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Constant Delay and Constant Feedback Moving
Window Network Coding for Wireless Multicast:

Design and Asymptotic Analysis
Fei Wu, Yin Sun, Yang Yang, Kannan Srinivasan, and Ness B. Shroff

Abstract—A major challenge of wireless multicast is to be
able to support a large number of users while simultaneously
maintaining low delay and low feedback overhead. In this
paper, we develop a joint coding and feedback scheme named
Moving Window Network Coding with Anonymous Feedback
(MWNC-AF) that simultaneously achieves constant decoding
delay and constant feedback overhead, irrespective of the number
of receivers n, without sacrificing either throughput or reliability.
We explicitly characterize the asymptotic decay rate of the tail
probability of the decoding delay, and prove that injecting a
fixed amount of information bits into the MWNC-AF encoder
buffer in each time-slot (called “constant data injection process”)
achieves the fastest decay rate, thus showing how to obtain delay
optimality in a large deviation sense. We then investigate the
average decoding delay of MWNC-AF, and show that when
the traffic load approaches capacity, the average decoding delay
under the constant injection process is at most one half of that
under a Bernoulli injection process. We prove that the per-packet
encoding and decoding complexities of MWNC-AF both scale as
O(log n), and are thus insensitive to the increase of the number of
receivers n. Our simulations further underscore the performance
of our scheme through comparisons with existing schemes and
show that the delay, encoding and decoding complexities are low
even for a large number of receivers, demonstrating the efficiency,
scalability, and ease of implementability of MWNC-AF.

Index Terms—Wireless multicast, low delay, low feedback,
scaling law analysis.

I. INTRODUCTION

Wireless multicast has numerous applications: wireless
IPTV, distance education, web conference, group-oriented mo-
bile commerce, firmware reprogramming of wireless devices,
etc, [1–3]. However, in reality, there are only a few deploy-
ments. A major challenge that wireless multicast techniques
have so far not been able to overcome is to achieve low delay
without incurring a large amount of feedback. In the literature,
there are two categories of multicast coding strategies. The first
category focuses on batch-based coding schemes, e.g., random
linear network coding (RLNC) [4], LT codes [5], and Raptor
codes [6]. In these schemes, the transmitter sends out a linear
combination generated from a batch of B data packets in each
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time-slot. A new batch of packets cannot be processed until
all the receivers have successfully decoded the previous packet
batch. This approach has a low feedback overhead: one bit of
acknowledgment (ACK) is sufficient to signal the decoding
fate of an entire batch. However, with a fixed batch size, the
achievable throughput decreases with the number of receivers
n. To maintain a fixed throughput, the batch size B needs to
grow on the order of O(log n) [7, 8]. As the batch size B
increases, the decoding delay also grows as O(log n). Thus,
such schemes achieve a low feedback overhead at the cost of
a high decoding delay.

The second category of studies are centered on an in-
cremental network coding design1, e.g., [9–24], where the
data packets participate in the coding procedure progressively.
Therefore, the receivers that have decoded old packets can
have early access to the processing of new data packets, instead
of waiting for all the other receivers to decode the old packets.
The benefit of this approach is low decoding delay. Some
studies have even shown a constant upper bound of the average
decoding delay for any number of receivers, when the encoder
is associated with a Bernoulli packet injection process [11, 18].
However, these schemes need to collect feedback information
from all receivers, and the total feedback overhead increases
with the number of receivers n. Thus, these incremental-
coding schemes achieve a low delay, but at the cost of a high
feedback overhead.

Can we achieve the best of both worlds? This paper
develops a joint coding and feedback scheme called Mov-
ing Window Network Coding with Anonymous Feedback
(MWNC-AF) that achieves both constant decoding delay and
constant feedback overhead2, irrespective of the number of
receivers n. Hence, it indeed shows that the best of both
worlds is achievable. We present a comprehensive analysis of
the decoding delay, feedback overhead, encoding and decoding
complexities of MWNC-AF. The contributions of this paper
are summarized as follows:
• We develop a joint coding and feedback scheme called

MWNC-AF, and show that MWNC-AF achieves a con-
stant decoding delay and a constant feedback overhead,
irrespective of the number of receivers n, without sacri-
ficing either throughput or reliability.

1They are also referred as online or adaptive network coding in the
literatures.

2By constant delay and constant feedback overhead, we mean that the delay
experienced by any receiver and the overall feedback overhead of all receivers
are both independent of the number of receivers n.



2

• We investigate how to control the data injection process
at the encoder buffer to reduce the decoding delay of
MWNC-AF. To that end, we explicitly characterize the
asymptotic decay rate of the tail probability of the de-
coding delay for any i.i.d. data injection process. We
show that injecting a constant amount of information bits
into the encoder buffer in each time-slot (called “constant
data injection process”) achieves the fastest decay rate,
thus showing how to obtain delay optimality in a large
deviation sense. (Theorem 1)

• We derive an upper bound of the average decoding delay
for MWNC-AF under the constant data injection process.
As the traffic load approaches capacity, this upper bound
is at most one half of the average decoding delay achieved
by a Bernoulli data injection process. (Theorem 2)

• For the constant data injection process, we prove that
the average encoding complexity of MWNC-AF is of the
form 1

η log n + o(log n) for sufficiently large n, and the
value of the pre-factor η is attained as a function of the
channel statistics and the injection rate. For any n, we
also characterize the asymptotic decay rate of the tail of
the encoding complexity distribution. (Theorem 3)

• For the constant data injection process, we prove that
the average decoding complexity of MWNC-AF per
data packet is also of the form 1

η log n + o(log n) for
sufficiently large n, and the pre-factor 1

η is the same as
that of the average encoding complexity. (Theorem 4)

The rest of this paper is organized as follows. In Section II,
we introduce some related work. In Section III, we describe
the system model and present our MWNC-AF transmission
design. In Section IV, we analyze the decoding delay, encod-
ing complexity, and decoding complexity of the MWNC-AF
transmission design. In Section V, we use simulations to verify
our theoretical results. Finally, in Section VI, we conclude the
paper.

II. RELATED WORK

Batch-based rateless codes can generate a potentially un-
limited stream of coded packets from a fixed batch of data
packets. The coded packets can be generated on the fly, as few
or as many as needed [5]. Examples of Batch-based rateless
codes includes random linear network coding (RLNC) [4], LT
codes [5], and Raptor codes [6]. RLNC3 is the simplest rateless
codes, which can achieve near-zero communication overhead.
However, the decoding complexity of RLNC is high [26] for
large block size B. LT codes and Raptor codes were pro-
posed to reduce the decoding complexity. In particular, Raptor
codes can achieve constant per-packet encoding and decoding
complexities. One benefit of batch-based rateless codes is low
feedback overhead [27]. A feedback scheme was proposed in
[28] for RLNC, which has a constant overhead independent
of the number of receivers. However, these schemes have
poor delay performance when the number of receivers n is
large. Recent analyses have shown that, to maintain a fixed
throughput, the batch size in these schemes needs to grow

3By RLNC, we refer to the specifications in [4, 7, 25].

with respect to the number of receivers n, which results in a
long decoding delay [7, 8]. Scheduling techniques have been
developed to optimize the tradeoff between the batch size
and throughput under limited feedback for finite n [29, 30].
However, it is difficult to maintain a low decoding delay for
large n, unless resorting to novel coding designs.

In recent years, a class of incremental network coding
schemes, e.g., [9–24] are developed to resolve the long decod-
ing delay of rateless codes. In these designs, the data packets
participate in the coding procedure progressively. Among this
class, an instantly decodable network coding scheme was
proposed in [13, 14], where the number of receivers that can
be effectively supported is maximized under a zero decoding
delay constraint. In order to accommodate more receivers, the
zero decoding delay constraint was relaxed in [15]. Nonethe-
less, these schemes cannot support a large number of receivers.

A number of ARQ-based network coding schemes are pro-
posed since the seminal work [10, 11], which can potentially
reduce the decoding delay and support a large number of
receivers. In [10, 11], the desired packet of each receiver
is acknowledged to the transmitter, such that the transmitted
packet is a linear combination of the desired packets of all
receivers. Without appropriate injection control, this scheme
results in unfair decoding delay among the receivers with dif-
ferent packet erasure probabilities. A threshold-based network
coding scheme was proposed in [12] to resolve this fairness
issue, at the cost of certain throughput loss. A dynamic ARQ-
based network coding scheme was proposed in [18], which
can achieve a noticeable improvement in the throughput-
delay tradeoff performance. Interestingly, when associated
with a Bernoulli packet injection process, the average decoding
delay of ARQ-based network coding is upper bounded by a
constant4 that is independent of the number of receivers n
[11, 18]. However, these schemes require explicit feedback
from each receiver, and thus the total feedback overhead
scales up with the number of receivers n. A generalization of
ARQ-based network coding was the moving window network
coding (MWNC), which was first proposed in [21] to make
network coding compatible with the existing TCP protocol.
The MWNC scheme was also employed in multihop wireless
networks to improve the throughput of opportunistic routing
[22] and support multiple multicast sessions [23]. However, in
these designs, the movement of the encoding window requires
the ACK from all receivers, and thus the feedback overhead
scales up with the network size.

Recently, the first author proposed an anonymous feed-
back scheme for MWNC [19], which can achieve a constant
feedback overhead for any number of receivers n. However,
this feedback scheme assumed that all receivers are within
a short range of each other and can communicate with one
another, which may introduce the well-known hidden terminal
problem in practical systems. In addition, the window size
of the MWNC scheme was fixed in [19], which leads to a
throughput degradation as the number of receivers n grows up.

4When the number of receivers n is small, the average decoding delay in
[11, 18] can be substantially smaller than the upper bound. However, when
there are a large number of receivers, the average decoding delay in [11, 18]
is very close to the upper bound, as shown in [18].
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Another low-overhead feedback scheme was proposed in [20]
for ARQ-based network coding, where only the leading and
tail receivers feed back messages to the transmitter. However,
it was not discussed in [20] whether their scheme can achieve
constant decoding delay for any number of receivers. To the
extent of our knowledge, no previous scheme exists that can
simultaneously guarantee a constant decoding delay and a
constant feedback overhead as the number of receivers n
grows, without sacrificing the throughput or reliability of
wireless multicast.

III. SYSTEM MODEL

A. Channel Model

We consider a broadcast packet erasure channel with one
transmitter and n receivers, where the transmitter needs to
send a stream of common information to all the receivers.

We assume a time-slotted system. In each time-slot, the
transmitter generates one coded packet and broadcasts it to all
the receivers. The channel from the transmitter to the receiver
i in time-slot t is denoted as ci[t], where

ci[t] =

 1 if a coded packet is successfully
received by receiver i at time-slot t;

0 otherwise.
(1)

We assume that ci[t] is i.i.d. across time-slots, and define γi ,
P (ci[t] = 1). Then, the capacity of this broadcast channel is
inf1≤i≤n γi packets per time-slot.

It is assumed that on the feedback channel, the transmitter
and each receiver can overhear each other, but the receivers
may not overhear each other. Since all receivers are within the
one-hop transmission range of the transmitter and in practice
the feedback signals are usually sent at a much lower data rate
than the normal data packet, similar to [9–23, 28], we assume
that the feedback signals can be reliably detected.

B. Multicast Transmission Design

We propose a multicast transmission scheme called moving
window network coding with anonymous feedback (MWNC-
AF). This scheme achieves a constant decoding delay and a
constant feedback overhead for any number of receivers n.

1) Encoder: Assume that the transmitter is infinitely back-
logged, and that ã[t] bits are injected to the encoder buffer
from the backlog at the beginning of time-slot t. The bits
received by the encoder are assembled into packets of L bits.
Let us define a[t] = ã[t]/L, which is a rational number.
We assume that a[t] is i.i.d. across time-slots with mean
λ , E [a[t]]. Then, the number of packets that the encoder
has received up to the beginning of time-slot t is A[t], i.e.,

A[t] =
t∑

τ=1

a[τ ]. (2)

We note that only fully assembled packets can participate the
encoding operation. The number of fully assembled packets
up to the beginning of time-slot t is bA[t]c, where byc is the
maximum integer no greater than y.

Time-slot

1 +

+++

x[1] = is seen

x[2] = 

x[3] = 

2 2

3

p1p2

p1 p1

is seenp2

is seenp3

p2

p3p4

p1p2p3p4

+++

+

23 2 p1p2p3

p3

p4

x[4] =4 are 
decodedp1 p2 p3 p4p4

Fig. 1. An example for the decoding procedure of MWNC-AF.

Let Z[t] ∈ N denote the number of packets that have been
removed from the encoder buffer by the end of slot t. The
evolution of Z[t] will be explained in Section III-B3, along
with the anonymous feedback scheme. The coded packet x[t]
in time-slot t is generated by

x[t] =
bA[t]c∑

m=Z[t−1]+1

αt,m × pm, (3)

where pm denotes the mth assembled packet of the encoder,
“×” is the product operator on a Galois field GF (2q), and
αt,m is randomly drawn according to a uniform distribution
on {GF (2q)}\{0}.5 The values of bA[t]c and Z[t − 1] are
embedded in the packet header of x[t]. In addition, {αt,m} are
known at each receiver by feeding the same seed to the random
number generators of the transmitter and all the receivers.

Let W [t] denote the number of packets that participate in
the encoding operation of x[t] in time-slot t, which is called
encoder queue length or encoding window size in this paper.
According to Equation (3), W [t] is determined by

W [t] = bA[t]c − Z[t− 1]. (4)

2) Decoder: To facilitate a clear understanding of the
decoding procedure, we restate the definition of a user seeing
a packet that was originally described in [10].

Definition 1. (Seeing a packet) We say that a receiver has
“seen” a packet pm, if it has enough information to express
pm as a linear combination of some packets pm+1, pm+2, . . .
with greater indices.

We first use the example illustrated in Fig. 1 to explain
the decoding procedure. In this example, the coded packets
x[1], x[2], x[3], and x[4] are successfully delivered to a certain
receiver in time slots 1-4, respectively. In time-slot 1, packet
p1 is “seen” at the receiver, because it can be expressed as

p1 = x[1]− p2.

Similarly, in time slots 2-4, packets p2, p3, and p4 are “seen”
one by one, because they can be expressed as

p2 = x[2]− x[1]− p4 − p3,

p3 = x[3]− x[2] + x[1]− 2p4,

p4 = −x[4] + x[3]− x[2] + x[1].

Now, packet p4 is immediately decoded, because x[1], x[2],

5The bit-size L of each packet is a multiple of q.
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x[3], and x[4] are available at the receiver. Once p4 is decoded,
it can be substituted backwards to decode p3, p2, and p1 one
by one.

Let Si[t] ∈ N be the number of packets that receiver i has
“seen” by the end of time-slot t. Define a virtual decoder
queue

Qi[t] = A[t]− Si[t] (5)

for each receiver i. Then, bQi[t]c is the number of “unseen”
packets at receiver i at the end of time-slot t.

The decoding procedure of receiver i is described as fol-
lows:

At the beginning of time-slot t, receiver i has seen the
packets p1, . . . , pSi[t−1]. Suppose ci[t] = 1, which implies that
packet x[t] is successfully delivered to receiver i in time-slot
t. If A[t]−Si[t−1] ≥ 1, the packets participated in generating
x[t] contains at least one “unseen” packet pSi[t−1]+1. Receiver
i eliminates the “seen” packets p1, . . . , pSi[t−1] from the ex-
pression of x[t] in Equation (3) of x[t], to obtain an expression
of pSi[t−1]+1. If the field size 2q is sufficiently large, then
with a high probability, packet pSi[t−1]+1 can be expressed as
a linear combination of the packets pSi[t−1]+2, pSi[t−1]+3, . . .
with greater indices. In other words, packet pSi[t−1]+1 is
“seen” in time-slot t. Therefore, the value of Si[t] can be
updated by

Si[t] = Si[t− 1] + ci[t]1{A[t]−Si[t−1]≥1}, (6)

where 1A is the indicator function of event A.
If

bA[t]c = Si[t] or equivalently bQi[t]c = 0, (7)

i.e., receiver i has “seen” all the packets that participated in the
encoding operation of x[t], then receiver i can decode packet
pSi[t]. Once pSi[t] is decoded, it can be substituted backwards
to sequentially decode pSi[t]−1, pSi[t]−2, . . ., for all “seen”
packets.

3) Anonymous Feedback: According to the decoding proce-
dure, if a packet pm is “unseen” at some receiver i, it cannot be
removed from the encoder buffer. Because, otherwise, receiver
i will never be able to “see” packet pm or decode it. In order
to ensure reliable multicast, the departure process Z[t] of the
encoder buffer should satisfy

Z[t] ≤ min
1≤i≤n

Si[t]. (8)

We now provide a beacon-based anonymous feedback
scheme, provided in Algorithm 1. In this algorithm, receiver i
maintains a local parameter Zi[t], which is synchronized with
Z[t] at the transmitter through beacon signaling. Each time-
slot is divided into a long data sub-slot and a short beacon
sub-slot. In the data sub-slot, the transmitter broadcasts a data
packet to all the receivers. Then, Si[t] is updated according
to Equation (6). In the beacon sub-slot, if receiver i finds that
Si[t] = Zi[t− 1], it sends out a beacon signal in the common
feedback channel, requesting the transmitter not to remove
the oldest packet in the encoder buffer. If the transmitter has
detected the beacon signal (from one or more receivers), the
transmitter will broadcast a beacon signal instantly within the

Algorithm 1: Beacon-based Anonymous Feedback
Feedback procedure of receiver i:

Zi[0] := 0;1

Si[0] := 0;2

for time slot t = 1 : ∞ do3

- - - - - - - Data sub-slot - - - - - - - - - -4

Receive coded packet x[t];5

Update Si[t] according to Equation (6);6

- - - - - - - Beacon sub-slot - - - - - - - -7

if Si[t] = Zi[t− 1] then8

Send out a beacon signal;9

Zi[t] := Zi[t− 1];10

else11

Detect beacon signal;12

if no beacon signal is detected then13

Zi[t] := Zi[t− 1] + 1;14

else15

Zi[t] := Zi[t− 1];16

endif17

endif18

end19

Reaction procedure of the transmitter:
Z[0] := 0;20

for time slot t = 1 : ∞ do21

- - - - - - - Data sub-slot - - - - - - - - - -22

Send coded packet x[t];23

- - - - - - - Beacon sub-slot - - - - - - - - -24

Detect beacon signal;25

if beacon signal is detected then26

Send out a beacon signal;27

Z[t] := Z[t− 1];28

else29

Z[t] := Z[t− 1] + 1;30

Remove the oldest packet from the encoder;31

endif32

end33

same beacon sub-slot, and no packet will be removed from
the encoder buffer, i.e.,

Z[t] = Z[t− 1]. (9)

In the beacon sub-slot, the transmitter serves as a relay for
the beacon signal. This second beacon transmission guarantees
that all receivers that are hidden from each other can still detect
the beacon signal. If the transmitter has detected no beacon
signal, it will remove the oldest packet in the encoder buffer,
i.e.,

Z[t] = Z[t− 1] + 1. (10)

By detecting the existence of beacon signal in the beacon-sub-
slot, each receiver synchronizes Zi[t] with Z[t]. A key benefit
of this anonymous feedback scheme is that its overhead (i.e.,
one short beacon sub-slot) is constant for any number of
receivers n.

Lemma 1. The beacon-based anonymous feedback Algorithm
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A[t]

Fig. 2. The queueing model for MWNC-AF.

1 satisfies

Z[t] = min
1≤i≤n

Si[t], (11)

for all time-slots t.

The proof of Lemma 1 is relegated to [31] due to space
limitations. Therefore, this anonymous feedback scheme not
only ensures reliable multicast, but also keeps the encoder
queue length as small as possible.

Remark 1. In practice, the length of beacon sub-slot should
take into account the round-trip time of the beacon signal,
and the delay due to signal detection and control reaction.
Although the beacon sub-slots are reserved in this paper,
anonymous feedback can also be implemented over a dedi-
cated feedback channel on an orthogonal frequency band.

Equations (6) and (11) tell us that

Z[t− 1] ≤ min
1≤i≤n

Si[t] ≤ Z[t− 1] + 1. (12)

Moreover, we have

bA[t]c ≤ A[t] ≤ bA[t]c+ 1. (13)

Combining Equations (4), (5), (12) and (13), it is easy to derive

max
1≤i≤n

Qi[t]− 1 ≤ W [t] ≤ max
1≤i≤n

Qi[t] + 1. (14)

The relationship between the encoding window size W [t] and
the decoder queue Qi[t] is depicted in Fig. 2, as will be
clarified subsequently. One can observe that the difference
between the encoder queue length W [t] and the maximum
decoder queue length max1≤i≤n Qi[t] is quite small.

In order to keep the queueing system stable, we require
that the average injection rate E{a[t]} = λ is smaller than the
capacity, i.e., λ < inf1≤i≤n γi for any number of receivers n.
We define γ , inf{γi, i = 1, 2, . . .} > 0 as a lower bound
of the multicast capacity for all n, and ρ , λ

γ as the traffic
intensity of the system satisfying ρ < 1.

IV. PERFORMANCE ANALYSIS OF MWNC-AF

In this section, we rigorously analyze the decoding delay,
encoding complexity, and decoding complexity of MWNC-AF
for a given throughput E[a[t]] = λ packet/slot.

A. Decoding Delay

Let the time-slots tji (j = 1, 2, . . .) be the decoding
moments of receiver i satisfying Equation (7). Suppose that
packet pm is assembled at the encoder buffer in time-slot t,
which is between two successive decoding moments tji < t ≤
tj+1
i . Then, packet pm will be decoded in time-slot tj+1

i . The
decoding delay of packet pm at the receiver i is

Di,m = tj+1
i − t. (15)

Then, assuming the system is stationary and ergodic, the
delay violation probability that the decoding delay of a packet
exceeds a threshold k is expressed as

P(Di > k) = lim
M→∞

1
M

M∑
m=1

1{Di,m>k}. (16)

The average decoding delay of receiver i is given by

Di = lim
M→∞

1
M

M∑
m=1

Di,m. (17)

Theorem 1. In a network with n receivers, if the data
injections a[t] are i.i.d. across time-slots with an average rate
E[a[t]] = λ and λ < γ, then for any receiver i, the asymptotic
decay rate of the delay violation probability of MWNC-AF is

− lim
k→∞

1
k

log P(Di > k) = Φi,

where log(·) denotes natural logarithm and

Φi = sup
θ∈R

{
− log E

(
e−θa[t]

)
− log

(
γie

θ + 1− γi

)}
. (18)

In addition,

Φi ≤ λ log
λ

γi
+ (1− λ) log

1− λ

1− γi
,

where the equality holds if a[t] = λ for all t.

Proof: See Appendix B.
Theorem 1 has characterized the asymptotic decay rate of

the delay violation probability P(Di > k) of receiver i as k
increases. It tells us that a constant packet injection process,
i.e.,

a[t] = λ, ∀ t, (19)

achieves the fastest decay rate among all i.i.d. packet injection
processes. We note that the decoding delay of receiver i is
independent of the channel condition γj (j 6= i) of other
receivers. The reason for this is the following: By Equa-
tion (7), the decoding moment of receiver i is determined
by bQi[t]c = 0. Further, according to Equations (2), (5),
and (6), the evolutions of Qi[t] depend on the common data
injection process A[t] and channel conditions ci[t] of receiver
i, both of which is independent of γj for j 6= i. In [24],
the authors assumed an infinite encoding queue length and
derived the same expression of the delay’s decay rate for
the constant injection process. On the other hand, MWNC-
AF only requires a small encoding queue length, as shown in
Theorem 3 and Section V. Furthermore, our analysis applies
to any i.i.d. injection process.
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Theorem 2. In a network with n receivers, if the amount of
packet injected in each time-slot is a[t] = λ for all t and
λ < γ, then for any receiver i, the average decoding delay of
MWNC-AF is upper bounded by

D
Con
i ≤ γi(1− γi)

2(γi − λ)2
+

1
γi − λ

+
5
2λ

. (20)

In addition, as ρ increases to 1, D
Con
i is asymptotically

upper bounded by

lim
ρ→1−

D
Con
i

1/(1− ρ)2
≤ 1− γ

2γ
. (21)

Proof: See Appendix C.
The analysis of [11] implies that, under a Bernoulli packet

injection process, i.e.,

P(a[t] = 1) = λ, P(a[t] = 0) = 1− λ, (22)

the average decoding delay D
Ber
i of the receiver i with γi = γ

satisfies

lim
ρ→1−

D
Ber
i

1/(1− ρ)2
=

1− γ

γ
. (23)

This and (21) tell us that for the bottleneck receiver(s), the
average decoding delay under a constant injection process is at
most one half of that of the Bernoulli packet injection process
as ρ approaches 1.

It is known that to achieve a constant throughput λ > 0, the
average decoding delay of batch-based rateless codes scales up
at a speed no smaller than O(log n), as the number of receivers
n increases [7, 8]. Theorems 1 and 2 tell us that the decoding
delay of MWNC-AF remains constant for any number of
receiver n. The average decoding delay performance of two
ARQ-based coding schemes in [11, 18] is also bounded by
some constant independent of n. As we have mentioned,
the overhead of our anonymous feedback mechanism remains
constant for any number of receiver n. But the feedback
overhead of the schemes in [11, 18] scales up as n increases.

B. Encoding Complexity

We count one operation as one time of addition and mul-
tiplication on the Galois field. According to (3) and (4), the
encoding complexity of packet x[t] is W [t], i.e., the number of
fully assembled packets in the encoder buffer. For any given
number of receivers n, the average encoding complexity of
MWNC-AF to encode one coded packet is

Wn = lim
M→∞

1
M

M∑
t=1

W [t], (24)

In addition, the probability that the encoding complexity of
MWNC-AF exceeds a threshold k is depicted by

P(Wn > k) = lim
M→∞

1
M

M∑
t=1

1{W [t]>k}. (25)

Theorem 3. In a network with n receivers, if the amount of
packet injected in each time-slot is a[t] = λ for all t and

λ < γ, then the average encoding complexity of MWNC-AF
satisfies

lim
n→∞

Wn

log n
≤ 1

η
, (26)

where

η = log
γeθ

1− (1− γ)eθ
, (27)

and θ is the unique solution of the equation

e−
θ
λ · γeθ

1− (1− γ)eθ
= 1, 0 < θ < − log(1− γ). (28)

The asymptotic decay rate of the probability that the encod-
ing complexity exceeds a threshold is lower bounded by

− lim
k→∞

1
k

log P (Wn > k) ≥ η. (29)

The inequalities in Equations (26) and (29) become equal-
ities when γ1 = · · · = γn = γ.

Proof: See Appendix D.
Theorem 3 tells us that the average encoding complexity of

MWNC-AF increases as O(log n) when n increases, and the
asymptotic decay rate of the encoding complexity of MWNC-
AF does not depend on n.

In [32], it was shown that, for any coding scheme of
wireless multicast that can achieve a constant throughput
λ > 0, the average encoder queue length must scale up at a
speed no slower than O(log n) as n increases. This, together
with Theorem 3, tells us that MWNC-AF has achieved the
optimal scaling law of the average encoder queue length.
Interestingly, in MWNC-AF, a large encoder queue length does
not necessarily transform into a long decoding delay, because
the encoder buffer contains both the packets that have and
have not been decoded by each receiver. According to [32],
the encoder queue length of RLNC also grows at a speed of
O(log n).

It is worthwhile to mention that from Equation (29),
the probability that the encoder queue size W [t] exceeds a
threshold k decays exponentially when k is sufficiently large.
Therefore, the encoder queue size W [t] is unlikely to be much
greater than its average value.

C. Decoding Complexity

For any given number of receivers n, the average decoding
complexity Ωn of MWNC-AF is measured by the average
number of operations for decoding one data packet at each
receiver.

Theorem 4. In a network with n receivers, if the amount of
packets injected in each time-slot is a[t] = λ for all t and
λ < γ, then the average decoding complexity of MWNC-AF,
denoted as Ωn, satisfies

lim
n→∞

Ωn

log n
≤ 1

η
, (30)

where η is defined in Equation (27).
The inequality in Equation (30) becomes equalities when

γ1 = · · · = γn = γ.
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Fig. 3. Simulation results of the delay violation probability P(Di > k) of
MWNC-AF versus k for γ1 = · · · = γn = 0.6.

Proof: See Appendix E.
Theorem 4 has characterized the average decoding com-

plexity of MWNC-AF. Interestingly, we can observe from
Equations (26) and (30) that both the average encoding and
the average decoding complexity are of the form 1

η log n +
o(log n).

For RLNC, in order to maintain a constant throughput λ > 0
as the number of receivers n increases, the average decoding
complexity of RLNC needs to increase at a rate no slower
than O((log n)2).6 This and Theorem 4 tell us that the average
decoding complexity of MWNC-AF scales much slower than
that of RLNC.

V. NUMERICAL RESULTS

This section presents some simulation results that provide
insights and trends as well as validate the theoretical results.
We investigate three important aspects of performance: de-
coding delay, encoding complexity, and decoding complexity.
We consider two network scenarios, one with homogeneous
channel conditions where γ1 = · · · = γn = 0.6, and the
other with heterogenous channel conditions where γ1 = · · · =
γn/2 = 0.6 and γn/2+1 = · · · = γn = 0.8. The simulation
results are derived by running over at least 107 time-slots.

A. Decoding delay

Since the delay performance for a receiver of MWNC-
AF is uniquely determined by the injection process and the
channel conditions of the receiver, we focus on a receiver with
γi = 0.6. Figure 3 illustrates the delay violation probability
P(Di > k) of MWNC-AF versus k. One can observe that the
delay violation probability P(Di > k) of MWNC-AF decays
exponentially for sufficiently large k and matches the predicted

6The reason for this is as follows: Consider a RLNC code with a block
size of B data packets. Its average decoding complexity for each packet is
of the order O(B2), as shown in [33]. On the other hand, it was shown in
[7] that in order to maintain a constant throughput λ > 0 as n increases, the
block size B must scale up at a speed of O(log n).
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Fig. 4. Simulation results of the average decoding delay Di versus the
traffic intensity ρ for n = 100 and γ1 = · · · = γn = 0.6. The average
decoding delay of ARQ-based network coding (ANC) with dynamic injection
control [18] is very close to MWNC-AF. However, its feedback overhead
grows linearly with n, while our scheme only requires a fixed amount of
feedback overhead.
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Fig. 5. Simulation results of the buffer overflow probability P(Wn > k) of
MWNC-AF (constant injection process) versus k for both the homogeneous
and heterogeneous channel conditions.

asymptotic decay rate from Equation (18). For λ = 0.5, as
expected from our theoretical results, we find that a constant
packet injection process achieves a much faster decay rate than
the Bernoulli packet injection process. In addition, comparing
the simulation results for λ = 0.5 and λ = 0.54, the delay
violation probability P(Di > k) for a fixed k increases with
respect to λ. Therefore, there is a tradeoff between system
throughput and delay violation probability. One can utilize
Equation (18) to search for the parameters λ and γ for
achieving an appropriate delay-throughput tradeoff depending
on design requirements.

Figure 4 plots the average decoding delay Di of different
network coding schemes versus the traffic intensity ρ in the
homogeneous network setting, where n = 100 and γ = 0.6.
One can observe the following results: First, the average
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conditions when ρ = 0.9. Note that the decoding complexities for receivers
with γi = 0.6 and γi = 0.8 are different.

decoding delay of RLNC [4] with batched packet arrivals
is much larger than that of MWNC-AF. We note that the
average decoding delay of LT codes [5], Raptor codes [6]
are larger than that of RLNC, because of an extra reception
overhead. Second, the average decoding delay of MWNC-AF
with constant packet injections is much smaller than that of
MWNC-AF with Bernoulli packet injections. When ρ tends to
1, the constant packet injection process can reduce the average
decoding delay of MWNC-AF by one half, over the Bernoulli
packet injection process. Third, the average decoding delay
of ARQ-based network coding (ANC) with dynamic injection
control [18] is almost the same as that of MWNC-AF with
constant packet injections. However, it is important to note
that the scheme of [18] requires explicit feedback from each
receiver, and thus its total feedback overhead grows as O(n).
In comparison, the feedback overhead of MWNC-AF with

constant packet injections remains the same, regardless of n.
Finally, the delay upper bound in Equation (20) for MWNC-
AF with constant packet injections is tight for high load.

B. Encoding complexity

Figure 5 plots the probability P(Wn > k) of MWNC-AF
versus k for γ = 0.6. One can observe that P(Wn > k)
decays exponentially for sufficiently large k and matches the
predicted asymptotic decay rate η from Equation (27). Since η
is a decreasing function of ρ and is irrelevant of n, the traffic
intensity ρ has a larger impact on the probability P(Wn > k)
than the number of receivers n, when k is sufficiently large. It
can be also found that the decay rate of P(Wn > k) with the
heterogeneous channel conditions is very close to that with
the homogenous channel conditions.

In Fig. 6, we compare the average encoding complexity Wn

of different network coding schemes versus the number of
receivers n, where ρ = 0.9 and γ = 0.6. In the homogeneous
network scenario, we find that the increasing rate of the
average encoding complexity of MWNC-AF matches well
with the predicted asymptotic rate even for relatively small
n. The expression 1

η log n provides a close approximation of
the average encoding complexity of MWNC-AF. One can also
observe that the average encoding complexity of RLNC is
of the order O(log n), but its pre-factor is larger than that
of MWNC-AF, i.e., 1/η. Therefore, the average encoding
complexity of RLNC grows faster than that of MWNC-AF as
n increases. When n = 1024 receivers, the average encoding
complexity of MWNC-AF is less than 25. In the heterogenous
network scenario, the average encoding complexity is less than
but close to that in the homogenous network setting.

C. Decoding complexity

In Fig. 7, we compare the average decoding complexity
Ωn of different network coding schemes with the number of
receivers n for ρ = 0.9 and γ = 0.6. In the homogeneous
network scenario, one can observe that the average decoding
complexity of RLNC is much larger than that of MWNC-
AF. Our simulation results suggest that the average decoding
complexity of MWNC-AF grows as O(log n). In particular,
as n grows from 2 to 1024, the average decoding complexity
of MWNC-AF is only increased by 8 times. However, the
pre-factor of the average decoding complexity of MWNC-AF
has not converged to 1/η as n grows to 1024. We believe
that this convergence would occur at very large values of n,
which is beyond our current simulation capability. In the het-
erogenous network scenario, the average decoding complexity
of receivers with good channel conditions is less than that
of receivers with poor channel conditions. Note that we have
chosen a relative large value of ρ (i.e., ρ = 0.9) in Figs. 6
and 7. The average encoding and decoding complexities of
MWNC-AF will be even smaller as ρ decreases.

VI. CONCLUSION

In this paper, we have developed a joint coding and
feedback scheme called Moving Window Network Coding
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with Anonymous Feedback (MWNC-AF). We have rigorously
characterized the decoding delay, encoding complexity, and
decoding complexity of MWNC-AF. Our analysis has shown
that MWNC-AF achieves both a constant decoding delay and
a constant feedback overhead for any number of receivers n,
without sacrificing the throughput or reliability of wireless
multicast. In addition, we have proven that injecting a fixed
amount of information bits into the MWNC-AF encoder
buffer in each time-slot can achieve the shortest decoding
delay among all i.i.d. data injection processes. We have also
demonstrated that the encoding and decoding complexities of
MWNC-AF grow as O(log n) as n increases. Our simulations
show that, for n = 1024 receivers, the encoding and decoding
complexities of MWNC-AF are still quite small. Therefore,
MWNC-AF is suitable for wireless multicast with a large
number of receivers.

APPENDIX A
PRELIMINARIES

We first provide some preliminary results, which are helpful
for our proofs.

According to Equations (2) and (5), we can derive

Qi[t− 1] + a[t] = A[t]− Si[t− 1]. (31)

Using this and (6), one can derive the evolutions of the decoder
queue Qi[t], given by

Qi[t] = Qi[t− 1] + a[t]− ci[t]1{Qi[t−1]+a[t]≥1}. (32)

Accordingly, {Qi[t]}t is a random walk on [0,∞), which has
a steady state distribution if λ < γi.

Statement 1. If the injection process is constant, i.e., a[t] = λ
for all t, then the decoder queues {Qi[t]}1≤i≤n are indepen-
dent.

When a[t] = λ for all t, the injection and departure
processes {a[t], ci[t]}t are independent for different receivers.
Then, Statement 1 follows from the queue evolution in Equa-
tion (32). For general packet injection processes, the decoder
queues {Qi[t]}1≤i≤n are correlated.

Next, we show that the decoding procedure for any receiver
i can be captured by a Markov renewal process. Since the
system is symmetric, we only need to consider the decoding
procedure at receiver 1. Let us define Tj , tj+1

1 − tj1. Since
{tj1}j is set of the decoding moments of receiver 1 that satisfies
Equation (7), we know that Tj represents the interval between
the jth decoding moment and the (j + 1)th decoding moment
and can be expressed as

Tj = min{t ≥ 1 : Q1[t
j
1 + t] < 1}. (33)

The value of Tj depends on the queue length Q1[t
j
1] at the

jth decoding moment, which, according to the definition of
decoding moments in Equation (7), is a value between 0 and
1. By combining the above equation with Equation (32), we
can further rewrite the expression for Tj as

Tj = min

{
t ≥ 1 : Q1[t

j
1] +

t∑
τ=1

(a[τ ]− c1[τ ]) < 1

}
, (34)

with the following reasoning: 1) If Q1[t
j
1]+a[tj1+1] ≥ 1, then

according to Equation (32), we know that Q1[t
j
1+t] = Q1[t

j
1]+∑t

τ=1

(
a[tj1 + τ ]− c1[t

j
1 + τ ]

)
as long as Q1[t

j
1 + τ ] ≥ 1 for

all τ from 1 to t−1. 2) If Q1[t
j
1]+a[tj1+1] < 1, then although

Q1[t
j
1 +1] 6= Q1[t

j
1]+a[tj1 +1]−c[tj1 +1], both Q1[t

j
1 +1] and

Q1[t
j
1]+a[tj1 +1]−c[tj1 +1] is less than 1, Thus Equation (34)

gives an alternative expression for Tj defined in Equation (33).
Based on Equation (34), we can easily verify that the

following equation holds:

P
(
Q1[t

j+1
1 ] ≤ x, Tj ≤ t

∣∣∣Q1[t11], ..., Q1[t
j
1];T1, ..., Tj−1

)
=P
(
Q1[t

j+1
1 ] ≤ x, Tj ≤ t

∣∣∣Q1[t
j
1]
)

,∀x ∈ [0, 1),∀t ∈ N.

The above equation indicates that the process {Q1[t
j
1], Tj}j

is a Markov renewal process, where Q1[t
j
1] is the initial state

of the jth renewal. Let Kj denote the number of packets that
are injected to the encoder queue between time-slot tj1 and
time-slot tj+1

1 , then it can be expressed as

Kj =

Q1[t
j
1] +

tj
1+Tj∑

t=tj
1+1

a[t]

 . (35)

To facilitate the analysis of the Markov renewal process
{Q1[t

j
1], Tj}j , we denote Q̂1 as a random variable that has

the same distribution as the steady state distribution of the
initial state of the Markov renewal process. More precisely,
P(Q̂1 > q) = P(Q1[t∞1 ] > q) for any q.

For each 0 ≤ q < 1, we also define a random variable T̂ (q),
which can be expressed as

T̂ (q) =

{
t ≥ 1 : q +

t∑
τ=1

(â[τ ]− ĉ1[τ ]) < 1

}
, (36)

where {â[τ ]}τ and {ĉ1[τ ]}τ are two groups of i.i.d. random
variables that have the same distributions as a[1] and c1[1],
respectively. By comparing Equation (36) with Equation (34),
we know that T̂ (q) has the same distribution as Tj when
Q1[t

j
1] = q. Similarly, we define K̂(q) ,

⌊
q +

∑T̂ (q)
t=1 â[t]

⌋
.

The reason why we define Q̂1, T̂ (q), and K̂(q) will become
clear later in the proofs where the Markov renewal reward
theory (Theorem 11.4 in [34]) is invoked. By the property of
conditional expectation, we have

E
[
T̂
]

, E
[
E
[
T̂ (Q̂1)|Q̂1

]]
,

E
[
T̂ 2
]

, E
[
E
[
T̂ (Q̂1)2|Q̂1

]]
,

P
(
T̂ > k

)
, E

[
P
(
T̂ (Q̂1) > k|Q̂1

)]
. (37)

APPENDIX B
PROOF OF THEOREM 1

In this subsection, we analyze the probability that the
decoding delay experienced by a receiver exceeds a given
threshold for the coding scheme with general i.i.d. injection
processes. Without loss of generality, we focus on the analysis
of the decoding delay of receiver 1.
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Lemma 2. P(D1 > k) is upper and lower bounded by

P
(
T̂ > k

)
λE
[
T̂
] ≤ P(D1 > k) ≤

kP
(
T̂ > k

)
+
∑∞

b=k P
(
T̂ > b

)
λE
[
T̂
] .

(38)

Remark 2. The proof of Lemma 2 is based on a simple
observation. For a given delay threshold k > 0, the number of
packets decoded after an interval Tj must satisfy the following
conditions. 1) If Tj ≤ k, there is no packets exceeding the
threshold k. 2) If Tj > k, there are at most Tj packets which
exceed the threshold k. 3) If Tj > k, there is at least one
packet which exceed the threshold k.

The proof of Lemma 2 is relegated to [31] due to space
limitations.

Lemma 2 shows the connection between P(D1 > k) and
P
(
T̂ > b

)
. Hence, subsequently we study the probability that

the decoding interval in the steady state exceeds a certain
threshold, i.e., P

(
T̂ > b

)
, b ∈ N.

Lemma 3. The decay rate of the decoding interval in the
steady state is given by

− lim
b→∞

1
b

log P
(
T̂ > b

)
= Φ1, (39)

where Φ1 is the rate function defined in Equation (18).

Remark 3. We provide a sketch of the proof of Lemma 3
in the following. Based on Equation (34), given any initial
state 0 ≤ q < 1, the event T̂ (q) > b, b ∈ N is equivalent
to the event

∑t
τ=1(ĉ1[τ ] − â[τ ]) ≤ q − 1,∀1 ≤ t ≤ b. Since

ĉ1[τ ]−â[τ ],∀τ ∈ N are i.i.d. random variables, the probability
of such event happening at large b can be characterized using
large deviation theories [35, 36]. Then, by combining with the
fact 0 ≤ q < 1, we find the decay rate of P

(
T̂ > b

)
that is

independent of the initial states.

The proof of Lemma 3 is relegated to [31] due to space
limitations.

Let us pick ε ∈ (0,Φ1). By the definition of decay rate, we
can find Nε ∈ N, such that ∀b ∈ N, b ≥ Nε, we have

e−b(Φ1+ε) < P
(
T̂ > b

)
< e−b(Φ1−ε). (40)

Combining Equations (38) and (40) yields, for k large
enough,

P(D1 > k) ≤ e−k(Φ1−ε)

λE
[
T̂
] (

k +
1

1− e−(Φ1−ε)

)
,

P(D1 > k) ≥ e−k(Φ1+ε)

λE
[
T̂
] . (41)

On account of limk→∞
log k

k = 0, Equation (41) leads to

Φ1 − ε ≤ − lim
k→∞

1
k

log P(D1 > k) ≤ Φ1 + ε.

Since ε can be arbitrarily close to 0, the decay rate of decoding
delay is proved.

Note that f(x) = e−θx is a convex function. By Jensen’s
Inequality, we have E

[
e−θa[t]

]
≥ e−θE[a[t]] = e−θλ, where the

Time
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decoding
moment

(j+1)th
decoding
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Fig. 8. Intuition behind the proof of Lemma 4.

equality holds when a[t] = λ. Combining with Equation (18),
we have

Φ1 ≤ sup
θ∈R

{
θλ− log

(
γ1e

θ + 1− γ1

)}
(a)
= −λ log

λ

γ1
+ (1− λ) log

1− λ

1− γ1
, (42)

where in step (a), the supreme of h(θ) , θλ −
log
(
γ1e

θ + 1− γ1

)
can be easily obtained noting that h(θ)

is a concave function and there is a unique solution of the
equation d

dθh(θ) = 0.

APPENDIX C
PROOF OF THEOREM 2

In this subsection, we focus on the injection process
a[t] = λ,∀t which would incur the maximum decay rate
of decoding delay. Without loss of generality, we study the
average decoding delay of receiver 1.

Lemma 4. The average decoding delay of receiver 1 is upper
bounded by

D1 ≤
1
2

E
[
T̂ 2
]

E
[
T̂
] +

5
2λ

. (43)

Remark 4. The decoding process forms a markov renewal
process [34], and the decoding delay of each packet can be
viewed as the residual time from the epoch when the packet
is arrived, till the point when a decoding happens, which is
illustrated in Figure 8. Then, we can use standard theorem for
the markov renewal process to characterize the average packet
decoding delay.

The proof of Lemma 4 is relegated to [31] due to space
limitations.

Hence, it suffices to derive
E
[
T̂ 2
]

E
[
T̂
] .

Lemma 5. Let Y (q) , q +
∑T̂ (q)

τ=1 (â[τ ] − ĉ1[τ ]). Then, the
first two moments of T̂ can be given by

E
[
T̂
]

=
E
[
E
[
Y (Q̂1)|Q̂1

]]
− E[Q̂1]

µ
,

E
[
T̂ 2
]
≤
(
E
[
E
[
Y (Q̂1)|Q̂1

]]
− E[Q̂1]

)(σ2

µ3
− 2

µ2

)
,

(44)
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where µ = λ−γ1, σ
2 = γ1(1−γ1) are the mean and variance

of a[t]− c1[t], respectively.

Remark 5. First, we show that, for any initial state q, T̂ is
a stopping time. Using Wald’s identity, we are able to derive
the first and second moments of T̂ given the initial state q.
Then, by combining the fact that 0 ≤ q < 1, we find the
upper bounds for both the first and the second moments that
are independent of the initial states.

The proof of Lemma 5 is relegated to [31] due to space
limitations.

From Equation (44),

E
[
T̂ 2
]

E
[
T̂
] ≤ σ2

µ2
− 2

µ
=

γ1(1− γ1)
(γ1 − λ)2

+
2

γ1 − λ
. (45)

Together with Equation (43), Equation (20) is obtained. It
is then straightforward to see Equation (21).

APPENDIX D
PROOF OF THEOREM 3

According to Equation (14), to get the scaling law of W [t],
it suffices to find the scaling law of max1≤i≤n Qi[t]. Let Qi be
a random variable with a distribution as the steady state distri-
bution of Qi[t]. More precisely, P(Qi > q) = P(Qi[∞] > q)
for any q. From Equations (5) and (6), we can obtain an
upper bound of P(Qi > q) for any q by letting γi = γ.
Together with the fact that {Qi[t]}1≤i≤n are independent, as
suggested by Statement 1, it suffices to prove the case when
γ1 = · · · = γn = γ.

Lemma 6. For an arbitrary receiver i with γi = γ,

− lim
k→∞

1
k

P(Qi > k) = η,

where η defined in Equation (27).

Remark 6. Consider the number of “unseen” packets bQi[t]c
for receiver i. The number of data packets that have entered
the encoder buffer up to time-slot t is bA[t]c = bλtc.
When bQi[t]c ≥ 1, receiver i has at least one “unseen”
packet. In this case, the service time for receiver i to see
one more packet is i.i.d. geometrically distributed with mean
1/γ. When bQi[t]c = 0, receiver i needs to wait for another
data packet to enter the encoder buffer before serving it. We
show, through a sample-path argument, that the evolution of
Qi[t] can be closely characterized by a D/Ge/1 queue up to a
constant difference in the queue length. Then, we can utilize
Proposition 9 in [37] to derive the delay rate of Qi[t].

The proof of Lemma 6 is relegated to [31] due to space
limitations.

As we discussed in the beginning of Section A, for the
constant injections (a[t] = λ,∀t), {Qi[t]}1≤i≤n are indepen-
dent. Combining with Equation (14), we need to evaluate the
expectation of the maximum of n i.i.d. random variables.

Let us pick ε ∈ (0, η). Then, by Lemma 6, we can find N0

such that for any k ∈ R, k ≥ N0,

e−(η+ε)k < P(Qi > k) < e−(η−ε)k,∀i ∈ {1, ..., n}.

Introduce two auxiliary random variables AU and AL with the
following distributions, respectively.

P(AU > k) =
{

1, when k ≤ N0;
e−(η−ε)(k−N0), otherwise,

P(AL > k) =
{

1, when k ≤ N1;
e−(η+ε)(k−N1), otherwise.

where N1 = 1
η+ε log P(Qi > N0).

From P(AL > 0) = P(Qi > N0), P(AU > N0) = 1 and
the monotonicity,

P(Qi > N0) ≤ P(Qi > k) ≤ 1,∀k ∈ [0, N0],

it can be verified that

P(AL > k) ≤ P(Qi > k) ≤ P(AU > k),∀k ∈ R. (46)

Let Ai
L, Ai

U , i = 1, ..., n be independent random variables
with same distribution as AL, AU , respectively. Then from
Equation (46), we have

E
[

max
1≤i≤n

Ai
L

]
≤ E

[
max

1≤i≤n
Qi

]
≤ E

[
max

1≤i≤n
Ai

U

]
. (47)

The upper and lower bounds in the above equation corre-
spond to the maximum of n i.i.d. exponential random vari-
ables, the expectation of which can be easily calculated [38].
E
[
max1≤i≤n Ai

L

]
= N1 + Hn

η+ε and E
[
max1≤i≤n Ai

U

]
=

N0 + Hn

η−ε , in which Hn =
∑n

j=1 1/j is the harmonic number.
By taking the expectation of Equation (14), we have

E
[

max
1≤i≤n

Qi

]
− 1 ≤ Wn ≤ E

[
max

1≤i≤n
Qi

]
+ 1, (48)

which, together with the fact that limn→∞Hn/log n = 1,
yields

1
η + ε

≤ lim
n→∞

Wn

log n
≤ 1

η − ε
.

Since ε can be arbitrarily close to 0, Equation (26) is derived.
Next, we prove the decay rate of encoding complexity for

a fixed number of receivers n.
From Equation (46), we have, for any k ∈ R,

P
(

max
1≤i≤n

Qi > k

)
≤ P

(
max

1≤i≤n
Ai

U > k

)
, (49)

P
(

max
1≤i≤n

Qi > k

)
≥ P

(
max

1≤i≤n
Ai

L > k

)
. (50)

According to Proposition 3.2 in [39], the complementary
cumulative distribution function of the maximum of indepen-
dent exponentially distributed variables

{
Ai

U

}
1≤i≤n

is given
by

P
(

max
1≤i≤n

Ai
U > k

)
=

n∑
i=1

(−1)i+1

(
n

i

)
e−i(η−ε)(k−N0)

= e−(η−ε)(k−N0)

(
n +

n∑
i=2

(−1)i+1

(
n

i

)
e−(i−1)(η−ε)(k−N0)

)
= e−(η−ε)(k−N0)(n + o(1)),

where o(1) converges to 0 as k →∞. By combining the above
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equation with Equation (49), we have,

− lim
k→∞

1
k

log P
(

max
1≤i≤n

Qi > k

)
≥

− lim
k→∞

1
k

log
(
e−(η−ε)(k−N0)(n + o(1))

)
= η − ε.

The other direction can be proven using the same proce-
dure on Equation (50). It is clear from Equation (14) that
P (Wn > k) has the same decay rate as P (max1≤i≤n Qi > k),
thus Equation (29) is proved.

APPENDIX E
PROOF OF THEOREM 4

Similar to the proof of Theorem 3, we prove for the case
when γ1 = · · · = γn = γ.

Without loss of generality, we focus on receiver 1. Take one
time of addition and multiplication as one operation. Let Qi

be a random variable whose distribution is the same as the
steady state distribution of Qi[t].

At time-slot tj1, all the packets in the encoder buffer W [tj1]
have been decoded at receiver i. Then, after a decoding
interval of Tj , at time-slot tj+1

1 , Kj more packets are decoded
at receiver i, as shown in Figure 9. To upper bound the
decoding complexity, we need an upper bound of W [t] for
each time-slot t ∈ (tj1, t

j
1 + Tj ]. An obvious upper bound is

W [tj1]+Kj ≥ W [t]. Thus, each coded packet received within
the interval (tj1, t

j
1+Tj ] can be encoded from at most a number

of W [tj1]+Kj packets. As a result, the coefficients of the Kj

received coded packets can form a decoding matrix with Kj

rows and W [tj1]+Kj columns, where each row corresponds to
a data packet and each column corresponds to a coded packet
received. We categorize the decoding process into two steps.
Step 1: Since the packets corresponding to the first W [tj1]

columns have been decoded in slot tj1, the receiver
could apply a maximum number of KjW [tj1] opera-
tions so that the Kj×

(
W [tj1] + Kj

)
matrix is reduced

to a Kj ×Kj matrix.
Step 2: Gauss-Jordan elimination is performed to decode from

the reduced matrix which takes O
(
(Kj)3

)
operations.

In the following we derive the average decoding complexity
taken by Step 1 and Step 2 respectively.

Lemma 7. Let Ωn,1 denote the average complexity taken by
Step 1 to decode a packet, then

Ωn,1 ≤ Wn + CU , (51)

in which Wn denotes the average encoding complexity, and
CU is a constant independent of n.

Remark 7. The motivation of Lemma 7 is the following. In
Step 1, at most KjW [tj1] operations are needed for the Kj

packets to be decoded. As a result, the average decoding
complexity for each packet in Step 1 is upper bounded by
W [tj1], which scales in the same order as Wn as n increases.

The proof of Lemma 7 is relegated to [31] due to space
limitations.

For ease of presentation, we assume there exists a constant
MC such that Gauss elimination for m packets in Step 2 takes
at most MCm3 operations.

Lemma 8. Let Ωn,2 denote the average complexity taken by
Step 2 to decode a packet, then

Ωn,2 ≤
MCE

[
E
[(

λT̂ (Q̂1) + 1
)3 ∣∣Q̂1

]]
λE
[
T̂
] . (52)

Remark 8. For the Kj packets to be decoded, Step 2 takes at
most MCKj

3 operations. For constant data injection process,
given the initial state Q1[t

j
1], Kj and Tj uniquely determine

each other. Thus, it is possible to upper bound the decoding
complexity taken by Step 2 by expressions only involving
the decoding intervals {Tj}j=1,.... Since the decoding process
forms a markov renewal process, applying standard theorem
for the markov renewal process leads to Lemma 8.

The proof of Lemma 8 is relegated to [31] due to space
limitations.

The aggregate decoding complexity is the sum of the
complexity by Step 1 and Step 2. Thus,

Ωn = Ωn,1 + Ωn,2

≤ Wn + CU +
MCE

[
E
[(

λT̂ (Q̂1) + 1
)3 ∣∣Q̂1

]]
λE
[
T̂
] . (53)

By Lemma 3, P
(
T̂ > k

)
decays exponentially for large

enough k, thus E
[
T̂ 3
]

is finite. It can be “seen” in Equa-

tion (36) that for given λ, the distribution of T̂ is independent
of the number of receivers n, thus the last term in Equa-
tion (53) remains unchanged for arbitrarily large n.

To find the lower bound of the average decoding complexity,
we have the following lemma.

Lemma 9. The average decoding complexity of MWNC-AF is
lower bounded by the average encoding complexity of MWNC-
AF.

Ωn ≥ Wn−1 − CL, (54)

in which Wn−1 denotes the average encoding complexity
given there are n − 1 receivers, and CL is a constant
independent of n.

The proof of Lemma 9 is relegated to [31] due to space
limitations.

From Equation (53) and (54), we could have

lim
n→∞

Ωn

log n
= lim

n→∞

Wn−1

log n
= lim

n→∞

Wn

log n
.

With Equation (26), Equation (30) is proved.
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