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Abstract— In this paper, we develop locally optimized schedul-
ing and power control algorithms for multi-hop wireless networks
under SINR interference models. Our scheme can be implemented
in a fully distributed manner and requires only that each
node solve a simple local optimization problem. Since, in our
algorithms, each node operates independently of other nodes, it
needs to predict the behavior of neighboring nodes when carrying
out its local optimization. For such prediction, our proposed algo-
rithms exploit the past records of neighboring nodes’ scheduling
and power control decisions. Through simulations, we show that
our algorithms significantly outperform the state-of-the-art.

I. INTRODUCTION

In this paper, we develop efficient scheduling and power
control algorithms that support high data rates in multi-
hop wireless networks. In recent years, throughput-optimal
scheduling and power control algorithms that maximize the
achievable throughput of multi-hop wireless networks have
been extensively studied in the literature [1], [2], [3]. How-
ever, these throughput-optimal algorithms are often difficult to
implement mainly because of the following reasons: first, the
optimal algorithm operates in a fully centralized manner. Thus,
a centralized scheduler needs to collect global information of
the queue lengths from the entire network and to distribute
its scheduling and power control decision back to the entire
network. Both information collection and decision distribution
could result in significant communication overhead. Second,
these throughput-optimal algorithms require the centralized
scheduler to solve a complex global optimization problem,
whose complexity could exponentially increase in the network
size.

There have been recent efforts to develop efficient schedul-
ing algorithms that alleviate the communication and compu-
tation overheads. Progress has been made under restrictive
classes of interference models. A commonly used model is the
K-hop interference model, in which two links that are within
K-hops of each other cannot simultaneously communicate,
and the capacity of a link is a constant value if there is no
interference [4], [5], [6], [7], [8], [9], [10]. In [4], the Maximal
Matching (MM) scheduling algorithm is used under the node-
exclusive interference model (the special case of the K-hop

interference model with K = 1.) This algorithm can operate
in a distributed fashion and is proven to have at least one
half of the achievable throughput under the node-exclusive
interference model. These features have motivated subsequent
research on the distributed algorithms with provable perfor-
mance [5], [6], [7], [8], [9], [10].

However, the K -hop interference models do not adequately
capture the more realistic Signal-to-Interference-and-Noise-
Ratio (SINR) interference models, where link capacities could
vary according to the signal and the interference levels. In
this paper, we consider the following two SINR interference
models that are commonly used: the linear SINR interference
model and the logarithmic SINR interference model. Under the
linear SINR interference model, the capacity of each link is
linearly proportional to the SINR value. In contrast, under the
logarithmic SINR interference model, the capacity of a link is
represented as a logarithmic function of the SINR value.

Scheduling algorithms under the different types of SINR
interference models have been studied in the literature [3],
[11], [12], [13]. In [3], the authors have proposed a simple
and distributed scheduling algorithm that is an approximation
to the optimal “Dynamic Routing and Power Control” (DRPC)
algorithm (which is centralized and requires high computa-
tional complexity) and could run under both the linear and
the logarithmic SINR interference models. In [11], for the
logarithmic SINR interference model the author has proposed
the “Jointly Optimal Congestion-control and Power-control”
(JOCP) algorithm that is distributed and optimal under the
assumption that SINR values are high. The authors in [12] and
[13] have also proposed heuristic algorithms under the target
SINR interference model where the capacity of a link is a
constant value when the received SINR exceeds a threshold,
or zero otherwise.

In this paper, we propose new distributed scheduling and
power control algorithms under SINR interference models and
compare their performance to the state-of-the-art in [3] and
[11]. We show that our algorithms have constant complexity,
consume a constant amount of computation time at each time
slot, and operate in a fully distributed manner. In fact, the



complexity of our algorithms is independent of the size of the
network.

The rest of this paper is organized as follows. Section II
illustrates the system model, including our SINR interference
models, and reviews the fundamentals. Section III develops a
locally-optimized scheduling algorithm under the linear SINR
interference model. Section IV extends our result in Section
III to the logarithmic SINR interference model. Here, the
scheduling algorithm developed in Section III is generalized to
have power control capability. Section V provides simulation
results that compare the performance of our algorithms with
the optimal performance. We also provide extensive compar-
ison to other algorithms under different SINR interference
models. We conclude in Section VI.

II. SYSTEM MODEL

In this paper, we consider a multi-hop wireless network
with N nodes and L links. All nodes and links are assumed
to be static. Each link [ corresponds to a transmitting node,
denoted by b(l), and a receiving node, denoted by e(l). Let
N and £ denote the set of all nodes and the set of all links,
respectively. An outgoing link of node 7 is defined as a link
whose transmitter is node ¢. We define the outgoing link set
of node i as L; oyt = {l € L] b(l) = i} and the number of
outgoing links of node ¢ as L; o,¢. Similarly, an incoming link
of node 7 is a link whose receiver is node ¢. We define the
incoming link set of node i as £; ;, = {l € L] e(l) = ¢}, and
the number of the incoming links of node 7 as L; ;.

We consider a time-slotted network. Let P;(t) denote the
transmission power at the transmitter of link / at time slot ¢,
and P(t) = [Pi(t), | € L] be the power assignment vector at
time slot . Let P; ax be the maximum power limit of each
transmitting node 4, such that 0 < Zleﬁi,om Pi(t) < P; max-

We assume that the link capacity is a function of its SINR
value. Let r;(t) be the capacity of link [ at time slot ¢, and
& (t) be the measured SINR value at the receiver of link [
at time slot ¢. Specifically, & (¢) is the ratio of the received
signal power to the received interference and noise power, and
is given by

_ GuP(t)
Dnecygy GuPu(t) +m’

where 7; denotes the time-invariant background noise at the
receiver of link [, and Gj; denotes the wireless channel gain
from the transmitter of link h to the receiver of link [. Since
the nodes are static, the channel gains are assumed to be fixed
and known. (We do not consider fading effects here.) We then
consider two types of functional relationships between r;(t)
and & (t):

o The logarithmic SINR interference model: the capacity
of link [ is determined by r;(¢t) = Blog(1+&(t)), where
B denotes the fixed channel bandwidth.

o The linear SINR interference model: the capacity of
link [ is determined by 7;(¢t) = B¢ (t). This model can
be viewed as an approximation of the logarithmic SINR
interference model, when the SINR level & (¢) is low.

&u(t) 6]

In this paper, we will first study the linear SINR interference
model due to its analytical simplicity, and then the logarithmic
SINR interference model.

Remarks: In practical systems, there are often additional
constraints on the feasible transmission patterns. For example,
a node may not be able to receive when it is also transmitting.
Also, a node may not be able to receive from multiple
transmitters at the same time. Note that our model can be
easily adapted to these settings. For example, if a node cannot
receive when it is transmitting, we can simply set Gp; = o0
when the transmitter of link h is the same as the receiver of
link [, i.e., b(h) = e(l). Similarly, if a node cannot receive from
multiple transmitters simultaneously, we can set Gj,; = oo
when the receiver nodes of link ! and link h are the same, i.e,
e(h) = e(l).

We assume that there are U users in the network whose data
could travel multiple links from their source nodes to their
corresponding destination nodes. Let A, be the data arrival
rate of user u at the source node. Let \ = [A1, A2, -+, Au].
The capacity region under a scheduling and power control
algorithm is defined as the set of vectors X under which the
network remains stable. Here, stability means that all queues
remain finite. The algorithm that achieves the largest capacity
region is referred to as the throughput-optimal scheduling and
power control algorithm (or simply the optimal algorithm in
the rest of the paper). It has been proven in [1] that one such
optimal algorithm computes the power-assignment vector at
time slot ¢ as the solution to the following global optimization
problem; . .

P*(t) = arg max Z ri(P) qi(t), (2)
Pell  er

where 11 = {]3;0 < Zleﬁi,wt Py(t) < P;max Vi€ N}, and
qi(t) denotes the queue length of link [ at time slot ¢.

As mentioned in the Introduction, this optimal algorithm
is extremely difficult to implement due to the communication
overhead (of collecting ¢;()’s and distributing P*(¢)) and the
computational overhead (of solving (2)).

III. A LoCALLY OPTIMIZED SCHEDULING ALGORITHM
FOR THE LINEAR SINR INTERFERENCE MODEL

In this section, we propose a new distributed algorithm,
the locally optimized scheduling algorithm, under the linear
SINR interference model. Our algorithm may be viewed as
a suboptimal approximation of the optimal algorithm (2).
It significantly lowers the computation and communication
overhead of the optimal algorithm.

A. Distributed Scheduler

Our goal is to develop a distributed scheduling and power
control algorithm under which each node schedules its own
resources in a distributed fashion. In other words, each node
should decide by itself whether it should transmit or not, and,
if it transmits, to which adjacent nodes and at what power level
it should transmit. Note that under the linear SINR interference
model, it has been proven in [2] that the optimal scheduling
decision and power assignment are of the form that each node



should either transmit on only one of its outgoing links with
the node’s maximum power, or not transmit at all. Hence,
for this interference model, we need to focus only on the
scheduling decision. Let S;(¢) denote the scheduling decision
of node 7 at time slot ¢, given by

0, if node 7 does not schedule its outgoing

Si(t) = links,
) s, if node i schedules the s-th outgoing link
with power P; nax (s =1, , L; out).

Since each node 7 has L; ,,; outgoing links to schedule, it has
a total of L; ,,¢ + 1 choices of scheduling decisions.

B. Local Optimization

We propose to develop a distributed scheduler as an approx-
imate solution to (2) as follows. We define the neighboring
links of node 7 as the links that are close enough to node ¢
so that node 7 can communicate basic information, such as
the queue lengths and SINR values, with these links directly.
Let £; be the set of all neighboring links of node i. We then
introduce the notion of local optimization as follows:

Local Optimization: each node searches its scheduling deci-
sion S; = s that solves the following optimization problem

> ra

lel;

Si=s|, 3)

max E
s€{0,1,--,Lj out}

where the expectation is taken with respect to some empirical
distribution of the other links’ decisions in £;. Note the
following:

o Each node only needs to update the queue lengths in £;,

o The number of terms in the summation (3) is usually
much smaller than in (2),

« Each node only decides its own actions.

In reality, the capacity of each link depends not only on the
scheduling decision of its transmitting node, but also on the
decisions of all other nodes. However, each node does not
know a priori the scheduling decisions of other nodes in the
neighborhood. Hence, we take expectation in (3), with respect
to an empirical distribution of the other links’ decisions.

The locally optimal scheduling decision S} of node 4 that
maximizes the expectation of the local queue-weighted link-
capacity sum ), . 7q; in (3) is simply given by

arg max Z QB [ri|S; = . @
s€{0,1,+,L; out} leL;

S; =

The term ), o, aF [r1]S; = s] in (4) can be viewed as the
expected local queue-weighted link-capacity sum, provided
that node ¢ selects the scheduling decision s.

Remark: If the scheduling decisions of the nodes are deter-
mined by a centralized algorithm that solves (2), the result in
[2] shows that each node should either transmit on one link at
full power, or not transmit at all. One could argue that, since
in our local algorithm each node makes its own scheduling
decision, perhaps allowing more flexible scheduling decisions,
i.e., allowing nodes to transmit at intermediate power levels

or on multiple outgoing links, can further increase the optimal
value of (3). However, the following proposition shows that
this is not the case.

Proposition 1: Let p; € Ri"“’“" denote the power alloca-
tion vector for all outgoing links from node 7, where Ri’i"’“t
is the set of L; ,,;-dimensional vectors with nonnegative

components. Consider the following optimization problem

_max > aErlp; = pl o)
pER ™ lel,;
subject to 1Tp< P; max,

where 1 is a L; out-dimensional column vector with all 1’s,
and the expectation is taken with respect to the distribution of
neighboring nodes’ scheduling decisions. Then, the solution
to (3) also corresponds to an optimal solution to (5).

The proof of Proposition 1 is provided in Appendix I. Propo-
sition 1 means that scheduling the S}-th outgoing link in
(4) with maximum power when S} # 0 or scheduling no
links when S} = 0 is the best response for node ¢, given
the empirical distribution of neighboring nodes’ scheduling
decisions.

C. Sample Average

In order to solve (4), each node ¢ initially needs to estimate
Er|S;i=s] forall I € £; and for s = 0,1, -+, L; out,
where the expectation is taken with respect to the empirical
distribution. We assume that the decisions of other nodes are
distributed according to the empirical distribution in the past.
Thus, each node chooses its independent scheduling decision
that would be the best response to the past.

We next describe how each node ¢ collects the empirical
distribution and obtains E [r;|S; = s]|. Our algorithm runs for
a fixed number of iterations in a time slot. We assume that
the total length of these iterations is much smaller than the
length of a time slot. Further, our algorithm operates as if the
queue length remains fixed during these iterations. Then, after
these fixed number of iterations, the scheduling decisions of
the last iteration will be used for actual data transmission (to
be described in Section III-D.) Now, consider the n-th iteration
in a time slot. Let S;[k] denote the scheduling decision at a
past iteration k (k < n), and let P;[k] and r;[k] denote the
corresponding transmission power and capacity, respectively,
of link [ at this iteration k. Note that we have used the
square bracket [-] for the index of an iteration within a time
slot, while we have used the parenthesis (-) for the index
of a time slot. Define the hypothetical link capacity at past
iteration k as follows: ry|; ;[k] is the capacity of link I if the
decision of node ¢ is s, and the decisions of other nodes j
are S;lk] (j # ). If each node 7 maintains 7y; ;[k] for all
lel;,all s=0,1,--- ,Lioy,and all k =n —W,--- n,
then the node can now estimate E[r;|S; = s] at iteration
n as an empirical average over the last W iterations, i.e.,
Fllisln — 1] & [ 71j5,5[k]. (Here, W denotes the
window size of the empirical distribution.) Then, each node



can solve (4) at iteration n as follows:

Si[n] =  argmax Z Ti,s[n — 1] q. (6)
s€{0,1,,Ls out} leL,

The remaining question is how each node i can maintain
71ji,5|k]. We assume that each node i knows the past link
capacities of neighboring link r;[k] (I € £;). We will elaborate
how this information is obtained in Section III-D. Further, each
node knows the channel gains between its neighboring links
and the maximum transmission power of neighboring nodes in
advance. We now show that r;|; ;[k] can be calculated based on
the above information. Specifically, let I be the s-th outgoing
link of node ¢ (s = 0,1,---, L; oyt). Note that for ease of
notation we use [y as an imaginary link that corresponds to
the case that node ¢ does not transmit over any links. We
further define Gy, = 0 for all h € L. Then, 7y; 4[k] is given
as follows.

1) When s = S;[k], 7y; ;[k] = 7[k] by the definition of the
hypothetical link capacity.

2) When s # S;[k], we calculate r; ,[k] differently depend-
ing on the following two cases.

e Forlink Il € L£; \ L; out, Wwe express 7;[k] as follows,

BG; P[k]
D

Tl[k‘] = .
GrPnlk] + Gig, iPi;max +m
heL\Li ou\{1}

(N
Note that the formula for r;; ,[k] is similar to (7) except
that Glsi[k]l is replaced by Gi,;. Since each node will
transmit at full power, P[k] = Py) max if 7i[k] # 0.
Hence, we can easily compute 7y); ;[k] from 7[k] as
follows,

)i,s k] = ®)
BGuPy(1y, max1[k]
BGuPy(1) max — 71[k]Pi;max (Gig, g1 — Giar)’
if (k] # 0,

0, if 7[k] = 0.
o For link I € L; out, 71)i,5[k] is simply given by
BGP; max
> GuPilk]+ m

h€L\L; out
0, i1 1,

D. Implementation Details

if | =1,

Tl\i,s[k] =

We now describe the locally-optimized scheduling algo-
rithm for the linear SINR interference model. In our algorithm,
each time slot consists of two phases: a scheduling phase
and a transmission phase. In the scheduling phase, each node
iteratively executes (6). Our approach to collect the empirical
distribution of neighboring nodes is as follows. At iteration
k, some nodes with non-zero scheduling decisions transmit at
their maximum power to the receiving nodes. Simultaneously,
all nodes measure the SINR values of each incoming link

and calculate the expected link capacities, r;[k], based on the
measured SINR. Next, the nodes distribute the estimated link
capacities, 7;[k], to neighboring nodes. It should be noted that
inefficiently distributing this information could increase the
communication overhead.

While there are different ways of doing this, we now elabo-
rate one approach for distributing such information in a timely
fashion at each iteration to avoid significant communication
overhead. Note that the amount of information to be distributed
is much smaller than that of the actual data. Thus, there exist
several ways for each node to deliver the information, spending
a very small amount of wireless resources. One of the possible
methods is following. Suppose that the entire frequency band
is divided into tiny sub-bands and that the number of these
sub-bands is much larger than the number of links in each
neighborhood. Then, it is easy to assign these sub-bands to
each link, such that any two links in L; . for all i € N
do not share the same sub-band. Then, the transmitting node
of each link emit power whose strength is proportional to the
value of information, 7;[k], on the sub-band assigned to the
link. Since nodes know the channel gains from other nodes in
the neighborhood, they simply measure the received power on
each sub-band and estimate the information value. Once each
node ¢ successfully receives the measured link capacities from
its neighborhood, it calculates the hypothetical link capacities
71)i,5[k] and saves them into its memory.

After a fixed number of iterations M are executed in

Collect ¢;(t) (1€ L;)
Start the scheduling phase.
Set k =1, and select S [1] randomly.

Schedule S} [k]

H..

Measure 7;[k] (I € L; ;) and
distribute it to neighboring nodes

v

Collect rj[k] (I € L;), and
calculate 7y; ;[k]

v

Increase k£ by one, and E
compute S} [k] E

Yes

v

Start the transmission phase.
Schedule S;M] for the actual
transmission.

Fig. 1. The flow chart of the Locally Optimized Scheduling Algorithm
(LOSA): node #’s operation at each time slot



the scheduling phase, the transmission phase begins. In the
transmission phase, each node 7 executes the decision S;[M],
i.e., the decision from the last iteration of the scheduling
phase. Then, the actual link capacities at each time slot ¢
are determined by the link capacities 7;[A/] resulting from
the decision S;[M]’s, i.e., m(t) = r;[M]. Upon completing
transmission, each node updates the queue lengths of its

outgoing links by
+
)+ K (Z If X — it )] )

where ~ is a constant step size and

qt+1)=

v = { 1, if data of user u passes through link /,
b 0, otherwise.

Recall that )\, is the data rate of user u. After updating the
queues, each node moves to the next time slot ¢+ 1. The flow
chart of the locally-optimized scheduling algorithm (LOSA)
is shown in Fig. 1.

In our algorithm, each node collects queue lengths and
link capacities from its neighborhood, and carries out a fixed
number of computations regardless of the network size. Thus,
the complexity of our algorithm depend on the size of the
neighborhood and the number of iterations M, not on the
network size.

IV. EXTENSION TO THE LOGARITHMIC SINR
INTERFERENCE MODEL

We now extend our algorithm to the logarithmic SINR
interference model. Recall that the main idea of our algorithm
is that each node makes its own scheduling and power control
decision such that it is the best response (in terms of maxi-
mizing the expected queue-weighted-link-capacity sum) under
the empirical distribution of neighboring nodes’ actions. In
Proposition 1, we showed that the best response for each node
under the linear SINR interference model is of the form that a
node either schedules only one outgoing link with maximum
power, or schedules no link at all. The following proposition
(Proposition 2) characterizes the condition on the best response
for each node under the logarithmic SINR interference model
when the following assumption holds.

Assumption 1: For all nodes ¢ and all links , Gy, = Gi,n
for all [1,l2 € L; ous- In other words, the channel gain between
two links depends only on the transmitting node and the
receiving node.

Proposition 2: The optimal solution to (5) is given by
the solution to the following optimization problem when
Assumption 1 is satisfied:

o, el
pERO ’ lel,;
subject to 1Tp< P;i max

Liout - . .
where R, is the set of L; ., -dimensional vectors
such that at most one component is nonzero and the
others are zero, and the expectation is taken with respect

to the distribution of neighboring nodes’ scheduling decisions.

The detailed proof is provided in Appendix II. From Proposi-
tion 2, given the distribution of neighboring nodes’ scheduling
decisions, the best response for each node ¢ under the loga-
rithmic SINR interference model is either to choose one link
to transmit or not to transmit at all. However, note that in
Proposition 2 the best response could be to transmit at an
intermediate power level instead of always at full power as in
Proposition 1. Hence, we now need to take power control into
account. We define the decision vector of node ¢ at time slot
t as, ~

Di(t) £ [Si(t), Ps(t)] (10)

for S;(t) € {1, -+, Li out} and P;(t) € [0, P; max]. The deci-
sion vector can be viewed as a generalization of the scheduling
decision in the previous section. The first component of the
decision vector, S;(t), denotes the scheduling decision of node
¢ as in Section III, and the second component, IP;(¢), denotes
the transmission power of node ¢ at time slot ¢. Therefore,
Dy(t) = [s, p] corresponds the decision that node i schedules
the s-th outgoing link with power p. Note that the case of
‘scheduling no links’, i.e., “S;(t) = 0°, can be represented by
‘Pi(t) =0

We now extend the local optimization problem in (3) to the
logarithmic SINR interference model as follows,
Extended Local Optimization: each node ¢ searches its deci-
sion vector D; = [s, p] that solves the following optimization
problem,

max E
i,out b+ PE[0, Pi max]

> ra

1, L
se{l, leLl;

D; = [s,p]] , (1)

where the expectation is taken with respect to some empirical
distribution of the other links’ decisions in £;. The extended
local optimization also has the following features similar to
(3): each node updates only local queue lengths, maximizes
only the local queue-weighted-link-capacity sum, and chooses
its own decision independently.

In order to find the optimal D;, we first find the locally
optimal power assignment, P’ ., for each scheduling decision
s. Next, we find the scheduhng decision S} that maximizes
(11). Specifically, each node i finds [P}, P} o, -+ ,P; ;]
such that o

P}, = argmax Z ak [rl|D =s p]} (12)

pG[O P;, rﬂdx] leL;

and then finds S} such that

quE[rl|D = s, IP’* }

’L out lec

S* —

i (13)

arg max
se{l,--

The locally-optimal decision vector of node i can be repre-
sented by D = [S7 P} .

To obtain D}, each node needs to estimate E[r;|D; =
[s,p]] for every link [ in the neighborhood. We use the same
method in Section III-C for estimating E[r|D; = [s,p]] .
We assume that neighboring nodes’ scheduling and power



control decisions follow the empirical distribution from the
past. Now consider the n-th iteration in a time slot. Let
D;[k] = [Si[k],P;[k]] denote the decision vector of node i at a
past iteration k. We also define the hypothetical link capacity
under the logarithmic SINR interference model as follows;
T1ji,s,pF] is the capacity of link / when the decision vector
of node i is [s, p] and the decision vectors of other nodes are
D,[k] (j # ). Then, we can estimate E[r;|D; = [s,p]] at
iteration n as an empirical average over the last W iterations,

ie.,
n—1

Z Tili,s,p K]

k=n—W

A 1

’Fl|7i,s,p[n] = 17 (14)

However, maintaining 7y); s »[k] over all values of p in the
interval [0, P; max] is not realistic since the required memory
space is too large. We now show that each node 7 can
maintain only 7; s p, ... [k] because the value of ry; (K]
for p < Pj max can be derived easily from 7y; s 5, ... [K]. To
see this, let [, be the s-th outgoing link of node :. Recall that
Tli,s,Ps max [F] 1S given by

TUi,5,Ps e K] = (15)
G P, K]
Blog (1 + 2nec,\{Lis} GhlPh[k]+stz]P’i.xx;ax+7n) ’

if 1 1,
if 1 =1,

Gi1,Pi max
\{1} GriPulkl+m ) 2

Blog (1 + S

Note that the formula for 7;; ; ,[k] is similar to (15) except
that PP; max is replaced by p. It is then easy to see that

a;[k] ) .
Blog ([ 14+ —52 ), ifl#£1,,
Tiji,s,p[K] = & ( p+bilk] 7
Blog (1 + ¢;[k]p) if 1 =1,
where a;[k] = LMy () = —GunMC
: exp(—tTpman )
T”i’SvPi max[k]
exp(———pg>—

and ¢lk] = )1 Note that a; [k], bi[k], and
ci[k] are readily obtainable because each node i is assumed
to know the channel gains between its neighboring links and
their transmission powers at each past iteration k.

Once each node can estimate 7y; 5 5 [k], the power control
problem (12) for each scheduling decision s at iteration n can
be rewritten with the hypothetical link capacities as follows;

Pi max

P;‘k,s[”] = argmax Z fl\i,s,p[n - 1]Ql (16)

PE[0,P; max] =
The objective function of (16) is a continuous and differen-
tiable function of p. Unfortunately, the function could have
multiple local maximizers in the domain [O,Pimax]. Thus,
to solve (16), we need to check all local maximizers in
the domain. Alternatively, we may approximate the solution
by simply searching among K points pi,....px where py =
% and takes the point p; that maximize (16) as
an approximation of P} ;[n]. Once the locally-optimal power
assignment P} ([n] is obtained for each scheduling decision
s, we can find the locally optimal scheduling decision S [n]

| \User5

Unit Length

Fig. 2. The Network Topology and Data Flows

in (13) and corresponding locally optimal power assignment
Pi[n] = P;s; [n] [n].

After the decision D;[n] = [SF[n],P¥[n]] is made, each
node i schedules the S} [n]-th outgoing link with power P} [n].
Each node then measures the capacity of its incoming links
and distributes r;[k] and P;[k] to its neighboring node. Each
node can then compute and record 7y s p, ... [k] with ri[k]
and P[k]. Note that each node 7 needs to collect Pj[k] as
well as r[k] from the neighborhood to calculate 7); s p, ... [¥]
under the logarithmic SINR interference model. The rest of the
extended locally optimized scheduling algorithm is the same
as in III-D.

V. SIMULATION RESULTS

In this section, we provide simulation results to evaluate
the performance of the locally optimized scheduling algorithm
(LOSA) and the extended locally optimized scheduling algo-
rithm (exLOSA). We first study how the performance of LOSA
is influenced by the size of the neighborhood, £;, and the
number of iterations, M. We use the network topology with
36 nodes and seven users, as shown in Fig. 2. We assume
that data arrivals at source nodes are at a constant rate A. The
channel gain from the transmitter of link A to the receiver of
link [ is given by Gj; = d,;* where dj,; is the distance from
node b(h) to node e(l), and « is the attenuation factor. The
system parameters used for our simulations are given in Table
L

A. Linear SINR interference model

We first simulate LOSA and the optimal scheduling al-
gorithm (OPT) under the linear SINR interference model.
Note that the optimal algorithm (OPT) solves the global
optimization problem (2). Let £; ; denote the one-hop neigh-
borhood of node ¢, defined as £;1 = L;in U L; ous. Then,
we can define the k-hop neighborhood inductively as £; , =



TABLE I
SYSTEM PARAMETERS

[ Parameters [ Values
Background Noise (7;) 0.1
Maximum Power (P; max 1
Attenuation Factor (a) 4
Bandwidth (B) T
Number of Past Records (W) 5
Number of Time Slots 2000
Step size (k) 0.1
Unit length 1

Utes, w1 (L), U Leqy,1)- In order to model practical con-
straints that nodes cannot receive while it is transmitting, and
nodes cannot receive from multiple transmitters simultane-
ously, we set Gp; = oo if b(h) = e(l) or e(h) = e(l).

In Figs. 3(a) and 3(b), each curve illustrates the average
queue length over all links for a given scheduling algorithm.
Note that the scheduling algorithms that result in curves to
the right can carry a larger load and therefore have better
performance.

Fig. 3(a) shows the relationship between the size of neigh-
borhood and performance. Each curve labeled with ‘LOSA’
corresponds to the results from LOSA where L£; consists
of links in each k-hop neighborhood (i.e., £; £ L;}) for
k = 1,2,3, respectively. In this simulation, we set the
number of iterations in each time slot M = 30. From the
simulation result, we can see that the algorithm using the larger
neighborhood has a larger throughput.

Next, Fig. 3(b) shows the relationship between the number
of iterations and performance. Each curve labeled with ‘LOSA’
corresponds to the results from LOSA where the total number
of iterations is M = 10, 20, 30, respectively. We choose £; =
L; 3 in this simulation. From the figure, we can observe that
all values of M results into a throughput that is reasonably
close to the optimal.

B. Logarithmic SINR interference model

We now compare the performance of exLOSA to that of
the other algorithms developed under the logarithmic SINR
interference model. For this comparison, we select the fol-
lowing two scheduling and power control algorithms from
the literature: JOCP algorithm [11] and a distributed ap-
proximation algorithm , approx-DRPC, to the optimal DRPC
algorithm in [3]. JOCP in [11] solves the global optimization
problem (2) under the assumption that the SINR values of all
links are high, i.e., 7 (t) = Blog(1l + &(t)) = Blog(&(t)).
Note that this high-SINR assumption excludes the need for
scheduling in JOCP. Hence, the solution for JOCP will force
all links to be active simultaneously at some optimized power
levels. In [3], after developing the optimal DRPC algorithm
(which is centralized with high computational complexity),
the authors also proposed a distributed heuristic algorithm for
approximating DRPC, where each node randomly decides to
be a transmitter with a given probability and then decide which
node it should transmit to using the feedback from adjacent
receiving nodes. Finally, in order to study the improvement due
to the power control capability of exLOSA, we also simulate
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Fig. 3. The average queue length under the linear SINR interference model
as we vary (a) the size of neighborhood with M = 30 and (b) the number
of iterations with k = 3

LOSA under the logarithmic SINR interference model. In the
rest of our simulations, we set M = 30 and £; £ L;s.

We first compare the performance of these algorithms under
the same physical constraint, i.e., Gy; = oo if b(h) = e(l) or
e(h) = e(l). Fig. 4 shows the average queue length of these
algorithms at different loads A. From Fig. 4, we can see that
exLOSA performs significantly better than JOCP and approx-
DRPC. The performance improvement over approx-DRPC is
expected because our algorithm uses a more sophisticated
procedure to choose transmission patterns than approx-DRPC.
The performance improvement over JOCP is because JOCP
is developed under the high-SINR assumption, which is often
violated in practice. There are two reasons why the high-SINR
assumption may be violated. The first is that an outgoing
link from a node can create excessive self-interference to
the incoming links. Since in JOCP the optimal solution is
to operate all links simultaneously, this self-interference will
lead to low-SINR values. To verify this, we intentionally
modify the simulation setting such that the nodes are able
to receive from multiple transmitters and to receive while
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Fig. 5. The average queue length under the logarithmic SINR interference
model when nodes are able to receive while transmitting and are able to
receive from multiple transmitters simultaneously

it is transmitting at the same time. In particular, we alter
the channel gain such that Gp; = 0 if b(h) = e(l), and
G = d;)" otherwise. Fig. 5 shows that the performance of
JOCP improves under the new setting. However, even without
self-interference, the performance of JOCP is impacted by
the second reason, i.e., the optimized power levels of JOCP
may still result into low SINR values at some links. To verify
this, we modify the logarithmic SINR interference model: the
capacity of link [ is determined by r;(t) = Blog(1 + 0¢,(t))
where 6 is an artificial factor. We expect that, when 6 is
large, the high SINR assumption would be more accurate,
i.e., r(t) ~ Blog(6&(t)). The result when 6 = 9 is provided
in Fig. 6. From the simulation result, JOCP now performs
better than approx-DRPC. However, there is still a significant
performance gap between JOCP and our algorithms. This is
because, even under the modified setting, the solution of JOCP
cannot preclude low-SINR on some links. These simulations
suggest that exLOSA and LOSA perform well under a variety
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Fig. 6. The average queue length under the modified logarithmic SINR

interference model (§ = 9) when nodes are able to receive while transmitting
and are able to receive from multiple transmitters simultaneously

of different settings.

Another remark on the simulation results is that exLOSA
performs better than LOSA, but the difference in throughput is
not large. These results suggest that applying LOSA without
power control is perhaps good enough for the logarithmic
SINR interference model.

VI. CONCLUSION

In this paper, we have studied the locally optimized schedul-
ing algorithm and its extended version for the linear and the
logarithm SINR interference models, respectively. The key
feature of these algorithms is that they exploit the empirical
distribution of neighboring nodes’ actions to predict the best
response (i.e., the scheduling decision). Under the linear SINR
interference model, we have shown that the best response is
either to select one of the node’s outgoing links to schedule
with maximum power or to select no links at all. Similarly, we
have also shown that the best response under the logarithmic
SINR interference model is either to select one outgoing link
to schedule with some positive power or to schedule no links
at all. The simulation results demonstrate the performance
improvement of our algorithms over the state-of-the-art dis-
tributed algorithms under different scenarios.

APPENDIX I
PROOF OF PROPOSITION 1

To prove this result, we use the idea in [2]. We first show
that, for any decision of node i that schedules more than
one outgoing links with positive power, there exists another
decision that schedules one less link with positive power that
can achieve a larger value of the objective function. Let [y
and /5 be two of n outgoing links that node ¢ schedules with
positive power. Let P, denote the sum of the transmission
power of links /; and /5. We let P, =z, then P, = Py — x,
where 0 < z < Fy and 0 < Py < P max. Each node is
assumed to know the empirical distribution of the other nodes’
actions in the neighborhood. In other words, node ¢ knows



the power allocation P;[k] and the link capacity r;[k] of each
neighboring link [ (I € L£;) at the k-th past sample. Then,
the objective function (3) under the linear SINR interference
model can be expressed as follows,
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where [;[k] is the total interference received by link [ at the
k-th past sample, excluding the interference from links /; and
lo.

-l- Gz + G12 (Po — 1’) +m

a—x

The functions of the forms b x, et b+¢ R and = (a b>
0) are all convex with respect to x. Hence, it is easy to show
that (17) is strictly convex with respect to a single variable x
in [0, Py]. Thus, in order to maximize (17), « should be either
0 or Py. This means that for given P, (s # 1,2), P, =
0 and P, = Py, or P, = Fy and P, = 0. Thus, node
1 should schedule either link I; or link /5. This result can be
iteratively applied to the remaining set of outgoing links. Thus,
this implies that each node should schedule only one outgoing
link.

We then show that the transmission power on the scheduled
link should be either 0 or P; ;.. Suppose that node ¢ sched-
ules one of its outgoing link denoted by [; with transmission
power z, i.e.,, P, = x (0 < 2 < P; max). Then, the objective
function (3) under the linear SINR interference model can be
expressed as follows,
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where I][k] is the total interference received by link [ at the k-
th past sample, excluding the interference from link /;. Note
that (18) is also strictly convex with respect to x. Thus, in
order to maximize (18), x should be either O or P; ;ax. This
means that node ¢ should schedule one of its outgoing links
with full power or not schedule any link at all. The result of
Proposition 1 then follows.

APPENDIX IT
PROOF OF PROPOSITION 2

We use similar ideas as in Appendix I. We only need to
show that, for any decision of node 7 that schedules more than
one outgoing links with positive power, there exists another
decision that schedules one less link with positive power that
can achieve a larger value of the objective function. Let [y
and [/ be two of n outgoing links that node ¢ schedules with
positive power. Let F, denote the sum of the transmission
power of links /; and ly. We let P, = z, then P, = Py — «,
where 0 < z < Fy and 0 < Py < P; max. Each node is
assumed to know the empirical distribution of the other nodes’
actions in the neighborhood. In other words, node ¢ knows
the power allocation P,[k] and the link capacity r;[k] of each
neighboring link [ (I € £;) at the k-th past sample. Then, the
objective function (5) under the logarithmic SINR interference
model can be expressed as follows,
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where [;[k] is the interference received by link [ at the k-th
past sample, excluding the interference from link /; and [s.
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From Assumption 1, Gj,;, = Gy, and Gy, = Gy, if
b(l1) = b(l2). Hence, f;,(x) and f),(x) can be simplified to

fiu 1 (z) = log <aj[tkl][k—]x>

k=1

(szz,k(f)> .(20)



and

fialz) = log (a:[’;][’ﬂx) |

where ai[k] = I,[k]/Gi1, + Po + m, /G, azlk] =
Il2 [k]/Gl212 + 77[2/Gl2l2, and bg[k] = ag[k}] + P,. Note that
ai[k] —x > 0 and ag[k] + 2 > 0 since n;, > 0 for VI € L
and x < Py. Both f), 1 (x) and fi, () are strictly convex on
[0, Py]. Similarly, since Gj,; = Gy, fix(2) is independent of
z. Therefore, (20) is strictly convex with respect to a single
variable x in [0, Py]. Thus, in order to maximize (20), x should
be either 0 or Fy. This means that for given P;, (s # 1,2),
P, =0and P, = Py, or P, = Py and P, = 0. Thus, node
¢ should schedule either link /; or link /5. This result can be
iteratively applied to the remaining set of outgoing links. Thus,
this implies that each node should schedule only one outgoing
link. The result of Proposition 2 then follows.
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