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Abstract—Each individual’s usage behavior on mobile devices
depend on a variety of factors such as time, location, and previous
actions. Hence, context-awareness provides great opportunities to
make the networking and the computing capabilities of mobile
systems to be more personalized and more efficient in managing
their resources. To this end, we first reveal new findings from our
own Android user experiment: (i) the launching probabilities of
applications follow Zipf’s law, and (ii) inter-running and running
times of applications conform to log-normal distributions. We also
find contextual dependencies between application usage patterns,
for which we classify contexts autonomously with unsupervised
learning methods. Using the knowledge acquired, we develop
a context-aware application scheduling framework, CAS that
adaptively unloads and preloads background applications for
a joint optimization in which the energy saving is maximized
and the user discomfort from the scheduling is minimized.
Qur trace-driven simulations with 96 user traces demonstrate
that the context-aware design of CAS enables it to outperform
existing process scheduling algorithms. Our implementation of
CAS over Android platforms and its end-to-end evaluations
verify that its human involved design indeed provides substantial
user-experience gains in both energy and application launching
latency.

Index Terms—Context-awareness; Context-aware networking
and computing; Application unloading/preloading; Start-up la-
tency; Energy minimization

I. INTRODUCTION

As mobile devices have become an essential part of our
lives, people expect more capability from them such as longer
battery life, ubiquitous access to Internet, immediate response
time, and fresh contents (e.g., messages, feeds, news, ads,
sync data, or software updates). The recent advancement of
cellular networks and cloud computing is partly fulfilling these
needs. However, certain performance features such as long
battery life and high quality-of-service (e.g., low latency and
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Fig. 1. Daily network usage of the Facebook app and its corresponding
state either being in the foreground or background. The Facebook app incurs
background network traffic even when the user is not interacting with it.
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Fig. 2. Measured power consumption of a popular game application for
foreground and background states in a Galaxy Note 2 smartphone.

fresh contents) have intrinsic tradeoffs that make it difficult to
optimize simultaneously.

In a large-scale measurement study of 2000 Galaxy S3 and
S4 devices by Chen et al. [2], [3], 45.9% of the total energy
drain occurs during screen off periods. This high energy
consumption mainly comes from background applications that
update contents, collect user activity information, or keep
components in active states [4], [S]. However, these back-
ground activities may not be always beneficial for users. For
example, if a social network application updates its contents
frequently (say every 20 minutes), but the user launches this
application once a day, then most updates unnecessarily waste
network energy.! As a motivational example, we show the
measured daily network usage® of a Facebook application on
a Galaxy S7 smartphone running Android 6.0.1 in Fig. 1,
where the update or collection intervals are less than 20

Ut is well known that frequent network traffic incorporates large ramp and
tail energy overheads [6], [7].
2We log network usage by reading /proc/uid_stat/[uid]/.



minutes.> Also, gaming or map applications often keep high
power-consuming components such as CPU and GPS in active
states while being in background. This operation is intended
to provide immediate responses from those applications but
wastes energy unless the user re-launches them within a short
time. This inefficient stand-by operation is indeed observed in
a popular game application, as shown in Fig. 2. To this end,
we aim at managing mobile applications in a resource-efficient
manner by exploiting per-user application usage behaviors
analyzed in the perspective of contextual usage statistics. It
is important to mention that managing applications not only
influences the computing behaviors but also the networking
behaviors of a mobile system which in turn leads to further
resource optimizations such as delaying or suppressing non-
urgent background network traffic.

To our knowledge, the most widely used application con-
troller in Android [8] and iOS [9] is called the low memory
killer (LMK) that commonly kills (i.e., unloads or terminates)
applications to secure more available memory. Popular mem-
ory kill algorithms that are often implemented with LMK
purge applications in the order of either LRU (least recently
used) or process priority [10]. As this mechanism is merely
inherited from computer systems with abundant resources
(e.g., energy), it never considers contextual information of
application usages. Thus, it naturally fails to manage mobile
applications in an efficient way.

There have been two complementary approaches to tackle
this problem. Several papers [11]-[14] tried to identify energy
bugs/hogs, that mainly come from coding errors. This may
successfully kill all detected buggy activities, but benign
operations such as activity logging can also be stopped (false
positive) and unnecessary network activities may be mostly in-
tact (false negative). Another recent approach in [2] proposed
a metric called BFC (Background to Foreground Correlation)
to quantify the level of user engagement for each application
on the fly. If the BFC value is smaller than a threshold,
background activities are implemented to be suppressed. [2]
also developed HUSH that puts applications that have not been
recently used in foreground into inactive states, and extends
the duration of being in the inactive states in an exponential
manner. They showed that the screen-off energy saving of their
algorithms is 15-17% in their large-scale traces.

The second approach partly tackled the energy-inefficient
activities, but still this approach is myopic as it ignores the
very important statistics on when the user will relaunch an
application. As human behaviors have regular patterns in their
daily lives, it is clearly possible to design a more efficient
application controller that is far beyond the naive exponential
mechanism. This is only possible when deeper understandings
of per-user and per-application usage behaviors are acquired.

3The authors in [4] revealed that the Facebook application uses network data
every 5 minutes or every 1 hour in their large scale measurement between Dec
2012 to Nov 2014. They also revealed that network traffic from background
applications consumes 84% of total network energy, mainly due to periodic
contents updates and their tail energy consumption.

To that end, we collect application usage of 103 Android
users for which we deployed a logger that was designed to
periodically send detailed application, sensor, and memory
usage data to our server. The total data collected spans over
1057 days and reaches about 20GB. We find that the usage
patterns follow heavy tail distributions: (i) The launching prob-
abilities of applications follow the Zipf’s law, and (ii) inter-
running and running times of applications resemble log-normal
distributions. We also reveal detailed context-dependency in
the re-launching probabilities, which convey more personal-
ized control ideas over existing studies [15]-[19]. To realize
a control algorithm that exploits such personalized context-
dependency, we automate the procedure of per-user context
extraction by adopting unsupervised learning methods that
significantly improve prediction accuracy.

With the contextual knowledge, we propose a new appli-
cation control framework, CAS (Context-aware Application
Scheduler) that works by predicting when a user will launch
an application and which application will be used. Trace-driven
simulations with consideration of system overhead show that
CAS outperforms the Android genuine resource scheduler,
LMK, and Android 6.0. We also verify the practicality of CAS
by implementing the system on Android.

II. RELATED WORK

We classify previous work on mobile resource scheduling
into several categories from experimental studies to implemen-
tations and summarize their contributions.

Human behaviors on mobile application usage: To estab-
lish the foundation of context-awareness for mobile resource
scheduling, several pioneering experimental studies [15]-[21]
have been performed to analytically understand how humans
use applications given contexts such as time/location informa-
tion, and the last used application. Falaki et al. [21] studied
usage traces from 255 users and found that the levels of
activities are vastly different across users. They also found
that screen off times fit well with the Weibull distribution.

Application preloading algorithms: Those early studies
on context-awareness led to the development of application
preloading/prefetching algorithms [22]-[26] applications that
substantially reduce the perceivable start-up latency (i.e.,
launch latency) by preparing required resources (including
computation such as rendering, and communication such as
feed updates) before they are requested by users. However,
most previous studies have focused on which application a
user will launch next, but not on when the user will launch it.
[23] is the only work that concerned the moment of launching,
but the authors did not consider the cumulative penalty of
preloaded applications, hence their prefetching schedules may
suffer from large energy wastage until the predicted applica-
tion is actually accessed.

Application unloading algorithms: The default low memory
killers (LMK) on Android [8] and iOS [9] unload or ter-
minate applications to secure more memory resource, when
the available memory goes below a pre-defined threshold.
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Popular memory kill algorithms that are often implemented
with LMK purge applications in the order of either LRU (least
recently used) or process priority [10]. Android version 6.0
(Marshmallow), released in October 2015, adopts new features
called App standby and Doze mode [27] for energy saving.
App standby suppresses background activities of an application
that has not been used in foreground for 3 days. The Doze
mode is enabled when a user leaves the device for a certain
amount of time. Doze mode restricts background apps’ access
to network and CPU for most of time, and lets background
apps complete their activities for a short maintenance window.
Doze mode schedules this maintenance window less frequently
as the untouched period gets elongated.

A recent paper [2] proposed simple unloading algorithms
called BFC (Background to Foreground Correlation) and
HUSH for screen-off background activities. The BFC metric
quantifies the likelihood that a user will interact with an ap-
plication during a next screen-on interval after its background
activities. BFC updates the metrics using an exponential mov-
ing average at the end of each screen on period, and unloads
applications if their BFC metrics are less than a cutoff value a.
Another algorithm, HUSH increases the suppression interval
of an application if it has not been used in foreground using
exponential backoff (i.e., the interval is multiplied by a given
scaling factor o). Once an application is used in foreground,
the interval is reset to an initial value. This simplistic algorithm
is shown to save about 15-17% of energy in their large-scale
usage traces. Our preliminary work [1] was the first of its kind
that jointly considers preloading and unloading of background
applications. However, the scheduling algorithm therein was
not able to systematically find an optimal schedule for a given
resource constraint (e.g., energy, or launching latency).

III. PRELIMINARY

In this section, we explain basic concepts for application
processes. In Android OS, there are various application states
each of which has its corresponding “process importances”
ranging from 100 to 1000 [28]. An Android application*
installed on a device stays in one of the states at a time
slot. Fig. 3 shows all the states defined in Android and our
simplified mapping of those states into three states: foreground,

4We interchangeably use process and application.
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Fig. 4. Our simplified states and transitions between a pair of states.

background, and empty. We define a foreground process to be
a process in use and that is visible to users. By the definition,
there can be at most one application in foreground at each
time. An empty process’ is defined to be a process unloaded
from memory, and thus no resource is allocated to that process.
We denote a background process as a process that is loaded
but not running on foreground.

The rationale behind our simplification of states is that
the processes that are running with no foreground UI on the
screen show similar resource consumption characteristics (e.g.,
memory and power) as background processes of importance
400 rather than foreground processes running on the screen.
Also, these processes can be unloaded just like background
processes of importance 400 without disrupting on-going user
experience, except system processes (e.g., phone caller and
application launcher) that are designed to be running all the
time, and user-interactive applications (e.g., music, radio and
recorder) that are usable even without visible Uls.

We depict the transitions between states in Fig. 4. An empty
to foreground transition called cold launch occurs when a user
touches an empty (i.e., unloaded) application to launch. A
transition from background to foreground called warm launch
is mostly made when a user chooses to use the application by
re-launching an application that is still kept in the background,
and thus has shorter latency than cold launch but consumes
memory and battery for background activities. Therefore, user
experience on battery life and application launch latency is
highly dependent on the decision of putting an application in
either of background or empty state.

We further define the system state as either of off or on
and its period. T,‘C’ff denotes the k-th screen-off period when
all applications are either in background or empty, while 72"
denotes the k-th screen-on period for which an application is
being used in the foreground. Fig. 5 depicts how the number
of background applications (|B(t)|) changes as the screen
state and foreground application X}, change over time, under
the Android default scheduler LMK, where B(t) and Xj
denote the list of background applications at time ¢ and the
foreground application at k-th screen on period. Under LMK, a
foreground process goes to background when the user switches

5The empty state corresponds to suspended in iOS [9].
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Fig. 5. Our slotted time model of off and on periods (bottom) and an example
of corresponding sets of background applications at each slot by LMK (top).

to a different foreground application or turns off the screen.
LMK kills applications in background in the descending order
of importance values when the available memory goes below
multiple levels of preset memory thresholds. This is surely
done with no consideration on when the killed application
is going to be relaunched. Thus, LMK results in higher
cold launch probability, even though it keeps a number of
applications in background and brings high energy wastes.

IV. MEASUREMENT STUDY
A. Data collection

To capture application usage behaviors of smartphones in
the wild, we performed our own data collection with 96 An-
droid users selected from a few popular Internet communities
of South Korea during two weeks in Feb. 5-18, 2015. We
provided a data logger programmed to periodically record
application usage and device characteristics summarized in Ta-
ble I, and upload the data to our server daily. We anonymized
all user information and IDs at the level of user devices. We
asked users not to use task killers and not to manually unload
applications while participating our experiment, in order to
see how the Android genuine scheduler, LMK works. The
average valid data per user is about 11 days, and the total
data size is about 20GB. We also asked the participants to
fill an anonymized survey involving occupation, age band,
gender, and personal statement on their dissatisfaction of the
smartphone (e.g., latency, freeze), summarized in our survey
report [29]. To improve the reliability of the responses we
did our best to create an anonymous interface to give them
confidence in providing the correct information. Participants
come from diverse occupations, genders, ages, and devices
(e.g., Samsung Note2, Note3, Note4, S3, S4, S5, LG G2,
G3). Most of participants use Android KitKat (4.4.2) (75%),
where a small number of them use Jelly Bean (4.2.2 and 4.3)
and Lollipop (5.0.1). From our survey, short lifetime, frequent
freezes, and long start-up latency were still the major problems
for participants, even though their smartphones were mostly
state-of-the-art.

B. Key observations from the measurements

We summarize key observations in this subsection.

Application usage statistics of users and states: In Fig. 6, we
plot the fraction of time spent in different process importance

TABLE 1
LOGGED EVENTS AND ASSOCIATED FIELDS.

[ Event Name | Associated Fields [Periods|
[ Applist [ List of all installed applications [ - ]
Running apps List, Importance, Memory usage 10 secs
Battery status [[Full, Charging, Not Charging], 0-100%| "
Screen status [On, Off], Brightness (0-255)
Available memory Memory in MB
[ Location [ Longitude, Latitude, Accuracy [5 mins]
— 10° — 10°
x x
A A
x4 X -
$10 £10
[ IR
510t | [C—vesl 510 | [ vesd
(@] (&)
1sec 10 sect min 1hr  12hr 1 sec 10sec 1 min 20 mint hr
time time

off period (inter-running time) on period (running time)

Fig. 8. The CCDF (complementary cumulative distribution functions) of off
(left) and on (right) period distributions in week 1 and week 2 of user 59.

evaluated from our experimental logs, the number of running
processes at a moment, and the number of unique processes
that have ever been used during the experiment. We treat
system and user-interactive (e.g., music) processes separately
in the figure. We find that the number of running (fore-
ground+background) processes per user is 5.2 on average,
and the number of unique processes ever used per user is 55.1
on average, excluding system and user-interactive processes.
73% of unique processes have not been used in foreground
for more than 3 days in our traces, and these processes will
be unloaded by the new feature App standby® of Android 6.0
released in late 2015, which suppresses background activities
of an application that has not been used in foreground for
3 days. However, the number of corresponding background
processes in run is only 2 on average (40% of that in LMK)
so that the energy saving from this feature is not significant as
we will see in our simulation section. The fraction of time a
process spends in the foreground state is about 6% on average,
while the fraction of time in background is about 16 times of
being in foreground. The fraction of time that the screen is on
is 21% on average (i.e., 5 hours per day).

Regularity in application usage: The existence of the regu-
larity of application usage patterns of a person is the key to
make a mobile system predictive, and thus more efficient. In
order to understand individual application usage patterns, we
investigate the timings of all foreground application actions
(launching/stopping) and analyze the event intervals. For the
visualization, we choose one user randomly and depict the
timings of the application launches for two consecutive weeks
in Fig. 7. We observe that the active hours are highly regular
and the intensity of activities during the weekdays or weekends
for two weeks resemble each other. More specifically, we find
that there exists strong distributional similarity in both off and
on periods in the first week and the second week, as shown in
Fig. 8. These results confirm that temporal and distributional
knowledge from usage history can be used to better predict
the future application usage.

%0ur measurement is conducted before this feature is provided.
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Off/on period distribution: In Fig. 9, we fit off/on period
distributions of a randomly chosen user to show that the
distributions are heavy-tailed. We verify by Cramer-Smirnov-
Von-Mises (CSVM) [30] and Akaike [31] tests that off/on
periods of all users have the best fit with log-normal dis-
tributions’ rather than exponential, Weibull, truncated Pareto,
gamma and Rayleigh distributions. We use the best fitting log-
normal distributions as representative of off/on periods in the
following sections for tractability. We also depict the CDFs
of average individual off/on period of users in Fig. 10. The
average individual off period in total is 15.5 mins for a whole
day, 13.5 mins for the active hours (9:00 to 24:00) and 33.8
mins for the inactive hours (24:00 to 9:00). Not surprisingly,
the off period in the inactive hours is much longer than in
the active hours, as users tend to leave the device unattended
during the inactive hours. The average individual on period is
about 1.4 mins.

Off/on failure rates: In order to deeply understand the appli-
cation usage behavior, we quantify the frequency of altering
its state from “off to on” (launching) or from “on to off”
during off/on periods at the elapsed time ¢, which is commonly
called as the failure rate. Formally, the failure rate of T is
Fr(t) & %, for ¢ such that Fp(t) < 1, where fr(t)

"The probability density function (PDF) of the log-normal distribution with
parameters p and o is (zov/27) " texp(—(In(x) — p)?/202).
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and Fr(t) = P[T < t] are the probability mass function and
cumulative distribution function (CDF) of T', respectively. T’
can be either 7° or T°". We call off failure rate (from off to
on) for 7°% and on failure rate (from on to off) for 7°". In
Fig. 11, we plot off and on failure rates, for each user (dotted
lines) and on average (solid line). For most of users, the off
and on failure rates increase at first but soon decrease right
after 10 seconds. The pattern of having decreasing failure rate
over time is called negative aging [32]. This indicates that



TABLE II
THE PORTION OF USER-TRIGGERED LAUNCHES, AVERAGE RUNNING
TIMES OF 12 MOST POPULAR APPLICATIONS AND THEIR top-1 TO top-3
PROBABILITIES ACROSS ALL USERS.

category process name launches | time | top-1 | top-2 | top-3
Messaging com.kakao.talk 27% 47s | 44% | 25% | 7.3%
Browsingj com.android.browser 6% 1615 | 9.4% | 9.4% | 10%
Portal com.nhn.android.search 44% | 123s|2.1% | 5.2% | 9.4%
Browsingj com.sec.android.app.sbrowser | 3.8% | 129s | 5.2% | 5.2% | 5.2%
Social com.facebook katana 33% | 126s - 6.3% | 6.3%
Contacts* com.android.contacts 2.7% 20s |42% | 1% |52%
Social com.nhn.android.band 2.2% 49s - 52% | 1%
Browsing com.android.chrome 22% | 119s [3.1% [ 4.2% | 4.2%
Settingﬁ com.android.settings 1.8% 29s - 1% -
Social com.nhn.android.navercafe 1.5% 82s - 1% | 2.1%
Game com.supercell.clashofclans 1.5% | 281s - 2.1% | 2.1%
Messaging jp-naver.line.android 1.2% 29s |21% | - [2.1%

% Android default applications.
Messaging: 31.2%, Browsing: 14.5%, Portal: 11.7%, Social: 8.5%, Game: 4.9% (for 100
most popular applications).
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Fig. 12. The CDF of the launching probability of m most frequently used
applications (left) and Zipf distribution fitting for the average launching
probability (right). The frequently used applications of each user are not
identical. The dotted lines are for each individual user.

users are less likely to launch an app as the off or on period
increases. Thus, an energy-efficient control needs to reduce
background activities as the failure rate starts to get reduced.
This also suggests that the increasing backoff mechanisms
of HUSH [2] and Doze [27] can be effective although their
schedules are neither optimized nor personalized given that the
individual failure rates (dotted lines in Fig. 11) show distinct
characteristics for different users.

Frequently used applications: In Table II, we summarize
the 12 most popular applications across all participants from
the perspective of the launching probabilities, average running
times and top-1 to top-3 probabilities. Top-n probability of an
application is defined as the probability that the application
is the n-th most frequently used application of a user. The
most popular application in our experiment is shown to be
KakaoTalk (com.kakao.talk), a messaging application known
as used by 93% of smartphone users in South Korea as of
May 2014. 95% of our participants use KakaoTalk.

In Fig. 12, we depict the launching probability of frequently
used applications of users. Note that the applications are
individually sorted. We find that the launching probability
follows Zipf’s law® with exponent s = 1.4, and the aggre-
gated launching probability of the 10 most frequently used
applications of a user is more than 80% on average. Recall

8The frequency of elements of rank k, f(k;s, N) of a population of N
applications is proportional to k~°, where s is the exponent of the Zipfian
distribution.

that the average number of unique applications ever used for
a user is 55.1. Therefore, users tend to use a small fraction of
the applications most of the time, and there is little gain in the
start-up latency and related user experience when infrequently
used applications are kept in background.

Memory consumption: The average physical memory size
of experimented smartphones is 2.14GB. From the log, we
find that the available memory is 488MB on average, which
is only 22.8% of the physical memory (90% of users have
less than 31.6% of total memory available). This is mainly
from the memory threshold of the low memory killer, below
which it terminates applications. The lack of free memory may
freeze a mobile device frequently and degrade user experience.
The average memory consumption of a controllable activity
process is 55.4MB in background and 116MB in foreground.
We depict memory consumption of 25 popular applications
(5 applications in Game, Messaging, Browsing, Portal/Video,
Social categories) in foreground and background in the top of
Fig. 13. The memory consumption in background is almost
half of that in foreground, so that a mobile device lacks avail-
able memory if many applications are running in background.
The time averaged memory size from controllable activity
processes in background is 325MB. Note that the mobile OS
and system processes occupy 60% of physical memory on
average.

Warm and cold launch latency: In the bottom of Fig. 13,
we present warm and cold launch latencies for the popular
applications measured from our controlled experiment using
Samsung Note2. To quantify the launch latency, we first
measure the time durations until (1) screen rendering, and (2)
loading application data in memory is completed, by filtering
and monitoring Android logcat debugging outputs [33]. All
other applications are unloaded before each measurement.
We then regard the maximum of these two time durations
as the launch latency. The average warm and cold launch
latencies are 0.9s (rendering: 0.7s, memory loading: 0.4s) and
4.5s (rendering: 3.61s, memory loading: 3.58s), respectively.
The game applications show the most drastic difference in
latency, where the warm and cold launches take 12.6s and
1.8s, respectively. This is mostly due to loading high volume
of texture data onto memory and rendering initial game scenes.
For the tested popular applications, application preloading that
transforms a cold launch into a warm launch decreases the
start-up latency by 80% (3.6s).

User survey: We summarize key results from our survey.
We first asked participants to choose major problems in their
smartphones. 71% of participants chose short battery lifetime
and 40% of them chose frequent freezes. Also, 46% of par-
ticipants experience inconvenience from long start-up latency
at least once a week. The battery lifetime that participants
experience when it is fully charged is 9 hours on average,
where it ranges from 3 to 24 hours. To increase battery
lifetime and mitigate freezes, 82% of participants manually
terminate applications and 28% of them use application killer
software (e.g., Advanced Task Killer [34]). We also requested
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Fig. 13. Memory (top) consumption in background and foreground, and cold/warm launch latency (bottom) of popular applications in 5 categories (Game,

Messaging, Browsing, Portal/Video, Social).

participants to list the applications with long startup latency
and the length of perceived latency they experienced. More
than 77% of participants have provided at least one application
with long startup latency. The average startup latency of
them is 7.3 seconds, where that of gaming applications is
9.1 seconds (and messaging: 3s, social: 3.6s, browsing: 6.3s,
navigation: 6s). Thus, short lifetime, frequent freezes, and long
start-up latency are still the major problems for smartphone
users, even though their smartphones are almost state-of-the-
art.

Context dependency: We also analyze app usage patterns
incorporated under various contexts. Here, contexts correspond
to any information that characterizes the situation of users,
which enables us to predict future app/component invocations
more accurately. In Fig. 10, the average inter-launching time
at inactive hours (24:00 to 9:00) is about 3.6 times longer
than the average inter-launching time at active hours. In
Table II, we find that the average on periods are vastly different
across applications (e.g., long running time for games and
browsers, and short running time for messengers). In Fig. 14,
we depict the conditional launching probability of applications
(Xg) for the previously used application (Xy_1), for one
user in each week. The application index is sorted by the
launching frequency in descending order (application 1 is the
most frequently launched application). We choose 13 popular
applications for visibility. We note that if there is a non-zero
screen-off period between two consecutive on periods (7",
and Tp"), X1 and X}, could be the same application, and
P[X) = Xg—1|Xk—1] can be non-zero. We observe that the
launching probability is vastly different depending on the pre-
vious applications. These patterns are also quite similar in each
week. Therefore, the likelihood of launching an application
at a moment depends on the previous application, and these
statistics can be learned from history. We also observe context
dependencies such as the duration of the previous intervals
(T,‘;ﬁl, o2 ;). For instance, after using a messaging app, the
next inter-launching times are typically shorter than average,
as the recipient of a message may respond quickly. We omit
more details for brevity.

V. SYSTEM ARCHITECTURE

In this section, we propose our system design of CAS as
depicted in Fig. 15. Our framework consists of three major
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Fig. 14. The conditional launching probability of applications (Xj) for a
previously used application (X3 _1) in each week of user 59.

components: 1) context monitor, 2) user profiler, and 3) back-
ground application controller. Over these system components,
CAS runs in three phases: collection, pre-computation, and
control. The collection phase builds personalized statistical in-
formation about application usage patterns such as described in
Section IV. This data will be used in the pre-computation and
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inactive” (11pm - 8am) hours obtained from the first week trace (top) of
one user. The classification obtained from the first week is applied to the
second week (bottom) and it still shows a good match from regularity in
human behaviors.

control phases. The pre-computation phase will be dicussed
in more detail with the algorithm descriptions in Section VI.
Here, we overview how each component works sequentially.

Collection phase and context classification: In the collection
phase, context monitor collects various contextual information
in background, to build information base on application usage
pattern. Contexts we collect are screen state, time and location
information, memory and CPU/network usage, application
launch sequence, and battery level. Using the information
base, the user profiler analyzes per-application usage behavior,
cross-correlations of application usage behaviors, and resource
(power/memory) consumption of background applications ac-
cording to component-wise power models in [35], [36], with
diverse statistical measures such as failure rates and launching
probabilities. Collection of data for learning may take some
time (e.g., one week) in order to prepare a reasonable amount
of statistics at first (e.g., when a user buys a new phone).

To better exploit contexts, the collected context information
of traces can be classified and labeled. For instance, time of
a day can be roughly classified into two labels, active and
inactive hours, which may show two distinct probabilistic
distributions of off and on periods by the nature of human
life cycles. The labels resulted from classifications of many
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Fig. 17. CDF of prediction errors for off (left) and on (right) periods of users.

contexts will lead to a condition for prediction, where the con-
dition is composed of a tuple of context labels such as (time =
Active, last app = Facebook). People have different lifecycles
and habits, so that contexts should be classified individually.
In order to classify contexts automatically in a personalized
manner without asking users a manual classification, we adopt
unsupervised learning techniques. Unsupervised learning aims
at classifying input data autonomously by clustering the data
by their correlation (i.e., similarity). For instance, when clas-
sifying “time of a day” into k continuous time blocks, we can
setup the following clustering problem which minimizes the
residual sum of square errors from the clustering.” We solve
this problem using a k-means algorithm [37].

min Y (Tp — E[Tk|Sk € Hal)* + > (Tk — E[Tk|Sk ¢ Ha))%,

N k:Sk¢ Ha

where Sy, is time of a day of k-th sample (at the beginning),
and Hj is the active timezone that is continuous (e.g., Hx =
[a,b], where a is 10:00 and b is 21:00). S, € Hp if Sy is
within the time interval of H. We depict an example of “time
of a day” classification for off periods in Fig. 16. The diurnal
pattern of this user is clearly identified by the classification.
We find that most of the users need only 2 continuous time
blocks (i.e., K = 2) to describe their temporal activities and
show very little gain from further separation.

In Fig. 17, we depict the residual sum of squares of users
for off and on periods in the test set (i.e., the second week
of the trace), where the contexts (time of a day, previous off
and on periods, last used application) are trained from the first
week of the trace. We note that these dependencies including
diurnal patterns are vastly different among users depending on
their usage patterns and lifestyles. The residual sum of squares
is decreased by 29.8% and 40.3% for off and on periods
on average, respectively. Thus, it is clear that our automatic
context classification leads to more accurate prediction. We
also find that the entropy'® of the next launching app, Xy,
is substantially reduced as well, which is omitted for brevity.
Intuitively, lower entropy means reduced uncertainty and better
predictability.

Pre-computation and control phases: Based on this anal-
ysis, the background application controller computes sets of
background applications for possible combinations of contexts
in both off and on periods, in the pre-computation phase.
For each cluster C' (i.e., a tuple of several contexts), we use
the conditional distribution T |C and conditional probability
of X|C where these conditional values are trained under

9We similarly formulate and solve this problem for other contexts such as
previous off and on periods.

0The entropy for an application launch is — YicalPXk =
i]log, P[ Xy, = 1].



TABLE III
SUMMARY OF MAJOR NOTATION.

’ Variable ‘ Definition ‘

B(t) C Q |set of background applications at time ¢
B(t) C Q |set of empty applications at time ¢
P(B(t)) |power consumption of B(t)
AP(B()| = P(B() U {i}) - P(B)
M(B(t)) |memory usage of B(t)

To™ & T | k-th off and on period times (random variable)
Xk k-th launching (foreground) application (r.v.)

rr(B(t),t) | = 1f§$2t> -P[X € B(t)], failure rate of B(t)

’ ¥ ‘ trade-off parameter (power/disutility) ‘

the cluster C. In other words, our algorithm (which will be
explained in the next section) will run for each cluster C.
Therefore, we exclude the conditional information C' in the
rest of the paper, ie., Ty = Tx|C and X, = Xi|C, for
simplicity. This pre-computation happens once in a while (e.g.,
one time per week) to adapt for the change of the application
usage behavior. Pre-computation also runs during the inactive
hours with the device connected to its charger, to avoid any
inconvenience to users. During the control phase, at the start
of each off or on period, the controller calls the context
monitor and acquires the contextual information at the moment
as its input. Based on the pre-computed list of background
applications at each moment for the given contextual informa-
tion, background application controller executes pre/unloading
during the on or off period. As the recommended list of
background applications at each moment are pre-computed,
these executions do not bring any computational burden.

VI. ALGORITHM DESIGN

In this section, we formulate a submodular optimization
problem that selects the best set of background applications
to minimize the total penalty in energy and start-up latency.
Then, we develop a practical scheduling algorithm for CAS.
We also develop an iterative algorithm that finds the optimal
schedules for a given energy constraint. This constrained
optimal scheduling is practically valuable to users who want
the best application performance at each level of energy
allowance.

A. System model

System states: We summarize major notations in Table III. We
let 2 (J©2] = N) denote the set of controllable applications of
a user, which does not include any system and user-interactive
processes. We define B(t) C 2 and B(t) C (2 to be the sets of
applications in the background and empty states, respectively,
which are our main control knobs.

We define the system state as an off/on period as in Fig. 5.
We denote TP and 79" as random variables of the k-th off
and on period, respectively. We denote X}, as the foreground
application that runs during the time duration of 7TP".!" We

"We omit the subscript k unless confusion arises.

recall that the failure rate is defined as 7p(t) £ ; f }(tht), for

t such that Frr(t) < 1. T can be either T°T or T°". We also
define the partial failure rates for a set of empty applications
B(t) as rp(B(t),t) = #r(t) - P[X € B(t)], which quantifies
the rate that one of empty applications B(t) is launched at t.
Note that rr(Q,t) = 7r(t).

Power consumption and memory usage model: For applica-
tions included in 2, we define a power function, P : 29 Ry
and a memory function M : 29 — R, that respectively
represent the amount of the average power and memory usage
of a set of background applications. Based on the observa-
tions made in [35], we model P as a monotone submodular
function'? of B(t). Our model is reasonable since applications
share hardware components, and each of them becomes more
power-efficient as the utilization becomes higher. We define
A;P(B) = P(BU{i}) — P(B) as the marginal increase in
power consumption by adding an application ¢ in the back-
ground application set B. A memory function M is a linear
additive function'® for any B(t). Note that we use average
power and memory consumption for long-term optimization.
For simplicity, we model that the energy consumption for
preloading and unloading is minor in the long-run and that
the transition delay is much shorter than one time slot. These
models practically make sense as the preloading/unloading
consume its power less than a few seconds and happen
only a few times an hour. More detailed discussion on the
consumption of the transition energy will be provided in the
simulation section.

B. Problem formulation

We aim to develop a scheduling algorithm for CAS that
reduces and balances energy consumption and user disutil-
ity from experiencing cold launch of applications, under a
given memory budget My,. Since there is a trade-off between
the energy consumption and the user disutility, we adopt a
parameter ~y to treat both metrics as a unified measure. A
user who is less sensitive to latency but is keen to extend
battery lifetime will choose a smaller vy value, and vice versa.'4
The optimal scheduling algorithm for CAS can be obtained
from the optimization problem that minimizes both the energy
consumption and the user disutility over the infinite time
horizon. The optimization problem is formally defined below.
We present the equation by the summation of two components
corresponding to off and on period optimizations for better
understanding.

min Ho min H
B°(t),vt B (t),Vt
M (B*(t)) < My, M (B (t))<Mun
[e%s} t
HO' 2 3R = (3 P(B(r) + - PIX ¢ B(1)]),
t=1 T=1

2P(AUB) < P(A)+ P(B)— P(ANB) for A,B C Q, and P(A) <
P(B) for any A C B.

BFor any disjoint sets A, B C Q, M(AU B) = M(A) + M(B).

14We will discuss later in this section how ~ can be automatically
determined for a user who wants to limit either of energy consumption or
disutility.
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where 7o = yP[T°% = 0], B(t) C Qy, and Qi = Q\ { X} }.
We use B°T(t) and B°"(t) to denote the set of background
applications in an off and on period, respectively.

The optimization is decomposed into off and on problems
(i.e., Hf and H"), each of which corresponds to the opti-
mization during a screen-off or screen-on period. In the off-
period optimization(H°"), the summation of P(B°f(7)) from
7 =1 to t indicates the energy consumption when the length
of an off period is ¢ and the second term quantifies the expected
disutility from the cold launch of an application weighted by
~. In an on period, the disutility is multiplied by the probability
that the user will switch to another application without going
through an off period (i.e., P[T°" = 0]). Otherwise, the device
will go into an off period (i.e., the user stops using the device)
and there will be no disutility.

By restating energy and disutility terms in H°T using

P[T° > 1], we have HT = % P[T°T > ¢] (P(B"ff(t)) +

1o (BT (1), t)) from the definition of the partial failue rate.
Since we have assumed that the latency and energy overhead
for preload and unload are minor, the sets of optimal back-
ground applications for time slots and their resulting snapshot
objectives become uncorrelated. Hence, in this formulation
achieving the optimality in each snapshot (i.e., time slot)
warrants the global optimality. The snapshot problem in each
slot in an off period is as follows:
P-off: rnrri(n) P(BT(t)) 4y - rpor (B°(2), 1) (1)
Boft (¢
subject to M (B(t)) < M, B"(t) C Q. (2)
Similarly, in an on period, we have the following problem:
P-on: mi(n) P(B(t)) +~°" - rpo (B (1), 1)
Bon(t

subject to M (B*(t)) < My, B™(t) C Q.

In the rest of the derivation, we focus on the P-off problem, as
the P-on can be identically handled by letting B°"(¢) C .
For simplicity, we omit the superscript off in 7°", Bf(¢), and
roor(B°T(t),t) unless we need to emphasize them. Thus, the
objective function to minimize is rewritten as h(B(t),t) =
P(B(t)) +~-rr(B(t),t).

Proposition 6.1: The objective functions in P-off and P-on
are submodular.

Proof: From the definition of submodularity, it is straight-
forward to see that the sum of a submodular function and an
additive function is submodular, by subtracting the additive
function in the inequality (i.e., adding an additive function
to a submodular function does not break the inequality).
Since P(B(t)) is submodular and 77 (B(t),t) is additive, the
objectives in P-off and P-on are submodular. ]

C. Scheduling algorithm design

Proposition 6.1 clarifies that our problem formulation in
Eq. (1) is of a constrained submodular minimization with an

7 BLX ¢ BO()]),

upper bound constraint. Note that a constrinaed submodular
minimization with a lower bound cardinalty constraint has
been proven to be NP-hard in [38]. Since the cardinality
constraint can be generalized to rational weights and g(5) =
f(Q\ S) is also submodular'> such that the upper bound
constraint can be transformed to a lower bound constraint,
our problem is also NP-hard. If P(B(t)) were additive, then
this problem becomes a 0-1 knapsack problem, which can
be solved using dynamic programming. For an unconstrained
submodular minimization problem, Orlin et al. [39] devel-
oped an optimal polynomial-time algorithm with complexity
O(N®L+N®) where L is the time for function evaluation. The
computational complexity of the optimal algorithm is already
too heavy for mobile systems even without a constraint.
Hence, we propose an algorithm for constrained submodular
minimization with limited complexity (e.g., up to quadratic
time complexity) that could result in sub-optimal performance,
but in practice is often close to optimal performance. To that
end, we provide necessary conditions for a policy to be optimal
in Theorem 6.1. Then, we will show that our proposed policy
satisfies these necessary conditions.

We denote ™ = (Bx(t))._, as a control policy. We define

t=1
IIr as a set of rational control policies as follows:

HR:{TFZB,,T(tQ)zBﬂ—(tl),th,tg S.t. TT(Q,tg)STT(Q7t1)}.

The reason why it is rational is that an optimal control policy
should not add more background applications in B(t) when
the failure rate decreases. We will show that an optimal control
policy 7* satisfies 7* € Il in the following Theorem 6.1.

Theorem 6.1 (Necessary condition): If B*(t) is an optimal
control of P-off in Eq. (1), then for any i € B*(t) and j €
Q\ B*(t) such that M (B*(t) U{j}) < My,

() AiP(B*(t) \{i}) <v-rr({i}, 1), and

(i) A;P(B*(t)) =~ -rr({j}1).

Also, an optimal control policy 7* = (B*( )=, is in Tg.
Proof: (i) Suppose that there exists ¢ € B*(¢) such that
A P(B*(t)\ {i}) > ~v - rr({i},t). Then h( B*(t) \ {i},t) <

h(B*(t),t) for h(B(t),t) = P(B(t)) + v - rr(B(t),t), and
B*(t) is no longer an optimal control. (ii) can be proved in a
similar manner.

Now, we will show that 7" € IIg by contradiction. For
any t1,ty such that rp(,t3) < rp(Q,¢1), let B*(t1) be an
optimal control at ¢;. Suppose that B(t2) 2 B*(t1) is an
optimal control at t5. From the optimality of B*(¢),

P(B(t2)) — P(B*(t1)) = v rr(Q t1)P[X € B,
where B’ = B(t2) \ B*(t1). Also, since r7(Q,t2) <
rr(§,t1), P(B(t2)) — P(B*(t1)) = rr(Q,12)P[X € B
and h(B*(tl),tg) < h(B(tQ),tg). Therefore, B(t2) is not
an optimal control at ¢5 and 7* € Ilg. |

We further define IIyr as a set of monotone rational control
policies as follows:

HMR:{TFZB.,T(tQ)gBﬂ-(tl),th,tQ S.t. TT(Q7t2)§TT(Q,t1)}.

PFor 8,T € Q. g(S) + g(T) = f(2\ ) + f(QA\T) > f(Q\ (SN
)+ fF(Q\(SUT)) =g(SNT) +g(SUT).



By the definition, IIyjg € IIg. A monotone rational control
policy tends to minimize the number of control actions (i.e.,
preloads/unloads), which in turn reduces the control overhead
as shown in Proposition 6.2.

Proposition 6.2 (Control overhead): For a monotone rational
control policy m € Mg, if rr(2,¢) is unimodal with ¢, both
the numbers of control actions (i.e., preloads and unloads) are
less than or equal to N.

Proof: Suppose that rp(2,¢) is unimodal with ¢ and
its maximum is at 7. For ¢t < 7, r(Q,t) is non-
decreasing and B, (t1) C Bg(t2) for any ti,t2 € [1,7]
such that ¢; < t3. The number of preloads in [1,7] is
Do [Br(t)\ Br(t = 1)| = 37 (IBx(t)| — [Bx(t = 1)]).
Thus, the number of preloads for ¢ € [1,7] is less than or
equal to N since |B,(t)] < N,Vt and there is no unloading.
For ¢ > 7, r(,t) is non-increasing and and B(t;) D
B(ts) for any t1,t2 € [1,7] such that ¢t; < t3. The num-
ber of unloads in (7,00) is Y .2 | |Bx(t — 1)\ Bx(t)| =
>t (|Bx(t —1)| — |B=(t)|), and it is less than or equal
to N, and there is no preloading. [ |

CAS scheduling algorithm: We propose a greedy-based
algorithm that makes locally optimal choices in finding a set
of background applications, and thus satisfies the necessary
conditions in Theorem 6.1. This may result in sub-optimal
performance but works well in practice due to the Zipfian
distributed launching probability. Intuitively, most dominant
or frequently used application with high launching probabil-
ities are chosen as background applications in the first few
iterations. Our scheduling algorithm also incurs small control
overhead from Proposition 6.2, as we will show that the
obtained policy is a monotone rational policy.

CAS-Scheduler(~)

input: P(:), M(-),7r(-),P[X = z],~, M

output: a;,--- ,an, ¢1, -+ ,cn, and B(1), -+ | B(tmax)
Step (A) Compute a local optimal sequence.
1: AO <— @

2: for m=1to N do Px—]
3 an, < argmax;co\a,, P(Am 1U{]}) P

=i

4 G MAXGEO\A,, 1 P 1U{z}) P(A, 1)
5. if M(Am,l U {am}) > My, then
6 Cm < 00 and break
7 else A, « A, —1U{an}.

Step (B) Assign controls at each time slot.

1: for t =1 to ¢, do
20 m <« max{jle; = = (t) Vi < g}
3: B(t)+ An

Note that ?,,,,« 1S the maximum duration from all observable
off or on periods such that P[T" > t,.x] goes to zero and
B(t) = 0 for t > tmax. Our scheduling algorithm pre-
computes the entire sequence of locally optimal control actions
in step (A) and assign them in each slot in step (B). In step (A),

if more than one application becomes tied, it breaks the tie by
arbitrarily choosing one of them. The computational complex-
ity of our algorithm is O(N? + NT) where complexities of
step (A) and (B) are O(N?) and O(NT), respectively.

It is easy to see that the obtained policy from our scheduling
algorithm is a monotone rational policy. Also, the obtained
control policy satisfies the necessary conditions for optimality
in Theorem 6.1, since it makes locally optimal choices in line 3
of step (A) and stops increasing the background application set
when there is no improvement in the objective function in line
2 and 3 of step (B). We also note that our scheduling algorithm
does not change its control decision if the environmental
conditions (e.g., power/memory functions, failure rates, or
launching probabilities) are maintained. As those conditions
are stationary or slowly changing over time, re-computation
of the algorithm happens rarely in practice (e.g., once in a day
or even less frequently). At the run time, the predetermined
schedule is just being executed. In our CAS architecture in
Section V, the policy wakes the device up only when there
is an action to apply (either of preload or unload), and does
nothing otherwise, to minimize energy overhead.

Using contextual information: In our framework, we can use
more elaborate values of partial failure rates of applications
(i.e., off/on period distributions and next application probabil-
ities) using surrounding contexts such as the previously used
application (Xj_1), time of a day (Z}), location (L), previous
time durations (T,;’fl and 772" ,). Each context is monitored
and recognized at the beginning of each off/on period. If
context set C' is detected, that period will use the conditional
distribution T} |C' and conditional probability of Xj|C where
these conditional values had been trained under the context
set C. We will show the performance benefit from exploiting
contextual information in Section VII.

D. Bisection method for an energy or disutility constrained
optimization

Although it is possible for a user to jointly optimize energy
and application launching latency through our framework, it
is often more straightforward to optimize the latency perfor-
mance given an energy constraint that coincides with the user’s
charging pattern. For this, we consider the following energy
constrained problem, where our original problem (min H°T)!6
can be viewed as the Lagrange relaxation problem of this
problem.'”

min P[T°T = t]P[X ¢ B°f(t 3

B(t),vt Z g (®)) )
]LI(B"ff(t))<]\4[h n

subject to Z]P’[T"ff > t|P(B(t)) <V, (4)

t=1

where V' is the average energy constraint for an off period. The
optimal objective of the Lagrange relaxation problem will be
no smaller than the optimal objective of the problem (3). This

16We focus on the off problem for simplicity.
"The trade-off parameter ~y is a reciprocal of the Lagrange multiplier \.



gap can become smaller as we have shorter time slots and more
fine-grained control of background applications. To that end,
we approximate the solution of the energy constrained problem
with the original weighted sum minimization problem. In
particular, we devise an iterative algorithm to find the trade-
off parameter -, under which our scheduling algorithm meets
the given energy constraint. As the trade-off parameter -~
increases, more applications will be scheduled in background
in a monotone rational control policy (as well as in our
scheduling algorithm from line 2 of Step (B)), so that the
energy consumption increases and disutility decreases. In other
words, for any monotone rational control policy, the energy
consumption is non-decreasing and disutility is non-increasing
in 7.

To find the trade-off paramter 7, under which the obtained
policy satisfies the given energy constraint, we use a bisection
method (similar to [40]), which is reliable if the initial interval
[v1,72] is chosen appropriately. Note that since both the
objective function and the constraint are neither continuous
nor differentiable, we cannot apply first-order or second-
order iteration algorithms (e.g., gradient descent or Newton’s
method) that are faster than the bisection method in specific
conditions. One can apply a quasi-Newton method, but the
convergence is guaranteed under specific conditions including
Lipschitz continuity.

From the non-decreasing property of the energy consump-
tion with respect to ~ in the weighted sum minimization
problem, there exists v € [y1,72] that satisfies the energy
constraint with the smallest error in the interval,'® if v; yields
less energy than V' and ~, has higher energy than V, where
V' is the average energy budget in an off period to satisfy
the given lifetime constraint. In each iteration, the method
computes the energy of the middle point, ~v,, = ”—;72, and
chooses the half interval (either [y1, V,m] OF [y, 72]), in which
the solution exists. The formal iteration algorithm is as follows.

Bisection method for a given energy constraint V

input: Ve, v; = 0, sufficiently large v,
output: v,,,, B(1),- -, B(tmax)
1: while v — v > €,

20 ym = +72)/2.

3: (B(1),--+,B(tmax)) < CAS-Scheduler(,,).
4 E =Y BTt > | P(B(1).

50 M E>V, v =yn; else y1 = yp,.

Since the interval becomes half in each iteration, the number
of iterations to converge is [log,(*2="*)]. In other words, the
rate of convergence of the bisection m§thod is 1/2, where the
rate of convergence is limy,_, o 7’“:%, where 1}, is the value
at k-th iteration, and v* is the weight such that the energy term
is equal to the energy constraint, i.e., Z = V. Note that the

$Note that a mixed policy (that takes deterministic policies with some
probabilities) can make the energy consumption continuous, so that the
solution exists within this interval by the intermediate value theorem. We
assume that the time slots are sufficiently short such that the error can be
smaller than the given tolerance (e€).

TABLE IV
SUMMARY OF CONTEXTUAL INFORMATION.

Info Last used app| Time of a day |Previous durations
(K1) (Sk) (T2, T3 )
Class| 1,---,N |Active, Inactive] Short, Long

iteration algorithm can be easily generalized to consider both
off and on periods, by considering the time-averaged energy
consumption. Also, the iteration algorithm can be similarly
applied to the constraint on disutility from application launch
latency. We will see the convergence of our iteration algorithm
in Section VIL

VII. TRACE-DRIVEN SIMULATION
A. Setup

To evaluate power consumption and latency performance
of CAS for our measurement traces, we develop a trace-
driven simulator incorporating the average power and memory
functions, P(-) and M (-). We model P(-) by the component-
wise power model (e.g., CPU, screen, WiFi, cellular, and GPS)
in [35] and our measurement on utilization of components for
each application in our traces. M (-) is directly computed from
our measurement log. In the trace-driven simulation, we com-
pute the performance of CAS in which the control decisions
are made by the proposed scheduling algorithm. All statistics
and classifications are obtained from the first week of the trace
(i.e., training set) and simulations are conducted for the second
week of the trace (i.e., test set). We further compare a set of
existing algorithms including the default Android scheduler
(LMK), App standby and Doze mode [27] in Android 6.0,
BFC and HUSH proposed in [2] with CAS. The contextual
information we used is summarized in Table IV." As the
gain from location information is turned out to be negligible,
we exclude the location information. Authors in [23] also
found that the benefit from location information in prediction
accuracy is minimal as it is already partially captured by the
application sequence and time information. The parameters of
BFC (o = 0.1) and HUSH (0 = 1.2) are chosen as in [2].
The memory threshold for CAS is set to be 30% of the total
memory size for each user leading to 840MB on average.?”

B. Key Results

We depict the performance of different scheduling algo-
rithms in Fig. 18, and summarize results as follows.
Inefficiency of LRU-based LMK: As a baseline, we evaluate
the performance of LMK from our experimental logs. The
average power consumption from background applications is
about 111mA, which is much higher than the typical idle power
consumption of 10mA in the most up-to-date smartphones.
The average power consumption of a foreground application
during screen on periods is about 562.5mA. Given that, our

19We used the k-means algorithm to classify “time of a day” and “previous
durations”.

200ur measurement data indicates that on average about 60% of total
memory is occupied by the OS and system processes.



87— . . . . . . — 852
e =7 ol zpes 3 2
° T app staleness <
S5 »
5 2
° ©

2
2, 2
g3 8
G2 a
=y ©
= g
<0 ©

LMK Standby Doze+Standby BFC HUSH CAS (y=1e+6)(y=3e+5) (y=6e+4)

(a) Number of background applications and staleness.

= 160 T T T T T T T T 10.8
Eigp " power 07 2
5 [ cold launch =
2 120 068
3 8
8100 059
o o
€ 80 04 ¢
o g
£ 60 03§
S B
g 025

S
52 018
& 0

LMK Standby Doze+Standby BFC

HUSH CAS (y=1e+6)(y=3e+5) (y=6e+4)

(b) Background power and cold launch probability.

15 T T

FaceBook T
(social) Naver Cafe

(social) Naver Band

— K
—>— App Sta
(social)

ndby
10+ Doze+Ay é{tandb
gee PP 4
—&— HUSH
—_A— CAS (1=6e+4)
KakaoTalk
(messagin:

5k
Naver Line
(messaging)

1 2 3 4 5
applications

app staleness (hour)

(c) Staleness of social and messaging apps on one user.

Fig. 18. Comparison of scheduling algorithms. The error bars indicate 25th
and 75th percentiles.

experimental traces show that the energy consumption of
background applications amounts to 48.5% of the total battery
capacity under LMK. These measurements lead to 12.2 hours
of average battery life for the devices in our experimental
logs whose average battery capacity is about 2800mAh. The
average cold launch probability with LMK is measured to
be 43% with average memory occupancy of 212MB from
controllable background applications.?!

Android 6.0, BFC and HUSH [2]: The new feature, App
standby [27], in Android 6.0 unloads applications that have
no foreground activity for more than 3 days. The portion
of unique applications that can be affected by App standby
option is observed to be 73% of total installed applications,
but only 39% of background activities under LMK are affected
(See Fig. 18(a)). This is due to active killing of applications
under memory pressure in LMK. Therefore, energy saving for
background applications over LMK is limited to 19.4% (total
energy saving is 9.4%). Another feature, Doze mode [27] in
Android 6.0, restricts background activities is enabled after a
user leaves the device for an hour. Then, the suppression time
windows are increasing as 1, 2, 4, and 6 hours, where the
maintenance windows are scheduled in between suppression
windows for 5 minutes. Doze mode further reduces back-
ground energy by 33% over LMK, but its additional energy
saving is not significant as the time portion of off periods over
an hour is only about 28%. Note that only 3% of off periods
are longer than an hour.

BFC and HUSH algorithms unload background activities
more aggressively each of which suppresses 51% and 47%

2INote that 212MB is only for the background applications. In general, the
memory utilization of a device is much higher as it further involves foreground
and system processes.
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Contacts, 7: Utility.
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more compared to LMK. The background (total) energy
savings over LMK in BFC and HUSH are 31.2% (15.1%)
and 32.7% (15.8%), respectively. One potential problem of
BFC and HUSH is that they update control decisions only
by relying on latest activities of applications. For example,
in HUSH, the suppression interval is reset to an initial value
(i.e., 1 min) every time an application gets a foreground
activity, which is not efficient for low active applications. In
all these schemes, their cold launch probabilities and staleness
are higher than LMK, since these algorithms only suppress
background activities.

CAS: CAS achieves diverse operating points depending
on the trade-off parameter . Our scheduling loads more
background applications as < increase as shown in Fig. 19.
Also, according to our finding that the launching probability
decreases as the elapsed time passes by in each off/on period
(i.e., negative aging), CAS unloads more and more background
applications as time goes by. As the failure rate starts to
decrease after around 30 seconds, low priority applications
are unloaded sequentially. Eventually, all background applica-
tions are unloaded after 12, 40, and 90 minutes for different
operating points, v = 6e+4, 1.5e+5, and 3e+5, respectively.
CAS achieves a similar cold launch probability with only
0.7 background applications (14% of LMK) for v = 6e+4
in Fig. 18. The background and the total energy savings
over LMK become as high as 51% and 25% on average for
v =6e+4. Also, CAS reduces the cold launch latency by 26%
over LMK for v = le+6, with lower energy consumption.



Staleness: We define app staleness as the average elapsed
time since the last background or foreground activity of an
application as in [2]. This metric captures the user experience
especially for applications that need to regularly update their
contents (e.g., social networking and messaging applications).
The average app staleness under LMK is 1.5 hours. In Android
6.0, BFC and HUSH, their app staleness values are always
higher than or equal to LMK because these algorithms do not
restore unloaded background activities as shown in Fig. 18(a).
Unlike other algorithms, CAS preloads background applica-
tions and reduces the average staleness by 33% and 41% over
LMK for v = 6e+4 and 3e+3, respectively.

To see how the app staleness varies with scheduling algo-
rithms, we compare app staleness of five popular social and
messaging applications from different scheduling algorithms
for one user in Fig. 18(c). Because this user only infrequently
uses the Facebook app and sometimes does not use it for more
than 3 days, the App standby of Android 6.0 unloads it, which
in turn leads to a very high app staleness. However, CAS
predicts the moment that an application is used next, so that the
average staleness becomes much shorter than other algorithms
across all applications including the social and messaging
applications. We also depict the CDF of staleness for two
applications, Naver Line and Facebook, on the same user,
in Fig. 20. In the Naver Line application, the staleness from
CAS is stochastically less than that of any other algorithms.
Other applications show similar performance characteristics.
In Facebook, LMK has a higher probability for small staleness
(e.g., less than 1000 sec) than CAS, but the average staleness
of CAS is still smaller than that of LMK. This is because
CAS preloads Facebook once in an off or on period most of
the time so as to prevent the extremely long staleness.

Energy overheads of CAS: There are energy overheads in
CAS that are from logging information, processing algorithms,
preloading actions and wakeup alarms for pre/unloading. Note
that the application controller sleeps during the time when
the set of background applications stays the same, and wakes
up only when the control action is needed to make changes.
Our measurement reveals that contextual information logging
without location information consumes only about SmA. The
pre-computation phase consumes 30mAh to compute the con-
trol policies for all context sets. This corresponds to power
consumption of 1.25mA under a daily update frequency.
Wakeup alarming for a control action and actual preloading
of an application are turned out to consume on average
about 0.03mAh and 0.4mAbh, respectively. Note that unloading
happens in a flash, and thus it consumes nearly OmAh. In
CAS, the average frequencies of wakeup alarms and preload
actions are less than once in 2 mins for the chosen parameters.
Overall, the energy overhead required for running CAS does
not exceed 23.3mAh per hour at maximum, which is about
0.8% of the battery capacity and is much smaller than the
huge gain obtained from CAS. We take into account these
energy overheads in CAS.

Battery life and start-up latency: To quantify the gain in the

TABLE V
COMPARISON OF SCHEDULING ALGORITHMS.

[ Scheduler [Powern [Cold laum:h[Memoryu LifetimeT Latencyl
LMK-LRU 111mA 43% 212MB | 12.2 hr | 2.45sec
App Standby 89.5mA| 54.8% 13IMB | 13.5 hr | 2.87sec
Doze+Standby 74.4mA|  55.9% 103MB | 14.5 hr | 2.91sec
BFC [2] 76.4mA| 49.4% 93MB | 14.4 hr | 2.67sec
HUSH [2] 74.7TmA| 48.9% 9IMB | 14.5 hr | 2.66sec
CAS (same energy as LMK) [111mA| 26.3% 138MB | 12.2 hr | 1.85sec
CAS (same energy as HUSH) |74.7mA| 35.1% 95SMB | 14.5 hr | 2.13sec
CAS (same disutility as LMK)|54.2mA 43% 58MB | 16.3 hr | 2.45sec
[ Oracle [ 10mA [ 0% [ OMB [ 21.9 hr [ 0.9sec ]

fi: Power/memory consumption of background applications including energy overhead.
The voltage ranges from 3.7V to 3.8V. The idle background power is 10mA.

t: Based on 21% of screen on periods and 2800mAh of battery.

1: Based on 4.5sec of cold launch and 0.9sec of warm launch latencies.

user-perceived metrics such as battery lifetime and expected
start-up latency, we calculate them based on our measurement
over popular applications (see Fig. 13) and summarize them
in Table V. We include a simulation of the ideal yet infea-
sible scheduler, Oracle, that exactly knows when and which
application the user will use next. Note that the upper bound of
battery lifetime simulated from Oracle is 21.9 hours. For CAS,
we apply the bisection method in Section VI-D to achieve the
same disutility or energy as LMK, and the same energy as
HUSH. The average battery lifetime of a device is extended
to 16.3 hours in CAS from 12.2 hours observed under LMK,
with the same disutility (i.e., the expected start-up latency).
When the lifetime of CAS is equalized to that of LMK, the
expected start-up latency is reduced from 2.45sec in LMK to
1.85sec in CAS. When the lifetime of CAS gets equalized to
that of HUSH, CAS can reduce the expected start-up latency
from 2.66sec to 2.24sec.

VIII. ANDROID IMPLEMENTATION

We implement CAS on Galaxy Note 2 (the most popular
device in our traces), which runs Android 4.4.2, KitKat. Three
major components (context monitor, user profiler, and back-
ground application controller) are implemented and packaged
as a system service. The implementation of context monitor
specifically for CAS focuses on collecting application usage
history and time of the day information that incurs minimal
energy overhead, and uses delayed write for saving data in
the SQL database (i.e., SQLite of Android) in a highly energy
efficient manner. To this end, the background application con-
troller uses BroadcastReceiver and AlarmManager to execute
preloading and unloading at desired moments with little use
of CPU resource. In order to realize preloading, we use
getLaunchintentForPackage method together with startActivity
included in PackageManager of Android.

To unload processes, we implement the linux shell com-
mand execution of am force-stop <Package Name>** in An-
droid using the Android NDK (native development kit), where
am stands for activity manager. To make CAS work indepen-
dently from Android LMK or Linux OOM (out of memory)

22We gain the super user (su) access by rooting the device to perform am,
which will be unnecessary once our scheduling algorithm is integrated with
Android.



TABLE VI
EXPERIMENTAL RESULTS OF CAS AND LMK OVER 1-DAY TRACES OF
TWO USERS ON GALAXY NOTE 2.

User index User 46 User 61
Number of installed apps 37 64
Portion of screen on periods 8.1% 22%
Daily screen on durations 1.9 hours | 5.3 hours
Avg. off period 16.2 mins | 16.9 mins
Avg. on period 0.85 min 0.9 min
Scheduling LMK | CAS | LMK | CAS
Avg. # of background apps in run| 6.0 | 0.2 | 4.5 |0.99
Avg. screen-off power (mA) 72 126.7| 100 |44.7
Avg. screen-on power (mA) 388 | 378 | 526 | 460
Avg. power (mA) 97.5 | 55.8| 194 | 136
Expected lifetime* (hour) 31.8 |555] 16.0 | 22.8

1: Battery size is 3100mAh.

killer underneath Android platform without interfering with
them, we substantially relaxed all low-memory related param-
eters and virtually disabled such resource schedulers. In order
to let an application stay unloaded as per our decision, we
also intercept app invocations?* such as the asynchronous IPC
(Inter-Process Communication) message passing mechanism
called Intent, which can wake up an unloaded process. This
may delay notifications or messages of unloaded processes
which we will discuss later.

Android Experiment: For the experiment of our platform,
our service is designed to precisely follow the application and
screen behaviors precomputed over a collected trace as a time
series for each scheduling algorithm. Note that we choose
to perform this replay style emulation as it is better than a
hand-carried experiment from the perspective of ensuring a fair
comparison between the algorithms. Our replay service turns
on and off screen by using WakeLock method in PowerMan-
ager class and lockNow method in DevicePolicyManager class,
respectively. Because our experiment rules out any human in-
tervention, it is reasonable to keep the system awakened using
WakeLock while we emulate a screen on period. Although our
emulation method is not perfect in mimicking user behaviors
in foreground UI such as touch actions, it is fair to say that this
end-to-end evaluation capturing all possible system overheads
sets a baseline of the performance of CAS in reality.

We summarize the results of CAS (y =6e+4) and LMK
and the usage patterns for the two randomly chosen users in
Table VI. One of these users turned out to be a light user and
the other a mild to heavy user. We find that the energy savings
of CAS from LMK are 43% and 30% for each user, as the
numbers of background applications in run are significantly
reduced. The average power during screen on periods is also
reduced since CAS unloads background applications both in
screen off and on periods. The experimental results confirm
that energy saving from CAS can be indeed significant in
practice. As a future work, we plan to extend our experiment
toward user studies that involve evaluations of user-perceived
benefits with CAS installed in the actual user devices.

23This interception is similarly implemented as [2].

IX. DISCUSSIONS AND CAVEATS

There are practical issues that need to be considered before
CAS can be widely used. The issues are mostly on the
application characteristics and semantics that can be affected
by controlling the application.

Discomfort from Unloading: Our application control may
delay notifications or messages for unloaded applications.
This can have both pros and cons, as deferring or neglecting
advertisement messages can relieve one’s stress and receiving
important messages later can be big losses. However, long
delay occurs only when these applications are not likely to be
launched for a long time, so that the actual inconvenience
may not be critical, as our result on staleness confirms.
To avoid such inconvenience, we can consider staleness of
applications in our objective directly, and allow background
activities intermittently to reduce or bound staleness, which
we leave as a future work. We can also whitelist some critical
applications from application controlling as follows.

Whitelisting: Some apps should not be unloaded from back-
ground even though they may be infrequently used. For exam-
ple, caller apps such as Skype should be able to receive calls
at anytime. Thus, application categories such as call, music,
radio, and recorder need to be excluded from application
control, which we already excluded them as user-interactive
processes. A more intelligent way is to ask users whether they
want to whitelist infrequently used apps as in [14]. We can
also use crowdsourced statistics®* of applications to minimize
the need for user inputs. As more applications are whitelisted,
the possibility of energy saving is reduced as well. Because
whitelisted applications will work as intended by developers
without considering other applications and application usage
behaviors, this may incur energy inefficiency of the entire
system.

Privacy issue: Our context monitor and user profiler can
have privacy sensitive data (e.g., sleeping hours from time
of a day classification), which should be encrypted and only
accessible by CAS. We note that because CAS runs on a
mobile device and does not rely on cloud resources for
analyzing its application usage patterns, there is no privacy
or security concern for leaking personal data to Internet.
Dataset bias: Our trace data can be biased in the sense
that we collected traces of the participants from Internet user
communities in Korea, who may be more tech-savvy than
general populations. We will collect more diverse trace data
in the future work, and study the performance depending on
the level of user acitivity.

X. CONCLUDING REMARKS

Our scheduling framework, CAS, is the first work that
considers both preloading and unloading dimensions in ap-
plication scheduling. Through CAS, we have shown in this
paper that mobile systems can achieve much higher efficiency

24Individual choices will be anonymized and only the averaged statistics
will be shared.



in resource management than conventional systems by under-
standing human behaviors on application usage and related
contextual information. Trace-driven simulations demonstrate
that CAS outperforms LMK, HUSH, and Android 6.0. We
also implement CAS on Android and validate the performance
through experiments. We underscore that the significant gain
of CAS is from regularity and context-dependency of human
behaviors.

CAS requires sufficient application usage history with con-
text information (i.e., long collection phase). For future work,
we are interested in training model parameters faster using a
learning framework, and crowdsourcing of statistics from the
devices of the same type or of similar attributes, which can
bootstrap the collection phase. We will study other energy-
efficient contexts and how to classify them to increase the
prediction accuracy.
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