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Abstract—The recent breakthrough in wireless full-duplex
communication makes possible a brand new way of
multi-hop wireless communication, namely full-duplex cut-
through transmission, where for a traffic flow that traverses
through multiple links, every node along the route can
receive a new packet and simultaneously forward the pre-
viously received packet. This wireless transmission scheme
brings new challenges in the design of MAC layer algorithms
that aim to reap its full benefit. First, the MAC layer rate
region of the cut-through enabled network is directly a
function of the routing decision, leading to a strong coupling
between routing and scheduling. Second, it is unclear how
to dynamically form/change cut-through routes based on
the traffic rates and patterns. In this work, we introduce a
novel method to characterize the interference relationship
between links in the network with cut-through transmission,
which decouples the routing decision with the scheduling
decision and enables a seamless adaptation of traditional
half-duplex routing/scheduling algorithm into wireless net-
works with full-duplex cut-through capabilities. Based on
this interference model, a queue-length based CSMA-type
scheduling algorithm is proposed, which both leverages
the flexibility of full-duplex cut-through transmission and
permits distributed implementation.

Index Terms—Wireless Full-duplex, Cut-through Transmis-
sion, Dynamic Routing, Scheduling

I. INTRODUCTION

Recent development in wireless radio technology shows
that by using advanced signal processing techniques to-
gether with new RF circuit designs, a wireless device
can transmit and receive on the same frequency band,
achieving full-duplex transmission [1]–[3]. The key idea
that enables this full-duplex capability is that a node
has complete knowledge of the digital packet it is trans-
mitting, and therefore, it could potentially predict and
actively cancel the impact of the transmitted signal onto
its own receive antenna.

The full-duplex technology eliminates the conventional
constraint in wireless networking that a node can either
transmit or receive at any time but not both for any
frequency band, and as a result it enlarges the capacity
region of wireless networks. Take the five node tandem
network shown in Figure 1 as an example. Assume that
the nodes interfere only with their closest neighbors, and
there exists a single flow from node A to node E. Under
the half-duplex constraint, each link along the route of
the flow can be activated only one third of the time.
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Fig. 1: Full-duplex cut-through transmission

However, when the nodes are capable of canceling their
self interference, i.e., they are full-duplex enabled, then
each link can be activated half of the time, as shown in
Figure 1(a). Further, since there is only a single traffic
flow from node A to node E, we know that any packet
transmitted by node C is previously received by C from
its upstream node B. If we assume that node B keeps
a copy for every packet that it has received, then it has
the potential to decode any packet that is collided with
the transmission from node C. We use the term cross
interference cancellation to describe the case when a node
can withstand a stream of interference that carries a
known packet. From Figure 1(b) we can see that each
link can be activated half of the time if the nodes are
capable of performing cross interference cancellation.

Interestingly, as is evident from Figure 1(c), if the nodes
are capable of canceling both their self interference and
a stream of known cross interference, then all the link
can be activated at the same time, effectively forming
a cut-through route with each node along the route si-
multaneously receiving a new packet from its upstream
node and forwarding a previously received packet to its
downstream node. The concept of wireless cut-through
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transmission was first envisioned in [1], in which it was
argued that as a full-duplex node starts to receive a packet
it can simultaneously start to forward it without having
to decode the entire packet, while the downstream inter-
ference can be digitally canceled since the interference
is simply a delayed version of the received packet. A
preliminary implementation is presented in [4]. In this
work, we make a somewhat less restrictive assumption
that a full-duplex node can only start to forward a packet
after the packet is completely decoded, and that it has the
capability to cancel a single stream of interference from
one of its immediate neighbors given that the neighbor
is forwarding a packet previously received from it. While
wireless cut-through transmissions is a promising way
to increase the capacity of the network, as we will see
shortly, it also introduces new challenges in the design of
MAC layer dynamic scheduling policies.

In a multi-hop wireless network, it is critical to have a
resource allocation algorithm that efficiently utilizes the
limited wireless spectrum. The seminal work of [5] de-
velops a joint dynamic routing and scheduling algorithm,
namely back-pressure, which is proven to be throughput-
optimal, i.e., it can stabilize any network load that can be
stabilized by some joint routing and scheduling algorithm.
Later, through a utility maximization framework [6], it
is shown that the wireless resource allocation problem
can be optimally decomposed into three parts: transport
layer rate control, network layer routing, and MAC layer
scheduling, with minimal coupling among the layers. This
cross-layer decomposition suggests that the MAC layer
scheduling component is the bottleneck of this problem,
as it requires solving a difficult combinatorial optimization
problem which is NP-complete in general. There has been
a plethora of work that focus on devising low-complexity
and/or distributed scheduling algorithms. At the same
time, with the continuous evolution of wireless physi-
cal layer technologies, many new transmission schemes
emerge, such as wireless full-duplex, interference align-
ment, distributed multi-user MIMO, noisy network coding,
etc. On the one hand, these new schemes keep breaking
conventional transmission constraints and expanding the
rate region of wireless networks. For example, the rate
regions under different combinations of full-duplex and
MIMO techniques are compared in [7]. On the other
hand, they inherently come with more sophisticated in-
terference relationship among wireless links and bring
many challenges in the design of scheduling algorithms.
Regarding full-duplex cut-through transmission, the chal-
lenges are the following: (i) the cut-through route nat-
urally involves links that are multiple hops away from
each other, which makes it hard to design scheduling
algorithms based only on local information at each node.
(ii) the MAC layer scheduling decision becomes closely
coupled with the network layer routing decision, as a cut-
through route is usually formed to serve a specific flow.

Our contributions are as follows:

• We introduce a novel way to model the interference
relationship in wireless networks with full-duplex
cut-through capability, which decouples the routing
decision from the scheduling decision in a scalable
and efficient manner.

• A queue-length based CSMA-type algorithm, similar
to the one in [8], is proposed, which can dynamically
form/change full-duplex cut-through routes in the
network and achieve throughput-optimality.

The rest of the paper is organized as follows: In Sec-
tion II, we introduce the network model, review the
back-pressure algorithm under half-duplex or full-duplex
networks, and then explain the difficulty in devising a
scheduling algorithm for networks with cut-through ca-
pability. In Section III, we propose a new and efficient
method of modeling the interference relationship for
cut-through transmission. In Section IV, we develop a
throughput-optimal queue-length based CSMA-type algo-
rithm that leverages the full-duplex cut-through capabil-
ity. The algorithm is evaluated in Section V and the paper
is concluded in Section VI.

II. SYSTEM MODEL

A. Network model and half-duplex/full-duplex constraint

We consider a multi-hop wireless network that can be
described by a network graph G = (V, E) together with an
interference graph1 GI = (V, EI), where V denotes the set
of wireless nodes, E denotes the set of wireless links, and
EI denotes the interference relationship between wireless
nodes. For any two nodes A,B in V, (A,B) ∈ EI if the
transmission of node A interferes with the reception of
node B, while (A,B) ∈ E if a direct data-link can be
established from node A to node B. In other words, E
captures the communication region of every node in the
network and EI captures the interference region the nodes
in the network. We assume that E is a subset of EI, and
the edges in both G and GI are bidirectional. An example
network is shown in Figure 2
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Fig. 2: The interference graph GI and the data link graph
G of an example wireless network with five nodes. I(B) =
{A,C,D}.

For any node A in V, we denote I(A) , {B|(A,B) ∈ EI}
as the set of nodes that interfere with node A. For any

1The use of an interference graph gives a more accurate modeling
of the interference relationship between wireless nodes, compared with
the conventional link-centric hop-count based interference model.



subset S of data-links in E , we denote R(S) and T (S) as
the set of receiver nodes and the set of transmitter nodes
under the subset of links S, respectively. More precisely,
R(S) = {B|(A,B) ∈ S} and T (S) = {A|(A,B) ∈ S}. We
also call a subset of data links S a schedule.

Given these notations, we can describe the half-duplex
interference constraint in a wireless network as follows:

Definition 1 (Half-duplex feasibility conditions). A subset
S of links in E is half-duplex feasible if for any link (A,B)
in S, all of the following conditions hold
• I(A) ∩R(S) = {B} r I(B) ∩ T (S) = {A}
• A 6∈ R(S) and B 6∈ T (S)

We denote the set of all half-duplex feasible schedules
in the network as SHD. For any S ∈ SHD and any link
(A,B) ∈ S, the first condition in the above definition
implies that there is no receiver node within node A’s
interference range, other than node A’s intended receiver
B. Similarly, the second condition says that there is
no transmitter node within node B’s interference range,
except its intended transmitter A. While the first two
constraints guarantee that there is no cross-interference
between links, the last constraint makes sure that there
is no self-interference in S, i.e., any node under S cannot
be both a transmitter and a receiver.

From the half-duplex feasibility conditions, It is
straightforward to derive the full-duplex feasibility con-
ditions, which are described in Definition 2, since we
only need to remove the last condition in Defintion 1 that
forbids the existence of self-interference in a schedule.

Definition 2 (Full-duplex feasibility conditions). A subset
S of links in E is full-duplex feasible (denote as S ∈ SFD)
if for any link (A,B) in S, all of the following conditions
hold:
• I(A) ∩R(S) = {B} r I(B) ∩ T (S) = {A}

B. Traffic model

Let F denote the set of data flows in the network. For
any flow f in F , we further denote the source and the
destination node of that flow as fs and fd, respectively.
We assume that each node maintains a set of next-hop
nodes for each flow, in such a way that there is no loop
for any flow2. Based on this routing table, for each data
link (A,B) ∈ E , we define F(A,B) as the set of flows that
it carries. In other words, F(A,B) denotes the set of flows
that have node B as a valid next-hop from node A.

We assume a time-slotted system, where each data-link,
if scheduled at a certain time-slot, can transmit a single
packet. We denote af [t] as the number of packets that
arrive at the source node of flow f at time-slot t, S[t] as
the set of scheduled links at time-slot t, and f(A,B)[t] as
the index of the flow that link (A,B) chooses to serve if
it is scheduled at time-slot t. We also assume that each
node keeps a queue for each flow, and denote Qf

A[t] as
the queue length of flow f right before the start of the tth

time-slot. Based on the model, we know that the queue
Qf

A evolves as

Qf
A[t] = Qf

A[t− 1] + af [t− 1]1(fs = A)

+
∑

B:(B,A)∈S[t−1]1(f = f(B,A)[t− 1])

−
∑

B:(A,B)∈S[t−1]1(f = f(A,B)[t− 1]),

if fd 6= A, and Qf
A[t] = 0 otherwise, where 1(.) is the

indicator function.
Let us assume that the arrival process is i.i.d. across

different flows, and denote the arrival rate of flow f as
λf . The capacity region of the network is then defined
as the set of rate vectors ~λ = [λ1, λ2, . . . , λ|F|] under
which all the queues in the network can be stabilized3 by
some scheduling policy. An algorithm is called throughput-
optimal if it can stabilize the queues in the network for
any arrival rates within the capacity region. It is well
known from the seminal work [5] that a joint routing
and scheduling algorithm, called back-pressure algorithm,
is throughput optimal. The algorithm is restated below:

Routing: f(A,B)[t] = argmax
f∈F(A,B)

(
Qf

A[t− 1]−Qf
B [t− 1]

)
W(A,B)[t] = max

f∈F(A,B)

(
Qf

A[t− 1]−Qf
B [t− 1]

)
Scheduling: S[t] = argmax

S∈S

∑
(A,B)∈SW(A,B)[t], (1)

where S can either be SHD or SFD. A nice feature of
the above algorithm is that there exists only a loose
coupling between the routing decision and the scheduling
decision: the scheduling component only needs to obtain
the value of the maximum queue differential W , and
operates irrespective of which flow gets served on each
link. The fundamental reason for the loose coupling is
that the routing decision does not affect the physical layer
interference relationship of the data-links in the network,
and therefore does not alter the MAC layer rate region of the
network. While this is true for both half-duplex and full-
duplex wireless network, this claim no longer holds for
wireless networks with full-duplex cut-through capability.
Indeed, there exists a direct coupling between the routing
decision and the physical layer capability of the network.

To support our claim in the previous paragraph, let
us look at the network shown in Figure 3(a). There are
two flows running on the network, where flow 1 runs
from node A to node E, and flow 2 runs from node D
to node E. Now assume that the two links (A,B) and
(B,D) are already activated to serve flow 1, in which
case node B is in full-duplex mode, then, whether link
(D,E) can be activated together with (A,B) and (B,D)

2The assumption that there is no loop in the routing table does not
preclude the possibility for there to be cycles in the network graph.

3We assume that the queueing dynamic can be captured by a
Markovian process and stability refers to the Markov chain being positive
recurrent [9].



or not depends on which flow it chooses to serve: if it
picks flow 1, then node B is capable of canceling the
cross-interference from node D and form a cut-through
route, since the packet transmitted by node D is pre-
viously received by node B. If it, on the other hand,
picks flow 2, then the link cannot be activated together
with (A,B). Therefore, whether a link can be scheduled
or not depends on which flow it chooses to serve, leading
to a direct coupling between the routing decision and
the scheduling decision. Furthermore, if the flows have

B

A D E flow 1

(a)

(b)

C

B

A D E

flow 1 (path 1)

flow 1 (path 2)

flow 2

flow 2
C

Fig. 3: There are two flows that run on the network shown
in Figure 2. The links (A,B) and (B,D) are already
scheduled to serve flow 1. (a) Both flow 1 and flow 2
have only a single path. (b) Flow 1 has two alternative
paths.

multiple routes, then whether a link can be scheduled or not
may even depends on which packet it chooses to transmit.
For example, in the scenario shown in Figure 3(b) where
there are two paths for flow 1, link (D,E) can be activated
simultaneous with (A,B) and (B,D) only when it chooses
to serve flow 1 with a packet it received previous from
node B.

Given the inherent direct-coupling of routing and
scheduling decisions and the complicated flow-dependent
interference relationship between data-links in the net-
work, two natural questions arise: (i) Is there a way to ef-
ficiently model the interference relationship among data-
links in wireless networks with full-duplex cut-through
transmission capability, and at the same time circum-
vent the problem of the coupling between routing and
scheduling? (ii) How to devise a distributed algorithm
that dynamically forms/changes cut-through routes based
on the patterns and the arrival-rates of traffic flows? We
answer these two key questions in the rest of the paper.

III. MODELING OF INTERFERENCE RELATIONSHIP WITH

FULL-DUPLEX CUT-THROUGH CAPABILITY

In the previous section, we showed that cut-through
transmission introduces a direct-coupling of the routing
decision with the schedule decision. From the point of

view of the back-pressure algorithm, this coupling means
that the set of all feasible schedules S in Equation (1)
at time-slot t is a function of the set of routing decisions
{f(A,B)[t]}(A,B)∈E .

In this section, we will focus on developing feasibility
conditions that incorporate the routing decision on each
link. The attempt is to restore the decoupled structure
shown in Equation (1) by revising the state-space of fea-
sible schedules. We will first discuss two straightforward,
yet inefficient and unscalable, methods, and then propose
a new and efficient way to describe the cut-through
interference relationship using a neighbor-expanded graph.

A. Modeling using per-flow virtual links

From the previous section, we showed that even under
the case when each flow has a single route, the phys-
ical layer interference relationship among data-links is
dictated not only by their topological relationship in the
network graph, but also by which flow each link chooses
to serve. Then, a straightforward way to construct the
interference relationship is to extend each data-link into a
number of virtual links, with each virtual-link designated
to a single specific flow. More precisely, we can denote
the virtual-link of (A,B) that is committed to a flow f
as a triplet (A,B, f), and thus the set of data-links is
extended to the set of virtual links {(A,B, f)|(A,B) ∈
E , f ∈ F(A,B)}, based on which a feasibility condition of
cut-through transmission can be derived.

The drawbacks of this approach are clear. First, this
approach works only when each flow has only a single
fixed route. Second, the state space of the virtual links
can be very large, depending on the number of flows that
get admitted. Third, the interference relationship among
virtual links has to be re-derived each time new traffic
flows enter the system.

B. Modeling using per-route virtual links

This approach exploits the fact that cut-through trans-
mission can activate a group of consecutive data-links
to serve a flow as if the whole group of data-links is a
single link. We can exhaustively find all possible routes
from any node to any other node in the network, and
view each route we find as a per-route virtual link. A per-
route virtual link can be denoted as a sequence of nodes
that the route it represents traverses. For example, we can
denote the route that corresponds to the path 1 of flow 1
in Figure 3(b) as a virtual link (A,B,D,E).

The drawbacks of this approach are also clear. First, an
exhaustive search of all possible routes in the network is
required every time there is a topology change. Second,
the number of all possible routes in a network increases
exponentially as the network size grows, which makes this
approach unscalable and only suitable for small networks.
Third, since links several hops away may form a single
virtual link and have to be activated simultaneous when
that virtual link is scheduled, this per-route virtual link



is not suitable for distributed implementations of the
scheduling algorithm, as a message passing mechanism
has to be added to make sure that two ends of a virtual
link coordinates with each other.

C. Modeling using neighbor-expanded graph

Now we propose a novel and scalable way to describe
the interference relationship in wireless networks with
cut-through capability. The key is to realize that full-
duplex cut-through capability is no more than the capa-
bility for each node to cancel its self interference and
a stream of cross interference, if that cross interference
carries a packet the node has previously received. Given
our assumption that there is no loop in the routing table
for any routes, we observe that node A can cancel a stream
of cross-interference from node B, if B transmits a packet
that it has previously received from node A. Based on this
observation, we can think of node B as a cluster of sub-
nodes denoted as {BC |(C,B) ∈ E or C = B}, where sub-
node BA stores the packets node B has obtained directly
from node A (BB stores the packets that exogenously
arrived at node B). In this case, node A can cancel a
stream of cross interference from node B only if BA is the
activated sub-node among all the sub-nodes of node B.
According to the definition of sub-node, if link (A,B) ∈ E
is scheduled, BA is the activated receiver sub-node.

Given the concept of per-neighbor sub-node, we can
construct an extended data-link graph, which we call
the neighbor-expanded graph. Specifically, we denote the
neighbor-expanded graph as Ĝ = (V̂, Ê), where

V̂ = {AC |(C,A) ∈ E or C = A} ,

Ê =
{
(AC , BA)|AC ∈ V̂, and (A,B) ∈ E

}
.

Figure 4 shows the neighbor-expanded graph of the net-
work shown in Figure 2. Note, that the wireless network
can now be fully represented by GI and Ĝ. For the rest of
the paper, we reserve the term schedule and the notation
S only to refer to a subset of links in Ê . For any schedule
S, we define, similar as before,

R(S) = {B|(AC , BA) ∈ S for some C,A ∈ V}
T (S) = {A|(AC , BA) ∈ S for some C,B ∈ V}
T̂ (S) = {AC |(AC , BA) ∈ S for some B ∈ V}.

By the help of the neighbor-expanded graph, we can
derive the feasibility condition under full-duplex cut-
through transmission as the following.

Definition 3 (Cut-through feasibility conditions). A sub-
set S of links in Ê is cut-through feasible (denote as
S ∈ SCT) if for any link (AC , BA) in S, all of the following
conditions hold:
(C1) I(A) ∩R(S) = {B} or

I(A) ∩R(S) = {B,C} with I(C) ∩ T (S) = {A}
(C2) I(B) ∩ T (S) = {A} or

I(B)∩T (S) = {A,D} for some D with DB ∈ T̂ (S)
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DB

DC
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ED
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CD
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D
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Fig. 4: Neighbor-expanded graph of the data-link graph
shown in Figure 2(b).

(C3) (AD, BA) 6∈ S for any D ∈ V\{C}

By comparing the above definition with Definition 2,
we can see that the full-duplex feasibility conditions are
a subset of the cut-through ones. Condition (C1) in the
above definition implies that (AC , BA) may be activated
even when C is a receiver node, given that A is the
only transmitter among all C ’s neighbors. Condition (C2)
says that (AC , BA) may be activated even when one of
B’s neighbors D is a transmitter node, given that DB is
the activated sub-node (which means the packet that D
transmits is received from node B). The last condition im-
plies that there cannot exist two simultaneously activated
transmitter sub-nodes that belong to the same node.

Based on Definition 3, in Figure 4, it is easy to check
that the set of links {(AA, BA), (BA, DB), (DB , ED)} can
be activated simultaneously, while {(AA, BA), (BA, DB),
(DD, ED)} and {(AA, BA), (BA, DB), (DC , ED)} are not
feasible schedules. This can be mapped back to our previ-
ous examples in Figure 3, where we claim that link (D,E)
can be activated together with (A,B) and (B,D) only
when D serves a flow 1 packet that it previous obtained
from node B.

There are two advantages in using neighbor-expanded
graph to characterize the interference relationship, com-
pared with the other two approaches. (i) since the number
of sub-nodes that a node has in the neighbor-expanded
graph equals the degree of that node in the data-link
graph, we know that the size of V̂ and Ê is bounded
by the size of V and E times the maximum degree
of the data-link graph, which is quite scalable as the
network size grows. (ii) the feasibility constraint is not a
function of the routing decision, nor does it involve links
that are more than 2-hop away from each other, which
not only restores the decoupled structure of the back-
pressure algorithm, but also permits the development of
distributed scheduling algorithms.

Since the minimal scheduling entity is now the sub-
node, in order to apply the back-pressure algorithm in
Equation (1), for every sub-node AC and any flow f ,



we need to keep a packet queue Qf
AC

. For the rest of
the paper, we will use (AC , BA) and l interchangeably to
index the links in Ê .

IV. QUEUE-LENGTH BASED CUT-THROUGH CSMA
ALGORITHM

In this section, we develop a queue-length based CSMA
algorithm, similar to the one proposed in [8], that can
achieve throughput optimality in wireless networks with
cut-through capability.

We should point out that there exists an important
difference between the interference model adopted in
[8] and the interference relationship we have derived in
Definition 3 for full-duplex cut-through enabled network,
which prohibits a direct application of the algorithm in
[8] onto the cut-through scenario. The dynamic CSMA
algorithm developed in [8] depends on the assumption
that the interference relationship between different links
can be captured by an conflict graph4 with each indepen-
dent set being a feasible schedule. However, under our
cut-through feasibility conditions, such a conflict graph
cannot be formed. In other words, given three links l1
l2 and l3, the assumption that any two links can be
activated together does not necessarily imply that the
three links form a feasible schedule. For example, in
Figure 5, among the three links (AA, BA), (CB , DC), and
(EB , FE), any two can be activated at the same time,
however, a schedule that include all three of them would
violate condition (C2) in Definition 3, since node BA

can only cancel one stream of cross-interference. We
circumvent this obstacle by introducing the concept of a
trimmed decision schedule, whose definition is provided in
Definition 5.

BAAA
DC

EB
FE

CB

Fig. 5: An example neighbor-expanded graph.

To differentiate between different cut-through feasible
schedules in SCT, we use a subscript to denote the index of
a specific schedule. For example, S(x) is the xth schedule
in SCT.

Definition 4 (Decision schedule). For anyM⊆ Ê , we say
thatM is a valid decision schedule if for any (AC , BA) ∈
M, all of the following conditions hold:

• I(A) ∩R(M) = {B} rI(B) ∩ T (M) = {A}
• (AD, BA) 6∈ M for any D ∈ V\{C}

Definition 5 (Trimmed decision schedule). For any cut-
through feasible schedule S(x) ∈ SCT and any valid
decision schedule M, we define a new schedule M(x) =

M1
(x) ∪M

2
(x) ∪M

3
(x) ∪M

4
(x), where

M1
(x) =

{
(AC , BA) ∈M∩ S(x)

∣∣I(A) ∩R(S(x)) = {B}},
M2

(x) =
{
(AC , BA) ∈M∩ S(x)

∣∣I(A) ∩R(S(x)) = {B,C},
I(C) ∩ T (M) = {A}

}
,

M3
(x) =

{
(AC , BA) ∈M\S(x)

∣∣I(A) ∩R(S(x)) = ∅,

I(B) ∩ T (S(x)) = ∅ or

{D} for some D with DB ∈ T̂ (S(x))
}
,

M4
(x) =

{
(AC , BA) ∈M\S(x)

∣∣I(A) ∩R(S(x)) = {C},
|I(C) ∩ T (S(x))| = 1, I(C) ∩ T (M) = {A},

I(B) ∩ T (S(x)) = ∅ or

{D} for some D with DB ∈ T̂ (S(x))
}
.

Since M(x) is a subset of M and also a function of S(x),
we say that M(x) is the result of M trimmed by S(x).

From the above definitions, we can see that whether
a link in the decision schedule should be trimmed or
not depends on the status of the links that are no more
than two-hops away. Given the definitions of the decision
schedule and trimmed decision schedule, we obtain the
following two lemmas, whose proofs can be found in the
Appendix.

Lemma 1. For any cut-through feasible schedule S(x) ∈
SCT and any valid decision schedule M, S(x) ∪M(x) is a
cut-through feasible schedule.

Lemma 2. For any two cut-through feasible schedules
S(y),S(z) ∈ SCT and any valid decision schedule M, if
S(y)\M(y) = S(z)\M(y), then M(y) =M(z).

Now we are ready to introduce the algorithm. Let M
be a set of valid decision schedules. At the beginning of
each time-slot, the system chooses a decision schedule
M ∈ M with probability PM, where PM > 0 for any
M ∈ M and

∑
M∈M PM = 1. Assume, w.l.o.g., that the

schedule used in the network at the (t − 1)st time-slot is
S[t−1] = S(y) for some y. At the start of time-slot t, right
after a decision scheduleM is picked, the system obtains
a trimmed scheduleM(y) as a function ofM and S(y). For
any link l ∈ M(y), it is included in the updated schedule
S[t] with probability Pl and rejected with probability
1 − Pl, while any link in S(y)\M(y) is included in S[t].
From the Lemma 1 we know that S[t] is a cut-through
feasible schedule, since S[t] is a subset of S(y)∪M(y). This
algorithm is summarized in Algorithm 1. All the steps in
the algorithm rely solely on local information and thus
permit a distributed implementation.

4In a conflict graph (also called link-contention graph), the vertices
represent data-links and an edge between two vertices indicates that the
two data-links cannot be activated simultaneously.



Algorithm 1: Basic Cut-through CSMA Algorithm

1 Assume that the schedule at time slot t− 1 is
S[t− 1] = S(y)

Before the start of time-slot t:
2 Randomly pick a decision schedule M from M with

probability PM.
3 The picked decision schedule M is then trimmed by
S(y) to form a trimmed schedule M(y).

During time-slot t:
4 for any link (AC , BA) ∈ Ê do
5 If (AC , BA) is in M(y), then with probability

P(AC ,BA), the link gets included in S[t].
6 If (AC , BA) is in S(y)\M(y), then the link is

included in S[t].

Along with the same lines as in [8], [10], we can obtain
the following proposition.

Proposition 1. {S[t]}t in Algorithm 1 evolves as an irre-
ducible and aperiodic Markov chain with the state space
being SCT, if the set of decision schedules M satisfies

∪M∈M {(AC , BA) ∈M|I(C) ∩ T (M) = {A}} = Ê .

If the above condition is satisfied, then the stationary
distribution of the Markov chain {S[t]}t is

π
(
S(x)

)
, P

(
S[∞] = S(x)

)
= 1

Z

(∏
l∈S(x)

Pl

)(∏
l 6∈S(x)

(1− Pl)
)
,

where Z =
∑
S(y)∈SCT

(∏
l∈S(y)

Pl

)(∏
l 6∈S(y)

(1− Pl)
)
.

The stationary distribution of the cut-through feasible
schedule in Proposition 1 is obtained by verifying the local
balance equation of the Markov chain {S[t]}t. The result
in Lemma 2 is essential in guaranteeing that the Markov
chain that describes Algorithm 1 is reversible, and thus
has a product-form stationary distribution.

Given this product form distribution, the throughput-
optimality of the algorithm can be established using stan-
dard method. For example, we can set Pl at time-slot t to
be exp(Wl[t])

exp(Wl[t])+1 , and then prove the throughput-optimality
by the aid of a time-scale separation assumption [8], [10],
[11], or without such an assumption [12].

V. NUMERICAL SIMULATION

In this section, we provide simulation results to (i) ver-
ify the effectiveness of using neighbor-expanded graph to
capture the interference relationship in networks with cut-
through capability; (ii) show the performance of the pro-
posed distributed queue-length based CSMA algorithm.

Specifically, we study a 12-node ring network, where
for each node in the network, we assume that it can
communicate and interfere with only its two immediate
neighbors, which makes the network graph G and the
interference graph GI to be the same, as depicted in

Figure 6(a). There are four flows running in the network,
with the source and destination node of each flow indi-
cated in Figure 6(b). Since the network has full-duplex
cut-through capability, it is not hard to see that we can
divide the four flows into two groups {flow 1, flow 3}
and {flow 2, flow 4}, where at each time-slot two cut-
through routes can be formed to serve both flows in a
single group without causing interference to each other.
In other words, the network can simultaneously support
the four flows each with a packet arrival rate of 0.5
packet/time-slot. In our simulation, we first obtain the
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Fig. 6: Simulation scenario

neighbor-expanded graph of the 12-node ring network,
and then apply the proposed distributed queue-length
based CSMA algorithm. We choose Pdecision to be 0.2 and
Pl to be exp(0.2Wl[t])

exp(0.2Wl[t])+1 . The packet arrivals to each flow
follow a poisson process with the same rate λ. Packets
in each node are routed towards the direction with the
shortest path to its destination.

In Figure 7(a) we show the time-average of the sum-
queue-length in the network (averaged across 105 time-
slots) as a function of the traffic rate λ. In Figure 7(b)
we focus on the case when λ = 4.5 packet/time-slot and
plot the evolution of sum-queue-length in the network.
From these figures we can see that, indeed, the proposed
distributed CSMA algorithm can support any traffic rate
λ that is less than 0.5 packet/time-slot.

VI. CONCLUSION

The full-duplex cut-through transmission technique
in wireless networks introduces a direct coupling be-
tween the network-layer routing decision with the MAC-
layer rate-region, leading to a complicated route/flow-
dependent interference relationship between data-links in
the network, which makes it hard to fully exploit the
potential of cut-through transmission in an efficient way.
In this paper, we circumvent this difficulty by introducing
the concept of neighbor-expanded network graph, which
allows us to derive simple interference conditions that
capture the full-duplex cut-through constraint in a scal-
able and low-complexity manner. The neighbor-expanded
graph also enables us to devise algorithms that use
only local information to form/change cut-through routes,
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Fig. 7: Simulation results

with the proposed queue-length-based CSMA algorithm
being an example.
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APPENDIX A
PROOF OF LEMMA 1

To proof that S(x)∪M(x) is a cut-through feasible sched-
ule, we need to show that for any link (AC , BA) ∈ S(x) ∪
M(x), I(A)∩R(S(x) ∪M(x)) and I(B)∩ T (S(x) ∪M(x))
satisfy the conditions (C1), (C2) and (C3) in Definition 3.

First, we prove that condition (C3) always holds for
any (AC , BA) by contradiction. Assume to the contrary
that we can find another link (AD, BA) ∈ S(x) ∪ M(x),
then based on Definition 3 and Definition 4, the two
links cannot be both in S(x) orM(x). Assume w.l.o.g. that
(AC , BA) ∈ S(x) and (AD, BA) ∈ M(x), then it is clear
that (AD, BA) ∈ (M3

(x) ∪M
4
(x)) since M1

(x),M
2
(x) ∈ S(x).

However, according to Definition 5, (AD, BA) cannot be
included in M3

(x) or M4
(x) if (AC , BA) ∈ S(x). Thus, a

contradiction is reached and condition (C3) is satisfied.
For any (AC , BA) ∈ S(x) ∪M(x), we prove that condi-

tions (C1) and (C2) also hold by discussing the following
three cases: (i) (AC , BA) ∈ M1

(x), (ii) (AC , BA) ∈ M3
(x),

(iii) (AC , BA) ∈ S(x)\M(x). The discussion for the cases
when (AC , BA) ∈M2

(x) and (AC , BA) ∈M4
(x) are similar

to (i) and (ii) and, therefore, are omitted for brevity.
(i) If (AC , BA) ∈M1

(x), then

I(A) ∩R(S(x) ∪M(x)) = I(A) ∩
(
R(S(x)) ∪R(M(x))

)
=
(
I(A) ∩R(S(x))

)
∪
(
I(A) ∩R(M(x))

)
(a)
=
(
I(A) ∩R(S(x))

)
∪ {B},

and I(B) ∩ T (S(x) ∪ M(x)) =
(
I(B) ∩ T (S(x))

)
∪(

I(B) ∩ T (M(x))
) (b)
=
(
I(B) ∩ T (S(x))

)
∪ {A}, which, by

combing the fact that M1
(x) ⊂ S(x), imply that the condi-

tion (C1) and (C2) in Definition 3 are trivially satisfied.
Equality (a) and (b) in the above equations follow from
the definition of valid decision schedule in Definition 4.

(ii) If (AC , BA) ∈M3
(x), then

I(A) ∩R(S(x) ∪M(x))

=
(
I(A) ∩R(S(x))

)
∪
(
I(A) ∩R(M(x))

)
= ∅ ∪ {B},

and I(B) ∩ T (S(x) ∪ M(x)) =
(
I(B) ∩ T (S(x))

)
∪(

I(B) ∩ T (M(x))
)

=
(
I(B) ∩ T (S(x))

)
∪ {A}, which,

according to the definition ofM3
(x), either equals to {A},

or {A,D} for some D with DB ∈ T̂ (S(x)). Therefore,
condition (C1) and (C2) are satisfied.



(iii) Now we focus on the case when (AC , BA) ∈
S(x)\M(x). Since M1

(x),M
2
(x) ∈ S(x), we have

I(A) ∩R
(
S(x) ∪M(x)

)
=

I(A) ∩R
(
S(x) ∪M3

(x) ∪M
4
(x)

)
. (2)

We use a two-step argument to show that condition (C1)
holds. In the first step, we claim that I(A) ∩ R(M3

(x) ∪
M4

(x)) = ∅ or {C}. In the second step, we claim that if
|I(C) ∩ T (S(x))| > 1, then I(A) ∩ R(M3

(x) ∪M
4
(x)) = ∅.

The proof of condition (C2) can be obtained in a similar
manner and is omitted here.

For the first claim, let us assume to the contrary that
we can find a node D ∈ E\{C} such that D ∈ I(A) ∩
R(M3

(x) ∪M
4
(x)). Since D ∈ I(A) and A ∈ T (S(x)), we

know that {A} ⊆ I(D) ∩ T (S(x)). On the other hand,
since D ∈ R(M3

(x) ∪ M
4
(x)), we have, according to the

definition of M3
(x) and M4

(x), that I(D) ∩ T (S(x)) = {A}
implies AD ∈ T̂ (S(x)). However, since (AC , BA) ∈ S(x)
and AD ∈ T̂ (S(x)), S(x) cannot be a cut-through feasible
schedule. Therefore, a contradiction is reached, and the
first claim holds.

For the second claim, again, let us assume to the
contrary that |I(C) ∩ T (S(x))| > 1 and I(A) ∩R(M3

(x) ∪
M4

(x)) = {C}. However, from the definition of M3
(x)

and M4
(x) we know that if C ∈ R(M3

(x) ∪ M
4
(x)) then

|I(C)∩T (S(x))| ≤ 1. Therefore, a contradiction is reached
and the second claim holds.

Now, let us combine the two claims. If I(A)∩R(M3
(x)∪

M4
(x)) = ∅, then it is easy to see that condition (C1)

holds trivially. Otherwise, according to the two claims, we
must have I(A) ∩ R(M3

(x) ∪M
4
(x)) = {C} with |I(C) ∩

T (S(x))| ≤ 1. In other words, I(C) ∩ T (S(x)) = {A},
and I(A)∩R

(
S(x) ∪M3

(x) ∪M
4
(x)

)
= {B,C}, which, by

combing Equation (2), completes the proof.

APPENDIX B
PROOF OF LEMMA 2

Let us focus on a particular valid decision scheduleM,
and pick two cut-through feasible schedules S(y),S(z) ∈
SCT that satisfy S(y)\M(y) = S(z)\M(y). We need to show
that for any link (AC , BA) ∈ M, it is contained either
in both M(y) and M(z), or in neither M(y) nor M(z).
The proof can be broken down into the following four
cases: (i) (AC , BA) ∈ S(y) ∩ S(z); (ii) (AC , BA) ∈ S(y)
and (AC , BA) 6∈ S(z); (iii) (AC , BA) 6∈ S(y) ∪ S(z); (iv)
(AC , BA) 6∈ S(y) and (AC , BA) ∈ S(z). Since the discus-
sion on case (i) and (ii) is similar to that on case (iii) and
(iv), we omit the last two cases for brevity.

Before we start the discussion, it is worth noting, from
the definition of the trimmed decision schedule in Defini-
tion 5, that whether a link (AC , BA) is included in M(y)

or not depends only on the outcome of the following three
sets: I(A)∩R(S(y)), I(B)∩ T (S(y)) , and I(C)∩ T (M).

(i) Given that (AC , BA) ∈ M and (AC , BA) ∈ S(y) ∩
S(z), in order to prove (AC , BA) is either in both M(y)

andM(z) or in neitherM(y) norM(z), it suffices to show
that the following two claims hold: 1, I(A) ∩ R(S(y)) =
I(A) ∩R(S(z)). 2, I(B) ∩ T (S(y)) = I(B) ∩ T (S(z)).

Given that S(y)\M(y) = S(z)\M(y), it is easy to
see that (S(y)\S(z)) ∪ (S(z)\S(y)) ⊆ M(y)\(AC , BA) ⊆
M\(AC , BA), implying

I(A) ∩R
(
(S(y)\S(z)) ∪ (S(z)\S(y))

)
⊆I(A) ∩R

(
M(y)\(AC , BA)

)
⊆I(A) ∩R (M\(AC , BA))

(a)
= ∅,

which is an equivalent statement of I(A) ∩ R(S(y)) =
I(A) ∩R(S(z)), and thus claim 1 holds. Note that equal-
ity (a) above followings from Definition 4.

Similarly, the second claim follows by noting that

I(B) ∩ T
(
(S(y)\S(z)) ∪ (S(z)\S(y))

)
⊆I(B) ∩ T

(
M(y)\(AC , BA))

)
⊆I(B) ∩ T (M\(AC , BA)) = ∅.

(iii) If (AC , BA) ∈ S(y) and (AC , BA) 6∈ S(z), then since
S(y)\M(y) = S(z)\M(z), we must have (AC , BA) ∈M(y).
Moreover, we know that (AC , BA) ∈M1

(y) ∪M
2
(y), since,

by definition, M3
(y) and M4

(y) have no intersection with
S(y). As a result, in this case, it suffices to show that
(AC , BA) ∈ M(z), which can be proved by showing that
the following two claims hold: 1, if (AC , BA) ∈ M1

(y),
then (AC , BA) ∈ M3

(z). 2, if (AC , BA) ∈ M2
(y), then

(AC , BA) ∈M4
(z). The proofs of the two claims are similar

and we only show the first one.
If (AC , BA) ∈M1

(y) and (AC , BA) 6∈ S(z), then using the
argument we have for the previous case, we can obtain

I(A) ∩R
(
S(y)\(AC , BA)

)
= I(A) ∩R(S(z)),

I(B) ∩ T
(
S(y)\(AC , BA)

)
= I(B) ∩ T (S(z)),

which, by combing the fact that (AC , BA) is a cut-through
feasible schedule, yields

I(A) ∩R(S(z)) = I(A) ∩R
(
S(y)

)
\{B} = ∅, (3)

I(B) ∩ T (S(z)) = I(B) ∩ T
(
S(y)

)
\{A} = ∅ or (4)

{D} for some node D with DB ∈ T̂ (S(y)).

Finally, if I(B) ∩ T (S(z)) = {D} with DB ∈ T̂ (S(y)),
then DB must also be in T̂ (S(z)). Assume to the contrary
that DB 6∈ T̂ (S(z)), then from the fact that S(y)\M(y) =
S(z)\M(y), we know that D ∈ R(M(y)), which makes
I(B) ∩R(M(y)) = {A,D}, violating the fact that M(y) is
a valid decision schedule. This argument, by combining
with Equation (3) and (4), implies that (AC , BA) ∈M3

(z),
which completes our proof.


