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Abstract—We consider a single-user, single-hop wireless com- laws of wireless networks with secrecy have been addressed.
munication system, in which data packets arrive at a data quee |n [14], [15], single hop uplink scenario has been considere
tol be transmitted to a receiver over a block fading channel, in which nodes enqueue arriving private and open data pecket
privately from an eavesdropper. We assume that the eavesdpper . - .
listens to the transmitter over another independently fading to be transmmed to a base Stat'c_m.over b|QCk fad_'ng channel
channel and that the transmitter only has knowledge of the A node is scheduled to transmit information privately from
distribution of the eavesdropper's channel. We propose a jot the other nodes and rate is controlled carefully to maximize
secrecy rate, transmission, and admission controller baseon a an overall utility. The solution provided follows up on the
simple index policy that only relies on the distribution of the stochastic network optimization framework (e.g., as #dat

eavesdropper’s channel rate. Given any arrival sample pathwe . . . . .
show that our controller achieves the maximum possible data in [16]-[20]) and generalizes the uplink scenario to incugte

admission rate, while keeping the data queue stable as welsa Secrecy as a quality of service requirement
meeting an upper bound on the rate of secrecy outage, i.e.,¢h  In a separate direction, [21] proposed the idea of using a
fraction of data packets that are in part or fully decodable by  key queue in a single user system. There, a key queue is kept
the eavesdropper. While the solution is not unique, i.e., #re are 4 the transmitter and the receiver, separately from the dat
other schemes that can achieve the aforementioned performae, . L
we show that our scheme also achieves a low queuing delay forqugues. In;tead of us!ng_ the entlrg mstantaneou_s _Se,ca.m:y r
the data packets enqueued at the data queue by Striking the fOI‘ |nf0rmat|0n transmission at a.” tlmeS, some Of Iitis |HU
correct balance between direct secrecy encoding for data tsi to transmit key bits, generated randomly at the transmitter
and secret key generation and utilization. To obtain this rsult, These stored key bits are used later to secure informatten bi
our transmission controller makes use of the secret key qu&lto i g;ch g way that, even when the instantaneous secrecy rate
smooth out the variations in the achievable secrecy rate of the . . : . . . .
associated fading wiretap channet. is 0, information bits can still be transmitted 'Fo the destion .
securely from the eavesdropper. Hence, the idea of keyrghari
Key Words — physical layer secrecy, key generation, delayajllows one to “bank” secrecy rates at certain times to be
utilized at other times. It is shown in [22] that, using this
. INTRODUCTION idea, a long-ternconstanisecrecy rate, identical to the secrecy
%pacity (expected instantaneous secrecy rate) of thenehan

Motivated by the seminal paper [1], there have been a lar achievable. Thus, [22] addresses decoding delays aral doe

number of investigations (e.g., [2]-{8]) on wireless infattion ot deal with the dynamics of the data arrival process
theoretic secrecy. These studies have significantly emtand Here we cons'd)ér 2 sinale-user. sinale-ho P 'releés com-
our understanding of the basic limits and principles of the " y W Ider a singie-user, sing b Wi

desi . . i mHnlcatlon system, in which data packets arrive at a data
esign and the analysis of secure wireless communlcat|oueue to be orivatelv transmitted to the receiver over a
systems. Despite the significant progress in informati@oth ql ok fadin crr:annel yfrom an eavesdropoer that listens to
retic secrecy, most of the work has focused on physical Iayt g transmi%ter over 'another inde endenpti3 fading channel
techniques. The application of wireless information tletior P y g cha

secrecy remains mainly unresolved as it relates to the desig only the distribution of which is k|_10\_/vn at the transmitter.
: o We formulate the problem to maximize the long-term data
wireless networks and its impact on network control and pro-

: . admission rate, subject to the stability of the data queue as
tocol development. Indeed, our understanding of the itagrp .
well as a bound on the rate of secrecy outage. Here, we define

between the secrecy requirements and the critical fumi:lt-ionthe rate of secrecy outage as the fraction of data packets tha
ities of wireless networks, such asheduling, routing, and are in part or f IIydecogc]iabIe by the eavesdro eF; A brute-
congestion controtemains very limited. np Uy ; > DY v Pper. u
- flplrce approach to solving this problem is to try to use the
To that end, there have been some recent efforts to utileze th_ .

- ; : - .entire channel rate to transmit data and to choose the secrec
insights drawn from the aforementioned investigationsren i : 2

encoding rate such that the secrecy outage constraint is met

formation theoretic secrecy to build secure wireless netsio : - . .
In [9]—[13] the fundamental capacity and connectivity sl While this aforementioned brute-force approach indeeddea
to a greedy solution that achieves the maximum admission
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To that end, we propose a joint secrecy rate, transmission, l&ﬂ shared key queues lR((t)

and admission controller based on a simple, easily imple- I

mentable, index policy. We show that, relative to the greedy data “0 ® Ck(tﬂ%
solution, our scheme provides a much lower queuing delay for queue He Q) ®
the data packets enqueued at the data queue. To achieve this, 1] 3 xmit Rn®) | ecy
our transmission controller introduces two unique feature () MOEITY) R0

First, it makes use of the secret key queue to smooth out

the variations in the achievable secrecy rate of the ageacia

fading wiretap channel. It chooses the correct balancedmiw
direct secrecy encoding for data bits and secret key géoerat”
and utilization. Second, it introduces a concave utilitydtion,
which is not in the original optimization formulation, and . .
. . and the eavesdropper channel are stationary and ergodic
exploits it to engineer theecond ordeeffects caused by the =
o : —processesR,;, = {Rn(0), Rn(1),...,Rn(T — 1),...} and
variability of the secrecy rate. The proposed algorithm is '3 .
. . : . e = {Re(0), Re(1),...,Re(T — 1),...}, respectively. We
cross-layer algorithm that combines physical, link, arahs$r ! ;
. ; assume that at any timethe transmitter has causal knowledge
port layers. Our scheme strikes the optimal balance between = . ) e
: . . o R,,, i.e., up to timet, but only the distribution of the
secret key generation and information transmission in rord® ) o
S o . . eavesdropper’'s channel condition. We also assume that the
to maximize the network utility. While the cryptographiceus _; L : .
o ) . time slots are long enough for sufficient averaging of thes@oi
of the key bits is via a simple one-time pad, our scheme does ;| ~. . : .
i and via Wyner encoding [1], the achievable instantaneous
not fundamentally rule out other symmetric-key-basedesgcr . ; )
mechanisms secrecy rate at a given slots identical toR, (t) = (R, (t) —
: + + —

We also investigate the special case in which perfect ifge(t) " € [0,Rm(t)], ¥t > 0, where (-)* = max][-,0].
formation of the eavesdropper’s instantaneous channeligai -6t f(Rs(t)|Rm(t)) denote the conditional distribution of
available to the transmitter. We provide a scheme which f& (1), given Ry, (t), which can be calculated at the transmitter
sample-path delay optimal for any given sample path of tffs €ach time slott, using the observation ofz,(¢) and
arrival and channel gain processes. f(Re). In detail, f_(Rs(t”Rm(t)) = [(Rm(t) — Ry(1)), if

To summarize our main contributions in this paper: 2f<RR&()t) < Ran(); f(RS(t”Rm(t)) = 0 for all other values
« Our work is the first that directly aims to achieve a , °. ' . : "

: . o In any given time slott, let Rs(t) denote the secrecy

low queuing delayfor the private packets that lie in the . .

transmission aueues. For this. we use a svstem that sh erré%odmg rate that the secrecy rate controller choosesnat ti

ISSION qUEUES. 1S, We U y %, i.e., in the secrecy coding structure [1R.(t) is the

random secret key bits simultaneously with 'nformat".)ﬂumber of bits to be transmitted privately, encapsulated by

e e oot e oSSl (1) 1) randomizton bits. Threfore, i thctul
as he op é’ecrecy rate is less than the controller's secrecy encoding
and data transmission in order to make the secrecy r?é?e e Ry (t) < I ) then &2 (#) — Ry(#) amount of the
. . P y LCAlg S ’ S - S

sm_o.olth. A. unique aspect of our _c_:ontroller IS _that, Ifransmitted data that is supposed to be secure is actuaily no
art|f|c_|ally m_troduces a convex _ut|l|ty function in thesecure which meanssecrecy outageccurs. We will discuss
s_olutlon, Wh'Ch.a"OWS fossmoothingthe secrecy rate in the implications of a secrecy outage later on. The i&ajé)
time, resulting in lower delays. i§ utilized in two possible ways: part of it is used to dirgctl

» We only assume the knowledge of the distribution ®ncode data from the data queue and the remaining part is

the e_avesdropper Chaf‘”e" \.N'th this assump'uon, emstmged to transmit randomly generated key bits to be stored at
solutions achieve equivocation by encoding across mul

. .- . e key queues, both at the transmitter and the receiveh (wit
tiple blocks, long enough for sufficient averaging of the,~ . :

! . °.~ . Identical content). The size of the data and the key buffers a
eavesdropper channel. However, since our objective is t0

achieve a low delay, such solutions are not applicable. fesume o be infinite.

that end, our secrecy rate controller chooses the rate atf‘s s?qwn ;n '19' 1,tthe img_l:m O]f ttﬁ.tal dd?ta_transmntfc:jat
which we encode information in each packet in order f 'me 'St “Ii )- b'tpalra (e ) IIS) k?'t b Isb'taxil)llg encryrtJ_e
keep the fraction of bits that experience a secrecy outaﬁ?%'ng p(1) key Dits by a simple bit-by-bit XOR operation.
- he remainingu(t) — i (¢) bits are secured using the chosen
below a pre-specified threshold. = . - .
secrecy rateR;(t). Since we assume thak,(t) is fully
utilized, the remaining portion not used to secure the euirre
Il. SYsTEm MODEL data transmission is used to generRigt) key bits. The data

We consider the single-user system illustrated in Fig. &Tivals to the system is represented by the arrival process
in which the transmitter enqueues data packets to be traf<k(t)}. The data queue state is denoteddyt).
mitted to the receiver over the main channel at a fixed The Lindley equation that models the state evolution of the
power, privately from an eavesdropper that overhears tkey queue is
transmission over a separate channel. Time is slotted, and
we assume that the acrr:ievable rates (the maximum mutual ar(t+1) = ailt) + Bi(t) = pe(®), @)
information between the input and the output) of the maiwhere0 < p(t) < gi(t) + Rk (t). In time slott, gx(t) is the

ig. 1. System model



key queue length, i.e., the amount of key bits. Sifg€t) is In the long run, we need to keep the average number of non-
the generated key bits stored in the key queue @pd) is secure bits (and thus the fraction of bits experiencing eesgc
the key bits utilized from the key queue, the conditior< outage) bounded by a small predetermined threshold.

pi(t) < qi(t) + Ryi,(t) ensures that the used key bits should \ve assume a general data arrival proces$(t)} at the

not egce_ed the instantaneous inpl_Jt key bits_and the availamput of the data queue. In slgtonly a portion R(t), of all the

key bits in the key queue. We provide an equivalent key queyfais are admitted into the data queue in order to keep the

model in the following lemma along with the constraints thajaia queue stable and the average number of non-secure bits

specify the relationships between the parameters. bounded. All the admitted packets are required to be seryed b
Lemma 1:Equation (1) that models the evolution of th&ne system eventually. Our objective is to maximize the Jong

key queue can be replaced by the state evolution equatighy, average admitted data rate. Our problem can be formally

ax(t + 1) = qx(t) + Rs(t) — p(t) with the constraints jascribed as follows:

(() (S) /Lk(t() ))S M(t()) < AHEiI)l[Qk(t) + Rs(t)aRm(t)] and 1 T-1

w(t) — pw(t)) + Ri(t) = Rq(t). ‘s

Proof: Note that the system parameters must satisfy: (4) A, g%fgk hfriloréf T ; R(?)

(1) 0 < ug(t) < p(t) < Ry (t): the amount of key bits used -

to secure data does not exceed the amount of total trandmitte>" ga(t +1) = (qa(t) - fL(t))Jr +R(1), 2)
data, and the total transmission rate is bounded by the fate o ae(t +1) = qu(t) + Rs(t) — p(?), )
the maiF channel. ' R ) ) 0 < R(t) < A(t), (4)
(2) 0 < [u(t) — pr(t)] + Ri(t) = Rs(t) < Rpn(t): the chosen . -

instantanéous se((:recy rat((e is fully(utilizeL(t)(— pr(t) is the 0 < pu(t) < p(t) < minlgi(t) + Bs (), B (D), ()
amount of transmitted data from the data queue in skd 1=

the rest of it is used to generate key bits. Furthermore, we h;njipf qa(t) < oo, ©6)
know that the secrecy rate cannot exceed the main channel ;:,01

rate, i.e.,0 < Ry(t) < R (). Jim sup B ™ () {1_

(3) pr(t) < min{ R, (t), qx(t) + R(t)}: the amount of used T—oo I =27

key bits cannot exceed the main channel rate, since we cannot Ron ()

send data at a higher rate even if all of it is secured using / f(RS(t)|Rm(t))dR5(t)] <, (7
key bits, i.e.,ux(t) < R, (t). Also, we cannot use more key R(t)

bits than the amount available in the key queue, jig(#) < (u(t) — k(1)) + Ri(t) = Ry(t), (8)

qr(t) + R (t). : . : .
Observation 1:Constraints (1) and (2) directly implg < where Constraint (2) describes the data queue evolutidm wit

pr(t) < pu(t) < Ryn(t) and (u(t) — pi(t)) + Ris(t) = Ry(b). R(t) as_the arrival process am:(_t) as the service process.

Observation 2:By Constraints (2) and (3)u(t) = Rs(t) o Constramt 3) descnb_es the equivalent key queue eval#on

R (8) 11 (£) < qu(6)+ Rio(0)+ B () — Ri(£) = qu (8)+Ro(£). N Lemrr_la_ 1. Constramt (4) bounds the actual a_mo;bﬂt,),

Observation 3The key state evolution is equivalentdg(t - of data |njected_|nto the data queue by the available amount

1) = qu(t)+Ri (1) —pn(t) = qk(t)+f%s(t)—u(t) by Constraint of dataA(_t) at tlme_t. Constraint (5) states thaF the amount

). of transmitted data is bound_ed by both the main channel ra_te
Observations 1,2,8omplete the proof. m and the amount of keys available, and the amount of key bits

used to secure data does not exceed the amount of transmitted

[ll. PROBLEM FORMULATION data. Constraint (6) guarantees data queue stability.|Rbhaa
If at any given slott, the secrecy encoding rate is larger,(t) [1 _ f}{;yzt()t) f(RS(t)|Rm(t))dRs(t)} is the transmitted

than the actual secrecy rate, i.&,(t) > R;(t), information non-secure data bits in time slat Then constraint (7) states

is leaked to the eavesdropper in that time slot, which WRat the long-term average rate of non-secure bits should be
refer to as a secrecy outage. Given the posterior distdbutihounded by the predetermined threshg)dvheren is a QoS
f(Rs(t)|Rm(t)) of the secrecy rate given sample value of thgarameter that gives the maximum tolerable average secrecy
main channel rate, the expected number of non-secure kjtgage rate when the eavesdropper’s channel is not perfectl

generated in slot is known. Constraint (8) ensures that the secrecy encodireg rat
_ A is fully utilized by the transmission of data and generation
(Bit) + () = 1 (8)) Pr(Rs(8) > R (D) Rom (1)) of key bits. Note that the maximum achievable admission
=(Ri(t) + p(t) — pr(t)) {1 rate, which happens to be the objective function here, is
Ron (£) upper bounded by the maximum average secrecy encoding
- / f(Rs(t)| R (t))dRs (t)} : rate R2¥ 2 liminfr_ &~ 1" Rs(t).
Ra(t)

R As we will show, there exists a solution for Problem (A),
By Lemma 1, we haver,(t) = Ry (t) + p(t) — px(t), and the for which Ry (t) = 0 for all ¢, i.e., without requiring the use

resulting non-secure bits in slotare a key queue. However, we will also show that our solution
Ron (1) that involves the careful control of the key queue leads to
Ry(t) {1 _/ f(Rs(t)IRm(t))dRs(t)] a smoother service for the admitted data, and consequently
Ry (1) lower queueing delays. Next, we introduce virtual queuas th



we will use in our control scheme. calculated rate:
Virtual Queues: In order to keep the average rate of non- v ~
secure bits per time slot bounded by we construct the p(t) = a8 o gU(H) — ak(t)n, (13)
following virtual queue of non-secure bits: A
) ] L wherell(t) = {u(t) : 0 < p(t) < minfgp(t) + Ry (t), Run (1))}
gs(t +1) :((qs (t) —n)" + Rs(t) {1— is a compact and nonempty set. Note that the stationarysoint
R () N of LU (x) — @i(t)u can be found by using root finding of
/ f(RS(t)|Rm(t))dRS(t)D . (9) equation¥U’(u) — Gx(t) = 0, then the maximizer can be
R (t) found among the stationary and boundary points. Espegially
We will show later that by keeping this virtual queue stableyhen U (u) is strictly concave inu and the inverse function
Constraint (7) on the non-secure bits is satisfied (simdaas of U’(u) is known, Equation (13) has an analytical solution

of utilizing virtual queue are used in [20], [23]).

2G5 (t
To ensure that the secrecy rate does not fluctuate dramati- w(t) =max {O, min [U”l(qkT()),
cally in time (that keeping delays low), we do not want the ) .
key queue to be drained frequently. We defjpes the virtual min{gx (t) + R (t), Rm(t)]ﬂ :

key queue and reduce key outage by making the virtual k .
gueue stable. The virtual key queue evolves according to t%)éy generation and usage ratégk(t)’“k(t)) are chosen

following equation: as follows: If the required transmission rate is larger than
ged ' the secrecy encoding rate, i.g(t) > Rs(¢), then we do

~ —((s A _p + not generate new key bit&;(¢t) = 0 and useux(t) =
Bt +1) = ((qk(t) O +ult) = Ro(h) + 1O(t)) + (19) u(t) — R,(t) amount of key b|(ts) in the key queue Eo) secure
where0 < € < co can be chosen arbitrarily, and the transmission that the secrecy rate can not supportelf th
. - required transmission rate is less than the secrecy engodin
1,(t) _{ (1) gt#e(f\)/v;eo o pu(t) < @) + Rs(t)  (19) rage, i.e.,u(t) < Rs(t), then there is no need to use the
stored key bits in the key queye,(¢) = 0 and the remaining
is the indicator that the key queue visits the O state from Ry (t) = R(t) — n(t) amount of secrecy rate can be used to
non-zero state in slot. This happens when all the availablegenerate new key bits into the key queue. This ensures that
and newly generated secret key bits are used intsMfithout  constraints(y(t) — ik (t)) + Ri(t) = R, (t) and . (t) < pu(t)
loss of generality, the initial stai®;(0) can be set to be zero.of Problem (A) are satisfied. Note that, either key genenatio
or key usage is zero, i.eux(t)Ry(t) = 0 for all ¢, since any
IV. CONTROL ALGORITHM AND PERFORMANCEANALYSIs ~ Solution with u;(t) > 0 and Ry (t) > 0, can be equivalently
replicated by using the secrecy rate to transmit data rétiaer
enerating and using key bits at the same time.
dmission Control (AC): In slot ¢, the controller solves the
following optimization problem and admits the calculated
amount of data arrivals:

In this section, we provide a simple control algorithm
analyze its performance, and show that it is provably ogtim
for Problem (A) described in the previous section.

A. Algorithm v "
. . t) = — —qaq(t)R.
The algorithm comprises of three componentssegrecy R(?) argo;ﬁ?fi(t) 2 U(R) aa(t) R (14)

rate controlcomponent, dransmission contratomponentand  §qa of the unique features of our scheme is that, we
aadmission controtomponent. Our algorithm uses a constant. . 4.,ce a sutility function,"U(-), which was not a part of the

control parameter’, which can take on any value ™. original problem formulation but is part of the solution.igh
Secrecy Rate Control (SRC): In slot ¢, the controller chooses 5 jone to achieve the desired level of “fairness” in times, i
the secrecy encoding rate as follows: smoothness oR, (t) that will lead to lower delays. We do not
- Vi~ A specify this function beforehand, but if(-) is concave, the
B (t) = 8 < ALhe () i qs(t)R[l_ objective function (the average data adn(1i)ssion rate) alstst
Run(t) out to be a concave function @f(t). ConsequentlyTC solves
/ f(RS(t)|Rm(t))dRS(t)] (12) a simple convex optimization problem in each time slot. The
R positive term¥-U (n(t)) can be viewed as a utility obtained
Note that Equation (12) is a single variable nonlinear progr from the transmission rate(t) and the termj (¢)u(¢) can be
We can compute all stationary points and find the maximizeiewed as its associated cost. When the virtual key qgge(te
among the stationary points and boundary points. If a statids small, TC tries to allocate a large amount of transmitted data
ary point exist, it must belong to the root set of the equatiao increase the utility; and whej, (¢) is large, TC allocates a
the first derivative of the objective function equated to BeT small amount of transmitted data to reduce cost. This pushes
root finding algorithms such as Newton’s method can be foutite served data rate, controlled by the virtual quéug) to
in [24] to compute the roots of the derivative equated to e relatively smooth over time.
efficiently. It is also notable that (13) does not involve the key genera-
Transmission Control (TC): In slot ¢, the controller solves tion and the key usage rates, which are chosen subsequently.
the following optimization problem and transmits with thé=inally, we would like to emphasize that all components



are index policies i.e., the solutions are memoryless and?’ =
they depend only on the instantaneous values of the systara  optimal
variables and the distribution of the eavesdropper’'s cbanmbjectives
rate.

{R(0),R'(1),..., R (T — 1),...}
solutions  to  Problem (A)  with
max z liminfr o + Zz:ol Rs(t),

mas, liminfr oo £ 51 U (u(t)) and
. . 1 —1 .
B. Performance Analysis lim infr—c0 7 210 U.(R(t))’ respectlvgly. .
) o ) Corollary 2: If there is no key queue, i.e., the transmission
Regall that A(t) is the orlglr?al datg arrival process anq.gntroller TC is replaced byu(t) = R,(t), Vt, then with
R(t) is the amount of data injected into the data queue @ngitions 2)-3) as in Theorem 1, the algorith8BRCand AC

slot ¢. The _natural question one would ask here is_,, wheth@gm still achieve Equations (15)-(19), but Equation (20)ds
our admission controller rejects too many packets in the f'rlﬁnger achieved.

place tosyntheticallykeep the data queue stable and averageTne proof of Theorem 1, Corollary 1 and Corollary 2 can be

non-secure bits bounded. In the following theorem, we Shqy,nqg in Appendix A. All three conditions stated in Theorem 1
that this is not the case. Indeed, the admission rate a$8dcig,e merely technical and they are all reasonable. Condition

with SRC AC, andTC can be made closer to the optimumyy ¢5cses on strictly concave utility functions with a fenit
by increasing the control paramet&r. We use the notation derivative 0 (e.g.Jog(1 + x)). Condition 2) limits the second

maxp

y = O(x) to represeny going to 0 asr goes to O.
Theorem 1if

1) U(-) is strictly concave oriR* | J{0}, and its slope ab

satisfied 0 < 8 = U’ (0) < oo,

2) 0 < limsupy_, o ZtT:_Ol A%(t) < 0o and 0 < R, (t) <

Rimax < 00, Vt >0,

3) fy f(Rs(t)| R (t))dRs(t) > 0 if t > 0 given anyR,(t)

in any slott,

thenSRC TC, andAC achieve:

=
lim sup — Rs(t)|1—
R, (1)
/ f (Rs(t)|Rm(t))dRs(t)} <, (15)
Rs(t)
14
qa(t) < B, Vi20 (16)
1 T2 =
11%210135 T 2 R(t) — 11%210135 T ; R*(t) asV — oo,

(17)

whereR* = {R*(0), R*(1),..., R*(T'—1),...} is the optimal
solution to Problem (A).

Corollary 1: With conditions 1)-3) as in Theorem 1, the

algorithmsSRG TC, andAC achieve:

=y = 1
lim inf ; Ry(t) > Timinf ; (1) = O(3),
(18)
| Tl ] Tl
. . - > 1 . - /
hTHBo%f T ; U(R(t)) _11}2101? T ; U(R'(t))
1
- 0(= 19
| Tl ] Tl
. . - > 1 . - 12
hTIILlOIéf T ; U (p(t)) _1171;21(>I<1)f T ; U (1 (t))
1
where &, = {R.(0),R.(1),....R.(T — 1),...},
i = {w (), ),....,p0/ (T — 1),...} and

2For instancel/ (1 + R) = log(1 + R).

moment of the arrivals in each slot. Condition 3) states that
there is a probability mass ak.(t) = 0, for any given
R,.(t). Equation (15) implies that the average non-secure bits
are bounded and Equation (16) shows that the data queue is
kept stable under our algorithm. In Equation (17), the gap
between the average admission rate with our algorithm and
the optimal average admission rate can be made arbitrarily
small by choosing parametéf large. As a tradeoff, the data
gueue length increases Hsincreases. From Equation (18) we
can see that our algorithm achieves the maximum achievable
admission rate (i.e., the average secrecy encoding ratd), a
when combined with Eqg. (19) and (20), we see that the
scheme achieves this optimal point in a way in which the data
injection rate and the service rate are smooth over times Thi
is unlike the case without the data queue, where the vanitio

in the secrecy rate are reflected to the service. Based on this
observation, we expect the queueing delay to be smallerawith
key queue, which we will verify in Section VI using numerical
examples.

V. SAMPLE PATH OPTIMAL POLICY FOR MINIMIZING
TIME-AVERAGE QUEUE LENGTH WITH PERFECT
EAVESDROPPERINFORMATION

In this section we focus on the degenerate case when
the transmitter also has perfect knowledge of the main
and eavesdropper’s channel. For this case, we will pro-
vide a scheme that is also delay optimal in a very strong
sample path sense. Given any general time varying rate
processR,, = {Rp(0), Rm(1),...,Rpn(T — 1),...} and
R. = {Re(0),R.(1),...,Re(T — 1),...} for the main
and the eavesdropper channel respectively, an arrival lsamp
path A = {A(0),A(1),...,A(T —1),...} is admissible if
there exists a transmission and key management policy such
that the resulting time-averaged queue length is finite, i.e
limsupy_, o & 37! qa(t) < co. In this section, we assume
R. andR, are perfectly known to the transmitter and study on
the delay performance of our system. We limit our attention
to only admissible arrival processes and assume no admissio
control, i.e., all arrivals are admitted to the system. Newe
specify thework-conserving policyu, for transmission control
and show that it achieves the minimum queue lengif) in
every time slot, for any sample path for the channel rates,



R., and any associated admissible arrival procd%éﬂence, packets arriving in each time slod(¢t), ¢ > 0 follows a

the work conserving policy is the sample path optimal policgeta distribution with parameter 3.5. We choese= 1.5 and

gueue size minimization. oo = 3 for the Rayleigh parameter in two channel states. We
Work conserving policy serves the data queue at fdt¢, run the simulation for different values of the control cogént

generates keys at rafe, () and utilizes keys at rate,(t) at v and compare the results with the optimal valugigure 2

time ¢, where (a) shows that, a3’ increases, the average admission rate

(both with and without a key queue) increases to the optimum,

ult) = mm{qd(_t) +A(L) qi () + R(t), B (1)} which is consistent with Equation (17). In Figure 2 (b), wetpl
1 (0) :{ 0, if p(t) <R(t) the tail distribution of instantaneous queue length whaee t
u(t) — Rs(t), otherwise control parameteV’ is 2000 and th& -axis islog scaled. We
[0, if u(t) > Rs(t) can see that with a key queue, the proportion of time slots
Ry (t) _{ R(t) — u(t), otherwise (21) with larger queue length is smaller than that without a key

. . - . . ueue since the curve without a key queue has heavier tail.
This policy satisfies all the constraints of the equivale ) .

; . . - Furthermore, the average queueing delay performance with a

model characterized in Lemma 1. The work conserving poli . .

allocates as high a service rate to the data queue as theathaliry, oo oe 1S also better than that without a key queue, as we

9 q n see in Figure 2 (c) and (d). From Figure 2 (c) and (d), we

rates and the amount of key bits available allows. If the dafa .
. . ) can see that as we chooBe= 2000 (average admission rate
gueue is empty, the available secrecy rate is not wasted and

key bits are generated and stored in the key queue. approaches its optimal value19), the average queue length

g . . . with a key queue is 3.5, which is 1 less than that without a
Theorem 2:The work conserving policyy, is sample-path . .
. L R . key queue. Therefore, there is36% improvement of average
optimal for minimizing the queue size in every time slot.

) . . : : gueue length with a key queue.
Proof: The proof is provided in Appendix B. Figure 3 illustrates the scenario with a real traffic trace

(traces of LAN and WAN traffic seen on an Ethernet from
Internet traffic archive http://ita.ee.lbl.gov/htmlites.html).

In this section we simulate our algorithms and numerically chooser; = 2 and o, = 5 for the Rayleigh parameter
compare them with the optimal performance. In the simutatio, two channel states. Figure 3 (a) shows that)/a@screases,
the number of time slots used B = 10° We use the the average admission rate (both with and without a key
utility function U(z) = log(l + x), Vz > 0. The channel gyeye) increases to the optimum, which is consistent with
states follow a Mark(_)v chain. In each time slot, the_ Cha””Ehuation (17). In Figure 3 (b), we plot the tail distribution
rates have two possible states: In state 1, the main changeinstantaneous queue length where the control pararieter
rate follows Rayleigh distributiorf(R,,) = %e—ﬁ and s 60 and the¥’-axis islog scaled. We can see that with a key

the generated sample value is known to the transmitter. THEEUS: the proportion of time slots with larger queue length

eavesdropper channel rate also follows Rayleigh disidhut smaller than that without a key queue since the curve without
R2 a key queue has heavier tail. From Figure 3 (c) and (d), we

f(Re) = %e_ﬁ but the resulting sample value is nottan see that as we chooBe= 60 (average admission rate is
known to the transmitter. Then, the posterior di2stributioh.85), the average queue length with a key queue is 5.3, which
Mbom = fis ) is 0.5 less than that without a key queue. Therefore, thesie is

. . o RmiRS - 262
of Ry given Ry, is f(Rs|Rm) = a7 ¢ ' for 10% improvement of average queue length with a key queue

t2 . . .
0 < Rs < Rm, and P(RS _ OlRm) _ f;o 0_1526 ﬁd/t; in this scenario. . .
Similarly in state 2, the main channel rate follows Rayleigh NOt€ that the reason for using data queues at the input of
_RZ, wired/wireless links is to average out the variability ireth
distribution f(R,,) = %e ®*3 and the generated samplearrival and the service processes. In our system, as well as a
value is known to the transmitter. The eavesdropper c2han|data gueue, we use a key queue, whose function is to average
. . —-Z¢  out the variations in the secrecy rate of the wiretap channel

rate also follows Rayleigh distributioff (R.) = fse 2 Intuitively, by averaging out the )\//ariations of the segrea'ge

. . 2
but the resulting sample value is not known to the tranﬁ'sing a key queue in a variable channel, the queueing delay
performance will be improved.

VI. NUMERICAL EVALUATION

mitter. The posterior distribution of?, given R,, is then

_ (Bm—Rs)?
f(Ro|Ryp) = B=zfee 298 for 0 < Ry < Ry, and
. S VII. CONCLUSION
— — _t 20 1t Hhb
Pr(R_S = 0| Rm) = me 03¢ 7 d_t' The transition probability In this paper, we consider a single-user, single-hop wseele
matrix of the Markov channels i§).8,0.2;0.7,0.3]. We also  communication system, in which data packets arrive at a
set the bound on_the average rate of non-secure bits per glgi, queue to be transmitted to a receiver over a block
n = 0.3 and the virtual key queue parameter 0.01. _ fading channel, privately from an eavesdropper. We assume
Real-life Internet traffic is typically characterized WSin hat the eavesdropper listens to the transmitter over anoth
heavy tailed behavior. For example, heavy-tailed distiins j,qenendently fading channel and that the transmitter baby

such as Zipf, have been found to accurately model the amoybyledge of the distribution of the eavesdropper’s channe
of traffic between distinct domains in the Internet [25]. Hen

in the first scenario, we used the Zipf law: the number of 3Note that the optimal value for Problem (A)isin[A, 2.
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PROOF OFTHEOREM 1, COROLLARY 1 AND COROLLARY 2 2 u) = @(tu(t) 2 0. e,
. \%
Proof of Equation (15) Note that SRC chooses ar(t)p(t) < %u(t). (22)
R(1) that maximizes —R —  Gs(t)Rs(t)
_ Rm(t) ,

[1 ff%s(t) (Rs(t)lR s( } which — means We now prove the result by induction. Without loss of gen-

YR(t) — Go(t)R(t) [1 - fm(f) (Ry(t )|Rm(t))dRs(t)} erality, letqi.(0) < %°. Suppose for all 2~1,(jk(t—1) B<V 1%
> 0 sincel < Ry(t) < Ry, (1). holds. In slotz, if p(t) =0, thengy(t) < gu(t — 1) < by

Since the secrecy encoding rate is counted in dagguation (10) and Equation (11). Otherwis&t) 7# 0, and by
bits, if R.(t) > 0, then R, () > 1 By condition 3) Equation (22), we havey(t) < 5°.

stated in Theorem 1} — fR (D) f(Rs(t)|Rin(t))dRs(t)] >
S 2

fo F(Rs(t)| R (1)) dRy(t)] > 0if B S(_) > 0. Lety it holds for both with and without key queue since it is only
min, fo ( s(t)|Rim (t))dRs(t)] > 0. Without loss of gen- (iated toAC. m

erality, letg,(0) < 7 V . Suppose for alt > 1, §(t — 1) < ‘/7

holds. In slott, if R (t) =0, thengs(t) < ¢s(t —1) < %  Proof of Equation (18) We define the Lyapunov function
by Equation (9). OtherwiseR,(t) > 0, and we then have L(gs(t)) = (Gs(t))? and A(Gs(t)) = L(Gs(t + 1)) — L(Gs(t)).

qa(t) < BY can be obtained using the same argument and



From Equation (9), we have

(@ (t+ 1) <(@(t) = n)” + 24O Ru(t) [1-

R (t)
/Rs(t)

<(gs (t))2 + 2G5 (t) R4 (1) {1—

/Rm (t)
; (t)

+77 +Rmax7
and
A1)
VR0 - 20 5 Ru(0) — G0 (1)1

R (1)
/ f(Rs<t>|Rm<t>>dRs<t>]}
Rs(t)
— 2nGs(t) + 77 + Rmax

SVRs(t) - 2{%}%/5@) - st(t)Rls(t) {1_

Ry, (1)
/ f(Rs<t>|Rm<t>)dRs<t>}}
RL(t)
— 2ngs(t) + 77 + Rmax

<VR(t) — VR.(t) + 2(js(t){f%'s(t) {1—

Ry, (1)
/ f(RS (t)|Rm (t))dRs (t)} - 77}
R (t)
+ T] + Rmaxa

since0 < R.(t) < R (t).

Lemma 3:

Proof: Note that

=
lim sup T Z {R'S(t) {1—

T—o0 t=0

/Rm (t)
R (1)

Construct an auxiliary queue with the following evolution:

E(t+1) = (0 -n-0) +RO1-

R ()
/R;(t)

£ (B (8) Bon () dRo (1),

F(Ro(®)| R () AR (8)] + R

J(Ro(0)| R (1)) AR (8)] = 20d, (1)

(23)

f(RS(t)mm(t))dRs(t)} —n— 5} <0.  (24)

q:(t) is strongly stable. Using the idea similar to [20], we
have the fact that if any queue represented wify) is
strongly stable, thetimsup,_, % = 0. Therefore, we
% (T) . By multiplying ¢,(¢) for both sides
1) > a(t) —n -6+ R(t)[1 -

havelim sup;_,

of the inequality g

}f,m(t) f(Rs(t)| R, ())dRS(t)} and rearranging terms, we
obtain (1) RL(0)[1 ~ [ 1 (Rs()] B (1) dR(1)] ~

Z_} < gs(t) {q’;(t +1) =g (t) + 6}. By summing from0 to

— 1, dividing by T" and takinglim sup,_, ., we have

1 1T71
i NG Bw]i-
v?ji%%q“{ ()[

R, (1)
/ f(Rs(t”Rm(t))dRs(t)} - 77}

R (1)
1 T
<— li:anSUP T Z 7Z(t) (st(t - 1) - st(t))—i_
e t=1
1 s DT — 3:(0):(0)
T—o0 T
T -~
1 s(t
+ lim sup — s )5
T—o0 v
t=1
Rmax+1 1 5§V 1. 6
< max li - gt (t - =0(= _
S lgj;pT§Q()+V2 (V)+2v’
since the average queue length of the auxiliary queue remain
stable and is not related t&, and ¢,(t) < 2‘;, vt from

the proof of Equation (15). By letting — 0, we finish the
proof. =m

By summing from0 to 7' — 1, dividing by 7" and V/, taking
liminf7_,, over Equation (23), combined with Lemma 3, we
obtain Equation (18). m

Proof of Equation (20): We defineL(gx(t)) =
A(Ge(t)) = L(Gr(t+1))
have

(@t +1))°

(gx(t))? and
— L(qx(t)). From Equation (10), we

<(@ (1) = €)" + (ut) — Ru(t) + 1o(t))”
+2(g(t) — €) " (1(t) — Ra(t) + 1(t))
(@) + €+ (1 4+ Rmay)” + 2¢Rimax
+ 23k (t) Lo () + 2k (E)u(t) — 241 () Ra(t),

then
( k(1))
< ( (t)) ( ) + €2 + (1 + Rmax) + 2€Rmax
+ 2k ()10 (t) + 241 () (1) — 2Gk(t) Rs(t)
<VU( (t)) +ée+ (1 + Rmax) + 2eRmax+ BV 14(t)

-2

%U(u(t)) — Ge(B)p(t) | — 2d(R.().

then with Equation (24) and by applying Lemma 2 in [23],
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It is apparent thatTC is trying to maximize the Similar to the proof of Equation (18), we can obtain
value of the term [LU(u(t)) — Ge(t)u(t)]. Since lim supp_, o TZ (R/S(t) — Ry(t) — g 0(%)) < 0.
the optimal solut|0n for Problem (A) with ObjeCtlveTherefore
max,thmme_)OOTz U(M(t)) may not be unique, o
we let U be the opt|maI solution set and’ € W be N | / - 1
any optimal solution, for Problem (A) with objective lgfipfz(“ (t)_Rs(t)_g_O(_)) <0
max,, liminfr .o 7 St U(u(t)) given any sample path.
Since the constraint sél(t) is queue dynamic related, it is
possible thaf/(t) ¢ II(¢).

Lemma 4in slot ¢, if by solving TC, we get{%U(u(t)) —

(26)
t=0

Construct an auxiliary queue with the following evolution:

N 1N\t
Gi(t+1) = (G0 - R() =5 - 0(3)) +1(),

- v , - , , then with Equation (26) and by applying Lemma 2 in [23],
q’“(t)”@ < {2 U(” (t)), G () (t)l’ then u(t) < pw'(t) gy (t) is strongly stable. The remaining argument is similar as
and1,(t') = 1 for somet’ <t andt —t' < cc. inLemma 3. m

Proof: In time slott, let u™(¢) be the value that maximize | oima 6:1f () < % thengy(t) < B%.

the unconstrained objective functigaU (u(t)) — @ (t)u(t).  proof: First, we provide a rough idea of the proof: by

Claim 1: gy(t) + Ry(t) < Rn(t), Other_W|se,H(t) = exploring the relations betweef),(¢) and ¢ (t), we notice
[O‘;Rm(t)] which “is not queue dynamic related, thefnat asq,(t) increases front to at mostBy, i (t) will hit
[5U(u(®) - Qk(t)ﬂ(t)] (% ( '(®) = @ ()’ ()] zero at some slot. Oncg,(t) becomes zeroJC results in
Claim 2: p"™ (), ' (t) > q(t)+Rs(t). I p™ (@), o/ (8) € (), pu(t) = min[ge(t) + Rs(t), Rim(t)]. Since Ry(t) < R (t),

we must have{‘z’U( () — qk( w(t )} > [VU(;/(t))— qr(t) will either be zero or decrease. We now give the proof

)
= / / . details.
Qi () (t)},thenu (8) > a(8) + R (8). 1F 7 (8) < 0, we will 5 n ot loss of generality, let;,(0) = 0. We have the
have L-U(0) = [%U(u(t)) Gr () p(t )} > {%U(u’(t)) — following cases:

- , m ; i) if w) > Rs(t), L,(t) = 0 and g(t) > 0, then
Qk(Bt)MtrEt)} ,bthen,ul (t) > qi(t) + Rs(t )d . iy s ar(t+1) < qe(t) and ge(t + 1) — Ge(t) < qu(t) — qu(t + 1),

y the above claimsu(t) < u'(t) andp(t) < u™(t). SUP- o "even ifz, (1) increases, the increment is no larger than the
poseu(t) < qx(t)+Rs(t), since the objective function diCis  jacrement ofyi (1);
concave inu(t), we can increasg(t) to increase the objectlve”) it u(t) < Ry(t), 1,(t) = 0, then if Gu(t + 1) > 0
without violating the constraint. Thugy(t) = ¢x(t) + Rs(t) (D)= (t+1) > gu(t+1)—qu(t), i.e., the decrement af. (¢)

and 1,(t) = 1. It is also possible that,(t') = 1 for some ;&' |ess than the increment of (1), else if g (t +1) = 0,
t/ <t and RS(T) = O7 VT = [/ ] Note thatt — t/ < 00, tgoes to case |V)

otherwiselim supr .o, 7 32, s (t) = 0 which contradicts "¢ 1, (1) =1, theng,(t + 1) = 0 by Equation (3) and
Equation (18). Equation (11);

Let N = max{n : foranyt >0, RS/(T) =0, 97 € 5y if gu() = 0, by Equation (13),TC choosesy(t) =
ot ]}, By using Lemma 4 and(t), p'(1) < Rn(1) < minfgy(t) + Ru(t), Ru(1)], then eitherg(t + 1) = 0, or
Rmax, vVt > 0, we haveN < oo an qk(t+1):q;c(t)—R_m(t)fRs(t)SQk(t)- ,

A <VU(u(t)) = VU (' (8) + €2 + (1+ Rmax)2‘|’ From the.above discussion, we haygt) < 5. m
} . . Lemma 71f both the key queue(t) and virtual key queue
2€ Rmax + 2k (t) [H (t) - Rs(t)} + qr(t) are strongly stable, i.e.,
V(B + NU(Rmax)1o(t). (25) 1 b=l
Lemma 5: h;nj;ljp T ; (qr(t) + ar(t)) < oo,
= hm sup — Z ar(t Ry(t)] < O(%) thenlimsupy_, 7 Z;f:_ol L(t) <e.
T—o0 Proof: By Lemma 2 and Lemma 6imsup;_, ., qk:(FT) =

Proof: Note that even the optimal solution should satisfy thém sup;_, qk;(pT) = 0. From Equation (10), we have

conservation rule - ~ -
Ge(t+1) > Gr(t) — e+ 1o(t) + u(t) — Ry(t).

T-1 T-1
S o) - [qk(()) + > R <0, Note thatgy(t + 1) = qi(t) — u(t) + Rs(t). By adding from
t=0 t=0 0 to T — 1, dividing by T" and takinglim sup on both sides,
then we have
T-1 ~ ~
. b} . a(T) _ . a(0)
(v - 20 - 5) < a:l0) limsup =72 > lim o — e limsup o Z L(
t=0
where § can be arbitrarily small. By divided by + lim M
T and taking limsup,_ ., of both sides, we have T—o0 T

limsupy_, o 7 Z;‘F:_Ol (,u’(t) - Rt - %) < 0. Since limsupy_, . ’j’“;T) = lim7_ o q"T(O) =
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lim7_, s q’“:ﬁo) = limp_ o qk:(FT) = 0, so we get which contradicts the fact that* is a maximizer of (P2). m
limsupy_, o 7 Z'f:_ol L(t)<e =m Note thatgy (t+1) = qx(t)+Rs(t)—u(t). Then by summing

By summing from0 to 7' — 1, dividing by 7 and V', taking from 0 to 7" — 1, dividing by 7" and applying Lemma 6, we
liminfr_. over Equation (25), combined with Lemma 2have the fact thaTC with a key queue results into
Lemma 5, Lemma 6, and Lemma 7, we get T-1

: 1 A
o = ) lim sup 7 Z [Rs(t) — u(t)] =0, (28)
lim inf T Z U(p(t)) > liminf T Z U(p'(t)) — O(V) =0
T 4 Tmee 1430 For the scenario without a key queue, Equation (28) triyiall
— €(NU(Rmax) + 0). holds sinceu(t) = R,(t), Vt. Problem (A) is then reduced to

(P1). By Lemma 8R* is also the maximizer of Problem (A).

By letting ¢ — 0, we obtain Equation (20). = SubstitutingR*(¢) into Equation (27), we obtain

Proof of Equation (17) and Equation (19) We define

L(qa(t)) = (qa(1))*, andA(ga(t)) = L(ga(t +1)) ~ L(ga(t)). A <VUR®) = VU(R" () + A*(t) + R
By Equation (2), we have + 2qa(t) {R*(t) _ M(t)]
A =A(qa(t)) < VU(R(t)) —2 [%U (R(t)) — qa(t)R(?) Note thatlimsup,_ ., + S1—" [R*(t) — R.(t))] <0 and
+ A2(t) + Riax— 2qa(t)s(t) (27) lmsupy .o 735, 4°(t) < co. combining with Equa-

tion (28), Equat|0n (18) and using the similar arguments as
in Lemma 3 and Lemma 5, we have
T-1

1 1
(P1) mathmlnf = ; R(t = h:rrnjolip = Z qa(t —u(t)] < O(V)
T-1
Then, we further obt
(P2) max lim 1nf 1 Z U(R(t)) en, we further obtain
Tt liminf — S U(R(#)) > i 'flTZ_lU(R*(t)) o(%)
iminf — iminf — -0(=),
st qalt+1) = (qat) — (1)) + R(t), T—oo T & T T T & v

where R* is the maximizer of (PT) (P1) and Prob-
1imsupTZ[Rs(t)—u(t)} =0, lem (B). Note that hmlnfTﬂooth o U(R() <

T—o0 P lim inf7 o = Z 0 ' U(R*(t)) due to the optimality ofR*.
= By letting V' — o0, R is also a maximizer of (P2). By applying
limsup — Z qa(t) < oo, Lemma 8 again, we have
T—oo £ 320

T—-1
1
Lemma 8:(P1) and (P2) have different objective funcuonshH1 lnf = Z R(t) — liminf — Z R*(t)asV —oo. m

T—
under the same set of constraints. &t be a maximizer of >
(P2), then it is also a maximizer of (P1).

Proof: Suppose there exist8; such APPENDIXB
PROOF OFTHEOREM 2
| “ .
h%ri}ogff ZR (1) <hmmf ZR It is sufficient to show thatvt > 0, the policy gives
=

the smallest queue length among all policies, ig.(t) <
then there exist&; such thatkR*(t) < Rj(t) < A(t), vVt >0 4q4(t), vt > 0 for any policy v, wheregy and g, are the

and data queue sizes under poligy and ~, respectively. We
show this by induction. Initially, the data queue is emp#y,,i
— * — q4(0) = qx(0) = 0.
l;frri) 1o%f Z R*(t) < 11}2 1Or(1)f Z R3(1)

) Clearly, ¢//(1) < ¢;(1) is true regardless of the channel

rates and the number of arrivals at time- 1.

<liminf — Z Ri(t 1) Supposeq!; (T') < ¢ (T') for T > 1. Under policyy, the
T=oo queue evolution follows:

i.e., there are infinitely many slots in whidh () — R3(t) < qq(t+1) =qy(t) — p(t) + A),
0. SinceU(-) is strictly concaveU(R*(t)) — U(R5(t)) < Bt 4 1) =g (t) — p(t) + Ro(t)
B (R (t) — R3(1)) < 0 if R*(t) — R(t) < 0, where0 < T o\ T S\
Bm = mm{% : R*(t) — R3(t) < 0}. Thus,  and for policy~, the queue evolution follows:
Jr
T-1 T-1 24 —(
o * 1 . ajt+1) =(aj(®) = 1(1) " + A,
hfnl)loréf T Z U(R*(t)) < hmmf T U(R5(t)),

=0 : gt +1) =g (t) —y(t) + Rs(t).

i
=]



Thus, we have

T-1 T-1
gy(T) = A(t) =Y ult),
1
(1) =Y Ru(t) = > nlt),
r 1
(1) =3 A - Y (),
1
G (T) =) Rs(t)— > (1),
t=0 t=0
which implies
T T
G(T)+R(T)=> Rs(t)— ) A(t)
t=0 t=0
+¢4(T) + A(T), (29)
T T
( )+Rs( ) ZRs(t)_ZA(t)
t=0 t=0
+q)(T) + A(T). (30)

(i) If 3510 Ro(t) < 30/ A(t), then
,U'(T) = mln{QZ(T) + Rs (T)v Ry, (T)},
Y(T) <min{q (T) + Rs(T), R (T)},
and we also have
qq(T + 1) =q4(T) — n(T) + A(T),
01(T +1) 2q(T") = (T') + A(T),
then combine with Equation (29) and (30), we have
¢G(T+1)—q)(T+1)
<qy(T) — q3(T) +~+(T) — (T) (31)
<q;(T) = q)(T) ++(T) — (1), (32)
(i.1) wheng/(T) + Rs(T) < R (T) and g}, (T) + Rs(T) <
R,.(T), then continue from Equation (32), we have
G(T+1)—q)(T+1)
<@, (T) = q(T) + q)(T) + Rs(T) — (1)
=q.(T) — q)(T') + ¢} (T) — q;;(T) = 0.
(i.2) wheng/(T) + Rs(T) < R (T) and g}, (T) + Rs(T') >
R,.(T), then continue from Equation (31), we have
G (T+1)—q)(T+1)
<@y (T) = q3(T) + @) (T) + Rs(T) — u(T)
=qy(T') — qy(T') + qk 2 (T) + Ro(T) — R (T)
<qy(T) — q;(T) <

by the hypothesis.
(i.3) wheng/(T) + Rs(T) > R (T) and g}, (T) + Rs(T') <
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R,.(T), then continue from Equation (32), we have

G(T+1)—q)(T+1)
<q;’;L(T) @) (T) + R (T) — u(T)
0. (T) = q)(T) + q)(T) + Rs(T) — (1)

:qk( ) = ai(T) + qi(T) + Rs(T) = q;;(T) = Ro(T) = 0.

(i.4) wheng!(T) + Rs(T) > R (T) and g}, (T) + Rs(T) >
R,.(T), then continue from Equation (31), we have

Thus, g} (T +1) <

Thus,¢(T+1) < ¢)(T+1) if 27,
well. m

qy(T+1) —qy(T+1)
<¢4(T) — q)(T) + R (T) — pu(T)
=¢(T) — ¢}(T) + Rn(T) — Rin(T) < 0.

qa(T +1) if Yo Rs(t) < S0 A).
(")IthO ()>Zt0 (t), then

M( ) mln{qd (T) + A(T)7 Rm(T)}a
Y(T) <min{g(T) + Rs(T), Rn(T)},

(ii.1) wheng!) (T)+A(T) < R (T), we haveu(T) = ¢/ (T)+
A(T), andg) (T
(i.2) wheng! (T) + A(T) >

+1)_0<Qd(T+1)
R, (T), then

G(T+1)—q)(T+1)
<qy(T) — qy(T) +v(T) — Rn(T)
<0+ R (T) — Ry (T) = 0.

Ry(t) > Y, A(t) as
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