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Abstract 
Sleep-wake protocols are critical in sensor networks to 

ensure long-lived operation. However, an open problem is 
how to develop efficient mechanisms that can be 
incorporated with sleep-wake protocols to ensure both long-
lived operation and a high degree of security. Our 
contribution in this paper is to address this problem by using 
local monitoring, a powerful technique for detecting and 
mitigating control and data attacks in sensor networks. In 
local monitoring, each node oversees part of the traffic going 
in and out of its neighbors to determine if the behavior is 
suspicious, such as, unusually long delay in forwarding a 
packet. Here, we present a protocol called SLAM to make 
local monitoring parsimonious in its energy consumption 
and to integrate it with any extant sleep-wake protocol in the 
network. The challenge is to enable sleep-wake in a secure 
manner even in the face of nodes that may be adversarial and 
not wake up nodes responsible for monitoring its traffic. We 
prove analytically that the security coverage is not weakened 
by the protocol. We perform simulations in ns-2 to 
demonstrate that the performance of local monitoring is 
practically unchanged while listening energy saving of 30 to 
129 times is achieved, depending on the network load. 
Keywords: Sensor networks, local monitoring, sleep/wake 
techniques, wake-up antenna. 
 
 

1. Introduction 
It has been shown in the literature that sensor networks are 

vulnerable to a wide range of security attacks including the 
wormhole attack, rushing, and Sybil attacks [25]. 
Cryptographic mechanisms alone can not prevent these 
attacks since many of them such as the wormhole and the 
rushing attacks can be launched without needing access to 
cryptographic keys or violating any cryptographic check. To 
mitigate such attacks, many researchers have used the 
concept of cooperative local monitoring within a node’s 
neighborhood ([17]-[24]). In local monitoring, nodes oversee 
part of the traffic going in and out of their neighbors. 
Different types of checks are done locally on the observed 
traffic to make a determination of malicious behavior. For 
the systems where arriving at a common view is important, 
the detecting node initiates a distributed protocol to 

disseminate the alarm. Many protocols have been built on 
top of local monitoring for intrusion detection (e.g., 
[16][17]), building trust and reputation among nodes (e.g. 
[20][21]), protecting against control and data traffic attacks 
(e.g. [22]-[25]) and in building secure routing protocols (e.g. 
[18][19][23]). Specifically, in [23] and [24] the authors have 
presented a technique for detection of control and data 
attacks in ad-hoc networks using local monitoring. Control 
attacks are launched by a node delaying, dropping, 
modifying, or fabricating control traffic that it is supposed to 
forward. Data attacks are similarly launched by performing 
these actions on data traffic. In [23] and [24], these attacks 
are detected by a group of nodes, called guard nodes, that 
perform local monitoring. The guard nodes are normal nodes 
in the network and perform the basic operations of sensing, 
in addition to monitoring.  

Though local monitoring has been proposed by many 
researchers, it incurs a high energy cost since it requires the 
guard nodes to be awake all the time to oversee network 
behavior. To the best of our knowledge, no one has devised 
sleep-wake protocols for optimizing the energy overhead of 
monitoring while maintaining the quality of the monitoring 
service. This is the problem we address in this paper. The 
main challenge lies in having the sleep-wake performed 
securely so that an adversarial node cannot escape detection 
by causing its guard nodes to stay asleep.  

In this paper we propose a set of mechanisms called 
Sleep-Wake Aware Local Monitoring (SLAM) that adapt the 
existing local monitoring technique to significantly reduce 
the time a node needs to be awake for the purpose of 
monitoring. The proposed mechanism adapts itself 
depending on the kind of sleeping protocol used in the 
network, henceforth referred to as the baseline sleeping 
protocol (BSP). For networks that use synchronized sleeping 
algorithms (e.g., [3] [8]-[10]), i.e., nodes wakeup and go to 
sleep in a synchronized manner, SLAM does not need to do 
anything since a node and its guards will be woken up by the 
BSP itself. There exist several application-specific sleeping 
algorithms, for example, to maintain a given sensing 
coverage (each point should be sensed by at least k nodes) or 
a given network connectivity level (each pair of nodes 
should have k disjoint paths). For these protocols (e.g., [1]-
[3]), SLAM can support local monitoring by modifying an 
input parameter to the existing sleeping algorithm, such as 
the value of k in the connectivity or coverage preserving 
BSPs. Finally, we consider networks that use on-demand 
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sleep-wake. On-demand sleep-wake means a node wakes up 
when it needs to communicate, and since the communication 
pattern can be arbitrary, the wakeup time is arbitrary in the 
general case. This provides the most challenging case and 
forms the most significant portion of the discussion in the 
paper.  

For the third class of network, SLAM provides a generic 
on-demand sleeping algorithm, called On-Demand SLAM. 
This algorithm relies on each node having a passive or a 
low-power wake-up antenna in addition to the normal 
antenna. A node that is not involved in network activities, 
such as, data forwarding is ordinarily sleeping according to 
the BSP. However, for monitoring purposes, it is woken up 
on demand by a neighboring node using the wake-up 
antenna. The key challenge to this apparently simple scheme 
is that it now opens up the possibility of a new adversarial 
action, namely, a node not waking up a sleeping node(s) so 
that its own malicious action is not detectable. At a high 
level, our solution involves the following steps–adding to the 
list of behavior that a guard node needs to check and second, 
defining the mechanism through which the check is to be 
done (i.e., who checks, when, and for what).  

We provide a theoretical analysis for energy saving using 
On-Demand SLAM compared to a baseline monitoring 
protocol [24]. We build a simulation model for SLAM using 
ns-2 and perform a comparative evaluation of local 
monitoring with and without SLAM. The results show that 
the security of local monitoring is very close in both cases 
while the overhead of SLAM in terms of listening energy is 
between 30 to 129 times lower, depending on the network 
traffic. The results show the effect of the number of 
malicious nodes, the traffic load, and the fraction of data 
being monitored on the overhead of local monitoring. We 
summarize our contributions in this paper as follows: 
1. We provide a technique for conserving energy while 

performing local monitoring without significantly 
degrading its security performance. This we believe is 
fundamental to deploying local monitoring in any 
energy conscious network.  

2. We propose a generic on-demand sleep-wake algorithm 
for network monitoring in scenarios where either no 
BSP exists or the sleep-wake is based on arbitrary 
communication pattern. 

3. We analytically prove that SLAM does not add any 
vulnerability to the existing local monitoring technique. 

4. We show through simulations a significant reduction in 
monitoring cost with negligible degradation in the 
monitoring quality of service.  

The rest of the paper is organized as follows. Section 2 
presents related work in the field of sleep-wake protocols. 
Section 3 describes SLAM. Section 4 presents mathematical 
analysis of the energy overhead and security of SLAM. 
Section 5 presents the simulation experiments and results.  
Section 6 concludes the paper. 

2. Related Work 
Node sleeping is an important mechanism to prolong the 

life time of sensor networks. This topic has been discussed 
extensively in the literature and many protocols have been 
proposed for various types of applications such as object 
tracking ([1][2]). It has been realized that under current 
hardware designs, the maximum energy savings can be 
achieved through putting nodes to sleep—three orders of 
magnitude less current draw than in an idle node for the 
popular Mica mote platform for sensor nodes.  

Primarily three different mechanisms are used to put 
nodes to sleep. The first is called synchronized wakeup-sleep 
scheduling in which the nodes in the network are put to sleep 
and woken up at the same time in a centralized (e.g., [10]) or 
a distributed manner (e.g. [3][8][9]). A disadvantage of such 
protocols is that the duty cycle is application dependent and 
not known a priori. Most importantly, they require the 
network to have an accurate time synchronization service. 
Furthermore, in scenarios with rare event detection, no event 
happens and the nodes enter sleep mode again in most of the 
wakeup periods. This means that nodes wake up too often 
resulting in wastage of energy. The second mechanism is 
based on selecting a subset of nodes to be woken up to 
maintain some properties in the network, such as sensing 
coverage (e.g., [4][5]), network connectivity (e.g., [3][6]), or 
both coverage and connectivity (e.g. [7]).  

The third mechanism is based on-demand sleep-wake 
protocols. These on-demand sleep-wake protocols use either 
special purpose low-power wake-up antennas (e.g., [11]-
[14]) or passive wake-up antennas [15]. These antennas are 
responsible for receiving an appropriate beacon from a 
neighbor node and waking up the node for its full operation. 
Thus, for environments where events of interest are 
relatively rare, the time for the low power operation with the 
wake-up antennas being on, dominates. Further details about 
the operation of the antennas are mentioned in Section 3.3. 

To the best of our knowledge, we are the first to address 
local monitoring in a network where nodes may need to be 
put to sleep for energy conservation.  

3. SLAM Protocol Description 
The primary goal of SLAM is to minimize the time a node 

has to be awake to perform local monitoring. Local 
monitoring is used to make sure that packets are not 
dropped, delayed, modified, misrouted, or forged along the 
path from source to destination [23]. SLAM adds one more 
task to the list of events that a guard node needs to 
monitor—verifying whether the node being monitored 
wakes up the requisite guards or fails to do so due to 
malicious motivations.  

3.1. System Model and Assumptions 
SLAM assumes that the network is static and the links are 

bi-directional. SLAM requires a pre-distribution pair-wise 
key management protocol (e.g. [26]) such that any two 
nodes can acquire a key for encryption and authentication. In 
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On-Demand SLAM, each node is equipped with either a 
passive [15] or a low-power wakeup antenna [12]. Any two 
nodes that need to communicate, establish a route between 
them using an underlying routing protocol. We assume that 
the source node is honest. No assumption is made about the 
adversary nodes following the sleep-wake protocol, only the 
honest nodes follow it. Each node knows its first-hop 
neighbors and the neighbors of each neighbor, e.g., using a 
technique as in [23]. The malicious behavior of fruitlessly 
sending a wake-up signal to a node is not addressed since 
this potential exists in any on-demand wake-up protocol and 
SLAM neither exacerbates nor solves this problem. 

3.2. Different Network Models for SLAM Protocol 
Depending on the BSP used in the network, SLAM has 

three different mechanisms for proposing sleeping for 
networks with local monitoring—The No-Action-Required 
SLAM protocol, the Adapted SLAM protocol, and the On-
Demand SLAM protocol. The No-Action-Required SLAM is 
applicable in networks with synchronous sleep-wake 
mechanisms. Examples of such protocols include Span [3], 
S-MAC [8], and habitat monitoring [10]. The guards for 
the communication would also be woken up since the guards 
are one-hop neighbors of the two nodes that form the link on 
which the communication is taking place. The Adapted 
SLAM protocol is applicable in networks with application-
specific sleep-wake protocols that can be adapted to wake up 
and sent to sleep guards as well. Examples of such protocols 
include those that maintain a k-sensing or a k-
communication coverage for given values of k [4][5][7]. 
The adaptation process depends in the protocol itself, but for 
the connectivity or coverage problems, it involves increasing 
the value of k input to the protocol such that the requisite 
number of guards is awake in any part of the sensor field. 
For more details on these two kinds of networks, please refer 
to Sections 3.2 and 3.3 of our technical report [29]. 

3.3. The On-Demand SLAM Protocol 
This protocol is used in a network that either has no BSP 

in operation or employs on-demand sleep-wake protocols. 
Therefore, we build a new sleep-wake protocol, called On-
Demand SLAM that enables the guards to go to sleep when 
not required for monitoring. The approach we take is on-
demand sleep-wake of the guards rather than scheduling the 
sleep-wake periods. The defining characteristic of on-
demand sleep-wake protocols is that any node in the network 
may, at random, initiate communication with any other node 
in the network. The sleep-wake protocol does not rely on 
any fixed communication pattern in the network. On-
Demand SLAM uses either low-power wake-up antennas 
(e.g., [11]-[14]) or passive antennas with circuitry that can 
harvest signal energy to trigger a node to wake up [15], as 
has been described in Section 2. These kinds of antennas are 
commercially available (e.g. [14]) as well as available as 
research prototypes in academia [15]. For example Austria 
Microsystems provides a low-power wake-up receiver 

(AS3931) with data rate of 2.731KB/s and current 
consumption in standby mode of 6.6µA [14].  

In On-Demand SLAM, the low-power wake-up radio 
remains awake all the time while the normal radio is put to 
sleep when it is not sending or receiving data or is not 
required for monitoring. If a node is to send a packet out, it 
simply wakes up by itself; if a neighbor node is to send a 
packet to this node, the sender will send a short wake-up 
beacon using the wake-up radio channel, and on receiving 
this beacon the wake-up radio triggers the normal radio to be 
ready for the reception. The main disadvantage of the 
mechanism is that it still consumes extra energy. Even 
though the power consumed is small compared to the normal 
antenna (1uW compared to 10mW in [11]), the energy is 
non-negligible due to long time of operation.  

Hence this mechanism has been modified to use passive 
wake-up antennas, known as radio-triggered power 
management mechanisms [15]. In this mechanism a special 
hardware component–a radio-triggered circuit–is connected 
to one of the interrupt inputs of the processor. The circuit 
itself does not draw any current and is thus passive. The 
node can enter sleep mode without periodic wake-up. The 
wake-up mode is the usual working mode with all the 
functional units ready to work, and the average wake-up 
mode current is 20mA. In sleep mode, a node shuts down all 
its components except the memory, interrupt handler, and 
the timer. The sleep mode current is 100µA. When a 
network node changes from sleep mode to wake-up mode, 
there is a surge current of 30mA for a maximum of 5ms. 
When a power management message is sent by another node 
within a certain distance, the radio-triggered circuit collects 
enough energy to trigger the interrupt to wake up the node. 
Except for activating the wake-up interrupt, the radio-
triggered circuit is independent of any other components on 
the node. If supported by hardware, the wake-up packet is 
sent at a special radio frequency. If the nodes in a one hop 
neighborhood have unique frequencies each listens on, then 
other communication at a different radio frequency does not 
wake up the nodes. Note that hardware cost for adding 
multiple-frequency support is usually fairly low. Many 
recent low-end radio transceivers support multiple frequency 
operations [30] However, the unique frequency assignment 
is not necessary for the correctness of On-Demand SLAM, 
but improves the energy efficiency. In the rest of the paper, 
for ease of exposition we use the term “low-power wake-up 
radio” to mean either the low-power wake-up hardware or 
the passive wake-up hardware. 

3.3.1. On-Demand SLAM: Basic Approach 

The basic idea in designing On-Demand SLAM is for a 
node to wake up the requisite guard nodes to perform local 
monitoring on the communication that is going out from that 
node. The challenge in the design comes from the fact that 
any of the nodes (except the source) may be malicious and 
therefore, may not faithfully wake up the guards. As in [23] 
and [24], local monitoring is used to mitigate malicious 
activities manifested through dropping, delaying, modifying, 
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or forging of data/control packets. In local monitoring, the 
sensor node is called a guard when performing traffic 
overhearing and monitoring of neighbors. The guards of a 
node A over the incoming packets from a transmitter X are 
the common neighbors of X and A. In Figure 1, α1 and β1 are 
the guards of n1 over the link S n1. Information for each 
packet sent from X to A is saved in a watch buffer at each 
guard for a time Tw. The information maintained depends on 
the attack to be detected (i.e., drop, delay, modify, or forge). 

 

S n1 n2 nh-1 D

α1 α2

β1 β2

Z

W

 
Figure 1: h-hop route between S and D, neighbors of S, and 

guards of n1 and n2  
A malicious counter (MalC(i,j)) is maintained at each 

guard node, i, for every  node, j, which i is monitoring. 
MalC(i,j) is incremented for any suspect malicious activity 
of j that is detected by i. To account for intermittent natural 
failures, a node is determined to be misbehaving, only if the 
MalC goes above a threshold. When MalC(i,j) crosses the 
threshold, node i isolates node j by refraining from sending 
or receiving any packet from j. Node j is said to be fully 
isolated from the network when all its neighbors isolate it.  

We use Figure 1 to explain On-Demand SLAM. A source 
node S is sending data to a destination node D through an h-
hop route S n1 n2 … nh-1 D. In a network where all 
the nodes are honest, S will wake up the next hop n1 and the 
guard nodes (α1 and β1) before sending the packet to n1. In 
turn n1 will wake up n2 and guard nodes α2 and β2 before 
sending the packet on the next hop and so on, till the packet 
reaches D. Formally, according to [24], the responsibility of 
a guard node α of ni+1 over a link ni→ni+1 is to verify that: 
1. ni+1 forwards the packet within time Tw. 
2. ni+1 does not modify the packet it is forwarding. 
3. ni+1 only forwards a packet if a packet is sent on the 

ni→ni+1 link. 
SLAM introduces a fourth responsibility. 

4. ni+1 should wake up the guards for the ni+1 ni+2 link 
before forwarding the packet on that link. 

If a rule 1-3 is violated then the MalC value is 
incremented by appropriate amount; if rule 4 is violated, the 
MalC value increment is the maximum of the other MalC 
values because this rule violation may be used to mask 
violations of any of the rules 1-3. 

In general, for any multi-hop route connecting a source 
node S to a destination node D, S is responsible for waking 
up the correct guards for n1, and ni is responsible for waking 
up the correct guards of ni+1 (1 ≤ i ≤ h-2). The correct guards 
for n1 are guaranteed to be woken up by the assumption of 
honest source S and whether ni honestly wakes up the next 

hop guards is monitored by the guards of ni according to rule 
4 above. 

In the following we present two variations of On-Demand 
SLAM depending on the wake-up mechanism a node follows 
to wake up the guards of the next-hop. 

3.3.2. Guards-Only On-Demand SLAM (G-SLAM) 

The high level design goal in G-SLAM is to minimize the 
energy wasted in waking up nodes that can not serve as 
guards. On average half of the nodes within a single 
transmission range are not guards over a certain link 
(according to Equation I in [24]). In G-SLAM, a node wakes 
up a subset of its neighbors—the nodes that can act as 
guards. For this, it is assumed that the wake-up antenna of 
each node is tuned to receive at its own code (as in [15]), 
which is distinct for all one-hop neighborhood nodes.  

For a guard node to verify honest wake-up, G-SLAM 
requires each node in the network to know, in addition to the 
identities of its first-hop and second-hop neighbors that are 
required by local monitoring, the location of each node 
within twice its transmission range.  In Figure 1, a guard of 
n1, say α1, knows the location of its neighbor n1 and the 
location of all the neighbors of n1 (S, β1, β2, α2 and n2). 
Using this information, α1 knows the common neighbors of 
n1 and n2, α2 and β2, which can act as the guards of n2 over 
the link n1 n2. Therefore, α1 can not be deceived by n1 
waking up its nodes that can not be guards for n2 (S,β1). A 
disadvantage of G-SLAM is that it requires sophisticated 
wakeup hardware that can be addressed using an id-attached 
beacon [15].  

We explain the G-SLAM algorithm with the help of Figure 
1. Assume that node S has some data to be sent for the 
destination D over the route S n1 n2 … nh-1 D 
connecting S to D. G-SLAM uses the following steps to wake 
up the correct guards along the route from S to D: 
1. Node S sends a signal to wake up the first-hop node (n1) 

and the guards for n1 (α1, β1). This is a multicast signal 
that contains the identities of n1, α1, and β1.  

2. Node S sends the packets it has to n1 following the 
timing schedule presented in Section 3.3.4.  

3. Nodes n1, α1, and β1 after being woken up continue to 
remain awake for Tw. Tw is a parameter of local 
monitoring that captures the maximum time by which 
an entry in the watch buffer is evicted (beyond that is 
evidence of malicious action). Each time a new packet 
is sent from S to n1, Tw is reinitialized. After Tw expires 
at a node, it goes back to sleep. 

4. Node n1, after being woken up, uses the timing schedule 
in Section 3.3.4 and according to it sends a wake-up 
signal for n2, the guards of n2 over the link n1→n2 (α2, 
β2), and the guards of n1 over the link S n1(S,α1,β1). 
The guards of n1 over the link S→n1 are responsible for 
verifying that n1 fulfills this requirement. n2 does not 
accept packets from n1 if the wakeup signal of n1 does 
not include all the necessary nodes (S,α1,β1,α2, β2,n2).  
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5. If n1 fails to send the wakeup signal, the guard of n1 
with the lowest ID sends a two-hop broadcast of the 
wakeup signal. If that guard fails, the guard with the 
next smallest ID sends the signal, and so on. This design 
ensures that if there is a chain of colluding malicious 
nodes then all the nodes will be suspected. 

6. The process continues at each step up to the destination. 

3.3.3. All-Neighbors On-Demand SLAM (A-SLAM) 

The high level design goal of A-SLAM is to relax the 
assumption that every node knows the location of its first-
hop and second-hop neighbors, and to simplify the wake-up 
hardware and wakeup signal.  Again considering Figure 1, 
A-SLAM uses the following steps to wake up the guards 
along the route from S to D: 
1. Node S broadcasts a wake-up signal to all its first-hop 

neighbors (Z,W,n1,α1,β1). The wake-up signal includes 
the identity of both the current sender (S), the next-hop 
(n1), and the previous-hop (empty for S). 

2. Each neighbor of S, after being woken up, decides 
whether to stay awake or go back to sleep based on the 
role that it may play on the ongoing communication. If 
that neighbor is the next-hop (n1), it stays awake to 
forward the data and to monitor the next-hop from it 
(n2). If that neighbor is a guard (α1,β1) for the next-hop 
n1 over the link n1 n2, it stays awake to monitor the 
behavior of n1. If the node is a guard of a forwarding 
node over the previous-hop, it stays awake to detect 
fabrication by the forwarding node. A node can 
independently make this determination based on first- 
and second-hop neighbor information. If none of these 
cases hold, the node goes back to sleep immediately. 

3. Node S sends the data packet to n1 following the timing 
schedule presented in Section 3.3.4.  

4. Nodes n1, α1, and β1 after being woken up continue to 
stay awake for Tw. After that, it goes back to sleep. 

5. n1 does the same steps that S did to wake up the next-
hop (n2), n2’s guards (α2,β2) and n1’s guards (S,α1,β1). 

6. If n1 fails to send the wakeup signal, the guard of n1 
with the lowest ID sends a two-hop broadcast of the 
wakeup signal through. If that guard fails, the guard 
with the next smallest ID sends the signal, and so on. 
This design ensures that if there is a chain of colluding 
malicious nodes then all the nodes will be suspected. 

7. The process continues at each step till the destination. 
This scheme results in an increase in the energy 

consumption compared to G-SLAM due to the needless 
wake-up of the neighbors that are not guards.  

3.3.4. Timing of the wakeup signal 

In this section we generate the timing schedules for 
sending the wake-up signal to nodes using On-Demand 
SLAM. This is important because the wake-up antennas have 
a warm-up period that could increase the end-to-end delay of 
the communication. We design the schedule such that the 

additional delay due to the sleep-wake protocol is not 
cumulative with the number of hops for Case II shown 
below. It is a constant independent of the number of hops. 
Moreover, the increase in delay with the number of hops is 
small for Case I. The coefficient of increase per hop is the 
difference between the time to send a control packet and the 
time to send a data packet over one hop. 

Let Tcontrol be the time to send the signal to the wake-up 
antenna, Twarmup be the time for a node to be fully awake 
from the time it receives the wake-up signal (5 ms for the 
antenna in [15]), and Tdata be the time to send a data packet 
over one hop. This time includes the transmission time and 
the forwarding time. Thus, within Tdata, an intermediate node 
completely receives a data packet. Finally, let Twake be the 
time a node continues to be awake after being woken up.  

Consider an isolated flow between S and D, separated by 
h hops. The intermediate nodes are n1, n2, …, nh-1.  Let gi 
represents the guards of node ni over the link ni-1 ni. Let vi 
represents the neighbors of ni that are not guards of ni+1 over 
the link ni ni+1. Consider the following two disjoint cases 
based on the relation between (Tcontrol + Twarmup) and Tdata.  

Twarmup

T3

Tcontrol

S sends
wakeup

n1 rcvs
wakeup

n1 awake, S 
sends data, 
n1 sends
wakeup

n1 rcvs
data

n2 awake, n1
sends data, 
n2 sends
wakeup

n2 rcvs
data

T1 T2 T4 T5 T6 T7

n3 awake, n2
sends data, 
n3 sends
wakeup

n3 rcvs
data, 
n1
sleep 

T8

Tdata  τ Tdata Tdata τ

(a)

Twarmup

T3

Tcontrol

S sends
wakeup

g1 rcvs
wakeup

g1 awake, S 
sends data, 
n1 sends
wakeup

g1
overhear 
in data to 
n1

g2 awake, n1
sends data, 
n2 sends
wakeup

g1 overhear
out data from n1, g2
overhear in data to 
n2, g1 sleep 

…
T1 T2 T4 T5 T6

Tdata  τ Tdata

(b)

Twarmup

T3

Tcontrol

S sends
wakeup

v1 rcvs
wakeup

v1 awake, v1 
sleep

…
T1 T2

(c)

 
Figure 2: Case I wakeup-sleep timing schedule for (a) a node in 
the data route; (b) a guard node; (c) a neighbor to a node in the 

data route that is not valid guard (for A-SLAM only) 

Case I: (Tcontrol+Twarmup) > Tdata, τ = (Tcontrol+Twarmup) – Tdata 
Figure 2 above shows the timing schedule for this case. 

Figure 2(a) shows the timing schedule for a node in the route 
between the source and the destination. The node, n1, wakes 
up at T3 and goes to sleep at T8, where T8-T3 = Tdata (to 
receive data) + τ (wait for the next-hop to be ready to 
receive the data) + Tdata (send the data to the next-hop) + {τ 
+ Tdata} (as a guard for n2) = 3Tdata+2τ. Figure 2(b) shows 
the timing schedule for a guard node. The guard, g1, wakes 
up at T3 and goes to sleep at T6, where T6-T3 = Tdata (to 
overhear incoming data to the node being monitored, n1) + τ 
(wait for the next-hop to be ready to receive the data) + Tdata 
(to overhear outgoing data from the node being monitored, 
n1) = 2Tdata +τ. Figure 2 (c), only meaningful for A-SLAM, 
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shows the schedule for a node that is a neighbor to a node in 
the route from the source to the destination but is not a guard 
node. The node, v1, wakes up at T3, determines that it can not 
be a guard, and thus goes back to sleep immediately. 

From Figure 2, it can be seen that per hop, the delay 
incurred is Tcontrol + Twarmup and at the last hop, the delay due 
to data (Tdata) gets exposed (see Equation (1) below). 
Case II: (Tcontrol+Twarmup)≤Tdata,τ = Tdata – (Tcontrol + Twarmup) 
Please see Case II, Section 3.4.3 of our technical report [29]. 

4. Security and Performance Analysis  
4.1. Security Analysis 

We will prove the following proposition.  
Proposition: Due to the sleep-wake mechanism for guards in 
SLAM, no loss in detection coverage occurs w.r.t. [24].  

For this we first prove the following lemma.  
Lemma: For any node ni in the path S→D (i =1, …, h-1), the 
guards for ni+1 on the link ni ni+1 are woken up when the 
communication over the link takes place.  

We prove this lemma using mathematical induction. 
Let the guards of n1 over the link S n1 form the set G1, 

nh-1 D the set Gh, and ni-1 ni the set Gi.  
Base case: The source S is honest and therefore it wakes the 
guard nodes in G1. 
Inductive hypothesis: For n1, …, ni (i ≥ 1), ∀Gk (k  ≤ i) has 
been woken up at the time when the communication over the 
link nk-1 nk takes place either directly or indirectly. In the 
later case nk-1 is suspected of malicious action. 
To prove: Gi+1 is woken up at the time of ni ni+1 
communication.   
Proof: If ni is honest, it wakes up Gi+1 (step 4 of G-
SLAM/step 5 of A-SLAM).  
Else, Gi wakes up Gi+1 (step 5 of G-SLAM/step 6 of A-
SLAM). In the later case ni is suspected of malicious action 
(not sending the wakeup signal). 

Thus, the lemma is proved by mathematical induction. 
The detection of the guards according to rules 1-3 is not 

changed from baseline local monitoring. Combining the 
lemma with this observation proves that no loss of detection 
coverage happens due to SLAM. 

4.2. Energy and End-to-End Delay Analysis 
For both energy and delay we compare our scheme On-

Demand Slam to bring out its worst case behavior. For end-
to-end delay, we compare it with local monitoring without 
sleep-wake (Baseline-LM). For the energy we compare it to 
a protocol with on-demand sleep-wake for communication 
and no monitoring (Baseline-OD).  

In addition to the notations defined in Section 3.3.4, let 
Atransmit be the current to transmit (at the middle of the 
transmit range), which is 27mA for Mica2 motes [28]. Let 
Awarmup be the current consumed during the transition from 
sleep to wakeup (warm up), which is 30mA for Mica2 motes 

[15]. Finally, let Aactive be the current in the computationally 
active mode = the current in the idle listening mode = the 
current in receive mode (8mA for Mica2 motes). 

S D
r
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(h+1)r

r

Communication rangeA sensor node S -D Bounding path

S D
r

2r
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r

Communication rangeA sensor node S -D Bounding path

 
Figure 3: A bounding box over the path S D 

Let us consider a flow between S and D, separated by h 
hops. The intermediate nodes are n1, n2, …, nh-1. The 
bounding box around S and D covers all possible nodes, 
including forwarding and guard nodes that may be involved 
in the communication between S and D. The size of the 
bounding box is 2r(h+1)r = 2r2(h+1), where r is the 
transmission range, Figure 3. For On-Demand SLAM, 
consider the wakeup-sleep scheduling cases of Section 3.3.4. 
End-to-end-Delay: 
Case I: (Tcontrol + Twarmup) > Tdata with τ = (Tcontrol + Twarmup) 
– Tdata 

From Figure 2 it can be seen that delay at the first link 
(S n1) is Tcontrol + Twarmup + Tdata. Over each of the 
succeeding links, the delay is Tcontrol + Twarmup since the delay 
due to data (Tdata) gets exposed. This is due the sleep-wake 
schedule process that SLAM uses where the wake-up signal is 
sent at the earliest opportunity. Therefore, the end-to-end 
delay in SLAM, ΩSLAM(h), for the link from S to D is 

( ) ( 1)( )

( )
SLAM contol warmup data control warmup

control warmup data

h T T T h T T

h T T T

Ω = + + + − +

= ⋅ + +
 (1) 

The end-to-end delay in Baseline-LM is  
( )Base LM datah h T−Ω = ⋅     (2) 

In this case, the additional end-to-end delay imposed by 
SLAM depends on the number of hops between S and D 
   ( ) ( ) ( )SLAM Add SLAM Base LM datah h h h Tτ− −Ω = Ω − Ω = ⋅ +  (3) 

Case II: (Tcontrol + Twarmup) ≤ Tdata with τ = Tdata – (Tcontrol + 
Twarmup). The end-to-end delay of SLAM is given by 

 
( ) ( 1)( )

               ( )
SLAM contol warmup data data

data control warmup

h T T T h T

h T T T

Ω = + + + −

= ⋅ + +
 (4) 

For more details, please refer to Case II, Section 4.2 in our 
technical report. 

In Figure 4, we plot the extra delay of SLAM over 
Baseline-LM for cases I (Equation(3)) and II (Equation (12) 
in the technical report [29]) above with Tdata = 7ms and τ = 
1ms. The figure shows that the additional delay due to SLAM 
increases linearly with the number of hops for Case I while it 
remains constant for Case II. 
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Figure 4: Extra delay due to SLAM over Baseline-LM 

Energy overhead: 
Case I: (Tcontrol + Twarmup) > Tdata,τ = (Tcontrol+Twarmup) – Tdata 
Baseline-OD: Here only the forwarding nodes are involved 
in the sleep-wake protocol; all other nodes are asleep. Using 
Figure 2(a), a forwarding node ni (i = 1, …, h-1) spends 
Twarmup = T3-T2 warming up with current consumption of 
Awarmup, Tdata = T4-T3 receiving data with current 
consumption of Aactive, τ = T5-T4 idle waiting for the next-hop 
to be ready with current consumption of Aactive, and Tdata = 
T6-T5 sending data with current consumption of Atransmit. 
Therefore, the energy expended by a forwarding node ni (i = 
1, …, h-1) is (we ignore the constant voltage term for the 
energy comparison since that is the same through all the 
cases) 
 , ( )f base warmup warmup control warmup active data transmitT A T T A T Aε = ⋅ + + ⋅ + ⋅  (5) 

Node S spends Tcontrol + Twarmup = T3-T1 idle waiting for n1 
to wake up with Aactive and Tdata = T4-T3 transmitting data 
with Atransmit. Therefore, the energy expended by S is  
   ,  ( )   S base control warmup active data transmitT T A T Aε = + ⋅ + ⋅  (6) 

Node D spends Twarmup warming up with Awarmup and Tdata 
receiving data with Aactive. Thus, the energy expended by D 
is 
    ,     D base warmup warmup data activeT A T Aε = ⋅ + ⋅   (7) 
On-Demand SLAM: Here the sleep-wake protocol involves, 
in addition to S and D, the forwarding nodes, the guard 
nodes, the neighbors of the forwarding nodes that are not 
guards. We will compute separately for the three kinds of 
nodes (i) forwarding nodes; (ii) guard nodes that do not act 
as forwarders; (iii) remaining nodes. The energy of S and D 
is the same as that in Baseline-OD.  
i. Energy expended by a forwarding node ni (i = 1, …, h-

1)  εf,SLAM ≤  εf,base + Tw . Aactive. The additional energy is 
consumed because ni has to find if ni+1 forwards the 
packet that it was just handed by ni. The inequality 
comes in because Tw is the worst-case time in case ni+1 
is malicious. 

ii. Energy expended by a guard node that is not a 
forwarding node εg,SLAM ≤ Twarmup . Awarmup + Tdata . Aactive + 
Tw . Aactive. Consider for example the guard g1 of n1 over 
the link S n1. g1 has to listen to the communication 
between S to n1 and then has to stay listening for a 
maximum of Tw to see that n1 forwarded the packet. 

iii. Energy expended by a node in the bounding box around 
S and D that is neither a forwarding node nor a guard 
node (the “other node”, hence the notation “o” in the 

subscript). For G-SLAM where the wake-up signal is 
directed to the relevant guard nodes εo,G-SLAM = 0. For A-
SLAM εo,A-SLAM = Twarmup . Awarmup. 

Case II: (Tcontrol + Twarmup) ≤ Tdata with τ = Tdata – (Tcontrol + 
Twarmup). Please refer to Case II, Section 4.2 in our technical 
report for the energy consumption of this case.    

5. Simulation Results 
We use the ns-2 simulator [27] to simulate a data 

exchange protocol over a network with local monitoring 
enabled. We simulate two scenarios individually without A-
SLAM (the baseline) and with A-SLAM. The baseline is an 
implementation of a state-of-the-art local monitoring 
protocol presented in [24]. A-SLAM scenario is built on top 
of the baseline scenario to provide sleep-wake service for the 
guards. Nodes are distributed randomly over a square area 
with a fixed average node density, 100 nodes over 
204m×204m. Each node acts as a source and generates data 
according to a Poisson process with rate µ. The destination 
is chosen at random and is changed using an exponential 
distribution with rate λ. A route is evicted if unused for 
TOutRoute time. The experimental parameters are in Table 1. 
The results are averages over 30 runs. The malicious nodes 
are randomly chosen so that they are more than 2 hops away. 

Table 1: Default simulation parameters 

Parameter Value Parameter Value 
Avg. number 
neighbors (NB) 

8 Destination change 
rate (λ) 

0.02/sec 

Tx Range (r) 30 m # malicious nodes (M) 4 
Fraction of data 
monitored (fdat) 

0.6 Packet generation rate 
(1/µ) 

0.1/sec 

Channel BW 40 
kbps 

Warm up time 
(Twarmup) 

5ms 

Simulation time 1500 s Watch time (Tw) 30ms 
TOutRoute 50 sec Number of nodes (N) 100 

Adversary model: We are simulating a selective forwarding 
attack launched by a group of malicious nodes that collude 
and establish wormholes in the network [25]. During the 
wormhole attack, a malicious node captures packets from 
one location in the network, and “tunnels” them to another 
malicious node at a distant point, which replays them 
locally. This makes the tunneled packet arrive either sooner 
or with a lesser number of hops compared to the packets 
transmitted over normal multihop routes. This creates the 
illusion that the two end points of the tunnel are very close 
to each other. The two malicious end points of the tunnel 
may use it to pass routing traffic to attract routes through 
them and then launch a variety of attacks against the data 
traffic flowing on the wormhole, such as selectively 
dropping the data packets. Unless otherwise mentioned, each 
node selectively drops a packet passing through it with 
uniform probability of 0.6 
Variable Input metrics: (i) Fraction of data monitored 
(fdat)–each guard node randomly monitors a given fraction of 
the data packets. At other times, it can be asleep from the 
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point of view of a guard’s responsibility. (ii) Data traffic 
load (µ). (iii) Number of malicious nodes (M). 
Output metrics: (i) Delivery ratio–the ratio of the number 
of packets delivered to the destination to the number of 
packets sent out by a node averaged over all the nodes in the 
network. (ii) % wakeup time–the time a node has to wake up 
specifically to do monitoring averaged over all the nodes as 
a percentage of the simulation time; (iii) Average end-to-end 
delay–the time it takes a data packet to reach the final 
destination averaged over all successfully received data 
packets; (iv) % True isolation–the percentage of the total 
number of malicious nodes that is isolated; (v) % False 
isolation–the percentage of the total number of nodes that is 
isolated due to natural collisions on the wireless channel; 
(vi) Isolation latency–the time between when the node 
performs its first malicious action to the time by which all its 
neighbors have isolated it, averaged over all isolated 
malicious nodes.  

Note that our goal is not to show the variation of the 
output metrics with the input parameters for local 
monitoring, since that has been covered in [23][24]. Our 

goal is to study the relative effect on local monitoring with 
A-SLAM and without.  

5.1. Effect of fraction of data monitored 
The amount of data traffic is typically several orders of 

magnitude larger than the amount of control traffic. It may 
not be reasonable for a guard to monitor all the data traffic in 
its monitored links. Therefore, a reasonable optimization is 
to monitor only a fraction of the data traffic. In this set of 
experiments, we investigate the effect of this optimization. 

Figure 5 shows the variations of delivery ratio, % true 
isolation, and end-to-end delay as we vary fdat.  Figure 5(a) 
shows that the delivery ratio is almost stable above 90% 
irrespective of the value of fdat. This desirable effect is 
achieved by proper selection of the MalC increment for each 
value of fdat. The MalC increment is designed with an inverse 
relation to the fdat Figure 5(b) shows that the % of true 
isolation is almost stable as we vary fdat due to the same 
reasoning as for Figure 5(a). Importantly, the delivery ratio 
and the % true isolation in A-SLAM are close to the baseline 
for all values of fdat. 
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Figure 5: Effect of fraction of data monitored on (a) delivery ratio, (b) % true isolation, and (c) end-to-end delay   

However, in Figure 5, the results of A-SLAM are slightly 
worse than those of the baseline. This is because some of the 
data packets are additionally dropped in A-SLAM by 
forwarding, destination, or guard nodes that happen to be 
asleep when the data packet arrives. This erroneous extra 
sleep may occur due to collision in the sleep-wake control 
channel which prevents the respective nodes from waking 

up. Although the control channel is a separate channel 
contention still occurs, where a guard of two consecutive 
links are sent separate wake-up signals concurrently. Figure 
5(c) shows that the end-to-end delay is slightly higher for A-
SLAM due to the additional warm up time required when the 
source sends a packet to the first hop. 
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Figure 6: Effect of number of malicious nodes on (a) % delivery ratio, (b) % true isolation, and (c) % false isolation 

5.2. Effect of number of malicious nodes 
Figure 6 above shows the variations of % delivery ratio, % 

true isolation, and % false isolation as we vary the number 
of malicious nodes (M). Figure 6(a) shows that the % 
delivery ratio slightly decreases as M increases. This is due 
to the packets dropped before the malicious nodes are 
detected and isolated. As the number of malicious nodes 
increases, this initial drop increases and thus the delivery 
ratio decreases. Figure 6(b) shows that the % true isolation 

also slightly decreases as we increase M. This is because the 
number of available guards in the network decreases as more 
and more nodes get compromised. These two metrics in A-
SLAM are slightly lower than those of the base line due to the 
erroneous extra sleep described in Section 5.1. Figure 6(c) 
shows that the % false isolation increases as we increase M. 
This is because not all guard nodes come to the decision to 
isolate a malicious node at the same time. Thus, a guard 
node may suspect another guard node when the latter 
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isolates a malicious node but the former still has not. The 
occurrence of this situation increases with M and hence the 
% of false isolation increases with M. For example, a guard 
node G1 detects a malicious node Z earlier than the other 
guard nodes for the link to Z. G1 subsequently drops all the 
traffic forwarded to Z and is therefore suspected by other 
guard nodes for Z. This problem can be solved by having an 
authenticated one-hop broadcast whenever a guard node 
performs a local detection. The % false isolation in A-SLAM 
is lower than that of the baseline. Again, this is due to some 
of the packets that may falsely identify a node as malicious 
may get lost in A-SLAM due to the erroneous extra sleep. 

5.3. Wakeup time variations 
In this section, we study the effect of varying the fraction 

of data monitored (fdat), the number of malicious nodes (M), 

and the data traffic load (1/µ) on the percentage of time that 
a node needs to stay awake for monitoring using A-SLAM. 

 Figure 7(a) shows that the percentage of wakeup time 
required for monitoring increases as the fraction of 
monitored data increases due to the increase in the number 
of data packets that a node needs to overhear in its 
neighborhood. Figure 7(b) shows that the percentage of 
wakeup time decreases as we increase the number of 
malicious nodes. As the number of malicious nodes 
increases, the number of data packets in the system 
decreases since the malicious nodes are isolated and 
disallowed from generating data packets. Therefore, the 
number of packets that need to be monitored decreases, 
which results in a decrease in the average percentage of 
wakeup monitor time. Figure 7(c) shows that the average % 
of monitoring wakeup time increases as the data traffic load 
increases due the increase in data that needs to be monitored. 

0

1

2

3

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

(a)

%
 W

ak
eu

p 
Ti

m
e

0

0.5

1

1.5

2

2 3 4 5 6
Number of Malicious Nodes

(b)

%
 W

ak
eu

p 
 T

im
e

0

1

2

3

4

0.05 0.067 0.01 0.2 1
Data Traffic Load (1/mu)

(c)

%
 W

ak
eu

p 
Ti

m
e

 
Figure 7: Variations on the percentage of monitoring wakeup time as we vary (a) the fraction of data monitored (fdat); (b) number 

of malicious nodes (M); and (c) data traffic load (µ) 
Overall, from Figure 7(c), compared to the no sleeping 

case, A-SLAM saves 30-129 times in listening energy for 
different amounts of data traffic load (1/µ). 

5.4. Effect of distance on delay 
In this section, we evaluate the variations of the end-to-

end delay with the number of hops between the source and 
destination pairs.  
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Figure 8: Variation of the end-to-end delay with the hop count  

Figure 8 above shows that the end-to-end delay in A-
SLAM is always higher than that of the baseline due to the 
warm-up time needed to wake up the nodes before sending 
the data. However, due the scheduling strategy in A-SLAM in 
which each node sends a wake-up signal at the earliest 
possible opportunity (Section 3.3.4), the warm-up time is 
only in the critical path at the first hop and therefore, the 
difference in delay between A-SLAM and the baseline case is 
not cumulative with the number of hops. The trend of the 
additional delay due to SLAM follows the trend obtained 

analytically in Section 4.2 for the case when (Tcontrol + 
Twarmup) < Tdata which is true in these simulation settings. 

6. Conclusion 
In this paper, we have presented a protocol called SLAM to 

make local monitoring in sensor networks energy-efficient 
while maintaining the detection coverage. We classify the 
domain of sleep-wake protocols into three classes and SLAM 
correspondingly has three manifestations depending on 
which baseline sleeping protocol (BSP) is used in the 
network. For the first class (synchronized sleep-wake), local 
monitoring needs no modification. For the second class 
(connectivity or coverage preserving sleep-wake), local 
monitoring can call the BSP with changed parameter values. 
For the third class (on-demand sleep-wake), adapting local 
monitoring is the most challenging and requires hardware 
support as low-power or passive wake-up antennas. We 
propose a scheme whereby before communicating on a link, 
a node awakens the guard nodes responsible for local 
monitoring on its next hop. We design the scheme to work 
with adversarial node behavior. We prove analytically that 
On-Demand SLAM does not weaken the security property of 
local monitoring. Simulation experiments bring out that over 
a wide range of conditions, the performance of local 
monitoring with SLAM is comparable to that without SLAM, 
while listening energy savings of 30-129 times is realized, 
depending on the network load. Our ongoing work is 
looking at providing security guarantees in mobile ad hoc 
networks and building trust framework for such networks. 
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