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Abstract—We consider a single-user, single-hop wireless com-
munication system, in which data packets arrive at a data queue
to be transmitted to a receiver over a block fading channel,
privately from an eavesdropper. We assume that the eavesdropper
listens to the transmitter over another independently fading
channel and that the transmitter only has knowledge of the
distribution of the eavesdropper’s channel. We propose a joint
secrecy rate, transmission, and admission controller based on a
simple index policy that only relies on the distribution of the
eavesdropper’s channel rate. Given any arrival sample path, we
show that our controller achieves the maximum possible data
admission rate, while keeping the data queue stable as well as
meeting an upper bound on the rate of secrecy outage, i.e., the
fraction of data packets that are in part or fully decodable by
the eavesdropper. While the solution is not unique, i.e., there are
other schemes that can achieve the aforementioned performance,
we show that our scheme also achieves a low queuing delay for
the data packets enqueued at the data queue by striking the
correct balance between direct secrecy encoding for data bits
and secret key generation and utilization. To obtain this result,
our transmission controller makes use of the secret key queue to
smooth out the variations in the achievable secrecy rate of the
associated fading wiretap channel.1
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I. I NTRODUCTION

Motivated by the seminal paper [1], there have been a large
number of investigations (e.g., [2]–[8]) on wireless information
theoretic secrecy. These studies have significantly enhanced
our understanding of the basic limits and principles of the
design and the analysis of secure wireless communication
systems. Despite the significant progress in information theo-
retic secrecy, most of the work has focused on physical layer
techniques. The application of wireless information theoretic
secrecy remains mainly unresolved as it relates to the design of
wireless networks and its impact on network control and pro-
tocol development. Indeed, our understanding of the interplay
between the secrecy requirements and the critical functional-
ities of wireless networks, such asscheduling, routing, and
congestion controlremains very limited.

To that end, there have been some recent efforts to utilize the
insights drawn from the aforementioned investigations on in-
formation theoretic secrecy to build secure wireless networks.
In [9]–[13] the fundamental capacity and connectivity scaling
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laws of wireless networks with secrecy have been addressed.
In [14], [15], single hop uplink scenario has been considered
in which nodes enqueue arriving private and open data packets
to be transmitted to a base station over block fading channels.
A node is scheduled to transmit information privately from
the other nodes and rate is controlled carefully to maximize
an overall utility. The solution provided follows up on the
stochastic network optimization framework (e.g., as treated
in [16]–[20]) and generalizes the uplink scenario to incorporate
secrecy as a quality of service requirement.

In a separate direction, [21] proposed the idea of using a
key queue in a single user system. There, a key queue is kept
at the transmitter and the receiver, separately from the data
queues. Instead of using the entire instantaneous secrecy rate
for information transmission at all times, some of it is utilized
to transmit key bits, generated randomly at the transmitter.
These stored key bits are used later to secure information bits
in such a way that, even when the instantaneous secrecy rate
is 0, information bits can still be transmitted to the destination
securely from the eavesdropper. Hence, the idea of key sharing
allows one to “bank” secrecy rates at certain times to be
utilized at other times. It is shown in [22] that, using this
idea, a long-termconstantsecrecy rate, identical to the secrecy
capacity (expected instantaneous secrecy rate) of the channel
is achievable. Thus, [22] addresses decoding delays and does
not deal with the dynamics of the data arrival process.

Here, we consider a single-user, single-hop wireless com-
munication system, in which data packets arrive at a data
queue to be privately transmitted to the receiver over a
block fading channel, from an eavesdropper that listens to
the transmitter over another independently fading channel,
only the distribution of which is known at the transmitter.
We formulate the problem to maximize the long-term data
admission rate, subject to the stability of the data queue as
well as a bound on the rate of secrecy outage. Here, we define
the rate of secrecy outage as the fraction of data packets that
are in part or fully decodable by the eavesdropper. A brute-
force approach to solving this problem is to try to use the
entire channel rate to transmit data and to choose the secrecy
encoding rate such that the secrecy outage constraint is met.
While this aforementioned brute-force approach indeed leads
to a greedy solution that achieves the maximum admission
rate and meets the desired constraints, we show that it leads
to large delays due to variations in the secrecy rate of the
channel.In this paper, our objective is to develop a class of
solutions that achieves not only the maximum admission rate
for any arrival sample path, but also a low queuing delay.
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To that end, we propose a joint secrecy rate, transmission,
and admission controller based on a simple, easily imple-
mentable, index policy. We show that, relative to the greedy
solution, our scheme provides a much lower queuing delay for
the data packets enqueued at the data queue. To achieve this,
our transmission controller introduces two unique features.
First, it makes use of the secret key queue to smooth out
the variations in the achievable secrecy rate of the associated
fading wiretap channel. It chooses the correct balance between
direct secrecy encoding for data bits and secret key generation
and utilization. Second, it introduces a concave utility function,
which is not in the original optimization formulation, and
exploits it to engineer thesecond ordereffects caused by the
variability of the secrecy rate. The proposed algorithm is a
cross-layer algorithm that combines physical, link, and trans-
port layers. Our scheme strikes the optimal balance between
secret key generation and information transmission in order
to maximize the network utility. While the cryptographic use
of the key bits is via a simple one-time pad, our scheme does
not fundamentally rule out other symmetric-key-based secrecy
mechanisms.

We also investigate the special case in which perfect in-
formation of the eavesdropper’s instantaneous channel gain is
available to the transmitter. We provide a scheme which is
sample-path delay optimal for any given sample path of the
arrival and channel gain processes.

To summarize our main contributions in this paper:

• Our work is the first that directly aims to achieve a
low queuing delayfor the private packets that lie in the
transmission queues. For this, we use a system that shares
random secret key bits simultaneously with information
transmission. Here, we develop a novel transmission
controller that finds the optimal balance between key
and data transmission in order to make the secrecy rate
smooth. A unique aspect of our controller is that, it
artificially introduces a convex utility function in the
solution, which allows forsmoothingthe secrecy rate in
time, resulting in lower delays.

• We only assume the knowledge of the distribution of
the eavesdropper channel. With this assumption, existing
solutions achieve equivocation by encoding across mul-
tiple blocks, long enough for sufficient averaging of the
eavesdropper channel. However, since our objective is to
achieve a low delay, such solutions are not applicable. To
that end, our secrecy rate controller chooses the rate at
which we encode information in each packet in order to
keep the fraction of bits that experience a secrecy outage
below a pre-specified threshold.

II. SYSTEM MODEL

We consider the single-user system illustrated in Fig. 1,
in which the transmitter enqueues data packets to be trans-
mitted to the receiver over the main channel at a fixed
power, privately from an eavesdropper that overhears the
transmission over a separate channel. Time is slotted, and
we assume that the achievable rates (the maximum mutual
information between the input and the output) of the main
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Fig. 1. System model

and the eavesdropper channel are stationary and ergodic
processes~Rm = {Rm(0), Rm(1), . . . , Rm(T − 1), . . .} and
~Re = {Re(0), Re(1), . . . , Re(T − 1), . . .}, respectively. We
assume that at any timet, the transmitter has causal knowledge
of ~Rm, i.e., up to timet, but only the distribution of the
eavesdropper’s channel condition. We also assume that the
time slots are long enough for sufficient averaging of the noise,
and via Wyner encoding [1], the achievable instantaneous
secrecy rate at a given slott is identical toRs(t) =

(

Rm(t)−

Re(t)
)+

∈ [0, Rm(t)], ∀t ≥ 0, where (·)+ = max[·, 0].
Let f

(

Rs(t)|Rm(t)
)

denote the conditional distribution of
Rs(t), givenRm(t), which can be calculated at the transmitter
in each time slott, using the observation ofRm(t) and
f
(

Re

)

. In detail, f
(

Rs(t)|Rm(t)
)

= f
(

Rm(t) − Rs(t)
)

, if
0 < Rs(t) < Rm(t); f

(

Rs(t)|Rm(t)
)

= 0 for all other values
of Rs(t).

In any given time slott, let R̂s(t) denote the secrecy
encoding rate that the secrecy rate controller chooses at time
t, i.e., in the secrecy coding structure [1],̂Rs(t) is the
number of bits to be transmitted privately, encapsulated by
Rm(t) − R̂s(t) randomization bits. Therefore, if theactual
secrecy rate is less than the controller’s secrecy encoding
rate, i.e.,Rs(t) < R̂s(t), then R̂s(t) − Rs(t) amount of the
transmitted data that is supposed to be secure is actually non-
secure, which means asecrecy outageoccurs. We will discuss
the implications of a secrecy outage later on. The rateR̂s(t)
is utilized in two possible ways: part of it is used to directly
encode data from the data queue and the remaining part is
used to transmit randomly generated key bits to be stored at
the key queues, both at the transmitter and the receiver (with
identical content). The size of the data and the key buffers are
assume to be infinite.

As shown in Fig. 1, the amount of total data transmitted at
a time t is µ(t). A part (µk(t) bits) of this data is encrypted
using µk(t) key bits by a simple bit-by-bit XOR operation.
The remainingµ(t)−µk(t) bits are secured using the chosen
secrecy rateR̂s(t). Since we assume that̂Rs(t) is fully
utilized, the remaining portion not used to secure the current
data transmission is used to generateRk(t) key bits. The data
arrivals to the system is represented by the arrival process
{A(t)}. The data queue state is denoted byqd(t).

The Lindley equation that models the state evolution of the
key queue is

qk(t + 1) = qk(t) + Rk(t) − µk(t), (1)

where0 ≤ µk(t) ≤ qk(t) + Rk(t). In time slott, qk(t) is the
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key queue length, i.e., the amount of key bits. SinceRk(t) is
the generated key bits stored in the key queue andµk(t) is
the key bits utilized from the key queue, the condition0 ≤
µk(t) ≤ qk(t) + Rk(t) ensures that the used key bits should
not exceed the instantaneous input key bits and the available
key bits in the key queue. We provide an equivalent key queue
model in the following lemma along with the constraints that
specify the relationships between the parameters.

Lemma 1:Equation (1) that models the evolution of the
key queue can be replaced by the state evolution equation
qk(t + 1) = qk(t) + R̂s(t) − µ(t) with the constraints
0 ≤ µk(t) ≤ µ(t) ≤ min[qk(t) + R̂s(t), Rm(t)] and
(

µ(t) − µk(t)
)

+ Rk(t) = R̂s(t).
Proof: Note that the system parameters must satisfy:
(1) 0 ≤ µk(t) ≤ µ(t) ≤ Rm(t): the amount of key bits used
to secure data does not exceed the amount of total transmitted
data, and the total transmission rate is bounded by the rate of
the main channel.
(2) 0 ≤ [µ(t)− µk(t)] + Rk(t) = R̂s(t) ≤ Rm(t): the chosen
instantaneous secrecy rate is fully utilized:µ(t)−µk(t) is the
amount of transmitted data from the data queue in slott and
the rest of it is used to generate key bits. Furthermore, we
know that the secrecy rate cannot exceed the main channel
rate, i.e.,0 ≤ R̂s(t) ≤ Rm(t).
(3) µk(t) ≤ min{Rm(t), qk(t) + Rk(t)}: the amount of used
key bits cannot exceed the main channel rate, since we cannot
send data at a higher rate even if all of it is secured using
key bits, i.e.,µk(t) ≤ Rm(t). Also, we cannot use more key
bits than the amount available in the key queue, i.e.,µk(t) ≤
qk(t) + Rk(t).
Observation 1:Constraints (1) and (2) directly imply0 ≤
µk(t) ≤ µ(t) ≤ Rm(t) and

(

µ(t) − µk(t)
)

+ Rk(t) = R̂s(t).
Observation 2:By Constraints (2) and (3),µ(t) = R̂s(t) −
Rk(t)+µk(t) ≤ qk(t)+Rk(t)+R̂s(t)−Rk(t) = qk(t)+R̂s(t).
Observation 3:The key state evolution is equivalent toqk(t+
1) = qk(t)+Rk(t)−µk(t) = qk(t)+R̂s(t)−µ(t) by Constraint
(2).

Observations 1,2,3complete the proof.

III. PROBLEM FORMULATION

If at any given slott, the secrecy encoding rate is larger
than the actual secrecy rate, i.e.,R̂s(t) > Rs(t), information
is leaked to the eavesdropper in that time slot, which we
refer to as a secrecy outage. Given the posterior distribution
f
(

Rs(t)|Rm(t)
)

of the secrecy rate given sample value of the
main channel rate, the expected number of non-secure bits
generated in slott is

(

Rk(t) + µ(t) − µk(t)
)

Pr
(

R̂s(t) > Rs(t)|Rm(t)
)

=
(

Rk(t) + µ(t) − µk(t)
)

[

1

−

∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

.

By Lemma 1, we havêRs(t) = Rk(t)+µ(t)−µk(t), and the
resulting non-secure bits in slott are

R̂s(t)
[

1 −

∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

.

In the long run, we need to keep the average number of non-
secure bits (and thus the fraction of bits experiencing a secrecy
outage) bounded by a small predetermined threshold.

We assume a general data arrival process,{A(t)} at the
input of the data queue. In slott, only a portion,R(t), of all the
arrivals are admitted into the data queue in order to keep the
data queue stable and the average number of non-secure bits
bounded. All the admitted packets are required to be served by
the system eventually. Our objective is to maximize the long-
term average admitted data rate. Our problem can be formally
described as follows:

(A) max
~R,~µ,~µk, ~Rk

lim inf
T→∞

1

T

T−1
∑

t=0

R(t)

s.t. qd(t + 1) = (qd(t) − µ(t))+ + R(t), (2)

qk(t + 1) = qk(t) + R̂s(t) − µ(t), (3)

0 ≤ R(t) ≤ A(t), (4)

0 ≤ µk(t) ≤ µ(t) ≤ min[qk(t) + R̂s(t), Rm(t)], (5)

lim sup
T→∞

1

T

T−1
∑

t=0

qd(t) < ∞, (6)

lim sup
T→∞

1

T

T−1
∑

t=0

R̂s(t)
[

1−

∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

≤ η, (7)

(

µ(t) − µk(t)
)

+ Rk(t) = R̂s(t), (8)

where Constraint (2) describes the data queue evolution with
R(t) as the arrival process andµ(t) as the service process.
Constraint (3) describes the equivalent key queue evolution as
in Lemma 1. Constraint (4) bounds the actual amount,R(t),
of data injected into the data queue by the available amount
of dataA(t) at time t. Constraint (5) states that the amount
of transmitted data is bounded by both the main channel rate
and the amount of keys available, and the amount of key bits
used to secure data does not exceed the amount of transmitted
data. Constraint (6) guarantees data queue stability. Recall that
R̂s(t)

[

1 −
∫ Rm(t)

R̂s(t)
f
(

Rs(t)|Rm(t)
)

dRs(t)
]

is the transmitted
non-secure data bits in time slott. Then constraint (7) states
that the long-term average rate of non-secure bits should be
bounded by the predetermined thresholdη, whereη is a QoS
parameter that gives the maximum tolerable average secrecy
outage rate when the eavesdropper’s channel is not perfectly
known. Constraint (8) ensures that the secrecy encoding rate
is fully utilized by the transmission of data and generation
of key bits. Note that the maximum achievable admission
rate, which happens to be the objective function here, is
upper bounded by the maximum average secrecy encoding
rate R̂ave

s , lim infT→∞
1
T

∑T−1
t=0 R̂s(t).

As we will show, there exists a solution for Problem (A),
for which Rk(t) = 0 for all t, i.e., without requiring the use
a key queue. However, we will also show that our solution
that involves the careful control of the key queue leads to
a smoother service for the admitted data, and consequently
lower queueing delays. Next, we introduce virtual queues that
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we will use in our control scheme.
Virtual Queues: In order to keep the average rate of non-

secure bits per time slot bounded byη, we construct the
following virtual queue of non-secure bits:

q̃s(t + 1) =
(

(

q̃s(t) − η
)+

+ R̂s(t)
[

1−
∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
])+

. (9)

We will show later that by keeping this virtual queue stable,
Constraint (7) on the non-secure bits is satisfied (similar ideas
of utilizing virtual queue are used in [20], [23]).

To ensure that the secrecy rate does not fluctuate dramati-
cally in time (that keeping delays low), we do not want the
key queue to be drained frequently. We defineq̃k as the virtual
key queue and reduce key outage by making the virtual key
queue stable. The virtual key queue evolves according to the
following equation:

q̃k(t + 1) =
(

(q̃k(t) − ǫ)+ + µ(t) − R̂s(t) + 1o(t)
)+

, (10)

where0 < ǫ < ∞ can be chosen arbitrarily, and

1o(t) =

{

0 if µ(t) = 0 or µ(t) < qk(t) + R̂s(t)
1 otherwise

(11)

is the indicator that the key queue visits the 0 state from a
non-zero state in slott. This happens when all the available
and newly generated secret key bits are used in slott. Without
loss of generality, the initial statẽqk(0) can be set to be zero.

IV. CONTROL ALGORITHM AND PERFORMANCEANALYSIS

In this section, we provide a simple control algorithm,
analyze its performance, and show that it is provably optimal
for Problem (A) described in the previous section.

A. Algorithm

The algorithm comprises of three components: asecrecy
rate controlcomponent, atransmission controlcomponent and
a admission controlcomponent. Our algorithm uses a constant
control parameter,V , which can take on any value inℜ+.
Secrecy Rate Control (SRC): In slot t, the controller chooses
the secrecy encoding rate as follows:

R̂s(t) =arg max
0≤R̂≤Rm(t)

V

2
R̂ − q̃s(t)R̂

[

1−

∫ Rm(t)

R̂

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

. (12)

Note that Equation (12) is a single variable nonlinear program.
We can compute all stationary points and find the maximizer
among the stationary points and boundary points. If a station-
ary point exist, it must belong to the root set of the equation
the first derivative of the objective function equated to 0. The
root finding algorithms such as Newton’s method can be found
in [24] to compute the roots of the derivative equated to 0
efficiently.
Transmission Control (TC): In slot t, the controller solves
the following optimization problem and transmits with the

calculated rate:

µ(t) = arg max
µ∈Π(t)

V

2
U

(

µ
)

− q̃k(t)µ, (13)

whereΠ(t) = {µ(t) : 0 ≤ µ(t) ≤ min[qk(t)+ R̂s(t), Rm(t)]}
is a compact and nonempty set. Note that the stationary points
of V

2 U
(

µ
)

− q̃k(t)µ can be found by using root finding of
equation V

2 U ′(µ) − q̃k(t) = 0, then the maximizer can be
found among the stationary and boundary points. Especially,
when U(µ) is strictly concave inµ and the inverse function
of U ′(µ) is known, Equation (13) has an analytical solution

µ(t) =max
[

0, min
[

U ′−1(
2q̃k(t)

V
),

min[qk(t) + R̂s(t), Rm(t)]
]

]

.

Key generation and usage rates
(

Rk(t), µk(t)
)

are chosen
as follows: If the required transmission rate is larger than
the secrecy encoding rate, i.e.,µ(t) > R̂s(t), then we do
not generate new key bitsRk(t) = 0 and useµk(t) =
µ(t) − R̂s(t) amount of key bits in the key queue to secure
the transmission that the secrecy rate can not support. If the
required transmission rate is less than the secrecy encoding
rate, i.e.,µ(t) ≤ R̂s(t), then there is no need to use the
stored key bits in the key queueµk(t) = 0 and the remaining
Rk(t) = R̂s(t) − µ(t) amount of secrecy rate can be used to
generate new key bits into the key queue. This ensures that
constraints

(

µ(t)−µk(t)
)

+ Rk(t) = R̂s(t) andµk(t) ≤ µ(t)
of Problem (A) are satisfied. Note that, either key generation
or key usage is zero, i.e.,µk(t)Rk(t) = 0 for all t, since any
solution with µk(t) > 0 and Rk(t) > 0, can be equivalently
replicated by using the secrecy rate to transmit data ratherthan
generating and using key bits at the same time.
Admission Control (AC): In slot t, the controller solves the
following optimization problem and admits the calculated
amount of data arrivals:

R(t) = arg max
0≤R≤A(t)

V

2
U

(

R
)

− qd(t)R. (14)

One of the unique features of our scheme is that, we
introduce a “utility function,”U(·), which was not a part of the
original problem formulation but is part of the solution. This
is done to achieve the desired level of “fairness” in times, i.e.,
smoothness ofRs(t) that will lead to lower delays. We do not
specify this function beforehand, but ifU(·) is concave, the
objective function (the average data admission rate) also turns
out to be a concave function ofµ(t). Consequently,TC solves
a simple convex optimization problem in each time slot. The
positive termV

2 U
(

µ(t)
)

can be viewed as a utility obtained
from the transmission rateµ(t) and the term̃qk(t)µ(t) can be
viewed as its associated cost. When the virtual key queueq̃k(t)
is small,TC tries to allocate a large amount of transmitted data
to increase the utility; and wheñqk(t) is large,TC allocates a
small amount of transmitted data to reduce cost. This pushes
the served data rate, controlled by the virtual queueq̃k(t) to
be relatively smooth over time.

It is also notable that (13) does not involve the key genera-
tion and the key usage rates, which are chosen subsequently.
Finally, we would like to emphasize that all components
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are index policies, i.e., the solutions are memoryless and
they depend only on the instantaneous values of the system
variables and the distribution of the eavesdropper’s channel
rate.

B. Performance Analysis

Recall thatA(t) is the original data arrival process and
R(t) is the amount of data injected into the data queue at
slot t. The natural question one would ask here is, whether
our admission controller rejects too many packets in the first
place tosyntheticallykeep the data queue stable and average
non-secure bits bounded. In the following theorem, we show
that this is not the case. Indeed, the admission rate associated
with SRC, AC, and TC can be made closer to the optimum
by increasing the control parameterV . We use the notation
y = O(x) to representy going to 0 asx goes to 0.

Theorem 1:If
1) U(·) is strictly concave onℜ+

⋃

{0}, and its slope at0
satisfies2 0 ≤ β = U ′(0) < ∞,
2) 0 ≤ lim supT→∞

1
T

∑T−1
t=0 A2(t) < ∞ and 0 ≤ Rm(t) ≤

Rmax < ∞, ∀t ≥ 0,
3)

∫ t

0 f
(

Rs(t)|Rm(t)
)

dRs(t) > 0 if t > 0 given anyRm(t)
in any slott,
thenSRC, TC, andAC achieve:

lim sup
T→∞

1

T

T−1
∑

t=0

R̂s(t)
[

1 −

∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

≤η, (15)

qd(t) ≤ β
V

2
, ∀ t ≥0 (16)

lim inf
T→∞

1

T

T−1
∑

t=0

R(t) → lim inf
T→∞

1

T

T−1
∑

t=0

R∗(t) as V → ∞,

(17)

where~R∗ = {R∗(0), R∗(1), . . . , R∗(T−1), . . .} is the optimal
solution to Problem (A).

Corollary 1: With conditions 1)-3) as in Theorem 1, the
algorithmsSRC, TC, andAC achieve:

lim inf
T→∞

1

T

T−1
∑

t=0

R̂s(t) ≥ lim inf
T→∞

1

T

T−1
∑

t=0

R̂
′

s(t) − O(
1

V
),

(18)

lim inf
T→∞

1

T

T−1
∑

t=0

U
(

R(t)
)

≥ lim inf
T→∞

1

T

T−1
∑

t=0

U
(

R′(t)
)

− O(
1

V
), (19)

lim inf
T→∞

1

T

T−1
∑

t=0

U
(

µ(t)
)

≥ lim inf
T→∞

1

T

T−1
∑

t=0

U
(

µ′(t)
)

− O(
1

V
), (20)

where ~̂
R

′

s = {R̂
′

s(0), R̂
′

s(1), . . . , R̂
′

s(T − 1), . . .},
~µ′ = {µ′(0), µ′(1), . . . , µ′(T − 1), . . .} and

2For instance,U(1 + R) = log(1 + R).

~R′ = {R′(0), R′(1), . . . , R′(T − 1), . . .}
are optimal solutions to Problem (A) with
objectives max ~̂

Rs

lim infT→∞
1
T

∑T−1
t=0 R̂s(t),

maxµ lim infT→∞
1
T

∑T−1
t=0 U

(

µ(t)
)

and maxR

lim infT→∞
1
T

∑T−1
t=0 U

(

R(t)
)

, respectively.
Corollary 2: If there is no key queue, i.e., the transmission

controller TC is replaced byµ(t) = R̂s(t), ∀t, then with
conditions 2)-3) as in Theorem 1, the algorithmsSRCandAC
can still achieve Equations (15)-(19), but Equation (20) isno
longer achieved.

The proof of Theorem 1, Corollary 1 and Corollary 2 can be
found in Appendix A. All three conditions stated in Theorem 1
are merely technical and they are all reasonable. Condition
1) focuses on strictly concave utility functions with a finite
derivative 0 (e.g.,log(1 + x)). Condition 2) limits the second
moment of the arrivals in each slot. Condition 3) states that
there is a probability mass atRs(t) = 0, for any given
Rm(t). Equation (15) implies that the average non-secure bits
are bounded and Equation (16) shows that the data queue is
kept stable under our algorithm. In Equation (17), the gap
between the average admission rate with our algorithm and
the optimal average admission rate can be made arbitrarily
small by choosing parameterV large. As a tradeoff, the data
queue length increases asV increases. From Equation (18) we
can see that our algorithm achieves the maximum achievable
admission rate (i.e., the average secrecy encoding rate), and
when combined with Eq. (19) and (20), we see that the
scheme achieves this optimal point in a way in which the data
injection rate and the service rate are smooth over time. This
is unlike the case without the data queue, where the variations
in the secrecy rate are reflected to the service. Based on this
observation, we expect the queueing delay to be smaller witha
key queue, which we will verify in Section VI using numerical
examples.

V. SAMPLE PATH OPTIMAL POLICY FOR M INIMIZING

TIME-AVERAGE QUEUE LENGTH WITH PERFECT

EAVESDROPPERINFORMATION

In this section we focus on the degenerate case when
the transmitter also has perfect knowledge of the main
and eavesdropper’s channel. For this case, we will pro-
vide a scheme that is also delay optimal in a very strong
sample path sense. Given any general time varying rate
process ~Rm = {Rm(0), Rm(1), . . . , Rm(T − 1), . . .} and
~Re = {Re(0), Re(1), . . . , Re(T − 1), . . .} for the main
and the eavesdropper channel respectively, an arrival sample
path ~A = {A(0), A(1), . . . , A(T − 1), . . .} is admissible if
there exists a transmission and key management policy such
that the resulting time-averaged queue length is finite, i.e.,
lim supT→∞

1
T

∑T−1
t=0 qd(t) < ∞. In this section, we assume

~Re and ~Rs are perfectly known to the transmitter and study on
the delay performance of our system. We limit our attention
to only admissible arrival processes and assume no admission
control, i.e., all arrivals are admitted to the system. Next, we
specify thework-conserving policy, µ, for transmission control
and show that it achieves the minimum queue lengthqd(t) in
every time slott, for any sample path for the channel rates~Rm,
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~Re, and any associated admissible arrival process,~A. Hence,
the work conserving policy is the sample path optimal policy
queue size minimization.

Work conserving policy serves the data queue at rateµ(t),
generates keys at rateRk(t) and utilizes keys at rateµk(t) at
time t, where

µ(t) = min{qd(t) + A(t), qk(t) + Rs(t), Rm(t)},

µk(t) =

{

0, if µ(t) ≤ Rs(t)
µ(t) − Rs(t), otherwise

Rk(t) =

{

0, if µ(t) > Rs(t)
Rs(t) − µ(t), otherwise

(21)

This policy satisfies all the constraints of the equivalent
model characterized in Lemma 1. The work conserving policy
allocates as high a service rate to the data queue as the channel
rates and the amount of key bits available allows. If the data
queue is empty, the available secrecy rate is not wasted and
key bits are generated and stored in the key queue.

Theorem 2:The work conserving policy,µ, is sample-path
optimal for minimizing the queue size in every time slot.
Proof: The proof is provided in Appendix B.

VI. N UMERICAL EVALUATION

In this section we simulate our algorithms and numerically
compare them with the optimal performance. In the simulation,
the number of time slots used isT = 106. We use the
utility function U(x) = log(1 + x), ∀x ≥ 0. The channel
states follow a Markov chain. In each time slot, the channel
rates have two possible states: In state 1, the main channel

rate follows Rayleigh distributionf(Rm) = Rm

σ2
1

e
−

R
2
m

2σ2
1 and

the generated sample value is known to the transmitter. The
eavesdropper channel rate also follows Rayleigh distribution

f(Re) = Re

σ2
1
e
−

R
2
e

2σ2
1 but the resulting sample value is not

known to the transmitter. Then, the posterior distribution

of Rs given Rm is f
(

Rs|Rm

)

= Rm−Rs

σ2
1

e
− (Rm−Rs)2

2σ2
1 for

0 < Rs ≤ Rm, and Pr
(

Rs = 0|Rm

)

=
∫ ∞

Rm

t
σ2
1
e
− t

2

2σ2
1 dt;

Similarly in state 2, the main channel rate follows Rayleigh

distribution f(Rm) = Rm

σ2
2

e
−

R
2
m

2σ2
2 and the generated sample

value is known to the transmitter. The eavesdropper channel

rate also follows Rayleigh distributionf(Re) = Re

σ2
2
e
−

R
2
e

2σ2
2

but the resulting sample value is not known to the trans-
mitter. The posterior distribution ofRs given Rm is then

f
(

Rs|Rm

)

= Rm−Rs

σ2
2

e
− (Rm−Rs)2

2σ2
2 for 0 < Rs ≤ Rm, and

Pr
(

Rs = 0|Rm

)

=
∫ ∞

Rm

t
σ2
2
e
− t

2

2σ2
2 dt. The transition probability

matrix of the Markov channels is[0.8, 0.2; 0.7, 0.3]. We also
set the bound on the average rate of non-secure bits per slot
η = 0.3 and the virtual key queue parameterǫ = 0.01.

Real-life Internet traffic is typically characterized using
heavy tailed behavior. For example, heavy-tailed distributions
such as Zipf, have been found to accurately model the amount
of traffic between distinct domains in the Internet [25]. Hence,
in the first scenario, we used the Zipf law: the number of

packets arriving in each time slotA(t), t ≥ 0 follows a
Zeta distribution with parameter 3.5. We chooseσ1 = 1.5 and
σ2 = 3 for the Rayleigh parameter in two channel states. We
run the simulation for different values of the control coefficient
V and compare the results with the optimal value3. Figure 2
(a) shows that, asV increases, the average admission rate
(both with and without a key queue) increases to the optimum,
which is consistent with Equation (17). In Figure 2 (b), we plot
the tail distribution of instantaneous queue length where the
control parameterV is 2000 and theY -axis is log scaled. We
can see that with a key queue, the proportion of time slots
with larger queue length is smaller than that without a key
queue since the curve without a key queue has heavier tail.
Furthermore, the average queueing delay performance with a
key queue is also better than that without a key queue, as we
can see in Figure 2 (c) and (d). From Figure 2 (c) and (d), we
can see that as we chooseV = 2000 (average admission rate
approaches its optimal value1.19), the average queue length
with a key queue is 3.5, which is 1 less than that without a
key queue. Therefore, there is a30% improvement of average
queue length with a key queue.

Figure 3 illustrates the scenario with a real traffic trace
(traces of LAN and WAN traffic seen on an Ethernet from
Internet traffic archive http://ita.ee.lbl.gov/html/traces.html).
We chooseσ1 = 2 and σ2 = 5 for the Rayleigh parameter
in two channel states. Figure 3 (a) shows that, asV increases,
the average admission rate (both with and without a key
queue) increases to the optimum, which is consistent with
Equation (17). In Figure 3 (b), we plot the tail distribution
of instantaneous queue length where the control parameterV
is 60 and theY -axis is log scaled. We can see that with a key
queue, the proportion of time slots with larger queue lengthis
smaller than that without a key queue since the curve without
a key queue has heavier tail. From Figure 3 (c) and (d), we
can see that as we chooseV = 60 (average admission rate is
1.85), the average queue length with a key queue is 5.3, which
is 0.5 less than that without a key queue. Therefore, there isa
10% improvement of average queue length with a key queue
in this scenario.

Note that the reason for using data queues at the input of
wired/wireless links is to average out the variability in the
arrival and the service processes. In our system, as well as a
data queue, we use a key queue, whose function is to average
out the variations in the secrecy rate of the wiretap channel.
Intuitively, by averaging out the variations of the secrecyrate
using a key queue in a variable channel, the queueing delay
performance will be improved.

VII. C ONCLUSION

In this paper, we consider a single-user, single-hop wireless
communication system, in which data packets arrive at a
data queue to be transmitted to a receiver over a block
fading channel, privately from an eavesdropper. We assume
that the eavesdropper listens to the transmitter over another
independently fading channel and that the transmitter onlyhas
knowledge of the distribution of the eavesdropper’s channel.

3Note that the optimal value for Problem (A) ismin[Ā, R̂ave
s

].
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Fig. 2. Performance ofAC and TC related to the solution of Problem (A)
under Heavy-tailed Traffic: (a) Control ParameterV v.s. Average Admission
Rate; (b) Tail distribution of instantaneous queue length;(c) Control parameter
V v.s. Average Queue Length; (d) Admission Rate (Throughput)v.s. Average
Queue length (Delay) Curve

We propose a joint secrecy rate, transmission, and admission
controller based on simple index policies. We show that our
controller achieves the maximum possible data admission rate,
while keeping the data queue stable as well as meeting an
upper bound on the rate of secrecy outage given any arrival
sample path. Also, we illustrate via simulations that the use of
a key queue reduces thequeuing delayfor the data packets,
while serving packets that are admitted at the maximum
admissible rate. This is due to the fact that, the transmission
controller is designed to choose the rate of served packets as
uniformly over time as possible. Finally, for admissible arrival
processes and perfect eavesdropper’s information, we showed
that the work conserving policy is sample-path optimal for
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Fig. 3. Performance Evaluation ofTC and AC for Problem (A) under Real
Traffic Trace

time-averaged queue size.
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APPENDIX A
PROOF OFTHEOREM 1, COROLLARY 1 AND COROLLARY 2

Proof of Equation (15): Note that SRC chooses
R̂s(t) that maximizes V

2 R̂s(t) − q̃s(t)R̂s(t)
[

1 −
∫ Rm(t)

R̂s(t)
f
(

Rs(t)|Rm(t)
)

dRs(t)
]

which means

V
2 R̂s(t) − q̃s(t)R̂s(t)

[

1 −
∫ Rm(t)

R̂s(t)
f
(

Rs(t)|Rm(t)
)

dRs(t)
]

≥ 0 since0 ≤ Rs(t) ≤ Rm(t).
Since the secrecy encoding rate is counted in data

bits, if R̂s(t) > 0, then R̂s(t) ≥ 1. By condition 3)
stated in Theorem 1,1 −

∫ Rm(t)

R̂s(t)
f
(

Rs(t)|Rm(t)
)

dRs(t)] ≥
∫ 1

0 f
(

Rs(t)|Rm(t)
)

dRs(t)] > 0 if R̂s(t) > 0. Let γ ,

mint

∫ 1

0
f
(

Rs(t)|Rm(t)
)

dRs(t)] > 0. Without loss of gen-
erality, let q̃s(0) ≤ V

2γ
. Suppose for allt ≥ 1, q̃s(t − 1) ≤ V

2γ

holds. In slott, if R̂s(t) = 0, then q̃s(t) ≤ q̃s(t − 1) ≤ V
2γ

by Equation (9). Otherwise,̂Rs(t) > 0, and we then have

q̃s(t) ≤ V

2

[

1−
∫

Rm(t)

R̂s(t)
f
(

Rs(t)|Rm(t)
)

dRs(t)

] ≤ V
2γ

. We can then

conclude that̃qs(t) < V
2γ

, ∀t ≥ 0, and limT→∞
q̃s(T )

T
= 0.

From Equation (9), we have

q̃s(t + 1) ≥q̃s(t) − η + R̂s(t)
[

1−
∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

.

By adding from0 to T − 1, dividing by T and takinglim sup
on both sides, we have

lim
T→∞

q̃s(T )

T
≥ lim

T→∞

q̃s(0)

T
− η + lim sup

T→∞

1

T

T−1
∑

t=0

R̂s(t)

[

1 −

∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

,

i.e., lim supT→∞
1
T

∑T−1
t=0 R̂s(t)

[

1 −
∫ Rm(t)

R̂s(t)
f
(

Rs(t)|Rm(t)
)

dRs(t)
]

≤ η.

Note that this result is not related toTC and Equation (15)
holds for both with or without key queue.

Proof of Equation (16): Equation (16) directly follows from
the following lemma:

Lemma 2:Under algorithmAC andTC, we have

qd(t) ≤
βV

2
, q̃k(t) ≤

βV

2
.

Proof: Since U(·) is concave onℜ+
⋃

{0}, we have
U

(

µ(t)
)

≤ U(0) + βµ(t), ∀t ≥ 0, where0 ≤ β = U ′(0) <

∞. Then, V
2 U

(

µ(t)
)

− q̃k(t)µ(t) ≤ V
2 U(0) + βV

2 µ(t) −
q̃k(t)µ(t) whereµ(t) is the solution ofTC.

If βV
2 µ(t) − q̃k(t)µ(t) < 0, then we getV

2 U
(

µ(t)
)

−
q̃k(t)µ(t) < V

2 U(0). However,TC choosesµ(t) that max-
imizes V

2 U
(

µ(t)
)

− q̃k(t)µ(t) which meansV
2 U

(

µ(t)
)

−
q̃k(t)µ(t) ≥ V

2 U(0) since 0 ∈ Π(t). Then, we must have
βV
2 µ(t) − q̃k(t)µ(t) ≥ 0, i.e.,

q̃k(t)µ(t) ≤
βV

2
µ(t). (22)

We now prove the result by induction. Without loss of gen-
erality, let q̃k(0) ≤ βV

2 . Suppose for allt ≥ 1, q̃k(t−1) ≤ βV
2

holds. In slott, if µ(t) = 0, then q̃k(t) ≤ q̃k(t − 1) ≤ βV
2 by

Equation (10) and Equation (11). Otherwise,µ(t) 6= 0, and by
Equation (22), we havẽqk(t) ≤ βV

2 .

qd(t) ≤
βV
2 can be obtained using the same argument and

it holds for both with and without key queue since it is only
related toAC.

Proof of Equation (18): We define the Lyapunov function
L(q̃s(t)) = (q̃s(t))

2 and∆(q̃s(t)) = L(q̃s(t + 1))− L(q̃s(t)).
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From Equation (9), we have
(

q̃s(t + 1)
)2

≤
(

q̃s(t) − η
)2

+ 2q̃s(t)R̂s(t)
[

1−
∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

+ R2
max

≤
(

q̃s(t)
)2

+ 2q̃s(t)R̂s(t)
[

1−
∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

− 2ηq̃s(t)

+ η2 + R2
max,

and

∆(q̃s(t))

≤V R̂s(t) − 2

{

V

2
R̂s(t) − q̃s(t)R̂s(t)

[

1−

∫ Rm(t)

R̂s(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

}

− 2ηq̃s(t) + η2 + R2
max

≤V R̂s(t) − 2

{

V

2
R̂′

s(t) − q̃s(t)R̂
′
s(t)

[

1−

∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

}

− 2ηq̃s(t) + η2 + R2
max

≤V R̂s(t) − V R̂′
s(t) + 2q̃s(t)

{

R̂′
s(t)

[

1−

∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

− η

}

+ η2 + R2
max, (23)

since0 ≤ R̂′
s(t) ≤ Rm(t).

Lemma 3:

1

V
lim sup
T→∞

1

T

T−1
∑

t=0

q̃s(t)

{

R̂′
s(t)

[

1−

∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

− η

}

≤ O(
1

V
).

Proof: Note that

lim sup
T→∞

1

T

T−1
∑

t=0

{

R̂′
s(t)

[

1−

∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

− η − δ

}

< 0. (24)

Construct an auxiliary queue with the following evolution:

q̄∗s(t + 1) =
(

q̄∗s(t) − η − δ
)+

+ R̂′
s(t)

[

1−
∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

,

then with Equation (24) and by applying Lemma 2 in [23],

q̄∗s(t) is strongly stable. Using the idea similar to [20], we
have the fact that if any queue represented withQ(t) is
strongly stable, thenlim supT→∞

Q(T )
T

= 0. Therefore, we
havelim supT→∞

q̄∗

s
(T )
T

. By multiplying q̃s(t) for both sides

of the inequality q̄∗s(t + 1) ≥ q̄∗s(t) − η − δ + R̂′
s(t)

[

1 −
∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

and rearranging terms, we

obtain q̃s(t)

{

R̂′
s(t)

[

1 −
∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

−

η

}

≤ q̃s(t)
[

q̄∗s(t + 1) − q̄∗s (t) + δ
]

. By summing from0 to

T − 1, dividing by T and takinglim supT→∞, we have

1

V
lim sup
T→∞

1

T

T−1
∑

t=0

q̃s(t)

{

R̂′
s(t)

[

1−

∫ Rm(t)

R̂′

s
(t)

f
(

Rs(t)|Rm(t)
)

dRs(t)
]

− η

}

≤
1

V
lim sup
T→∞

1

T

T
∑

t=1

q̄∗s(t)
(

q̃s(t − 1) − q̃s(t)
)

+

+
1

V
lim sup
T→∞

q̃s(T )q̄∗s(T ) − q̃s(0)q̄∗s (0)

T

+ lim sup
T→∞

1

T

T
∑

t=1

q̃s(t)

V
δ

≤
Rmax+ η

V
lim sup
T→∞

1

T

T−1
∑

t=0

q̄∗s(t) +
δ

V

V

2γ
= O(

1

V
) +

δ

2γ
,

since the average queue length of the auxiliary queue remains
stable and is not related toV , and q̃s(t) < V

2γ
, ∀t from

the proof of Equation (15). By lettingδ → 0, we finish the
proof.

By summing from0 to T − 1, dividing by T andV , taking
lim infT→∞ over Equation (23), combined with Lemma 3, we
obtain Equation (18).

Proof of Equation (20): We defineL(q̃k(t)) = (q̃k(t))2 and
∆(q̃k(t)) = L(q̃k(t + 1))−L(q̃k(t)). From Equation (10), we
have
(

q̃k(t + 1)
)2

≤
(

q̃k(t) − ǫ
)2

+
(

µ(t) − R̂s(t) + 1o(t)
)2

+ 2
(

q̃(t) − ǫ
)+(

µ(t) − R̂s(t) + 1o(t)
)

≤
(

q̃k(t)
)2

+ ǫ2 +
(

1 + Rmax
)2

+ 2ǫRmax

+ 2q̃k(t)1o(t) + 2q̃k(t)µ(t) − 2q̃k(t)R̂s(t),

then

∆(q̃k(t))

≤V U
(

µ(t)
)

− V U
(

µ(t)
)

+ ǫ2 +
(

1 + Rmax
)2

+ 2ǫRmax

+ 2q̃k(t)1o(t) + 2q̃k(t)µ(t) − 2q̃k(t)R̂s(t)

≤V U
(

µ(t)
)

+ ǫ2 +
(

1 + Rmax

)2
+ 2ǫRmax+ βV 1o(t)

− 2

[

V

2
U

(

µ(t)
)

− q̃k(t)µ(t)

]

− 2q̃k(t)R̂s(t).
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It is apparent that TC is trying to maximize the
value of the term

[

V
2 U

(

µ(t)
)

− q̃k(t)µ(t)
]

. Since
the optimal solution for Problem (A) with objective
maxµ lim infT→∞

1
T

∑T−1
t=0 U

(

µ(t)
)

may not be unique,
we let U

′ be the optimal solution set and~µ′ ∈ U
′ be

any optimal solution, for Problem (A) with objective
maxµ lim infT→∞

1
T

∑T−1
t=0 U

(

µ(t)
)

given any sample path.
Since the constraint setΠ(t) is queue dynamic related, it is
possible thatµ′(t) /∈ Π(t).

Lemma 4:In slot t, if by solving TC, we get
[

V
2 U

(

µ(t)
)

−

q̃k(t)µ(t)
]

<
[

V
2 U

(

µ′(t)
)

− q̃k(t)µ′(t)
]

, then µ(t) < µ′(t)

and1o(t
′) = 1 for somet′ ≤ t and t − t′ < ∞.

Proof: In time slot t, let µm(t) be the value that maximize
the unconstrained objective functionV2 U(µ(t)) − q̃k(t)µ(t).
Claim 1: qk(t) + R̂s(t) ≤ Rm(t). Otherwise, Π(t) =
[0, Rm(t)] which is not queue dynamic related, then
[

V
2 U

(

µ(t)
)

− q̃k(t)µ(t)
]

≥
[

V
2 U

(

µ′(t)
)

− q̃k(t)µ′(t)
]

.
Claim 2:µm(t), µ′(t) > qk(t)+R̂s(t). If µm(t), µ′(t) ∈ Π(t),

we must have
[

V
2 U

(

µ(t)
)

− q̃k(t)µ(t)
]

≥
[

V
2 U

(

µ′(t)
)

−

q̃k(t)µ′(t)
]

, thenµ′(t) > qk(t)+R̂s(t). If µm(t) < 0, we will

have V
2 U(0) =

[

V
2 U

(

µ(t)
)

− q̃k(t)µ(t)
]

≥
[

V
2 U

(

µ′(t)
)

−

q̃k(t)µ′(t)
]

, thenµm(t) > qk(t) + R̂s(t).
By the above claims,µ(t) < µ′(t) andµ(t) < µm(t). Sup-

poseµ(t) < qk(t)+R̂s(t), since the objective function ofTC is
concave inµ(t), we can increaseµ(t) to increase the objective
without violating the constraint. Thus,µ(t) = qk(t) + R̂s(t)
and 1o(t) = 1. It is also possible that1o(t

′) = 1 for some
t′ < t and R̂s(τ) = 0, ∀τ ∈ [t′, t]. Note thatt − t′ < ∞,
otherwise,lim supT→∞

1
T

∑T−1
t=0 R̂s(t) = 0 which contradicts

Equation (18).
Let N = max{n : for any t ≥ 0, R̂s(τ) = 0, ∀τ ∈

[t, t + n]}. By using Lemma 4 andµ(t), µ′(t) ≤ Rm(t) ≤
Rmax, ∀t ≥ 0, we haveN < ∞ and

∆ ≤V U
(

µ(t)
)

− V U
(

µ′(t)
)

+ ǫ2 +
(

1 + Rmax
)2

+

2ǫRmax+ 2q̃k(t)
[

µ′(t) − R̂s(t)
]

+

V (β + NU(Rmax))1o(t). (25)

Lemma 5:

1

V
lim sup
T→∞

1

T

T−1
∑

t=0

q̃k(t)[µ′(t) − R̂s(t)] ≤ O(
1

V
).

Proof: Note that even the optimal solution should satisfy the
conservation rule

T−1
∑

t=0

µ′(t) −

[

qk(0) +

T−1
∑

t=0

R̂′
s(t)

]

≤ 0,

then
T−1
∑

t=0

(

µ′(t) − R̂′
s(t) −

δ

2

)

< qk(0),

where δ can be arbitrarily small. By divided by
T and taking lim supT→∞ of both sides, we have

lim supT→∞
1
T

∑T−1
t=0

(

µ′(t) − R̂′
s(t) − δ

2

)

< 0.

Similar to the proof of Equation (18), we can obtain
lim supT→∞

1
T

∑T−1
t=0

(

R̂′
s(t) − R̂s(t) − δ

2 − O( 1
V

)
)

< 0.
Therefore,

lim sup
T→∞

1

T

T−1
∑

t=0

(

µ′(t) − R̂s(t) − δ − O(
1

V
)
)

< 0. (26)

Construct an auxiliary queue with the following evolution:

q̄∗k(t + 1) =
(

q̄∗k(t) − R̂s(t) − δ − O(
1

V
)
)+

+ µ′(t),

then with Equation (26) and by applying Lemma 2 in [23],
q̄∗k(t) is strongly stable. The remaining argument is similar as
in Lemma 3.

Lemma 6:If q̃k(t) ≤ βV
2 , thenqk(t) ≤ β V

2 .
Proof: First, we provide a rough idea of the proof: by
exploring the relations betweeñqk(t) and qk(t), we notice
that asqk(t) increases from0 to at mostβ V

2 , q̃k(t) will hit
zero at some slot. Oncẽqk(t) becomes zero,TC results in
µ(t) = min[qk(t) + R̂s(t), Rm(t)]. Since R̂s(t) ≤ Rm(t),
qk(t) will either be zero or decrease. We now give the proof
details.

Without loss of generality, letqk(0) = 0. We have the
following cases:
i) if µ(t) ≥ R̂s(t), 1o(t) = 0 and q̃k(t) > 0, then
qk(t + 1) ≤ qk(t) and q̃k(t + 1) − q̃k(t) ≤ qk(t) − qk(t + 1),
i.e., even ifq̃k(t) increases, the increment is no larger than the
decrement ofqk(t);
ii) if µ(t) < R̂s(t), 1o(t) = 0, then if q̃k(t + 1) > 0,
q̃k(t)−q̃k(t+1) ≥ qk(t+1)−qk(t), i.e., the decrement of̃qk(t)
is no less than the increment ofqk(t), else if q̃k(t + 1) = 0,
it goes to case iv);
iii) if 1o(t) = 1, then qk(t + 1) = 0 by Equation (3) and
Equation (11);
iv) if q̃k(t) = 0, by Equation (13),TC choosesµ(t) =
min[qk(t) + R̂s(t), Rm(t)], then eitherqb(t + 1) = 0, or
qk(t + 1) = qk(t) − Rm(t) + R̂s(t) ≤ qk(t).

From the above discussion, we haveqk(t) ≤ β V
2 .

Lemma 7:If both the key queueqk(t) and virtual key queue
q̃k(t) are strongly stable, i.e.,

lim sup
T→∞

1

T

T−1
∑

t=0

(

qk(t) + q̃k(t)
)

< ∞,

then lim supT→∞
1
T

∑T−1
t=0 1o(t) ≤ ǫ.

Proof: By Lemma 2 and Lemma 6,lim supT→∞
qk(T )

T
=

lim supT→∞
q̃k(T )

T
= 0. From Equation (10), we have

q̃k(t + 1) ≥ q̃k(t) − ǫ + 1o(t) + µ(t) − R̂s(t).

Note thatqk(t + 1) = qk(t) − µ(t) + R̂s(t). By adding from
0 to T − 1, dividing by T and takinglim sup on both sides,
we have

lim sup
T→∞

q̃k(T )

T
≥ lim

T→∞

q̃k(0)

T
− ǫ + lim sup

T→∞

1

T

T−1
∑

t=0

1o(t)

+ lim
T→∞

qk(0) − qk(T )

T
.

Since lim supT→∞
q̃k(T )

T
= limT→∞

q̃k(0)
T

=
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limT→∞
qk(0)

T
= limT→∞

qk(T )
T

= 0, so we get
lim supT→∞

1
T

∑T−1
t=0 1o(t) ≤ ǫ.

By summing from0 to T − 1, dividing by T andV , taking
lim infT→∞ over Equation (25), combined with Lemma 2,
Lemma 5, Lemma 6, and Lemma 7, we get

lim inf
T→∞

1

T

T−1
∑

t=0

U(µ(t)) ≥ lim inf
T→∞

1

T

T−1
∑

t=0

U(µ′(t)) − O(
1

V
)

− ǫ(NU(Rmax) + β).

By letting ǫ → 0, we obtain Equation (20).
Proof of Equation (17) and Equation (19): We define
L(qd(t)) = (qd(t))

2, and∆(qd(t)) = L(qd(t+1))−L(qd(t)).
By Equation (2), we have

∆ =∆(qd(t)) ≤ V U(R(t)) − 2

[

V

2
U(R(t)) − qd(t)R(t)

]

+ A2(t) + R2
max− 2qd(t)µ(t) (27)

(P1) max
~R

lim inf
T→∞

1

T

T−1
∑

t=0

R(t)

(P2) max
~R

lim inf
T→∞

1

T

T−1
∑

t=0

U(R(t))

s.t. qd(t + 1) =
(

qd(t) − µ(t)
)+

+ R(t),

0 ≤ R(t) ≤ A(t),

lim sup
T→∞

1

T

T−1
∑

t=0

[

R̂s(t) − µ(t)
]

= 0,

lim sup
T→∞

1

T

T−1
∑

t=0

qd(t) < ∞,

Lemma 8:(P1) and (P2) have different objective functions
under the same set of constraints. Let~R∗ be a maximizer of
(P2), then it is also a maximizer of (P1).
Proof: Suppose there exists~R∗

1 such

lim inf
T→∞

1

T

T−1
∑

t=0

R∗(t) < lim inf
T→∞

1

T

T−1
∑

t=0

R∗
1(t),

then there exists~R∗
2 such thatR∗(t) ≤ R∗

2(t) ≤ A(t), ∀t ≥ 0
and

lim inf
T→∞

1

T

T−1
∑

t=0

R∗(t) < lim inf
T→∞

1

T

T−1
∑

t=0

R∗
2(t)

≤ lim inf
T→∞

1

T

T−1
∑

t=0

R∗
1(t).

i.e., there are infinitely many slots in whichR∗(t)−R∗
2(t) <

0. Since U(·) is strictly concave,U(R∗(t)) − U(R∗
2(t)) <

βm(R∗(t) − R∗
2(t)) < 0 if R∗(t) − R∗

2(t) < 0, where0 <

βm = min{
U(R∗(t))−U(R∗

2(t))
R∗(t)−R∗

2(t) : R∗(t) − R∗
2(t) < 0}. Thus,

lim inf
T→∞

1

T

T−1
∑

t=0

U(R∗(t)) < lim inf
T→∞

1

T

T−1
∑

t=0

U(R∗
2(t)),

which contradicts the fact that~R∗ is a maximizer of (P2).
Note thatqk(t+1) = qk(t)+R̂s(t)−µ(t). Then by summing

from 0 to T − 1, dividing by T and applying Lemma 6, we
have the fact thatTC with a key queue results into

lim sup
T→∞

1

T

T−1
∑

t=0

[

R̂s(t) − µ(t)
]

= 0, (28)

For the scenario without a key queue, Equation (28) trivially
holds sinceµ(t) = R̂s(t), ∀t. Problem (A) is then reduced to
(P1). By Lemma 8,~R∗ is also the maximizer of Problem (A).
SubstitutingR∗(t) into Equation (27), we obtain

∆ ≤V U(R(t)) − V U(R∗(t)) + A2(t) + R2
max

+ 2qd(t)
[

R∗(t) − µ(t)
]

.

Note thatlim supT→∞
1
T

∑T−1
t=0

[

R∗(t) − R̂′
s(t))

]

≤ 0 and
lim supT→∞

1
T

∑T−1
t=0 A2(t) < ∞. combining with Equa-

tion (28), Equation (18) and using the similar arguments as
in Lemma 3 and Lemma 5, we have

1

V
lim sup
T→∞

1

T

T−1
∑

t=0

qd(t)[R
∗(t) − µ(t)] ≤ O(

1

V
).

Then, we further obtain

lim inf
T→∞

1

T

T−1
∑

t=0

U(R(t)) ≥ lim inf
T→∞

1

T

T−1
∑

t=0

U(R∗(t)) − O(
1

V
),

where ~R∗ is the maximizer of (P2), (P1) and Prob-
lem (B). Note that lim infT→∞

1
T

∑T−1
t=0 U(R(t)) ≤

lim infT→∞
1
T

∑T−1
t=0 U(R∗(t)) due to the optimality of~R∗.

By lettingV → ∞, ~R is also a maximizer of (P2). By applying
Lemma 8 again, we have

lim inf
T→∞

1

T

T−1
∑

t=0

R(t) → lim inf
T→∞

1

T

T−1
∑

t=0

R∗(t) as V → ∞.

APPENDIX B
PROOF OFTHEOREM 2

It is sufficient to show that∀t ≥ 0, the policy gives
the smallest queue length among all policies, i.e.,qµ

d (t) ≤
qγ
d (t), ∀t ≥ 0 for any policy γ, where qµ

d and qγ
d are the

data queue sizes under policyµ and γ, respectively. We
show this by induction. Initially, the data queue is empty, i.e.,
qd(0) = qk(0) = 0.
I) Clearly, qµ

d (1) ≤ qγ
d (1) is true regardless of the channel

rates and the number of arrivals at timet = 1.
II) Supposeqµ

d (T ) ≤ qγ
d (T ) for T ≥ 1. Under policyµ, the

queue evolution follows:

qµ
d (t + 1) =qµ

d (t) − µ(t) + A(t),

qµ
k (t + 1) =qµ

k (t) − µ(t) + Rs(t),

and for policyγ, the queue evolution follows:

qγ
d (t + 1) =

(

qγ
d (t) − γ(t)

)+

+ A(t),

qγ
k (t + 1) =qγ

k (t) − γ(t) + Rs(t).
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Thus, we have

qµ
d (T ) =

T−1
∑

t=0

A(t) −

T−1
∑

t=0

µ(t),

qµ
k (T ) =

T−1
∑

t=0

Rs(t) −

T−1
∑

t=0

µ(t),

qγ
d (T ) ≥

T−1
∑

t=0

A(t) −

T−1
∑

t=0

γ(t),

qγ
k (T ) =

T−1
∑

t=0

Rs(t) −

T−1
∑

t=0

γ(t),

which implies

qµ
k (T ) + Rs(T ) =

T
∑

t=0

Rs(t) −

T
∑

t=0

A(t)

+ qµ
d (T ) + A(T ), (29)

qγ
k (T ) + Rs(T ) ≤

T
∑

t=0

Rs(t) −

T
∑

t=0

A(t)

+ qγ
d (T ) + A(T ). (30)

(i) If
∑T

t=0 Rs(t) ≤
∑T

t=0 A(t), then

µ(T ) =min{qµ
k (T ) + Rs(T ), Rm(T )},

γ(T ) ≤min{qγ
k (T ) + Rs(T ), Rm(T )},

and we also have

qµ
d (T + 1) =qµ

d (T ) − µ(T ) + A(T ),

qγ
d (T + 1) ≥qγ

d (T ) − γ(T ) + A(T ),

then combine with Equation (29) and (30), we have

qµ
d (T + 1) − qγ

d (T + 1)

≤qµ
d (T ) − qγ

d (T ) + γ(T ) − µ(T ) (31)

≤qµ
k (T ) − qγ

k (T ) + γ(T ) − µ(T ), (32)

(i.1) whenqγ
k (T ) + Rs(T ) ≤ Rm(T ) andqµ

k (T ) + Rs(T ) ≤
Rm(T ), then continue from Equation (32), we have

qµ
d (T + 1) − qγ

d (T + 1)

≤qµ
k (T ) − qγ

k (T ) + qγ
k (T ) + Rs(T ) − µ(T )

=qµ
k (T ) − qγ

k (T ) + qγ
k (T ) − qµ

k (T ) = 0.

(i.2) whenqγ
k (T ) + Rs(T ) ≤ Rm(T ) andqµ

k (T ) + Rs(T ) >
Rm(T ), then continue from Equation (31), we have

qµ
d (T + 1) − qγ

d (T + 1)

≤qµ
d (T ) − qγ

d (T ) + qγ
k (T ) + Rs(T ) − µ(T )

=qµ
d (T ) − qγ

d (T ) + qγ
k (T ) + Rs(T ) − Rm(T )

≤qµ
d (T ) − qγ

d (T ) ≤ 0,

by the hypothesis.
(i.3) whenqγ

k (T ) + Rs(T ) > Rm(T ) andqµ
k (T ) + Rs(T ) ≤

Rm(T ), then continue from Equation (32), we have

qµ
d (T + 1) − qγ

d (T + 1)

≤qµ
k (T ) − qγ

k (T ) + Rm(T ) − µ(T )

<qµ
k (T ) − qγ

k (T ) + qγ
k (T ) + Rs(T ) − µ(T )

=qµ
k (T ) − qγ

k (T ) + qγ
k (T ) + Rs(T ) − qµ

k (T ) − Rs(T ) = 0.

(i.4) whenqγ
k (T ) + Rs(T ) > Rm(T ) and qµ

k (T ) + Rs(T ) >
Rm(T ), then continue from Equation (31), we have

qµ
d (T + 1) − qγ

d (T + 1)

≤qµ
d (T ) − qγ

d (T ) + Rm(T ) − µ(T )

=qµ
d (T ) − qγ

d (T ) + Rm(T ) − Rm(T ) ≤ 0.

Thus,qµ
d (T + 1) ≤ qγ

d (T + 1) if
∑T

t=0 Rs(t) ≤
∑T

t=0 A(t).
(ii) If

∑T
t=0 Rs(t) >

∑T
t=0 A(t), then

µ(T ) =min{qµ
d (T ) + A(T ), Rm(T )},

γ(T ) ≤min{qγ
k (T ) + Rs(T ), Rm(T )},

(ii.1) whenqµ
d (T )+A(T ) ≤ Rm(T ), we haveµ(T ) = qµ

d (T )+
A(T ), andqµ

d (T + 1) = 0 ≤ qγ
d (T + 1).

(ii.2) when qµ
d (T ) + A(T ) > Rm(T ), then

qµ
d (T + 1) − qγ

d (T + 1)

≤qµ
d (T ) − qγ

d (T ) + γ(T )− Rm(T )

≤0 + Rm(T ) − Rm(T ) = 0.

Thus,qµ
d (T +1) ≤ qγ

d (T +1) if
∑T

t=0 Rs(t) >
∑T

t=0 A(t) as
well.
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