transmission at linkl for packeti

We letp denote a service policy that specifies the packets to
be transmitted over each link and the packets to be admitted
to the system. We then define the indicator function for any
policy p, to identify whether a packet reaches its destination
within its deadline as:

1pi =

{

1 if i reaches its destination before the end ofdi

0 otherwise
(1)

and the weighted revenue gained by the successfully received
packets as:

Rp =
∑

i∈{1,2,...,K}
ρi1

p
i . (2)

Let Ponline be the set of online policies. Ourobjective is to
solve

max
p∈Ponline

Rp. (3)

dest 1

dest 2

src 2

src 1ai di, Pi,i, ρ
ipacket 

Fig. 1. General Network Topology with Multiple Source-Destination Pairs

III. M OTIVATING EXAMPLE

An optimal off-line algorithm is one that has the entire
arrival sample path available non-causally and finds a schedule
with maximum revenue among all algorithms. The optimal off-
line algorithm is a conceptual tool, which is typically used
as a measuring standard against which the performance of
online algorithms can be compared. This is typically used in

competitive ratio literature. The competitive ratiorp of an on-
line algorithmp is defined as the minimum ratio of the achieved
revenue for the on-line algorithm to the revenue of the optimal
off-line algorithm, where the minimization is over all possible
arrival patterns:

rp = min
v∈V

Rp(v)

Roffline(v)

Here,Rp(v) andRoffline(v) are revenue of online algorithmp
and optimal offline algorithm under arrival samplev, respec-
tively. V denotes the set of all possible arrival samples.

In this section, we provide an example that shows that (1)
on-line scheduling with deadlines is a difficult problem, and
(2) even for very simple topologies, there may exist no on-line
policy that achieves the performance of the optimal off-line
algorithm (i.e., we show that the competitive ratio< 1). This
is even valid for feasible arrival patterns (i.e., arrival patterns
such that all packets can be served by their deadlines by the
optimal offline algorithm), as we will illustrate in this example.

Example 1:Consider a line network1 → 2 → 3 and
suppose that the link capacity of each link is 1, as shown in
Fig. 2. Initially at node 1, there are two packetsk1 andk2 with
deadlined1 = 2, d2 = 4 whose destinations are node 2 and
3, respectively. Suppose that node 1 transmitsk1 to node 2 in
time slot 1, and that there is no arrival by the end of slot 1,
then node 1 transmitsk2 to node 2 in slot 2. Let an “adversary”
inject a packetk3 at node 2 by the end of slot 2 with deadline
d3 = 3 whose destination is node 3. Then, node 2 transmits
k3 to node 3 in slot 3. Further let the adversary inject a packet
k4 at node 2 by the end of slot 3 with deadlined4 = 4 whose
destination is node 3. Then, by the end of slot 4, eitherk2 or
k4 expires. However, this arrival sample is feasible since the
off-line algorithm transmitsk2 in slot 1 and all four packets are
able to reach their destinations within their deadlines. Similarly
if node 1 transmitsk2 to node 2 in time slot 1. Let the adversary
inject a packetk3 at node 1 by the end of slot 1 with deadline
d3 = 2 (whose destination is node 2). Then, by the end of
slot 2, eitherk1 or k3 expires. However, this arrival sample is
also feasible since the off-line algorithm transmitsk1 in slot 1
and all three packets are able to reach their destinations before
their deadlines. This means that under this scenario, no matter
what online decision node 1 makes in slot 1, the adversary
can always chooses future arrivals so that the online decision
is worse than the optimal off-line algorithm even though the
entire arrival sample is feasible.

One of the main conclusion one can draw from this example
is that, there may exist no on-line algorithm that achieves
the same performance as an optimal off-line algorithm even
for simple network settings. This motivates our study for
developing online algorithms that have a provable (non-zero)
competitive ratio, relative to the optimal off-line algorithm for
a general network topology and arrival patterns. In the restof
this paper, we begin with a scenario under which there exists
an online algorithm that achieves the same performance as the
optimal off-line algorithm. We provide such an algorithm. We
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Fig. 2. An example of packet scheduling with deadlines in a line network. Four time slots are considered for two alternatesample paths. The deadline is marked
in the packets and the destinations are marked with matchingcoloring between the packets and the nodes. The two sample paths illustrate that, no matter how
an on-line algorithm schedules packets, there exists an arrival sample path that leads to a suboptimal selection with respect to the optimal off-line algorithm.

then develop an online algorithm that is provable efficient for
a general multihop network.

Note that, there are other topologies for which there existsno
on-line algorithm with a competitive ratio identical to1 such
as:

• Down-link tree (a packet can be generated by any node,
whereas the destination of each packet is a leaf of the
tree) even with identical link capacities and under-loaded
arrivals

• Line network with multiple flow destinations even with
under-loaded arrivals

• Uplink tree (a packet can be generated by any node,
whereas the destination of each packet is the root of the
tree) with various link capacities and overloaded arrivals.

The details of all three of these examples can be found in [19].
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IV. OPTIMAL PACKET SCHEDULING IN UPLINK TREE

NETWORKS WITH UNDER-LOADED ARRIVALS

While it is not possible in most cases for an on-line algorithm
to match the performance of the optimal off-line algorithm,
in certain cases this is indeed possible. In this section, we
specify such a case and find the optimal on-line algorithm with
a competitive ratio of1. In particular, we consider an uplink
tree network as shown in Fig. 3. Each packeti arrives at an
arbitrary non-root node in slotai and is destined to the root
through multiple hops within its deadlinedi. For under-loaded
arrivals, the packet weights are not important since an optimal
algorithm serves all packets anyway. Without loss of generality,
we assume that all packets have the same weight, then our
objective reduces to maximizing the throughput, i.e.,

max
p∈Ponline

Rp ≡ max
p∈Ponline

∑

i∈{1,2,...,K}
1pi .

root

ak dk,

packet k

j

j
p

1 = 1

n

m

1 2 3

Fig. 3. An Uplink Tree

Definition 1: The slack timeof packet i in time slot t ∈
[ai, di] is equal todi− t−hi(t)+1, wherehi(t) is the number
of hops from the node at which packeti resides in time slott
to the destination ofi.

The slack time can be viewed as the extra time that the packet
has above the minimum remaining time needed for a packet to
reach its destination.

Definition 2: Policy p is called awork-conservingpacket
scheduling policy if it keeps each link fully utilized in each time
slot, as long as the queue feeding the link contains sufficiently
many unexpired packets.

Lemma 1:For any non-work-conserving policy, there exists
a work conserving policy that achieves an identical or a higher
throughput under any given arrival pattern.

The intuition behind Lemma 1 is fairly clear, since non-work-
conserving policies unnecessarily waste resources. The detailed
proof can be found in [19]. From Lemma 1, we only need to
focus on work conserving packet scheduling policies to solve
the problem, i.e.,maxp R

p ≡ maxp∈C Rp, whereC is the set
of work conserving packet scheduling policies.

Definition 3: A work conserving earliest deadline first (WC-
EDF) policy is one in which each node transmits the largest
possible set of packets that the link capacity allows with the
earliest deadlines among all the packets in its packet queue.

We next state a result on WC-EDF from [17].
Theorem 1:[17] For an uplink tree with identical integer-

valued link capacity, given any arrival sample path (either
under-loaded or over-loaded), the WC-EDF policy that only
serves packets with non-negative slack times in each slot
achieves the same performance as the optimal off-line algorithm
in maximizing the throughput.

This theorem, proven in [17], is for an uplink tree with
identical link rates. In the following theorem, we extend the
result to the scenario where links may have different rates (as
long as they are integer number of packets/time slot) for under-
loaded traffic.

Theorem 2:For an uplink tree with possibly different link
capacities that are integer number of packets per time slot,for
all under-loaded arrivals, the WC-EDF policy ensures that all
packets reach their destinations before their deadlines.

The detailed proof of Theorem 2 can be found in Ap-
pendix A. Theorem 1 holds for identical link capacities and its
proof is based on induction on links. Since Theorem 1 does
not hold for heterogeneous link rates, the proof techniques
for Theorem 2 are fairly different from those in Theorem 1.
Theorem 2 is proven by a careful classification and analysis of
all possible arrival sample paths.

Theorem 2 shows that under WC-EDF, all packets for any
under-loaded arrival sample path reach their destinationsbefore
their deadlines and hence generates the same throughput as the
optimal off-line algorithm. Note that a biproduct of Theorem 2
is that it can be used to test whether an arrival sample is
feasible.

V. COMPETITIVE PACKET SCHEDULING FORGENERAL

TOPOLOGIES ANDARRIVAL PATTERNS

In this section, we focus on a general network topology (e.g.,
that shown in Fig. 1). We will propose an online scheduling
strategy, evaluate its performance, and prove the order optimal
competitive ratio, i.e., no on-line algorithm achieves a better s-
caling law than this competitive ratio, in terms of the maximum
route length.

For any link l ∈ Pi, let hl(i) denote the hop index in the
route of packeti. For ease of notation, in this section, we
present the main results for the case in which all the links
have unit capacity6. We allow packets to have different weights
ρi, i = 1, 2, . . . ,K, and our objective function is as stated in
Equation (3).

Upon the arrival time of each packet into the network, the
controller of its source node decides whether to accept or reject
this packet. If there are multiple packets arriving at the network
in the same time slot, we assume the controllers of different
packets make decisions at different instances (in the same time
slot) in the same order as the packet index. If packeti is
accepted, then each linkl ∈ Pi needs to reserve a time slot so
that packeti will be transmitted through linkl in this reserved

6Our results can be generalized when link ratesCl are distinct, as long
as there are an integer number of packets per time slot by replacing si with
Clsi in Equation (6), (7), (8), and in the definition ofCostj in Algorithm 1.
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slot. The reserved time slot is not changed in the subsequent
time slots. Letti(l) denote the index of this reserved time slot
in which packeti is transmitted through linkl ∈ Pi if i is
accepted. Define for anyi, j, l the following indicator

Il(i, j) =







1 if packetsi, j are accepted;l ∈ Pi, l ∈ Pj ;
tj(l) ∈ [ai + (hl(i)− 1)si, ai + hl(i)si − 1]

0 otherwise
(4)

where

si =

⌊

di − ai + 1

|Pi|

⌋

(5)

is the average slack time per hop for packeti with |Pi| as the
number of total hops on its route. Note thatdi − ai + 1 is
the maximum allowable end to end delay for packeti in the
network. If we divide this delay evenly on each hop, thensi is
the maximum allowable delay on each hop and[ai + (hl(i)−
1)si, ai + hl(i)si − 1] is the set of time slots thati can use to
be transmitted through linkl. From another perspective, a time
slot can be viewed as a resource and[ai + (hl(i)− 1)si, ai +
hl(i)si − 1] is then the set of available resources for packeti
andsi is the total amount of resources at each link on the route
of i. When bothi andj are accepted and linkl is in the route
of both i andj, if the reserved transmission slot ofj takes one
resource ini’s resource set at linkl, then the indicatorIl(i, j)
becomes 1. This means packetj consumes one unit of resource
of packeti at link l.

We define thecost (the exponential cost metric is motivated
by [18]) of packetj taking a resource ofi at link l as

cl(i, j) = si(µ
λl(i,j) − 1), (6)

whereµ is a control parameter (we will discuss how to choose
the value ofµ, later in this section) and

λl(i, j) =
∑

m<j

Il(i,m)

si
(7)

is the fraction of packeti’s resources that have already been
taken before arrival of packetj at link l. By lettingλl(i, 1) = 0
for all i, l, we have the following recursive relationship:

λl(i, j + 1) = λl(i, j) +
Il(i, j)

si
, (8)

i.e., λl(i, j) and thuscl(i, j) is increasing inj for any giveni
and l. This is to be expected, since the packet arrival sequence
is indexed in the order of arrival times of packets, so a laterj
should result in giving more time for packeti to consume of
of its resources.

Before describing our algorithm, we further need to define
for i 6= j that

Ĩl(i, j) =























1 the intersection of the intervals
[

aj + hl(j)− 1, dj − |Pj |+ hl(j)
]

and
[

ai + (hl(i)− 1)si, ai + hl(i)si − 1
]

are nonempty;l ∈ Pi, l ∈ Pj ; i is accepted
0 otherwise

(9)

and

Ĩl(j, j) = 1, ∀j, l ∈ Pj . (10)

Note that
[

ai+hl(i)− 1, di−|Pi|+hl(i)
]

is the range of time
slots that packeti can possibly remain enqueued in the queues
of link l for it to reach the destination before its deadline under
any algorithm. Define

Si , di − ai − |Pi|+ 2 (11)

to be the maximum possible delay of packeti at each link
l ∈ Pi and it is easy to see thatsi, the amount of resources
at each link on the route ofi is less thanSi, i.e., si ≤ Si

for all i. Variable Ĩl(i, j) indicates whether packetj may take
a resource of packeti under any possible scenario. Note that
tl(j) ∈ [aj + hl(j) − 1, dj − |Pj | + hl(j)

]

for all l ∈ Pj

for any scheduler, since allocating any time slot out of this
interval to transmitj over l ∈ Pj will lead to the expiration of
j. Hence, one can see thatIl(i, j) ≤ Ĩl(i, j) for all i, j, l from
Eqs. (4), (9), and (10).

Algorithm 1 Admission Control and Packet Scheduling
Upon arrival time of packet j, let Costj :=
∑

l

∑

i≤j
Ĩl(i,j)

si
cl(i, j):

1) If Costj > ρj , then rejectj;
2) If Costj ≤ ρj , then acceptj and lettl(j) be the empty time
slot with the largest index in[aj+(hl(j)−1)sj , aj+hl(j)sj−1].
Put packetj into tl(j), ∀l ∈ Pj ;
3) Any accepted packetj is transmitted through linkl ∈ Pj at
time slot tl(j).

Our admission control and packet scheduling algorithm is
described in Algorithm 1. Note that from Equation (9), we have
∑

l

∑

i≤j
Ĩl(i,j)

si
cl(i, j) =

∑

l∈Pj

∑

i≤j
Ĩl(i,j)

si
cl(i, j), i.e., the

calculation only needs information on the route of packetj. For
eachl ∈ Pj , the calculation of the term

∑

i≤j
Ĩl(i,j)

si
cl(i, j) only

requires the information of packets that may route through link
l. It is also easy to see that the calculation of the cost term does
not require future information for times after the arrival time
of each packetj, i.e., Algorithm 1 is an online algorithm that
uses only causal information. Furthermore,λl(i, j + 1), i ≤ j
is calculated fromλl(i, j) using Equation (8) when packetj
is processed by Algorithm 1, and Equation (7) is only used to
calculateλl(j, j) uponj’s arrival. The transmission slot at each
hop is determined when the packet is admitted.

The basic intuition behind our algorithm is simple: We
first allocate the end-to-end delay of each packet evenly over
the links along its path. The algorithm then schedules the
transmission for an accepted packet in a slot within its allocated
time region at each link. Consequently, the end-to-end deadline
constraint is met. With this approach, the natural questions are:
(1) When a packetj is accepted, is there always an empty (non-
reserved) slot in[aj+(hl(j)−1)sj , aj+hl(j)sj −1], ∀l ∈ Pj

so that we can reserve a slottl(j) for j at link l? (2) What
is the performance of Algorithm 1 compared to the optimal
off-line algorithm? We answer these questions in the following
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theorem. We denote the competitive ratio of our algorithm with
r, i.e., R ≥ rR∗, whereR is the worst-case (over all sample
paths) weighted revenue achieved by Algorithm 1 andR∗ is the
weighted revenue achieved by the optimal off-line algorithm.

Theorem 3:If the system parameters satisfyPM <
2sm−1

2sM( ρM
ρm

)
, where PM = maxi |Pi| is the maximum route

length,sm = mini si is the minimum average slack time,sM =
maxi si is the maximum average slack time,ρm = mini ρi
is the minimum weight andρM = maxi ρi is the maximum
weight among all packets, then every packet accepted by Algo-
rithm 1 reaches its destination before its deadline. Furthermore,
Algorithm 1 achieves competitive ratior =

[

2
(

2(sMPM+1)+

1
)(

1+ ρM

ρm
sM
)

log
(

2 ρM

ρm
sMPM +1+ ǫ

)

+1
]−1

, whereǫ > 0

is an arbitrarily small constant.
Hence, our algorithm isO(PM logPM )-competitive when

the condition of Theorem 3 is satisfied, wherePM is the
maximum route length. The assumptionPM < 2sm−1

2sM ( ρM
ρm

)
in Theorem 3 imposes an upper bound on the maximum
route lengthPM for the validity of the provided competitive
ratio. According to the condition,PM is upper bounded by
an exponential function of the minimum average slack time
sm. Despite the fact that the competitive ratio is valid only
when the condition is met, in Section VI, we will illustrate
using numerical examples that our algorithm achieves a high
performance relative to the optimal off-line algorithm, even
when this condition is not satisfied.

To prove this theorem, we first make the following trans-
formation. With conditionPM < 2sm−1

2sM( ρM
ρm

)
, we can choose

µ so that log(µ) ≤ sm and µ > 2 ρM

ρm
sMPM + 1 ≥ 1,

i.e., µ−1
2PM

> ρM

ρm
sM ≥ sM . Then, we choose a factor,

F ∈
[

2PMsM
ρm

, µ−1
ρM

)

, and normalize the weightsρi for all i
with factorF and useFρi, instead ofρi for all i in the problem
(the objective is still equivalent to the original one). With this
change, we havelog(µ) ≤ sm ≤ sM ≤ ρm

2PM
≤ ρM

2PM
< µ−1

2PM
,

i.e.,

Il(i, j) ≤ 1 ≤ sm
log(µ)

≤ si
log(µ)

, for all i, j; (12)

2|Pj |sM ≤ 2PMsM ≤ ρm ≤ ρj, for all j; (13)

ρj ≤ ρM < µ− 1, for all j. (14)

We now provide the following sequence of lemmas to prove
Theorem 3. First, we prove that, if a packet is admitted by
Algorithm 1, than it is successfully served within its deadline:

Lemma 2:Under the same condition of Theorem 3, ifj is
accepted by Algorithm 1, then there exists at least one time slot
in the interval[aj + (hl(j) − 1)sj , aj + hl(j)sj − 1] that has
not been reserved by other accepted packets for eachl ∈ Pj .
Proof: Supposej is the first packet that is accepted by Algorith-
m 1 but there existsl ∈ Pj so that all time slots in the interval
[aj + (hl(j) − 1)sj , aj + hl(j)sj − 1] are occupied by other
accepted packets whenj is accepted. From Eqs. (4) and (7), we
haveλl(j, j) = 1 and cl(j,j)

sj
= µλl(j,j) − 1 ≥ µ− 1. Note that

Ĩl(j, j) = 1 by Equation (10), combined with Equation (14),

we then have

∑

l′

∑

i′≤j

Ĩl′ (i
′, j)

si′
cl′(i

′, j)

≥ Ĩl(j, j)

sj
cl(j, j) =

cl(j, j)

sj
≥ µ− 1 > ρj ,

i.e., j is rejected by Algorithm 1 which is a contradiction.
Then, we find an upper bound on the difference between the

weighted revenues achieved by the optimal off-line algorithm
and by our algorithm:

Lemma 3:Let Q denote the set of packets that are rejected
by Algorithm 1 but successfully received by the optimal off-
line algorithm, then

∑

j∈Q
ρj ≤

(

2SM

sm
+ 1
)

∑

l

∑

i cl(i,K)

under the same condition of Theorem 3, whereK is the last
packet of the arrival sample.
Proof: For any j ∈ Q, from Algorithm 1 and the fact that
cl(i, j) is increasing inj, given anyi and l, i.e., cl(i, j) ≤
cl(i, k), ∀l, i if j ≤ k, we have

ρj <
∑

l

∑

i≤j

Ĩl(i, j)

si
cl(i, j) ≤

∑

l

∑

i

Ĩl(i, j)

si
cl(i, j)

≤
∑

l

∑

i

Ĩl(i, j)

si
cl(i,K).

Consider any packeti and any linkl ∈ Pi, if i is rejected
by Algorithm 1, thenĨl(i, j) = 0, ∀j 6= i and Ĩl(i, i) = 1, we
then have

∑

j∈Q

Ĩl(i,j)
si

≤ 1
si

; otherwise, we havẽI(i, j) = 1
only for j with ai + (hl(i) − 1)si ≤ dj − |Pj | + hl(j) and
aj + hl(j) − 1 ≤ ai + hl(i)si − 1. Let t∗l (j) be the time slot
in which packetj is transmitted through linkl ∈ Pj under
the optimal off-line algorithm. Note thatt∗l (j) ∈ [aj + hl(j)−
1, dj−|Pj |+hl(j)] since this interval is the maximum allowable
transmission interval for the successful reception ofj under all
algorithms. Furthermore, ift∗l (j) < ai+(hl(i)−1)si−Sj+1 or
t∗l (j) > ai+hl(i)si−1+Sj−1, then it meansdj−|Pj |+hl(j) ≤
t∗l (j)+Sj−1 < ai+(hl(i)−1)si or aj+hl(j)−1 ≥ t∗l (j)−Sj+
1 > ai+hl(i)si− 1, i.e., Ĩ(i, j) = 0. Therefore, we must have
t∗l (j) ∈ [ai+(hl(i)−1)si−Sj+1, ai+hl(i)si−1+Sj−1] if

Ĩ(i, j) = 1, then
∑

j∈Q

Ĩl(i,j)
si

≤ 2Sj+si−2
si

. By summing over
all j ∈ Q and combining with the fact̃Il(i, j) = 0, ∀l /∈ Pi,
we have

∑

j∈Q

ρj <
∑

l

∑

i

cl(i,K)
∑

j∈Q

Ĩl(i, j)

si

≤
(

2
SM

sm
+ 1

)

∑

l

∑

i

cl(i,K),

whereSM = maxi Si is the maximum link delay among all
packet andsm = mini si is the minimum average slack time
among all packets.

Finally, we derive a lower bound on the achieved weighted
revenue by our algorithm:

Lemma 4:Let A denote the set of packets that
are accepted by Algorithm 1, then

∑

l

∑

i cl(i,K) ≤
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2
(

1 + sM
ρM

ρm

)

log(µ)
∑

j∈A
ρj under the same condition of

Theorem 3.
Proof: Note that for anyl, i andj ∈ A, we have

cl(i, j + 1)− cl(i, j) = siµ
λl(i,j)

(

µ
Il(i,j)

si − 1
)

=siµ
λl(i,j)

(

2
log(µ)

Il(i,j)

si − 1
)

≤ µλl(i,j)Il(i, j) log(µ)

=

(

cl(i, j)

si
+ 1

)

Il(i, j) log(µ), (15)

where the inequality is from Equation (12) and the fact2x−1 ≤
x, x ∈ [0, 1]. The last equality is from Equation (6).

Recall thatIl(i, j) ≤ Ĩl(i, j), ∀i, j, l by Equation (4) and
Equation (9); cl(i, j) ≤ cl(i, i), ∀i > j by Equation (6),
Equation (8) and Equation (4); and

∑

l

∑

i≤j
Ĩl(i,j)

si
cl(i, j) ≤

ρj , ∀j ∈ A from Algorithm 1. From Equation (4), we
have

∑

i Il(i, j) =
∑

i∈A
Il(i, j), ∀j ∈ A. From Lemma 2,

tl(i) ∈ [ai + (hl(i) − 1)si, ai + hl(i)si − 1] for any i ∈ A.
Note that in order to haveIl(i, j) = 1, we must have
ai + (hl(i)− 1)si ≤ tl(j) ≤ ai + hl(i)si − 1. For anyi ∈ A,
if tl(i) < tl(j)− si +1 or tl(i) > tl(j) + si − 1, then it means
ai+hl(i)si−1 ≤ tl(i)+si−1 < tl(j) or ai+(hl(i)−1)si ≥
tl(i)− si + 1 > tl(j), i.e., Il(i, j) = 0. Therefore, ifIl(i, j) =
1, ∀i ∈ A, then tl(i) ∈ [tl(j) − si + 1, tl(j) + si − 1], i.e.,
∑

l

∑

i Il(i, j) =
∑

l

∑

i∈A
Il(i, j) ≤ 2|Pj|si ≤ 2|Pj |sM ≤ ρj

using Equation (13), and
∑

i∈A

ρi

ρj
Il(i, j) ≤ 2 ρM

ρm
sM . For any

l, i andj ∈ A, by summing overl and i of Equation (15), we
have

∑

l

∑

i

[

cl(i, j + 1)− cl(i, j)
]

≤ log(µ)

[

∑

l

∑

i

Il(i, j)

si
cl(i, j) +

∑

l

∑

i

Il(i, j)

]

≤ log(µ)

[

∑

l

∑

i≤j

Ĩl(i, j)

si
cl(i, j)+

∑

l

∑

i>j

Il(i, j)

si
cl(i, j) + 2|Pj |sM

]

≤ log(µ)









ρj +
∑

i>j,i∈A

Il(i,j)=1

∑

l

Ĩl(i, i)

si
cl(i, i) + 2|Pj |sM









≤ log(µ)









ρj +
∑

i>j,i∈A

Il(i,j)=1

∑

l

∑

k≤i

Ĩl(k, i)

sk
cl(k, i) + 2|Pj |sM









≤ log(µ)

[

ρj + ρj
∑

i∈A

ρi
ρj

Il(i, j) + 2|Pj |sM
]

≤ log(µ)

[

ρj + 2sM
ρM
ρm

ρj + 2|Pj |sM
]

≤2

(

1 + sM
ρM
ρm

)

log(µ)ρj ,

and combined withcl(i, j+1)−cl(i, j) = 0, ∀j /∈ A, we have

∑

l

∑

i

cl(i,K) =
∑

l

∑

i

∑

j

[

cl(i, j + 1)− cl(i, j)
]

=
∑

l

∑

i

∑

j∈A

[

cl(i, j + 1)− cl(i, j)
]

≤2

(

1 + sM
ρM
ρm

)

log(µ)
∑

j∈A

ρj .

Proof of Theorem 3: From Lemma 2, we see that for every
accepted packetj, there exists an unreserved time slottl(j) in
the interval[aj+(hl(j)−1)sj, ai+hl(j)sj−1] for transmission
at any l ∈ Pj . With this allocation of the total slack time on
each hop, it is apparent thatj can reach its destination before
deadlinedj , if it is transmitted over linkl in slot tl(j) for all
l ∈ Pj , which is indeed the case for the admitted packets.

Lemma 2 proves the first part of the theorem. The remaining
part of the theorem is proved in two steps: Combining Lem-
mas 2, 3 and 4, we have

R∗ ≤
∑

j∈Q

ρj +
∑

j∈A

ρj

≤
(

2
SM

sm
+ 1

)

∑

l

∑

i

cl(i,K) +
∑

j∈A

ρj

≤
[

2

(

2
SM

sm
+ 1

)(

1 + sM
ρM
ρm

)

log(µ) + 1

]

∑

j∈A

ρj

=

[

2

(

2
SM

sm
+ 1

)(

1 + sM
ρM
ρm

)

log(µ) + 1

]

R ,
R

r̄
.

(16)

Note thatsm ≥ 1 for a slotted system. From Eqs. (5) and (11),
we haveSi ≤ (si+1)|Pi|−|Pi|+1 ≤ si|Pi|+1 and thenSM ≤
sMPM + 1. Recall thatµ > 2 ρM

ρm
sMPM + 1. By letting µ =

2 ρM

ρm
sMPM + 1 + ǫ, whereǫ > 0 can be arbitrarily small, we

haver̄ ≥
[

2
(

2(sMPM+1)+1
)(

1+ ρM

ρm
sM
)

log
(

2 ρM

ρm
sMPM+

1 + ǫ
)

+ 1
]−1

, which is identical to the competitive ratior.

Hence, our algorithm isO(PM logPM )-competitive.
Theorem 4:In a general multihop network topology with

general arrival samples, all online algorithms areΩ(logPM )-
competitive.
Proof: Consider a line network withPM links l1, . . . , lPM

and

a sequence of packets that consists ofs2MPM log
(

ρM

ρm
sMPM

)

phases, wherePM is the maximum path length,ρM is the
maximum packet weight,ρm is the minimum packet weight,
andsM is the maximum average slack time. AssumeρM

ρm
sMPM

is a power of 2 and each link has unit capacity. Each phase

i ∈ [1, s2MPM log(ρM

ρm
sMPM )] has ⌈ ρm

ρMsM
2
⌊ i

s2
M

PM
⌋⌉ groups,

each groupj ∈ [1, ⌈ ρm

ρMsM
2
⌊ i

s2
M

PM
⌋⌉] has⌈ ρm

ρM
2
⌊ i

s2
M

PM
⌋⌉ mini

groups, and each mini groupk ∈ [1, ⌈ ρm

ρM
2
⌊ i

s2
M

PM
⌋⌉] has

sMPM

⌈ ρm
ρM

2
⌊ i

s2
M

PM

⌋

⌉
packets. A packet in phasei group j mini
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groupk has linkl PM

⌈
ρm

ρMsM
2

⌊ i

s2
M

PM
⌋

⌉

(j−1)+1
as its first hop link,

l PM

⌈
ρm

ρMsM
2

⌊ i

s2
M

PM

⌋

⌉

j
as its last hop link, sMPM

⌈ ρm
ρM

2
⌊ i

s2
M

PM

⌋

⌉
as its

end-to-end delay, and1 + PM

⌈ ρm
ρMsM

2
⌊ i

s2
M

PM

⌋

⌉
(j − 1) + (k − 1)

as its arriving time slot. Then, it is easy to see that the
maximum average slack time issM and the maximum path
length is PM . Let all packets in phasei have the same
weight ρi. Note that weightρi is obtained in phasei by using

PM

⌈ ρm
ρMsM

2
⌊ i

s2
M

PM

⌋

⌉
resources, then a unit weight is gained by

using 1
ρi

PM

⌈ ρm
ρMsM

2
⌊ i

s2
M

PM

⌋

⌉
resources.

Let xi be the weighted revenue obtained by the online
algorithm from packets in phasei. Since there aresMPM time
slots andPM links in total, we havesMP 2

M time resources.
Therefore,

s2MPM log(
ρM
ρm

sMPM )
∑

i=1

xi

1

ρi

PM

⌈ ρm

ρM sM
2
⌊ i

s2
M

PM
⌋⌉

≤ sMP 2
M . (17)

DefineFj =
1
ρj

PM

⌈ ρm
ρMsM

2
⌊

j

s2
M

PM
⌋

⌉

∑j

i=1 xi, then

s2MPM log(
ρM
ρm

sMPM )
∑

j=1

Fj

=

s2MPM log(
ρM
ρm

sMPM )
∑

j=1

1

ρj

PM

⌈ ρm

ρMsM
2
⌊ j

s2
M

PM
⌋⌉

j
∑

i=1

xi

=

s2MPM log(
ρM
ρm

sMPM )
∑

i=1

( s2MPM log(
ρM
ρm

sMPM )
∑

j=i

1

ρj

PM

⌈ ρm

ρMsM
2
⌊ j

s2
M

PM
⌋⌉

)

xi

≤
s2MPM log(

ρM
ρm

sMPM )
∑

i=1

1

ρi

PM

⌈ ρm

ρMsM
2
⌊ i

s2
M

PM
⌋⌉

(

1 + s2MPM

ρM
ρm

log(
ρM
ρm

sMPM )
∑

j=0

1

2j

)

xi

≤
s2MPM log(

ρM
ρm

sMPM )
∑

i=1

2s2MPM

ρM
ρm

xi

1

ρi

PM

⌈ ρm

ρM sM
2
⌊ i

s2
M

PM
⌋⌉

≤2
ρM
ρm

s3MP 3
M ,

where the last inequality is from Equation (17). This means
there existsk ∈ [1, s2MPM log(ρM

ρm
sMPM )] so that Fk ≤

2
ρM
ρm

s3MP 3
M

s2
M

PM log(
ρM
ρm

sMPM )
and then the weighted revenue of online

algorithms

k
∑

i=1

xi =
ρk⌈ ρm

ρM sM
2
⌊ k

s2
M

PM
⌋⌉

PM

Fk (by definition ofFk)

≤
ρk⌈ ρm

ρM sM
2
⌊ k

s2
M

PM
⌋⌉

PM

2 ρM

ρm
s3MP 3

M

s2MPM log(ρM

ρm
sMPM )

≤ρk
2 ρM

ρm
s3MP 3

M

s2MPM log(ρM

ρm
sMPM )

.

We first letρk = ρm. If k 6= s2MPM log(ρM

ρm
sMPM ), then let

ρs2
M

PM log(
ρM
ρm

sMPM ) = ρM . The off-line algorithm can simply

serve packets in phases2MPM log(ρM

ρm
sMPM ) to obtain weight-

ed revenueρMsMP 2
M ; If k = s2MPM log(ρM

ρm
sMPM ), then let

ρs2
M

PM log(
ρM
ρm

sMPM )−1 = ρM . The off-line algorithm can sim-

ply serve packets in phases2MPM log(ρM

ρm
sMPM )−1 to obtain

weighted revenue that is larger than1
4ρMsMP 2

M . Therefore, the

competitive ratio is bounded by
[

1
8 log(

ρM

ρm
sMPM )

]−1

and the

optimal online algorithm isO(logPM )-competitive.
Our competitive ratio based framework of packet scheduling

with deadlines is motivated by the competitive routing mod-
el [18]. In [18], link bandwidth is the limited resource and the
algorithm decides whether to admit and route packets according
to the available link bandwidth along the path so that the
throughput can be maximized. However, there are significant
differences between the two models: 1) The amount of link
bandwidth is fixed and known at the beginning for wireline
networks in the competitive routing model [18], but the time
slot resources are related to the accepted packets (arrivaltime
and deadline) and are then related to the algorithm itself (since
the available time resource is related to the previously accepted
packets by the algorithm); 2) A packet that arrives after the
current accepted packet may get admitted and share overlapped
routing hop and time slots that would be available to a potential
packet arriving later. Thus, we treat a time slot as resources
to be shared between packets. In an on-line algorithm, current
decisions can influence future decisions, which make it difficult
to develop such algorithms; 3) There are multiple ways of
allocating the total end-to-end delaydj − aj + 1 (slack time
from arrival time to deadline) of each packetj on each hop,
which brings further complexities to our problem.

VI. N UMERICAL EXAMPLES

We first consider an uplink tree shown in Fig. 4(a) with
identical link rates. There are10000 packets, also with i-
dentical weights, and the inter-arrival times of packets are
chosen to be0 w.p. 1

2 and 1 time slot w.p. 12 . We generate
the initial slack time (the difference between the deadline
and the arrival time, increased by 1) uniformly at random
between24 and30. The source node of each packet is chosen
uniformly at random over all non-root nodes. It is easy to
see that the maximum route lengthPM = 3 for all packets
in this network. Thus, the maximum average slack time is
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sM = 30 and the minimum average slack time issm = 8,
i.e., PM = 3 < 2sm−1

2sM

(

ρM
ρm

) = 255
60 . As given in the proof of

Theorem 3, we choose the control parameterlog(µ) = 7.5 so
that log

(

2 ρM

ρm
sMPM + 1

)

= 7.4 < log(µ) ≤ sm = 8. From
Fig. 5(a), we can see that by increasing the normalization factor
of the packets’ weight, the performance of our online algorithm
increases and it achieves a revenue, larger than90% of the
revenue achieved by the off-line algorithm (the performance of
the optimal off-line algorithm is obtained using the algorithm
in Theorem 1). The online algorithm is suboptimal and does
not necessarily admit all packets even when the arrival process
is under-loaded. However, when the normalized weights are
sufficiently large, the admission controller starts to admit more
packets, pushing the performance of the algorithm close to
optimal.

Similarly, for another choice of slack times, generated u-
niformly at random between0 and 5, the conditionPM <

2sm−1

2sM

(

ρM
ρm

) is violated. Yet, our online algorithm achieves a

revenue, approximately80% of that of the optimal off-line
algorithm.

2

5

1

3 4

6
7 8

(a)

1

4

7

5

1

6

2

3

2

3

4

5

6

7

8

9

10

11

12

(b)

1 1 2 5 10 17

3 4 7 12 19

6 8 9 14 21

11 13 15 16 23

18 20 22 24 25

2 3 4

5 6 7 8

9 10 11 12

13 14 15 1

17 18 19 20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

(c)

Fig. 4. Example topologies: (a) An Uplink Wired Tree, and (b)A General
Wired Mutlihop Network with Multiple Source-Destination Flows (c) A Wired
Grid Network

Next, we consider the (general) topology shown in Fig. 4(b).
There are10000 packets and the inter-arrival times of packets
are chosen to be0 w.p. 1

2 and1 time slot w.p. 12 . The packet
weights are generated uniformly at random between1 and100

with ρM

ρm
= 100. The given routePi of each packeti is gen-

erated in the setup stage as follows: the source node is chosen
uniformly at random among all nodes, the outgoing link of each
hop is chosen uniformly at random among all possible outgoing
links, and at each hop, there is12 probability to continue to
next hop until reach the maximum route length3. We first
generate the initial slack time uniformly at random between45
and 50 so that the conditionPM = 3 < 2sm−1

2sM

(

ρM
ρm

) = 215−1
10000

is satisfied. Note that the region of the control parameterµ
satisfieslog

(

2 ρM

ρm
sMPM + 1

)

= 11.55 < log(µ) ≤ sm = 15
in this example. With normalized packet weights (normalization
factor is300), we simulate the generated revenue as a function
of log(µ). We see from Fig. 5 (b) that our online algorithm
achieves a revenue that is the same as the upper bound of
the optimal off-line algorithm (we compare our scheme with
the revenue upper bound, i.e., the total normalized revenue,
rather than the actual revenue of the off-line algorithm due
to the extremely high complexity of the calculation of the
off-line algorithm). Moreover, we can see that for values of
log(µ) ∈ [0, 11.55) which is out of the region(11.55, 15], the
online algorithm still achieves the same performance of the
optimal offline algorithm. The reason is that since this arrival
sample is feasible (our online algorithm can serve all arrivals
successfully as shown in Fig. 5(b)), the admission controller
should admit all arrivals which is exactly the special case when
log(µ) = 0 and the cost term of our algorithm is always zero.

Similarly, for another choice of slack times, generated u-
niformly at random between0 and 5, the conditionPM <

2sm−1

2sM

(

ρM
ρm

) is violated. Yet, our online algorithm achieves a

revenue, larger than80% of the upper bound with appropriately
chosenlog(µ).

We now modified the inter-arrival distribution so that it is0
w.p. 0.8 and1 time slot w.p.0.2. For this more bursty arrival
sample, we will see that the admission controller starts to take
effect. From Fig. 5(b), it is shown that our online algorithm
works best atlog(µ) ≈ 11.55 and it achieves around90% of
the performance upper bound. The performance decreases for
either smaller or larger values ofµ.

From examples (a) and (b), we can see that the assumption
PM < 2sm−1

2sM

(

ρM
ρm

) and the regionlog
(

2 ρM

ρm
sMPM + 1

)

<

log(µ) ≤ sm of µ can be violated, the weight normalization
factor is not necessarily used and the admission controllercan
be inactive. In practice, while the assumptions required inthe
proof of Theorem 3 are relaxed, the control parameters can be
appropriately tuned for different scenarios so that our algorithm
still has efficient performance.

Fig. 6 compare the performance of our online algorithm,
EDF, LWF and the coordinated EDF algorithm introduced
in [16]. In EDF, each link transmits the packet with the earliest
deadline among the packets with nonnegative slack time every
time slot. In LWF, each link transmits the packet with the
largest weight among the packets with nonnegative slack time
every time slot. The main idea of coordinated EDF (Section 2.2
of [16]) is to assign virtual deadline within a certain region
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Fig. 5. Performance of Online Algorithm with (a) Different Normalized
Packets Weights, and (b) Differentlog(µ)

(that is related to the session parameters such as injection
rate, the actual arrival time and deadline) for the first hop
of each packet uniformly at random, and then assign virtual
deadlines of the remaining hops based on the virtual deadline
of first hop regulated by constants that are related to the session
parameters. Upon packet scheduling for each link, the packet
with earliest virtual deadline of the hop index at that link is
transmitted. We use the general topology given in Fig. 4(b)
for results in Fig. 6(a) and (b). We use the grid network given
in Fig. 4(c) for results in Fig. 6(c) and (d). There are10000
packets and the inter-arrival times of packets are chosen tobe0
w.p. 0.98 and1 time slot w.p.0.02 for results in Fig. 6(a) and
(c). The inter-arrival times are exponentially distributed with
rate parameter10 for results in Fig. 6(b) and (d). The packet
weights are generated uniformly at random between1 and 2.
The given routePi of each packeti is generated as previously
described for topology in Fig. 4(b). For the grid network, the
given routePi of each packeti is generated as follows: the
source node is chosen uniformly at random among nodes 1-8,
the outgoing link of each hop is chosen uniformly at random
among all possible outgoing links, and at each hop, there is1

2
probability to continue to next hop until reach the maximum
route length5. We let all packets have the same initial slack
time (end-to-end delay requirement) and we vary the slack
time in our comparison. We can see that our online algorithm
with carefully selected control parameters outperforms EDF,
LWF and coordinated EDF in all scenarios. The revenues of
all algorithms increase as the initial slack time becomes large.

Finally, we consider a line network1 → 2 → 3 → 4 with
four nodes and3 links (identical link rates of 1 packet/time
slot). The arrival sample is periodic with a period identical to
6 slots. It is illustrated in the following table:

slot 1 2 3 4 5 6
packet {1, 2} {3} {4, 5, 6} {7, 8} ∅ ∅
di {6, 1} {2} {3, 5, 4} {4, 5} ∅ ∅

(src,dst)
{(1, 4),
(1, 2)} {(1, 2)}

{(1, 2),
(2, 4),
(2, 4)}

{(1, 2),
(2, 4)} ∅ ∅

ρi {100, 90} {1} {1, 200, 1} {1, 50} ∅ ∅

This arrival pattern repeats every 6 slots, until a total of
10000 packets arrive. We use the normalization factorF = 12
for the packets weights in the algorithm. It is easy to calculate
the optimal weighted revenue100008 ∗ (100 + 90 + 200 + 50 +
1+1)∗12 = 6.6×106. We compare our online algorithm with
EDF and LWF. Note that the conditionPM < 2sm−1

2sM

(

ρM
ρm

) is

already violated for this arrival sample. The revenues achieved
by different schemes are summarized in the following table.
We choselog(µ) = 10 for our scheme:

algorithm proposed EDF LWF
achieved revenue 5.9 × 106 5.3 × 106 4.4 × 106

In this case, our algorithm outperforms EDF and LWF, and
it achieves about90% of the revenue, achieved by the optimal
off-line algorithm.

VII. C ONCLUSION

In this paper, we studied the packet scheduling problem with
hard deadline constraints in multihop networks. We first showed
that, an on-line algorithm cannot achieve the performance of
the off-line algorithm, even in most simple topologies. Then,
we showed that this is not true for the uplink tree, and showed
that WC-EDF has the same performance as the optimal off-line
algorithm, given any feasible arrival sample path. We then pro-
posed an on-line joint admission control and packet scheduling
algorithm that requires only information on the route of each
packet in the calculation, and has provable competitive ratio
to the optimal off-line algorithm in maximizing the weighted
revenue. We also prove the highest achievable scaling law of
the competitive ratio for any online algorithm. Furthermore, we
show through numerical examples that our algorithm usually
performs much better than the theoretical lower bound, found
for the worst case arrival sample path. Our packet scheduling
methodology can be applied to flow scheduling if the packet
arrival of each flow is periodic and finite. Since our algo-
rithm involves centralized coordination over the route which
requires message passing and has communication overhead,
the main contribution of this paper is on the theoretical aspect
to investigate performance limitation of online algorithms. It
is also interesting to apply ideas of this online framework to
develop practical algorithms in real networking scenariossuch
as software defined networks (SDN), where the control plane
has centralized information and control logic.
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Fig. 6. Performance Comparison of Algorithms with Different Initial Slack Times under Arrivals with Bernoulli and Exponential Distributed Inter-arrival Time,
respectively, in (a,b) A General Topology Network and (c,d)A Grid Network
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APPENDIX A
PROOF OFTHEOREM 2

Let policy p∗ be a work conserving optimal off-line policy,
i.e., given any under-loaded arrival sample, all the packets are
successfully transmitted to the root before their deadlines under
p∗. If underp∗, all nodes transmit their earliest deadline packets
in all slots, then we are done. SupposeT0 is the first time slot
in which policyp∗ differs from WC-EDFp. Then, all the nodes
in the network have the same set of packets in all slots before
slot T0.

We show that WC-EDFp is optimal for any under-loaded
arrival sample by induction. ChooseT − 1 > T0 and let the
following holds as hypothesis∀t ∈ (T0, T − 1]:
1) There is no packet expiring underp at the end of slott;
2) The total number of packets at any noden under policyp∗

and p are the same at the end of slott. Any packetk at any
noden under policyp can be paired with a packetk∗ at the
same noden under policyp∗ at the end slott;
3) For any packet pair(k∗0 , k0) at any noden at the end of slot
t, there is a sequence of packet pairs(k∗0 , k0), . . . , (k

∗
i , ki) at

noden and its descendent nodes so thatdk∗
1
≤ dk0 , . . . , dk∗

i
≤

dki−1 , dk∗
0
≤ dki

if i ≥ 1 anddk∗
0
≤ dk0 if i = 0.

At the beginning of slotT0, all nodes have the same set of
packets underp∗ andp, and all packet pairs are common packet
pairs. Consider an arbitrary noden and suppose the capacity of
the link from noden to its parent node isc, i.e., the maximum
number of packets that can be transmitted from noden is c
in each slot. Note that the total number of packets at noden
are the same underp∗ and p, if this number is larger thanc,
then noden transmitsc packets under both policies, otherwise,
it transmits all packets under both policies. This means the
number of transmitted packets of noden are the same under
p∗ and p. We use the following rule to pair the transmitted
and remaining packets: If(k∗, k) forms a packet pair at the
beginning of slotT0, andk∗, k are transmitted by noden in
slot T0 under policyp∗ and p, respectively, then(k∗, k) still
forms a packet pair after transmission. If(k∗, k) forms a packet

pair at the beginning of slotT0, k∗ is transmitted by node
n in slot T0 under p∗ but k is not transmitted byp, since
the total number of transmitted packets are the same for both
policies, there must exist another packet pair(q∗, q) at noden
so thatq is transmitted by noden in slot T0 underp but q∗ is
not transmittedp∗, then(k∗, q) is a transmitted packet pair by
noden in slot T0 and (q∗, k) is a remaining packet pair after
transmission. New arrivals form common packet pairs. Note
that all packet pairs are common packet pairs at the beginning
of slot T0, i.e., k∗ = k, q∗ = q, and under policyp, noden
always transmits the earliest deadline packets, i.e.,dq ≤ dk.
This means(k∗, q), (q∗, k) is a sequence of packet pairs so
that dq∗ ≤ dq, dk∗ ≤ dk where(k∗, q) is at the parent node of
noden and (q∗, k) is at noden. Furthermore,(q∗, k) satisfies
dq∗ = dq ≤ dk. Therefore, it is easy to see that all packet
pairs satisfy hypothesis 3) by repeating this argument for all
transmitted and remaining packet pairs. Suppose a packetk
at any noden is expiring under policyp at the end of slot
T0, then there is another packetk∗ with dk∗ ≤ dk and k∗ is
at noden or its descendent node by hypothesis 3), i.e.,k∗ is
also expiring which contradicting the optimality of policyp∗.
Therefore, there is no packet expiring underp at the end of
slot T0, i.e., hypothesis 1) holds. Note that the total number
of transmitted packets and received packets are the same under
both policies in the uplink tree network and no packets expire
under both policies, then the total number of packets at any
node under both policies are the same at the end of slotT0,
i.e., hypothesis 2) holds.

Till now we have shown the base case and we need to show
that hypothesis 1)-3) hold forT . Similarly, at the beginning
of slot T , all nodes have the same amount of packets under
p∗ and p. The packet pair reforming rule is the same as
described in the base case. Consider an arbitrary noden and
suppose the capacity of the link between noden and its parent
node is 1 without loss of generality. If the link capacity isc,
then repeat the same argumentsc times. Letk∗ and q denote
the transmitted packets by noden under policy p∗ and p,
respectively. Without loss of generality, we assume(k∗, k)
and (q∗, q) form different packet pairs at the beginning of
slot T , i.e., the end of slotT − 1. Consider any packet pair
(k∗0 , k0) (assume this packet pair is at an arbitrary nodem)
in the network and by hypothesis 3) for slotT − 1, (k∗0 , k0)
has a sequence of packet pairs(k∗0 , k0), . . . , (k

∗
i , ki) at node

m and its descendent nodes at the beginning of slotT so that
dk∗

1
≤ dk0 , . . . , dk∗

i
≤ dki−1 , dk∗

0
≤ dki

if i ≥ 1 anddk∗
0
≤ dk0

if i = 0. We have the following cases:
I) The sequence(k∗0 , k0), . . . , (k

∗
i , ki) does not contain the

packet pairs(k∗, k) and (q∗, q), then the reforming of(k∗, k)
and (q∗, q) and the transmission of(k∗, q) do not influent the
packet pair(k∗0 , k0);
II) The sequence(k∗0 , k0), . . . , (k

∗
i , ki) contains the packet

pair (k∗, k) but does not contain(q∗, q). This means noden
is nodem or a descendent node of nodem. By hypothesis
3) for packet pair(q∗, q) in slot T − 1, there is a sequence
(q∗, q), . . . , (q∗j , qj) at node n and its descendent nodes
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so that dq∗1 ≤ dq, . . . , dq∗
j

≤ dqj−1 , dq∗ ≤ dqj . Without
loss of generality, let (k∗0 , k0), . . . , (k

∗, k), . . . , (k∗i , ki)
denote the sequence of(k∗0 , k0) that contains(k∗, k), then
(k∗0 , k0), . . . , (k

∗, q), (q∗1 , q1), . . . , (q
∗
j , qj), (q

∗, k), . . . , (k∗i , ki)
is a sequence of packet pairs at nodem and its descendent
nodes so thatdk∗

1
≤ dk0 , . . . , dq∗1 ≤ dq, . . . , dq∗ ≤

dqj , . . . , dk∗
i
≤ dki−1 , dk∗

0
≤ dki

. If node n is a descendent
node of nodem, then after the transmission of packet pair
(k∗, q), hypothesis 3) holds for(k∗0 , k0). If node n is node
m, then packetsk0 andq are both at noden at the beginning
of slot T , and dq ≤ dk∗

0
by EDF. Then,dq∗1 ≤ dq ≤ dk∗

0

and (k∗0 , k0), (q
∗
1 , q1), . . . , (q

∗
j , qj), (q

∗, k), . . . , (k∗i , ki) is a
sequence of packet pairs at noden and its descendent nodes
that satisfies hypothesis 3) after transmission of(k∗, q).
Similarly, if the sequence(k∗0 , k0), . . . , (k

∗
i , ki) contains the

packet pair(q∗, q) but does not contain(k∗, k), hypothesis 3)
also holds for(k∗0 , k0) at the end of slotT ;
III) The sequence(k∗0 , k0), . . . , (k

∗
i , ki) contains the packet

pairs (k∗, k) and (q∗, q). This means noden is nodem or
a descendent node of nodem. Without loss of generality,
let (k∗0 , k0), . . . , (k

∗, k), . . . , (q∗, q), . . . , (k∗i , ki) denote the
sequence of(k∗0 , k0) that contains(k∗, k) and (q∗, q). After
packet reforming,(k∗0 , k0), . . . , (k

∗, q), (q∗1 , q1), . . . , (k
∗
i , ki) is

a sequence of packet pairs at nodem and its descendent nodes
so thatdk∗

1
≤ dk0 , . . . , dq∗1 ≤ dq, . . . , dk∗

i
≤ dki−1 , dk∗

0
≤ dki

.
If node n is a descendent node of nodem, then after the
transmission of packet pair(k∗, q), hypothesis 3) holds for
(k∗0 , k0). If node n is nodem, then packetsk0 and q are
both at noden at the beginning of slotT , and dq ≤ dk∗

0

by the earliest deadline policy. Then,dq∗1 ≤ dq ≤ dk∗
0

and (k∗0 , k0), (q
∗
1 , q1), . . . , (k

∗
i , ki) is a sequence of packet

pairs at noden and its descendent nodes that satisfies
hypothesis 3) after transmission of(k∗, q). Similarly, if
(k∗0 , k0), . . . , (q

∗, q), . . . , (k∗, k), . . . , (k∗i , ki) is the sequence
of (k∗0 , k0) at the beginning of slotT , hypothesis 3) also
holds for (k∗0 , k0) at the end of slotT with the sequence
(k∗0 , k0), . . . , (q

∗, k), . . . , (k∗i , ki).
Therefore, by repeating the above argument for all transmit-

ted packet pairs, hypothesis 3) holds for all packet pairs atthe
end of slotT . Suppose a packetk at any noden is expiring
under policyp at the end of slotT , then there is another packet
k∗ with dk∗ ≤ dk andk∗ is at noden or its descendent node by
hypothesis 3), i.e.,k∗ is also expiring which contradicting the
optimality of policy p∗. Therefore, there is no packet expiring
underp at the end of slotT , i.e., hypothesis 1) holds. Note that
the total number of transmitted packets and received packets are
the same under both policies in the uplink tree network and no
packets expire under both policies, then the total number of
packets at any node under both policies are the same at the
end of slotT , i.e., hypothesis 2) holds.
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