

1

SLAM: Sleep-Wake Aware Local Monitoring in Sensor Networks

Issa Khalil, Saurabh Bagchi, Ness B. Shroff
Dependable Computing Systems Lab (DCSL) & Center for Wireless Systems and Applications (CWSA)

School of Electrical & Computer Engineering, Purdue University
Email: {ikhalil, sbagchi, shroff}@purdue.edu

Abstract
Sleep-wake protocols are critical in sensor networks to

ensure long-lived operation. However, an open problem is
how to develop efficient mechanisms that can be
incorporated with sleep-wake protocols to ensure both long-
lived operation and a high degree of security. Our
contribution in this paper is to address this problem by using
local monitoring, a powerful technique for detecting and
mitigating control and data attacks in sensor networks. In
local monitoring, each node oversees part of the traffic going
in and out of its neighbors to determine if the behavior is
suspicious, such as, unusually long delay in forwarding a
packet. Here, we present a protocol called SLAM to make
local monitoring parsimonious in its energy consumption
and to integrate it with any extant sleep-wake protocol in the
network. The challenge is to enable sleep-wake in a secure
manner even in the face of nodes that may be adversarial and
not wake up nodes responsible for monitoring its traffic. We
prove analytically that the security coverage is not weakened
by the protocol. We perform simulations in ns-2 to
demonstrate that the performance of local monitoring is
practically unchanged while listening energy saving of 30 to
129 times is achieved, depending on the network load.
Keywords: Sensor networks, local monitoring, sleep/wake
techniques, wake-up antenna.

1. Introduction
It has been shown in the literature that sensor networks are

vulnerable to a wide range of security attacks including the
wormhole attack, rushing, and Sybil attacks [25].
Cryptographic mechanisms alone can not prevent these
attacks since many of them such as the wormhole and the
rushing attacks can be launched without needing access to
cryptographic keys or violating any cryptographic check. To
mitigate such attacks, many researchers have used the
concept of cooperative local monitoring within a node’s
neighborhood ([17]-[24]). In local monitoring, nodes oversee
part of the traffic going in and out of their neighbors.
Different types of checks are done locally on the observed
traffic to make a determination of malicious behavior. For
the systems where arriving at a common view is important,
the detecting node initiates a distributed protocol to

disseminate the alarm. Many protocols have been built on
top of local monitoring for intrusion detection (e.g.,
[16][17]), building trust and reputation among nodes (e.g.
[20][21]), protecting against control and data traffic attacks
(e.g. [22]-[25]) and in building secure routing protocols (e.g.
[18][19][23]). Specifically, in [23] and [24] the authors have
presented a technique for detection of control and data
attacks in ad-hoc networks using local monitoring. Control
attacks are launched by a node delaying, dropping,
modifying, or fabricating control traffic that it is supposed to
forward. Data attacks are similarly launched by performing
these actions on data traffic. In [23] and [24], these attacks
are detected by a group of nodes, called guard nodes, that
perform local monitoring. The guard nodes are normal nodes
in the network and perform the basic operations of sensing,
in addition to monitoring.

Though local monitoring has been proposed by many
researchers, it incurs a high energy cost since it requires the
guard nodes to be awake all the time to oversee network
behavior. To the best of our knowledge, no one has devised
sleep-wake protocols for optimizing the energy overhead of
monitoring while maintaining the quality of the monitoring
service. This is the problem we address in this paper. The
main challenge lies in having the sleep-wake performed
securely so that an adversarial node cannot escape detection
by causing its guard nodes to stay asleep.

In this paper we propose a set of mechanisms called
Sleep-Wake Aware Local Monitoring (SLAM) that adapt the
existing local monitoring technique to significantly reduce
the time a node needs to be awake for the purpose of
monitoring. The proposed mechanism adapts itself
depending on the kind of sleeping protocol used in the
network, henceforth referred to as the baseline sleeping
protocol (BSP). For networks that use synchronized sleeping
algorithms (e.g., [3] [8]-[10]), i.e., nodes wakeup and go to
sleep in a synchronized manner, SLAM does not need to do
anything since a node and its guards will be woken up by the
BSP itself. There exist several application-specific sleeping
algorithms, for example, to maintain a given sensing
coverage (each point should be sensed by at least k nodes) or
a given network connectivity level (each pair of nodes
should have k disjoint paths). For these protocols (e.g., [1]-
[3]), SLAM can support local monitoring by modifying an
input parameter to the existing sleeping algorithm, such as
the value of k in the connectivity or coverage preserving
BSPs. Finally, we consider networks that use on-demand

2

sleep-wake. On-demand sleep-wake means a node wakes up
when it needs to communicate, and since the communication
pattern can be arbitrary, the wakeup time is arbitrary in the
general case. This provides the most challenging case and
forms the most significant portion of the discussion in the
paper.

For the third class of network, SLAM provides a generic
on-demand sleeping algorithm, called On-Demand SLAM.
This algorithm relies on each node having a passive or a
low-power wake-up antenna in addition to the normal
antenna. A node that is not involved in network activities,
such as, data forwarding is ordinarily sleeping according to
the BSP. However, for monitoring purposes, it is woken up
on demand by a neighboring node using the wake-up
antenna. The key challenge to this apparently simple scheme
is that it now opens up the possibility of a new adversarial
action, namely, a node not waking up a sleeping node(s) so
that its own malicious action is not detectable. At a high
level, our solution involves the following steps–adding to the
list of behavior that a guard node needs to check and second,
defining the mechanism through which the check is to be
done (i.e., who checks, when, and for what).

We provide a theoretical analysis for energy saving using
On-Demand SLAM compared to a baseline monitoring
protocol [24]. We build a simulation model for SLAM using
ns-2 and perform a comparative evaluation of local
monitoring with and without SLAM. The results show that
the security of local monitoring is very close in both cases
while the overhead of SLAM in terms of listening energy is
between 30 to 129 times lower, depending on the network
traffic. The results show the effect of the number of
malicious nodes, the traffic load, and the fraction of data
being monitored on the overhead of local monitoring. We
summarize our contributions in this paper as follows:
1. We provide a technique for conserving energy while

performing local monitoring without significantly
degrading its security performance. This we believe is
fundamental to deploying local monitoring in any
energy conscious network.

2. We propose a generic on-demand sleep-wake algorithm
for network monitoring in scenarios where either no
BSP exists or the sleep-wake is based on arbitrary
communication pattern.

3. We analytically prove that SLAM does not add any
vulnerability to the existing local monitoring technique.

4. We show through simulations a significant reduction in
monitoring cost with negligible degradation in the
monitoring quality of service.

The rest of the paper is organized as follows. Section 2
presents related work in the field of sleep-wake protocols.
Section 3 describes SLAM. Section 4 presents mathematical
analysis of the energy overhead and security of SLAM.
Section 5 presents the simulation experiments and results.
Section 6 concludes the paper.

2. Related Work
Node sleeping is an important mechanism to prolong the

life time of sensor networks. This topic has been discussed
extensively in the literature and many protocols have been
proposed for various types of applications such as object
tracking ([1][2]). It has been realized that under current
hardware designs, the maximum energy savings can be
achieved through putting nodes to sleep—three orders of
magnitude less current draw than in an idle node for the
popular Mica mote platform for sensor nodes.

Primarily three different mechanisms are used to put
nodes to sleep. The first is called synchronized wakeup-sleep
scheduling in which the nodes in the network are put to sleep
and woken up at the same time in a centralized (e.g., [10]) or
a distributed manner (e.g. [3][8][9]). A disadvantage of such
protocols is that the duty cycle is application dependent and
not known a priori. Most importantly, they require the
network to have an accurate time synchronization service.
Furthermore, in scenarios with rare event detection, no event
happens and the nodes enter sleep mode again in most of the
wakeup periods. This means that nodes wake up too often
resulting in wastage of energy. The second mechanism is
based on selecting a subset of nodes to be woken up to
maintain some properties in the network, such as sensing
coverage (e.g., [4][5]), network connectivity (e.g., [3][6]), or
both coverage and connectivity (e.g. [7]).

The third mechanism is based on-demand sleep-wake
protocols. These on-demand sleep-wake protocols use either
special purpose low-power wake-up antennas (e.g., [11]-
[14]) or passive wake-up antennas [15]. These antennas are
responsible for receiving an appropriate beacon from a
neighbor node and waking up the node for its full operation.
Thus, for environments where events of interest are
relatively rare, the time for the low power operation with the
wake-up antennas being on, dominates. Further details about
the operation of the antennas are mentioned in Section 3.3.

To the best of our knowledge, we are the first to address
local monitoring in a network where nodes may need to be
put to sleep for energy conservation.

3. SLAM Protocol Description
The primary goal of SLAM is to minimize the time a node

has to be awake to perform local monitoring. Local
monitoring is used to make sure that packets are not
dropped, delayed, modified, misrouted, or forged along the
path from source to destination [23]. SLAM adds one more
task to the list of events that a guard node needs to
monitor—verifying whether the node being monitored
wakes up the requisite guards or fails to do so due to
malicious motivations.

3.1. System Model and Assumptions
SLAM assumes that the network is static and the links are

bi-directional. SLAM requires a pre-distribution pair-wise
key management protocol (e.g. [26]) such that any two
nodes can acquire a key for encryption and authentication. In

3

On-Demand SLAM, each node is equipped with either a
passive [15] or a low-power wakeup antenna [12]. Any two
nodes that need to communicate, establish a route between
them using an underlying routing protocol. We assume that
the source node is honest. No assumption is made about the
adversary nodes following the sleep-wake protocol, only the
honest nodes follow it. Each node knows its first-hop
neighbors and the neighbors of each neighbor, e.g., using a
technique as in [23]. The malicious behavior of fruitlessly
sending a wake-up signal to a node is not addressed since
this potential exists in any on-demand wake-up protocol and
SLAM neither exacerbates nor solves this problem.

3.2. Different Network Models for SLAM Protocol
Depending on the BSP used in the network, SLAM has

three different mechanisms for proposing sleeping for
networks with local monitoring—The No-Action-Required
SLAM protocol, the Adapted SLAM protocol, and the On-
Demand SLAM protocol. The No-Action-Required SLAM is
applicable in networks with synchronous sleep-wake
mechanisms. Examples of such protocols include Span [3],
S-MAC [8], and habitat monitoring [10]. The guards for
the communication would also be woken up since the guards
are one-hop neighbors of the two nodes that form the link on
which the communication is taking place. The Adapted
SLAM protocol is applicable in networks with application-
specific sleep-wake protocols that can be adapted to wake up
and sent to sleep guards as well. Examples of such protocols
include those that maintain a k-sensing or a k-
communication coverage for given values of k [4][5][7].
The adaptation process depends in the protocol itself, but for
the connectivity or coverage problems, it involves increasing
the value of k input to the protocol such that the requisite
number of guards is awake in any part of the sensor field.
For more details on these two kinds of networks, please refer
to Sections 3.2 and 3.3 of our technical report [29].

3.3. The On-Demand SLAM Protocol
This protocol is used in a network that either has no BSP

in operation or employs on-demand sleep-wake protocols.
Therefore, we build a new sleep-wake protocol, called On-
Demand SLAM that enables the guards to go to sleep when
not required for monitoring. The approach we take is on-
demand sleep-wake of the guards rather than scheduling the
sleep-wake periods. The defining characteristic of on-
demand sleep-wake protocols is that any node in the network
may, at random, initiate communication with any other node
in the network. The sleep-wake protocol does not rely on
any fixed communication pattern in the network. On-
Demand SLAM uses either low-power wake-up antennas
(e.g., [11]-[14]) or passive antennas with circuitry that can
harvest signal energy to trigger a node to wake up [15], as
has been described in Section 2. These kinds of antennas are
commercially available (e.g. [14]) as well as available as
research prototypes in academia [15]. For example Austria
Microsystems provides a low-power wake-up receiver

(AS3931) with data rate of 2.731KB/s and current
consumption in standby mode of 6.6µA [14].

In On-Demand SLAM, the low-power wake-up radio
remains awake all the time while the normal radio is put to
sleep when it is not sending or receiving data or is not
required for monitoring. If a node is to send a packet out, it
simply wakes up by itself; if a neighbor node is to send a
packet to this node, the sender will send a short wake-up
beacon using the wake-up radio channel, and on receiving
this beacon the wake-up radio triggers the normal radio to be
ready for the reception. The main disadvantage of the
mechanism is that it still consumes extra energy. Even
though the power consumed is small compared to the normal
antenna (1uW compared to 10mW in [11]), the energy is
non-negligible due to long time of operation.

Hence this mechanism has been modified to use passive
wake-up antennas, known as radio-triggered power
management mechanisms [15]. In this mechanism a special
hardware component–a radio-triggered circuit–is connected
to one of the interrupt inputs of the processor. The circuit
itself does not draw any current and is thus passive. The
node can enter sleep mode without periodic wake-up. The
wake-up mode is the usual working mode with all the
functional units ready to work, and the average wake-up
mode current is 20mA. In sleep mode, a node shuts down all
its components except the memory, interrupt handler, and
the timer. The sleep mode current is 100µA. When a
network node changes from sleep mode to wake-up mode,
there is a surge current of 30mA for a maximum of 5ms.
When a power management message is sent by another node
within a certain distance, the radio-triggered circuit collects
enough energy to trigger the interrupt to wake up the node.
Except for activating the wake-up interrupt, the radio-
triggered circuit is independent of any other components on
the node. If supported by hardware, the wake-up packet is
sent at a special radio frequency. If the nodes in a one hop
neighborhood have unique frequencies each listens on, then
other communication at a different radio frequency does not
wake up the nodes. Note that hardware cost for adding
multiple-frequency support is usually fairly low. Many
recent low-end radio transceivers support multiple frequency
operations [30] However, the unique frequency assignment
is not necessary for the correctness of On-Demand SLAM,
but improves the energy efficiency. In the rest of the paper,
for ease of exposition we use the term “low-power wake-up
radio” to mean either the low-power wake-up hardware or
the passive wake-up hardware.

3.3.1. On-Demand SLAM: Basic Approach

The basic idea in designing On-Demand SLAM is for a
node to wake up the requisite guard nodes to perform local
monitoring on the communication that is going out from that
node. The challenge in the design comes from the fact that
any of the nodes (except the source) may be malicious and
therefore, may not faithfully wake up the guards. As in [23]
and [24], local monitoring is used to mitigate malicious
activities manifested through dropping, delaying, modifying,

4

or forging of data/control packets. In local monitoring, the
sensor node is called a guard when performing traffic
overhearing and monitoring of neighbors. The guards of a
node A over the incoming packets from a transmitter X are
the common neighbors of X and A. In Figure 1, α1 and β1 are
the guards of n1 over the link S n1. Information for each
packet sent from X to A is saved in a watch buffer at each
guard for a time Tw. The information maintained depends on
the attack to be detected (i.e., drop, delay, modify, or forge).

S n1 n2 nh-1 D

α1 α2

β1 β2

Z

W

Figure 1: h-hop route between S and D, neighbors of S, and

guards of n1 and n2
A malicious counter (MalC(i,j)) is maintained at each

guard node, i, for every node, j, which i is monitoring.
MalC(i,j) is incremented for any suspect malicious activity
of j that is detected by i. To account for intermittent natural
failures, a node is determined to be misbehaving, only if the
MalC goes above a threshold. When MalC(i,j) crosses the
threshold, node i isolates node j by refraining from sending
or receiving any packet from j. Node j is said to be fully
isolated from the network when all its neighbors isolate it.

We use Figure 1 to explain On-Demand SLAM. A source
node S is sending data to a destination node D through an h-
hop route S n1 n2 … nh-1 D. In a network where all
the nodes are honest, S will wake up the next hop n1 and the
guard nodes (α1 and β1) before sending the packet to n1. In
turn n1 will wake up n2 and guard nodes α2 and β2 before
sending the packet on the next hop and so on, till the packet
reaches D. Formally, according to [24], the responsibility of
a guard node α of ni+1 over a link ni→ni+1 is to verify that:
1. ni+1 forwards the packet within time Tw.
2. ni+1 does not modify the packet it is forwarding.
3. ni+1 only forwards a packet if a packet is sent on the

ni→ni+1 link.
SLAM introduces a fourth responsibility.

4. ni+1 should wake up the guards for the ni+1 ni+2 link
before forwarding the packet on that link.

If a rule 1-3 is violated then the MalC value is
incremented by appropriate amount; if rule 4 is violated, the
MalC value increment is the maximum of the other MalC
values because this rule violation may be used to mask
violations of any of the rules 1-3.

In general, for any multi-hop route connecting a source
node S to a destination node D, S is responsible for waking
up the correct guards for n1, and ni is responsible for waking
up the correct guards of ni+1 (1 ≤ i ≤ h-2). The correct guards
for n1 are guaranteed to be woken up by the assumption of
honest source S and whether ni honestly wakes up the next

hop guards is monitored by the guards of ni according to rule
4 above.

In the following we present two variations of On-Demand
SLAM depending on the wake-up mechanism a node follows
to wake up the guards of the next-hop.

3.3.2. Guards-Only On-Demand SLAM (G-SLAM)

The high level design goal in G-SLAM is to minimize the
energy wasted in waking up nodes that can not serve as
guards. On average half of the nodes within a single
transmission range are not guards over a certain link
(according to Equation I in [24]). In G-SLAM, a node wakes
up a subset of its neighbors—the nodes that can act as
guards. For this, it is assumed that the wake-up antenna of
each node is tuned to receive at its own code (as in [15]),
which is distinct for all one-hop neighborhood nodes.

For a guard node to verify honest wake-up, G-SLAM
requires each node in the network to know, in addition to the
identities of its first-hop and second-hop neighbors that are
required by local monitoring, the location of each node
within twice its transmission range. In Figure 1, a guard of
n1, say α1, knows the location of its neighbor n1 and the
location of all the neighbors of n1 (S, β1, β2, α2 and n2).
Using this information, α1 knows the common neighbors of
n1 and n2, α2 and β2, which can act as the guards of n2 over
the link n1 n2. Therefore, α1 can not be deceived by n1
waking up its nodes that can not be guards for n2 (S,β1). A
disadvantage of G-SLAM is that it requires sophisticated
wakeup hardware that can be addressed using an id-attached
beacon [15].

We explain the G-SLAM algorithm with the help of Figure
1. Assume that node S has some data to be sent for the
destination D over the route S n1 n2 … nh-1 D
connecting S to D. G-SLAM uses the following steps to wake
up the correct guards along the route from S to D:
1. Node S sends a signal to wake up the first-hop node (n1)

and the guards for n1 (α1, β1). This is a multicast signal
that contains the identities of n1, α1, and β1.

2. Node S sends the packets it has to n1 following the
timing schedule presented in Section 3.3.4.

3. Nodes n1, α1, and β1 after being woken up continue to
remain awake for Tw. Tw is a parameter of local
monitoring that captures the maximum time by which
an entry in the watch buffer is evicted (beyond that is
evidence of malicious action). Each time a new packet
is sent from S to n1, Tw is reinitialized. After Tw expires
at a node, it goes back to sleep.

4. Node n1, after being woken up, uses the timing schedule
in Section 3.3.4 and according to it sends a wake-up
signal for n2, the guards of n2 over the link n1→n2 (α2,
β2), and the guards of n1 over the link S n1(S,α1,β1).
The guards of n1 over the link S→n1 are responsible for
verifying that n1 fulfills this requirement. n2 does not
accept packets from n1 if the wakeup signal of n1 does
not include all the necessary nodes (S,α1,β1,α2, β2,n2).

5

5. If n1 fails to send the wakeup signal, the guard of n1
with the lowest ID sends a two-hop broadcast of the
wakeup signal. If that guard fails, the guard with the
next smallest ID sends the signal, and so on. This design
ensures that if there is a chain of colluding malicious
nodes then all the nodes will be suspected.

6. The process continues at each step up to the destination.

3.3.3. All-Neighbors On-Demand SLAM (A-SLAM)

The high level design goal of A-SLAM is to relax the
assumption that every node knows the location of its first-
hop and second-hop neighbors, and to simplify the wake-up
hardware and wakeup signal. Again considering Figure 1,
A-SLAM uses the following steps to wake up the guards
along the route from S to D:
1. Node S broadcasts a wake-up signal to all its first-hop

neighbors (Z,W,n1,α1,β1). The wake-up signal includes
the identity of both the current sender (S), the next-hop
(n1), and the previous-hop (empty for S).

2. Each neighbor of S, after being woken up, decides
whether to stay awake or go back to sleep based on the
role that it may play on the ongoing communication. If
that neighbor is the next-hop (n1), it stays awake to
forward the data and to monitor the next-hop from it
(n2). If that neighbor is a guard (α1,β1) for the next-hop
n1 over the link n1 n2, it stays awake to monitor the
behavior of n1. If the node is a guard of a forwarding
node over the previous-hop, it stays awake to detect
fabrication by the forwarding node. A node can
independently make this determination based on first-
and second-hop neighbor information. If none of these
cases hold, the node goes back to sleep immediately.

3. Node S sends the data packet to n1 following the timing
schedule presented in Section 3.3.4.

4. Nodes n1, α1, and β1 after being woken up continue to
stay awake for Tw. After that, it goes back to sleep.

5. n1 does the same steps that S did to wake up the next-
hop (n2), n2’s guards (α2,β2) and n1’s guards (S,α1,β1).

6. If n1 fails to send the wakeup signal, the guard of n1
with the lowest ID sends a two-hop broadcast of the
wakeup signal through. If that guard fails, the guard
with the next smallest ID sends the signal, and so on.
This design ensures that if there is a chain of colluding
malicious nodes then all the nodes will be suspected.

7. The process continues at each step till the destination.
This scheme results in an increase in the energy

consumption compared to G-SLAM due to the needless
wake-up of the neighbors that are not guards.

3.3.4. Timing of the wakeup signal

In this section we generate the timing schedules for
sending the wake-up signal to nodes using On-Demand
SLAM. This is important because the wake-up antennas have
a warm-up period that could increase the end-to-end delay of
the communication. We design the schedule such that the

additional delay due to the sleep-wake protocol is not
cumulative with the number of hops for Case II shown
below. It is a constant independent of the number of hops.
Moreover, the increase in delay with the number of hops is
small for Case I. The coefficient of increase per hop is the
difference between the time to send a control packet and the
time to send a data packet over one hop.

Let Tcontrol be the time to send the signal to the wake-up
antenna, Twarmup be the time for a node to be fully awake
from the time it receives the wake-up signal (5 ms for the
antenna in [15]), and Tdata be the time to send a data packet
over one hop. This time includes the transmission time and
the forwarding time. Thus, within Tdata, an intermediate node
completely receives a data packet. Finally, let Twake be the
time a node continues to be awake after being woken up.

Consider an isolated flow between S and D, separated by
h hops. The intermediate nodes are n1, n2, …, nh-1. Let gi
represents the guards of node ni over the link ni-1 ni. Let vi
represents the neighbors of ni that are not guards of ni+1 over
the link ni ni+1. Consider the following two disjoint cases
based on the relation between (Tcontrol + Twarmup) and Tdata.

Twarmup

T3

Tcontrol

S sends
wakeup

n1 rcvs
wakeup

n1 awake, S
sends data,
n1 sends
wakeup

n1 rcvs
data

n2 awake, n1
sends data,
n2 sends
wakeup

n2 rcvs
data

T1 T2 T4 T5 T6 T7

n3 awake, n2
sends data,
n3 sends
wakeup

n3 rcvs
data,
n1
sleep

T8

Tdata τ Tdata Tdata τ

(a)

Twarmup

T3

Tcontrol

S sends
wakeup

g1 rcvs
wakeup

g1 awake, S
sends data,
n1 sends
wakeup

g1
overhear
in data to
n1

g2 awake, n1
sends data,
n2 sends
wakeup

g1 overhear
out data from n1, g2
overhear in data to
n2, g1 sleep

…
T1 T2 T4 T5 T6

Tdata τ Tdata

(b)

Twarmup

T3

Tcontrol

S sends
wakeup

v1 rcvs
wakeup

v1 awake, v1
sleep

…
T1 T2

(c)

Figure 2: Case I wakeup-sleep timing schedule for (a) a node in
the data route; (b) a guard node; (c) a neighbor to a node in the

data route that is not valid guard (for A-SLAM only)

Case I: (Tcontrol+Twarmup) > Tdata, τ = (Tcontrol+Twarmup) – Tdata
Figure 2 above shows the timing schedule for this case.

Figure 2(a) shows the timing schedule for a node in the route
between the source and the destination. The node, n1, wakes
up at T3 and goes to sleep at T8, where T8-T3 = Tdata (to
receive data) + τ (wait for the next-hop to be ready to
receive the data) + Tdata (send the data to the next-hop) + {τ
+ Tdata} (as a guard for n2) = 3Tdata+2τ. Figure 2(b) shows
the timing schedule for a guard node. The guard, g1, wakes
up at T3 and goes to sleep at T6, where T6-T3 = Tdata (to
overhear incoming data to the node being monitored, n1) + τ
(wait for the next-hop to be ready to receive the data) + Tdata
(to overhear outgoing data from the node being monitored,
n1) = 2Tdata +τ. Figure 2 (c), only meaningful for A-SLAM,

6

shows the schedule for a node that is a neighbor to a node in
the route from the source to the destination but is not a guard
node. The node, v1, wakes up at T3, determines that it can not
be a guard, and thus goes back to sleep immediately.

From Figure 2, it can be seen that per hop, the delay
incurred is Tcontrol + Twarmup and at the last hop, the delay due
to data (Tdata) gets exposed (see Equation (1) below).
Case II: (Tcontrol+Twarmup)≤Tdata,τ = Tdata – (Tcontrol + Twarmup)
Please see Case II, Section 3.4.3 of our technical report [29].

4. Security and Performance Analysis
4.1. Security Analysis

We will prove the following proposition.
Proposition: Due to the sleep-wake mechanism for guards in
SLAM, no loss in detection coverage occurs w.r.t. [24].

For this we first prove the following lemma.
Lemma: For any node ni in the path S→D (i =1, …, h-1), the
guards for ni+1 on the link ni ni+1 are woken up when the
communication over the link takes place.

We prove this lemma using mathematical induction.
Let the guards of n1 over the link S n1 form the set G1,

nh-1 D the set Gh, and ni-1 ni the set Gi.
Base case: The source S is honest and therefore it wakes the
guard nodes in G1.
Inductive hypothesis: For n1, …, ni (i ≥ 1), ∀Gk (k ≤ i) has
been woken up at the time when the communication over the
link nk-1 nk takes place either directly or indirectly. In the
later case nk-1 is suspected of malicious action.
To prove: Gi+1 is woken up at the time of ni ni+1
communication.
Proof: If ni is honest, it wakes up Gi+1 (step 4 of G-
SLAM/step 5 of A-SLAM).
Else, Gi wakes up Gi+1 (step 5 of G-SLAM/step 6 of A-
SLAM). In the later case ni is suspected of malicious action
(not sending the wakeup signal).

Thus, the lemma is proved by mathematical induction.
The detection of the guards according to rules 1-3 is not

changed from baseline local monitoring. Combining the
lemma with this observation proves that no loss of detection
coverage happens due to SLAM.

4.2. Energy and End-to-End Delay Analysis
For both energy and delay we compare our scheme On-

Demand Slam to bring out its worst case behavior. For end-
to-end delay, we compare it with local monitoring without
sleep-wake (Baseline-LM). For the energy we compare it to
a protocol with on-demand sleep-wake for communication
and no monitoring (Baseline-OD).

In addition to the notations defined in Section 3.3.4, let
Atransmit be the current to transmit (at the middle of the
transmit range), which is 27mA for Mica2 motes [28]. Let
Awarmup be the current consumed during the transition from
sleep to wakeup (warm up), which is 30mA for Mica2 motes

[15]. Finally, let Aactive be the current in the computationally
active mode = the current in the idle listening mode = the
current in receive mode (8mA for Mica2 motes).

S D
r

2r

(h+1)r

r

Communication rangeA sensor node S -D Bounding path

S D
r

2r

(h+1)r

r

Communication rangeA sensor node S -D Bounding path

Figure 3: A bounding box over the path S D

Let us consider a flow between S and D, separated by h
hops. The intermediate nodes are n1, n2, …, nh-1. The
bounding box around S and D covers all possible nodes,
including forwarding and guard nodes that may be involved
in the communication between S and D. The size of the
bounding box is 2r(h+1)r = 2r2(h+1), where r is the
transmission range, Figure 3. For On-Demand SLAM,
consider the wakeup-sleep scheduling cases of Section 3.3.4.
End-to-end-Delay:
Case I: (Tcontrol + Twarmup) > Tdata with τ = (Tcontrol + Twarmup)
– Tdata

From Figure 2 it can be seen that delay at the first link
(S n1) is Tcontrol + Twarmup + Tdata. Over each of the
succeeding links, the delay is Tcontrol + Twarmup since the delay
due to data (Tdata) gets exposed. This is due the sleep-wake
schedule process that SLAM uses where the wake-up signal is
sent at the earliest opportunity. Therefore, the end-to-end
delay in SLAM, ΩSLAM(h), for the link from S to D is

() (1)()

()
SLAM contol warmup data control warmup

control warmup data

h T T T h T T

h T T T

Ω = + + + − +

= ⋅ + +
 (1)

The end-to-end delay in Baseline-LM is
()Base LM datah h T−Ω = ⋅ (2)

In this case, the additional end-to-end delay imposed by
SLAM depends on the number of hops between S and D
 () () ()SLAM Add SLAM Base LM datah h h h Tτ− −Ω = Ω − Ω = ⋅ + (3)

Case II: (Tcontrol + Twarmup) ≤ Tdata with τ = Tdata – (Tcontrol +
Twarmup). The end-to-end delay of SLAM is given by

() (1)()

 ()
SLAM contol warmup data data

data control warmup

h T T T h T

h T T T

Ω = + + + −

= ⋅ + +
 (4)

For more details, please refer to Case II, Section 4.2 in our
technical report.

In Figure 4, we plot the extra delay of SLAM over
Baseline-LM for cases I (Equation(3)) and II (Equation (12)
in the technical report [29]) above with Tdata = 7ms and τ =
1ms. The figure shows that the additional delay due to SLAM
increases linearly with the number of hops for Case I while it
remains constant for Case II.

7

5

9

13

17

21

3 4 5 6 7 8 9 10 11 12
Of Hops Between Source-Destination Pair

SL
A

M
 E

xt
ra

 D
el

ay
 (m

s) Case I
Case II

Figure 4: Extra delay due to SLAM over Baseline-LM

Energy overhead:
Case I: (Tcontrol + Twarmup) > Tdata,τ = (Tcontrol+Twarmup) – Tdata
Baseline-OD: Here only the forwarding nodes are involved
in the sleep-wake protocol; all other nodes are asleep. Using
Figure 2(a), a forwarding node ni (i = 1, …, h-1) spends
Twarmup = T3-T2 warming up with current consumption of
Awarmup, Tdata = T4-T3 receiving data with current
consumption of Aactive, τ = T5-T4 idle waiting for the next-hop
to be ready with current consumption of Aactive, and Tdata =
T6-T5 sending data with current consumption of Atransmit.
Therefore, the energy expended by a forwarding node ni (i =
1, …, h-1) is (we ignore the constant voltage term for the
energy comparison since that is the same through all the
cases)
 , ()f base warmup warmup control warmup active data transmitT A T T A T Aε = ⋅ + + ⋅ + ⋅ (5)

Node S spends Tcontrol + Twarmup = T3-T1 idle waiting for n1
to wake up with Aactive and Tdata = T4-T3 transmitting data
with Atransmit. Therefore, the energy expended by S is
 , () S base control warmup active data transmitT T A T Aε = + ⋅ + ⋅ (6)

Node D spends Twarmup warming up with Awarmup and Tdata
receiving data with Aactive. Thus, the energy expended by D
is
 , D base warmup warmup data activeT A T Aε = ⋅ + ⋅ (7)
On-Demand SLAM: Here the sleep-wake protocol involves,
in addition to S and D, the forwarding nodes, the guard
nodes, the neighbors of the forwarding nodes that are not
guards. We will compute separately for the three kinds of
nodes (i) forwarding nodes; (ii) guard nodes that do not act
as forwarders; (iii) remaining nodes. The energy of S and D
is the same as that in Baseline-OD.
i. Energy expended by a forwarding node ni (i = 1, …, h-

1) εf,SLAM ≤ εf,base + Tw . Aactive. The additional energy is
consumed because ni has to find if ni+1 forwards the
packet that it was just handed by ni. The inequality
comes in because Tw is the worst-case time in case ni+1
is malicious.

ii. Energy expended by a guard node that is not a
forwarding node εg,SLAM ≤ Twarmup . Awarmup + Tdata . Aactive +
Tw . Aactive. Consider for example the guard g1 of n1 over
the link S n1. g1 has to listen to the communication
between S to n1 and then has to stay listening for a
maximum of Tw to see that n1 forwarded the packet.

iii. Energy expended by a node in the bounding box around
S and D that is neither a forwarding node nor a guard
node (the “other node”, hence the notation “o” in the

subscript). For G-SLAM where the wake-up signal is
directed to the relevant guard nodes εo,G-SLAM = 0. For A-
SLAM εo,A-SLAM = Twarmup . Awarmup.

Case II: (Tcontrol + Twarmup) ≤ Tdata with τ = Tdata – (Tcontrol +
Twarmup). Please refer to Case II, Section 4.2 in our technical
report for the energy consumption of this case.

5. Simulation Results
We use the ns-2 simulator [27] to simulate a data

exchange protocol over a network with local monitoring
enabled. We simulate two scenarios individually without A-
SLAM (the baseline) and with A-SLAM. The baseline is an
implementation of a state-of-the-art local monitoring
protocol presented in [24]. A-SLAM scenario is built on top
of the baseline scenario to provide sleep-wake service for the
guards. Nodes are distributed randomly over a square area
with a fixed average node density, 100 nodes over
204m×204m. Each node acts as a source and generates data
according to a Poisson process with rate µ. The destination
is chosen at random and is changed using an exponential
distribution with rate λ. A route is evicted if unused for
TOutRoute time. The experimental parameters are in Table 1.
The results are averages over 30 runs. The malicious nodes
are randomly chosen so that they are more than 2 hops away.

Table 1: Default simulation parameters

Parameter Value Parameter Value
Avg. number
neighbors (NB)

8 Destination change
rate (λ)

0.02/sec

Tx Range (r) 30 m # malicious nodes (M) 4
Fraction of data
monitored (fdat)

0.6 Packet generation rate
(1/µ)

0.1/sec

Channel BW 40
kbps

Warm up time
(Twarmup)

5ms

Simulation time 1500 s Watch time (Tw) 30ms
TOutRoute 50 sec Number of nodes (N) 100

Adversary model: We are simulating a selective forwarding
attack launched by a group of malicious nodes that collude
and establish wormholes in the network [25]. During the
wormhole attack, a malicious node captures packets from
one location in the network, and “tunnels” them to another
malicious node at a distant point, which replays them
locally. This makes the tunneled packet arrive either sooner
or with a lesser number of hops compared to the packets
transmitted over normal multihop routes. This creates the
illusion that the two end points of the tunnel are very close
to each other. The two malicious end points of the tunnel
may use it to pass routing traffic to attract routes through
them and then launch a variety of attacks against the data
traffic flowing on the wormhole, such as selectively
dropping the data packets. Unless otherwise mentioned, each
node selectively drops a packet passing through it with
uniform probability of 0.6
Variable Input metrics: (i) Fraction of data monitored
(fdat)–each guard node randomly monitors a given fraction of
the data packets. At other times, it can be asleep from the

8

point of view of a guard’s responsibility. (ii) Data traffic
load (µ). (iii) Number of malicious nodes (M).
Output metrics: (i) Delivery ratio–the ratio of the number
of packets delivered to the destination to the number of
packets sent out by a node averaged over all the nodes in the
network. (ii) % wakeup time–the time a node has to wake up
specifically to do monitoring averaged over all the nodes as
a percentage of the simulation time; (iii) Average end-to-end
delay–the time it takes a data packet to reach the final
destination averaged over all successfully received data
packets; (iv) % True isolation–the percentage of the total
number of malicious nodes that is isolated; (v) % False
isolation–the percentage of the total number of nodes that is
isolated due to natural collisions on the wireless channel;
(vi) Isolation latency–the time between when the node
performs its first malicious action to the time by which all its
neighbors have isolated it, averaged over all isolated
malicious nodes.

Note that our goal is not to show the variation of the
output metrics with the input parameters for local
monitoring, since that has been covered in [23][24]. Our

goal is to study the relative effect on local monitoring with
A-SLAM and without.

5.1. Effect of fraction of data monitored
The amount of data traffic is typically several orders of

magnitude larger than the amount of control traffic. It may
not be reasonable for a guard to monitor all the data traffic in
its monitored links. Therefore, a reasonable optimization is
to monitor only a fraction of the data traffic. In this set of
experiments, we investigate the effect of this optimization.

Figure 5 shows the variations of delivery ratio, % true
isolation, and end-to-end delay as we vary fdat. Figure 5(a)
shows that the delivery ratio is almost stable above 90%
irrespective of the value of fdat. This desirable effect is
achieved by proper selection of the MalC increment for each
value of fdat. The MalC increment is designed with an inverse
relation to the fdat Figure 5(b) shows that the % of true
isolation is almost stable as we vary fdat due to the same
reasoning as for Figure 5(a). Importantly, the delivery ratio
and the % true isolation in A-SLAM are close to the baseline
for all values of fdat.

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

(a)

%
 D

el
iv

er
y

R
at

io

With A-SLAM
Without A-SLAM

0

20

40

60

80

100

120

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

(b)

%
 T

ru
e

Is
ol

at
io

n

With A-SLAM
Without A-SLAM

0

0.015

0.03

0.045

0.06

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

(c)
En

d-
to

En
d

D
el

ay
 (s

)

With A-SLAM
Without A-SLAM

Figure 5: Effect of fraction of data monitored on (a) delivery ratio, (b) % true isolation, and (c) end-to-end delay

However, in Figure 5, the results of A-SLAM are slightly
worse than those of the baseline. This is because some of the
data packets are additionally dropped in A-SLAM by
forwarding, destination, or guard nodes that happen to be
asleep when the data packet arrives. This erroneous extra
sleep may occur due to collision in the sleep-wake control
channel which prevents the respective nodes from waking

up. Although the control channel is a separate channel
contention still occurs, where a guard of two consecutive
links are sent separate wake-up signals concurrently. Figure
5(c) shows that the end-to-end delay is slightly higher for A-
SLAM due to the additional warm up time required when the
source sends a packet to the first hop.

0

20

40

60

80

100

2 3 4 5 6
Number of Malicious Nodes

(a)

%
 D

el
iv

er
y

R
at

io

With A-SLAM
Without A-SLAM

0

20

40

60

80

100

2 3 4 5 6
Number of Malicious Nodes

(b)

%
 T

ru
e

Is
ol

at
io

n

With A-SLAM
Without A-SLAM

0

1.5

3

4.5

6

2 3 4 5 6
Number of Malicious Nodes

(c)

%
 F

al
se

 Is
ol

at
io

n

With A-SLAM
Without A-SLAM

Figure 6: Effect of number of malicious nodes on (a) % delivery ratio, (b) % true isolation, and (c) % false isolation

5.2. Effect of number of malicious nodes
Figure 6 above shows the variations of % delivery ratio, %

true isolation, and % false isolation as we vary the number
of malicious nodes (M). Figure 6(a) shows that the %
delivery ratio slightly decreases as M increases. This is due
to the packets dropped before the malicious nodes are
detected and isolated. As the number of malicious nodes
increases, this initial drop increases and thus the delivery
ratio decreases. Figure 6(b) shows that the % true isolation

also slightly decreases as we increase M. This is because the
number of available guards in the network decreases as more
and more nodes get compromised. These two metrics in A-
SLAM are slightly lower than those of the base line due to the
erroneous extra sleep described in Section 5.1. Figure 6(c)
shows that the % false isolation increases as we increase M.
This is because not all guard nodes come to the decision to
isolate a malicious node at the same time. Thus, a guard
node may suspect another guard node when the latter

9

isolates a malicious node but the former still has not. The
occurrence of this situation increases with M and hence the
% of false isolation increases with M. For example, a guard
node G1 detects a malicious node Z earlier than the other
guard nodes for the link to Z. G1 subsequently drops all the
traffic forwarded to Z and is therefore suspected by other
guard nodes for Z. This problem can be solved by having an
authenticated one-hop broadcast whenever a guard node
performs a local detection. The % false isolation in A-SLAM
is lower than that of the baseline. Again, this is due to some
of the packets that may falsely identify a node as malicious
may get lost in A-SLAM due to the erroneous extra sleep.

5.3. Wakeup time variations
In this section, we study the effect of varying the fraction

of data monitored (fdat), the number of malicious nodes (M),

and the data traffic load (1/µ) on the percentage of time that
a node needs to stay awake for monitoring using A-SLAM.

 Figure 7(a) shows that the percentage of wakeup time
required for monitoring increases as the fraction of
monitored data increases due to the increase in the number
of data packets that a node needs to overhear in its
neighborhood. Figure 7(b) shows that the percentage of
wakeup time decreases as we increase the number of
malicious nodes. As the number of malicious nodes
increases, the number of data packets in the system
decreases since the malicious nodes are isolated and
disallowed from generating data packets. Therefore, the
number of packets that need to be monitored decreases,
which results in a decrease in the average percentage of
wakeup monitor time. Figure 7(c) shows that the average %
of monitoring wakeup time increases as the data traffic load
increases due the increase in data that needs to be monitored.

0

1

2

3

0.2 0.4 0.6 0.8 1
Fraction Data Monitored

(a)

%
 W

ak
eu

p
Ti

m
e

0

0.5

1

1.5

2

2 3 4 5 6
Number of Malicious Nodes

(b)

%
 W

ak
eu

p
 T

im
e

0

1

2

3

4

0.05 0.067 0.01 0.2 1
Data Traffic Load (1/mu)

(c)

%
 W

ak
eu

p
Ti

m
e

Figure 7: Variations on the percentage of monitoring wakeup time as we vary (a) the fraction of data monitored (fdat); (b) number

of malicious nodes (M); and (c) data traffic load (µ)
Overall, from Figure 7(c), compared to the no sleeping

case, A-SLAM saves 30-129 times in listening energy for
different amounts of data traffic load (1/µ).

5.4. Effect of distance on delay
In this section, we evaluate the variations of the end-to-

end delay with the number of hops between the source and
destination pairs.

0

25

50

75

100

3 4 5 6 7 8 9 10 11 12
Of Hops Between Source-Destination Pair

En
d-

to
En

d
D

el
ay

 (m
s)

With A-SLAM
Without A-SLAM

Figure 8: Variation of the end-to-end delay with the hop count

Figure 8 above shows that the end-to-end delay in A-
SLAM is always higher than that of the baseline due to the
warm-up time needed to wake up the nodes before sending
the data. However, due the scheduling strategy in A-SLAM in
which each node sends a wake-up signal at the earliest
possible opportunity (Section 3.3.4), the warm-up time is
only in the critical path at the first hop and therefore, the
difference in delay between A-SLAM and the baseline case is
not cumulative with the number of hops. The trend of the
additional delay due to SLAM follows the trend obtained

analytically in Section 4.2 for the case when (Tcontrol +
Twarmup) < Tdata which is true in these simulation settings.

6. Conclusion
In this paper, we have presented a protocol called SLAM to

make local monitoring in sensor networks energy-efficient
while maintaining the detection coverage. We classify the
domain of sleep-wake protocols into three classes and SLAM
correspondingly has three manifestations depending on
which baseline sleeping protocol (BSP) is used in the
network. For the first class (synchronized sleep-wake), local
monitoring needs no modification. For the second class
(connectivity or coverage preserving sleep-wake), local
monitoring can call the BSP with changed parameter values.
For the third class (on-demand sleep-wake), adapting local
monitoring is the most challenging and requires hardware
support as low-power or passive wake-up antennas. We
propose a scheme whereby before communicating on a link,
a node awakens the guard nodes responsible for local
monitoring on its next hop. We design the scheme to work
with adversarial node behavior. We prove analytically that
On-Demand SLAM does not weaken the security property of
local monitoring. Simulation experiments bring out that over
a wide range of conditions, the performance of local
monitoring with SLAM is comparable to that without SLAM,
while listening energy savings of 30-129 times is realized,
depending on the network load. Our ongoing work is
looking at providing security guarantees in mobile ad hoc
networks and building trust framework for such networks.

10

Acknowledgements
This work was supported in part by the National Science
Foundation under grant no. ECS-0330016 and the Indiana
21st Century Fund under grant no. 512040817. Any opinions,
findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect those of the sponsors.

7. References
[1] W. Zhang and G. Cao, “DCTC: Dynamic Convoy Tree-Based

Collaboration for Target Tracking in Sensor Networks,” IEEE
Trans. on Wireless Communication 3(5), pp.1689-1701, 2004.

[2] S. Pattem, S. Poduri, and B. Krishnamachari, “Energy-quality
tradeoffs for target tracking in wireless sensor networks,” in
the second workshop on Information Processing for Sensor
Networks (IPSN), pp. 32-46, 2003.

[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span:
An energy-efficient coordination algorithm for topology
maintenance in ad hoc wireless networks,” in Wireless
Networks, vol. 3 (5), pp. 48-494, 2002.

[4] S. Bhattacharya, G. Xing, C. Lu, G.-C. Roman, O. Chipara,
and B. Harris, “Dynamic wake-up and topology maintenance
protocols with spatiotemporal guarantees,” in the fourth
workshop on Information Processing for Sensor Networks
(IPSN), pp. 28-34, 2005.

[5] S. Kumar, T. H. Lai, and J. Balogh, “On k-coverage in a
mostly sleeping sensor network” in the ACM Intl. Conference
on Mobile Computing and Networking (MOBICOM), pp.
144-158, 2004.

[6] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-Efficient Communication Protocol for Wireless
Microsensor Networks,” in the 33rd Hawaii Intl. Conference
on System Sciences (HICSS), pp. 3005-3014, 2004.

[7] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill,
“Integrated coverage and connectivity configuration for
energy conservation in sensor networks,” in ACM Trans. on
Sensor Networks (TOSN), Vol. 1 , Issue 1, pp. 36-72, 2005.

[8] W. Ye, J. Heidemann, and D. Estrin, "An energy efficient
MAC protocol for wireless sensor Networks," in the IEEE
Conference on Computer Communications (INFOCOM), pp.
1567- 1576, 2002.

[9] R. Naik, S. Biswas, and S. Datta, “Distributed Sleep-
Scheduling Protocols for Energy Conservation in Wireless
Networks,” in the 38th HICSS, pp. 285b - 285b, 2005.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J.
Anderson, “Wireless sensor networks for habitat monitoring,”
in the ACM Intl. Workshop on Wireless Sensor Networks and
Applications, pp. 88-97, 2002.

[11] C. Guo, L. C. Zhong, and J. M. Rabaey, “Low power
distributed MAC for ad hoc sensor radio networks,” in IEEE
Global Telecommunications Conference (GLOBECOM '01),
pp. 2944–2948, vol.5, 2001.

[12] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets,
and T. Tuan, “Picoradios for wireless sensor networks: The
next challenge in ultra-low-power design,” in the Intl. Solid-
State Circuits Conference, pp. 200-201, 2002.

[13] J. Silva., J. Shamberger, M. J. Ammer, C. Guo, S. Li, R. Shah,
T. Tuan, M. Sheets, J. M. Rabaey, B. Nikolic, A. S.-

Vincentelli, and P. Wright, “Design methodology for
picoradio networks,” in Design Automation and Test in
Europe (DATE), pp. 314-323, 2001.

[14] http://www.austriamicrosystems.com/03products/data/AS393
1Product_brief_0204.pdf.

[15] L. Gu and J.A Stankovic, “Radio-Triggered Wake-Up
Capability for Sensor Networks,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS),
pp. 27-36, 2004.

[16] Y. Huang and W. Lee, “A cooperative intrusion detection
system for ad hoc networks,” in the 1st ACM workshop on
Security of ad hoc and sensor networks, pp. 135-147, 2003.

[17] A. Silva, M. Martins, B. Rocha, A. Loureiro, L. Ruiz, and H.
Wong, “Decentralized intrusion detection in wireless sensor
networks,” in the ACM Intl. workshop on Quality of service
& security in wireless and mobile networks, pp. 16-23, 2005.

[18] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating
routing misbehavior in mobile ad hoc networks,” in
MOBICOM, pp. 255-265, 2000.

[19] S.J. Lee and M. Gerla, “Split Multipath Routing with
Maximally Disjoint Paths in Ad Hoc Networks,” in IEEE Intl.
Conference on Communications (ICC), pp. 3201-3205, 2001.

[20] A. A. Pirzada and C. McDonald, “Establishing Trust In Pure
Ad-hoc Networks,” in the proceedings of 27th Australasian
Computer Science Conference (ACSC'04), pp. 47-54, 2004.

[21] S. Buchegger, J.-Y. Le Boudec, “Performance Analysis of the
CONFIDANT Protocol: Cooperation Of Nodes - Fairness In
Distributed Ad-hoc NeTworks,” in the ACM Intl. Symposium
on Mobile Ad Hoc Networking and Computing (MOBIHOC),
pp. 80-91, 2002.

[22] I. Khalil, S. Bagchi, and N. B. Shroff, “Analysis and
Evaluation of SECOS, a protocol for Energy Efficient and
Secure Communication in Sensor Networks,” in Elsevier Ad
Hoc Networks Journal, vol. 5(3), pp. 360-391, April 2007.

[23] I. Khalil, S. Bagchi, and C. Nina-Rotaru, “DICAS: Detection,
Diagnosis and Isolation of Control Attacks in Sensor
Networks,” in the IEEE/CreateNet Intl. Conference on
Security and Privacy in Communication Networks
(SecureComm), pp. 89-100, 2005.

[24] I. Khalil, S. Bagchi, and N. Shroff, “LITEWORP: A
Lightweight Countermeasure for the Wormhole Attack in
Multihop Wireless Networks,” in the Intl. Conference on
Dependable Systems and Networks (DSN ’05), pp. 612-621,
2005.

[25] C. Karlof and D. Wagner, “Secure Routing in Sensor
Networks: Attacks and Countermeasures,” in the 1st IEEE
Intl. Workshop on Sensor Network Protocols and
Applications, pp. 113-127, 2003.

[26] D. Liu and P. Ning, “Establishing Pair-wise Keys in
Distributed Sensor Networks,” in the ACM Conf. of
Computer and Communication Security, pp. 52-61, 2003.

[27] “The Network Simulator ns-2,” At: www.isi.edu/nsnam/ns/
[28] http://www.xbow.com/products/Product_pdf_files/Wireless_p

df/MICA2_Datasheet.pdf...
[29] I. Khalil, S. Bagchi, and N. B. Shroff, “SLAM: Sleep-Wake

Aware Local Monitoring for Sensor Networks,” TR ECE 06-
14, Purdue University, November 2006.

[30] Chipcon CC1000 Datasheet, Chipcon Inc.
http://www.chipcon.com/files/CC1000DataSheet21.pdf.

