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Battle of Opinions over Evolving Social Networks
Irem Koprulu, Yoora Kim, and Ness B. Shroff Fellow, IEEE

Abstract—Social networking environments provide major plat-
forms for the discussion and formation of opinions in diverse
areas including, but not limited to, political discourse, market
trends, news and social movements. Often, these opinions are of
a competing nature, e.g., radical vs. peaceful ideologies, correct
information vs. misinformation, one technology vs. another. We
study battles of such competing opinions over evolving social
networks. The novelty of our model is that it captures the
exposure and adoption dynamics of opinions that account for
the preferential and random nature of exposure as well as
the persuasion power and persistence of different opinions.
We provide a complete characterization of the mean opinion
dynamics over time as a function of the initial adoption, as well
as the particular exposure, adoption and persistence dynamics.
Our analysis, supported by case studies, reveals the key metrics
that govern the spread of opinions and establishes the means
to engineer the desired impact of an opinion in the presence of
other competing opinions.

I. INTRODUCTION

Social networks, whether face-to-face or digital, capture the
connections and interactions between people on a wide range
of platforms. They are a medium for the spread of diverse
influences including opinion, information, innovation, riots,
biological or computer viruses, and even obesity [1]. As such,
social networks play a key role in shaping human behavior.

In this paper, we focus on understanding and combining
two key aspects of social influence spread: (i) the dynamically
evolving nature of social interconnections and (ii) the existence
of multiple competing influences in a social medium. While
each of these aspects has been studied thoroughly in isolation,
there is a lack of understanding when these two aspects operate
at comparable time scales.

A motivating example for our study is commonly observed
battles of opinions on social platforms, e.g., Twitter, as a
reaction to a piece of possibly controversial news. In these
scenarios, the information spread and opinion formation typi-
cally start with a small set of initial nodes (representing users).
Over time, followers of these initial nodes are exposed to
the news and opinions to form an opinion of their own. The
opinion that a node adopts is affected by the opinion of their
point of contact. Once a node adopts an opinion, it joins the
dynamically growing opinion subnetwork of nodes that have
heard the news and formed an opinion. Such scenarios exist
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in several other platforms including personal blogs, customer
reviews on retailer sites, etc.

Understanding the fate of such competing opinions over so-
cial networks demands new models that capture the spreading
and adoption dynamics of different opinions over a common
network platform. This motivates us in this work to model
and study the spreading dynamics of multiple influences over
a growing dynamic network.

We require our network model to capture several phe-
nomena, such as a heavy-tailed degree distribution and short
average distance, that are observed in many real-world social
networks. The degree or connectivity of a node in a network
is the number of its connections. Online social networks such
as Twitter have been shown to have a heavy-tailed degree
distribution [2].

This heavy-tailed degree distribution of scale-free networks
necessitates a new random graph model other than the Erdös-
Rényi (ER) random graph. In an ER graph, any two nodes
are connected with a given probability independently of other
connections in the network, and such a random attachment
model gives rise to a Poisson degree distribution as the number
of nodes increases [3], [4]. In [5], the authors propose the
preferential attachment model as a mechanism that gives rise
to a power-law degree distribution [6]. In the preferential
attachment model, the probability that a node is connected to
a given node is proportional to the degree of the given node.

Various hybrid models that mix preferential and random
attachment have been studied in several scenarios of growing
networks, social or otherwise (e.g., [7], [8], [9]). In these
works, the authors show that networks evolving according
to hybrid random-preferential attachment models exhibit a
power-law degree distribution and other desirable properties
that mimic social networks (e.g., short average distance, large
clustering coefficients and positive degree correlation).

There is a rich history of research on the problem of
evolving complex networks, including scale-free networks
based on preferential and hybrid models of network growth
(e.g., [10], [11] and references therein). In a different thread
of work, researchers have been investigating influence spread
over social or other networks. At their core, these works
aim to capture the dynamics and the limiting behavior of
various types of influence, e.g., opinion, viruses, etc., over
predominantly static networks (e.g., [12], [13], [14]). However,
to the best of our knowledge these topics have been studied
individually.

In addition, there is very little work that concentrates on
influence propagation specifically on scale-free networks. In
[15] and [16], the authors study the spread of a single virus
in a static network generated according to the preferential
attachment model. However, they do not seek to characterize
the time evolution of the influence spread; their focus is on
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conditions that give rise to a persistent epidemic. In [17], the
authors provide simulation results on the spread of opinions
on static scale-free networks.

The spread of multiple competing influences has been
studied to a lesser degree of extent as well. In [18], the
authors study the spread of two viruses over an arbitrary
undirected static network using an SIS (susceptible infected
susceptible) epidemic spread model. In [19], the authors focus
on the spread of conflicting information over static complex
networks.

In this paper, we capture the following phenomena: the pref-
erential vs. random nature of attachment of newcomer nodes;
the varying power of different types of influence in persuading
newcomers to adopt their type; varying responsiveness of
newcomers to adopt different influences, and finite vs. infinite
lifetimes of nodes in the network. Our main contributions to
this end can be summarized as:
• We develop a new model to rigorously characterize the

spread of multiple competing influences over evolving
social networks. We perform a discrete-time analysis
of the mean system dynamics using linear time-varying
system theory.

• We provide a continuous-time approximation to the
discrete-time model that enables further insights. Through
simulation studies and analytical arguments, we verify the
closeness of our continuous-time approximation to the
discrete-time exact solution.

• We translate our analytical results into qualitative insights
on the characteristics and essential dynamics of important
instances of the problem. These investigations reveal the
impact of different attachment and adoption dynamics on
the transient and limiting behavior of influence spread.

II. NETWORK EVOLUTION AND INFLUENCE PROPAGATION
MODEL

In this paper, we study the propagation of multiple com-
peting influences over a dynamically evolving and expanding
network. To that end, we propose a model where multiple
types of influences interact with each other as the underlying
network expands with newcomer nodes and evolves as existing
nodes leave the network. This model not only captures the
popularity or prominence of the existing nodes as measured
by their number of connections or degree (as in preferential
attachment models), but also the possible differences in the
persuasion power of the influences themselves, which is typ-
ically determined by the quality of a product or the strength
of an opinion.

A. Network Evolution: Exposure to Opinions
The network evolution starts at time t0 with N0 > 0 initial

nodes and a total degree of D0 > 0. We use Ntot[t] and
Dtot[t] to denote the total number of nodes and total degree
at time t, respectively. At the end of each discrete-time period
t ∈ {t0+1, t0+2, t0+3, . . .}, a new node arrives1 and connects

1The model can be readily extended to the case where newcomer nodes
arrive at possibly random times {T1, T2, . . .} with independent inter-arrival
times. In that case, all our results still hold when the network is sampled right
after the arrival of a new node.

to one of the existing nodes in the network. We refer to the
node to which the newcomer node connects as the parent node.

Our current model accounts for a single parent node for each
newcomer node. While this assumption is certainly limiting,
it still allows our model to capture many real-life scenarios
where it is possible to identify a most influential existing node
for each newcomer node. One example is singling out the node
of first exposure as the parent node.

An important factor in determining which one of the ex-
isting nodes will be the source of exposure to the newcomer
nodes is the visibility of the existing nodes as measured in
terms of their connectivity. In the Twitter example, the higher
the connectivity of a user, the more likely it is that the next
user will hear the news from that particular user. Likewise,
for customer reviews a higher number of helpful tags adds
to the visibility of a particular review, and Google PageRank
determines the visibility of personal blogs and other sites based
on the hits they have received so far. In all examples, it is
also possible that the next exposure will happen through a
randomly selected, rather unassuming node.

In order to capture these dual connection dynamics we
adopt a hybrid connection model composed of random and
preferential attachment. Each newcomer node chooses either
the random attachment mode with probability q ∈ [0, 1] or
the preferential attachment mode with probability (1 − q)
independently from the choices of the previous nodes. We
refer to the probability q as the attachment parameter. In the
random attachment mode, the newcomer node attaches to an
existing node selected uniformly at random, i.e., each node
in the network is chosen with equal probability 1/Ntot[t]. In
the preferential attachment mode, each node in the network
is chosen with a probability that is proportional to its degree,
i.e., if a particular node has degree d then it is chosen with
probability d/Dtot[t].

Note that newcomer nodes do not have an opinion when
they first join the network. We model the connection making
process to be independent of the opinions of the existing nodes.
We say that user A is connected to user B if user A heard the
news from node B or read the opinion of user B. Once exposed
to the opinion of user B, user A will form an opinion based
on her own personal and cognitive biases in addition to the
influence of user B. The connection between users A and B
will remain regardless of whether they share the same opinion
or not.

B. Influence Propagation: Adoption of Opinion/Color

There are M different influences labeled 1, . . . ,M prop-
agating in the network. Influence can refer to a wide range
of things including opinions, ideas, innovations or products.
In the sequel, we will use the word color when referring to
these influences. Each node adopts only one out of M colors
(hence the name competing influences) at the time it joins the
network and does not change its color once adopted.

We assume that a newcomer node connects to the net-
work according to the hybrid attachment model described
in Section II-A independently of the colors of the existing
nodes. This presumes that attachments are governed in part
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by the random behavior of the newcomers and in part by
the prominence of the existing nodes, but not by the adopted
colors of the existing nodes. This assumption is justified in
many scenarios where the colors of the existing nodes are
not discernable by the newcomer node at the time of first
connection, but their prominence is readily observable by the
newcomer through their number of connections.

Once a newcomer connects to a parent node, it becomes
receptive to the influence. The newcomer node is not restricted
to adopt the same color as its parent node. The parent node’s
influence only determines the likelihood of the newcomer node
adopting each color, e.g., the node can be more likely to adopt
the same color as its parent. In particular, if the parent has
color j ∈ {1, . . . ,M}, then the newcomer node adopts color
i ∈ {1, . . . ,M} with probability pij , i.e.,

pij = P(Node adopts color i|Parent node has color j),

where 0 ≤ pij ≤ 1 for all i and j, and
∑
i pij = 1 for each j.

The set of adoption parameters {pij} captures the persuasion
power of different types of influences. Depending on the type
of influence, these parameters may reflect the strength of an
opinion or inherent quality of a product.

Although each node adopts a single color, this model can
also encompass scenarios where newcomer nodes may adopt
zero or multiple colors. Examples include the newcomer node
not subscribing to any of the existing opinions, not buying
any product, or buying multiple products. In these cases, a
new color is assigned to these choices.

We use Ni[t] and Di[t] to denote the number and the total
degree of nodes of color i at time t, where

∑M
i=1Ni[t] =

Ntot[t] and
∑M
i=1Di[t] = Dtot[t]. In order to facilitate a more

compact presentation, we define the state vector

X[t] ,

(
N[t]
D[t]

)
∈ R2M×1, (1)

in terms of the number of nodes of different color
N[t] , (N1[t], . . . , NM [t])T ∈ RM×1 and degrees D[t] ,
(D1[t], . . . , DM [t])T ∈ RM×1. The initial state of the network
at time t0 is given by X[t0] = X0.

C. Persistence of Nodes: Finite and Infinite Node Lifetime

The influence of a node may or may not be indefinite
depending on the nature of the node or the social platform.
Motivated by this observation, we capture a node’s persistence
through its lifetime. The lifetime of a node refers to the
duration that the node remains in the network before its
influence dies out. During its lifetime, each node is visible
to newcomer nodes and actively participates in spreading its
influence.

In our discussions, we distinguish between scenarios where
nodes have finite or infinite lifetimes since they lead to
fundamentally different influence spread dynamics. In the
first scenario of networks with infinite lifetimes: all nodes
remain indefinitely in the network once they join, and influence
later newcomer nodes. In this scenario, the network size

and influence grow indefinitely2. Examples for this scenario
include online forums or product recommendation platforms
where messages or recommendations of earlier users remain
visible indefinitely.

In the second scenario, we assume that each node in the
network (initial nodes as well as nodes that join the network
later) leaves the network after a finite time. With nodes in the
network leaving at random times, the number of nodes in the
network at any given time t no longer needs to be an increasing
function of t. Such a finite lifetime scenario is a good fit for
modeling online discussion forums where participating users
join and leave, and thereby their influence is not indefinite.

D. Problem Statement

Our goal is to characterize the time evolution of the network
state X[t] defined in (1) given the network evolution dynamics
in Sections II-A and II-C and the influence propagation
dynamics in Section II-B. In particular, we want to characterize
the extent of spread for different influences (i.e., the fraction of
nodes who adopt different colors) as a function of the initial
makeup of the network (as captured by the initial network
state X0), the newcomer nodes sensitivity to prominence (as
captured by the connection parameter q which determines the
ratio of preferential vs random attachment), the persuasion
power of different opinions (as captured by the adoption
parameters {pij}), and the persistence of nodes (as captured
by the lifetime distribution of the nodes).

III. INFLUENCE SPREAD DYNAMICS WITH INFINITE NODE
LIFETIME

In this section, we provide analytical results that describe
the mean dynamics of an expanding influence network with
infinite node lifetime introduced in Section II. We first derive
exact results based on the discrete-time (DT) model. In order
to achieve further insights into the effect of the various system
parameters on the evolution of the system, we develop and
analyze an approximate continuous-time (CT) model. We
use these results to reveal important network formation and
influence dynamics in the case studies of the subsequent
sections.

A. Discrete-Time Mean System Analysis

In this subsection, we provide an exact characterization of
the mean behavior of the system dynamics in discrete-time by
investigating the conditional mean drift of the system state
X[t] defined as E[X[t + 1] − X[t] | X[t]]. In particular,
we obtain a linear system with time-varying coefficients to
describe the mean system evolution. These coefficients provide
valuable information concerning the impact of the hybrid
attachment model and the persuasion power parameters on
the spread and the degree distribution of different types of
influences. Theorem 1 shows our main result regarding the
nature of influence spread under such dynamics.

2For the network dynamics described in Section II-A, the total number
of nodes and degrees at time t is given by Ntot[t] = (t − t0) + N0 and
Dtot[t] = 2(t− t0) +D0, respectively.



4

Theorem 1 (Linear Time-Varying DT System Description and
Solution). The one-step time evolution of the mean state for
the network with infinite node lifetime described in Section II
is governed by the following time-varying linear difference
equation

E[X[t+ 1]−X[t] | X[t]] = A[t]X[t], (2)

for t ∈ {t0, t0 +1, . . .} and initial condition X[t0] = X0. A[t]
is a 2M × 2M matrix composed of four M × M constant
submatrices Aij , Ntot[t] and Dtot[t] as follows:

A[t] =

[
A11/Ntot[t] 2A12/Dtot[t]
A21/Ntot[t] 2A22/Dtot[t]

]
, (3)

where the entries of the constant submatrices are given by

[A11]i,j = qpij ,

[A12]i,j =
1

2
(1− q)pij ,

[A21]i,j =

{
q(1 + pii), if i = j

qpij , if i 6= j
(4)

[A22]i,j =

{
1
2 (1− q)(1 + pii), if i = j
1
2 (1− q)pij , if i 6= j.

The mean state of the system at time t is given by

E[X[t] | X0] =

(
t−1∏
s=t0

(A[s] + I)

)
X0, (5)

where I is the 2M × 2M identity matrix. Since matrix
multiplication is not necessarily commutative, we fix the order
of multiplication in (5) as

t−1∏
s=t0

(A[s] + I) , (A[t− 1] + I)(A[t− 2] + I) · · · (A[t0] + I).

Proof. The proof is given in Appendix A.

It is possible, and insightful, to derive a more explicit
solution to the general equation governing the network evo-
lution in (5) by imposing a restriction on the initial state of
the system. We observe that the total degree in the network
Dtot[t] = 2(t − t0) + D0 approaches twice the number
of nodes Ntot[t] = (t − t0) + N0 with increasing time
t. If we impose the condition D0 = 2N0 from the onset
to ensure Dtot[t] = 2Ntot[t] for all t, then we can write
A[t] = A/(t − t0 + N0) where A is the constant matrix
composed of the submatrices defined in (4) as follows:

A =

[
A11 A12

A21 A22

]
.

The following corollary summarizes our results for this spe-
cific case.

Corollary 1. Provided that D0 = 2N0, and that the matrix A
is diagonalizable, the expected state of the network at time t
with infinite node lifetime described in Section II is given by

E[X[t] | X0] = VΛ[t]V−1X0, (6)

where Λ[t] is the 2M × 2M diagonal matrix with entries

[Λ[t]]i,i = exp

(
t−1∑
s=t0

log

(
1 +

λi
s− t0 +N0

))
(7)

and {λi}2Mi=1 and V are the eigenvalues and eigenvector matrix
of A, respectively.

Proof. The result follows readily from (5) by replacing A[s]
with A/(s− t0 +N0) and A with V diag

(
{λi}2Mi=1

)
V−1.

B. Continuous-Time Approximation

In this subsection, we propose a continuous-time (CT)
approximation to the mean evolution of the influence network.
Throughout the paper, we use (t) instead of [t] to distinguish
continuous-time variables from their discrete-time counter-
parts. We introduce the shorthand notation x(t) , E[X(t)] to
denote the CT approximation of the mean state vector. Next,
we obtain a heuristic CT approximation for the evolution of
the network by replacing the difference equation in (2) by a
differential equation.

Definition 1 (Continuous-Time Approximation of the System
State Evolution). The continuous-time evolution of the mean
system state x(t) is described by the following time-varying
linear differential equation:

dx(t)

dt
= A(t)x(t), for t ≥ t0, and x(t0) = X0 (8)

where A(t) has the same form as A[t] defined in (3).

We derive an explicit solution to the system state evolution
in (8) for the case that the initial state satisfies the constraint
D0 = 2N0 as in Corollary 1. In this case, we note that
A(s) commutes with A(t) for all values of s and t, i.e.,
A(s)A(t) = A(t)A(s) for all s, t. The Magnus series [20]
consists of a single term and yields the solution given in
Corollary 2. Alternatively, we can show that (9) given below
solves (8) by direct substitution.

Corollary 2. When D0 = 2N0, the solution to (8) is given by

x(t) = exp

(
log

(
t− t0 +N0

N0

)
A
)
X0. (9)

For diagonalizable A, we can further reduce this
solution by substituting the eigendecomposition
A = Vdiag

(
{λi}2Mi=1

)
V−1 in the definition of the matrix

exponential to obtain

x(t) = Vdiag

{( t− t0 +N0

N0

)λi
}2M

i=1

V−1X0. (10)

Next we argue analytically that the CT approximate solution
x(t) obtained in (10) is indeed a reasonable approximation
of the DT exact solution X[t] obtained in (6). We start by
noting that for small x, log(1 + x) ≈ x. Hence, for large
s, the log

(
1 + λi

s−t0+N0

)
terms in (7) can be approximated

by λi

s−t0+N0
. Further approximating the sum of the harmonic
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terms by the corresponding integral results in the following
approximation for the entries of the diagonal matrix:

exp

(
t−1∑
s=t0

log

(
1 +

λi
s− t0 +N0

))

≈ exp

(
λi

t−1∑
s=t0

1

s− t0 +N0

)
≈ exp (λi (log(t− t0 +N0)− log(N0)))

=

(
t− t0 +N0

N0

)λi

With this approximation, (6) reduces to (10) as claimed.
We also note that the diagonal terms corresponding to zero
eigenvalues in the DT solution given in (6) and the CT
approximate solution given in (10) are an exact match. Hence,
only non-zero eigenvalues contribute to the difference between
the two solutions.

Finally, we present a continuous-time arrival model under
which the differential equation (8) holds exactly. To mimic the
linear arrivals in the DT model (i.e., Ntot[t] = (t− t0) +N0

for t ∈ {t0, t0 + 1, . . .}), we suppose that the arrival process
in the CT model is generated according to

P(Exact 1 newcomer node arrives during (k, k + δ]) = δ,

P(No newcomer node arrives during (k, k + δ]) = 1− δ,

where k ∈ {t0, t0 + 1, . . .} and δ ∈ (0, 1]. Then, the number
of nodes under the CT model at time t ∈ {t0, t0 + 1, . . .} is
Ntot(t) = (t− t0) +N0 with probability 1, which is identical
to that of the DT model. For this CT arrival model, we can
extend the difference equation (2) in Theorem 1 to

E[X(t+ δ)−X(t)|X(t)] = δA(t)X(t), (11)

for any t ≥ t0 and δ ∈ [0, 1]. Recalling that x(t) = E[X(t)],
the expectation of the left-hand side of (11) reduces to

E
[
E[X(t+ δ)−X(t)|X(t)]

]
= E[X(t+ δ)−X(t)]

= x(t+ δ)− x(t).

Hence, the expectation of (11) yields

x(t+ δ)− x(t) = δA(t)x(t). (12)

Since (12) holds for all δ ∈ (0, 1], it follows that

lim
δ→0

x(t+ δ)− x(t)

δ
= A(t)x(t),

which is the differential equation (8) in our CT approximation.
We have compared both DT and CT results and Monte Carlo

simulations of our model for several sets of system parameters.
Our results verify that the difference between the DT and CT
evolutions is negligible. As part of these investigations, we
show that actual simulation results are in line with theoretical
results based on the CT approximation (cf. Figs. 1 and 2).

In the subsequent two sections, we proceed to translate
these analytical results into insights on the characteristics and
essential dynamics of important instances of the problem.

IV. BATTLE OF TWO OPINIONS WITH INFINITE NODE
LIFETIME

In this section, we present the detailed solution to the
continuous-time approximation with two competing influences
in a network with infinite node lifetimes. Binary systems arise
in a vast number of real life scenarios that are based on
adopting or rejecting a single opinion, belief, technology or
product. The importance of studying the two influence case
is not only due to its applicability to these scenarios. Its
relative simplicity allows us to gain insights into the dynamics
of influence propagation on evolving systems, which can be
generalized to scenarios with larger number of influences.

We consider a scenario in which nodes in an evolving
network adopt opinion 1 or opinion 2 as described in Sec-
tion II. The system can be fully described in terms of the
initial state X0, the attachment parameter q, and the two cross-
adoption parameters p12 and p21. The latter quantify the rate of
defection from an opinion, i.e., the failure rate of an existing
node to persuade newcomer nodes to subscribe to the same
opinion as itself. We define p̃ = p12 + p21 and exclude the
degenerate case of p̃ = 0 from our discussion. In this case,
newcomer nodes adopt their parent node’s opinion without
fail.

We assume, without loss of generality, that the network
evolution starts at time t0 = 0. For the initial state X0 =
(N1(0), N2(0), D1(0), D2(0))T , we impose the condition that
D0 = 2N0 (i.e., D1(0) + D2(0) = 2(N1(0) + N2(0))) in
order to facilitate an algebraic solution. The following is the
main result of this case study, which describes the evolution
of mean adoption dynamics in terms of initial conditions as
well as attachment and influence dynamics.

Theorem 2. For the network evolution and influence prop-
agation dynamics described above, the continuous-time ap-
proximation to the mean number of nodes ni(t) = E[Ni(t)]
adopting each opinion is given by

n1(t) = α1(t+N0) + β

(
t+N0

N0

)λ
+ γ,

n2(t) = α2(t+N0)− β
(
t+N0

N0

)λ
− γ,

(13)

where the coefficients αi, β, γ and the exponent λ depend on
the system parameters as follows:

λ = 1− 1

2
(1 + q)p̃, α1 =

p12
p̃
, α2 =

p21
p̃
,

β =
2(1− p̃)(p21N1(0)− p12N2(0))

p̃(2− (1 + q)p̃)
,

γ =
(1− q)(p21N1(0)− p12N2(0))

2− (1 + q)p̃
.

Proof. The proof is given in Appendix B.

Several observations can be made concerning the evolution
of the mean number of nodes adopting each opinion.

Linear and Sublinear Terms in the Evolution: The first
term in each expression indicates a linear growth of the mean
number of nodes with time. The exponent that governs the
second terms is common, and satisfies λ ∈ [−1, 1] for all
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system dynamics. The extreme case of λ = 1 is achieved
only when p̃ = 0. Hence, the second term is sublinear and
will eventually be dominated by the linear first term. It is also
interesting to observe that λ can take negative values, in which
case the contribution of the second terms vanish with t.

Long-Term Adoption Characteristics: In view of the
previous observation, as long as the defection rate p̃ > 0,
the long-term adoption of an opinion is dominated by the
linearly increasing component of the evolution. In particular,
the fractions of the two opinions in the network converge to
α1 = p12/p̃ and α2 = p21/p̃, respectively. Thus, the long-term
market share of a product is not influenced by the attachment
dynamics (as captured by q) or the initial number of the early
adopters (as captured by X0), but solely by the persuasiveness
of the opinions (as captured by cross-adoption probabilities
p12 and p21).

Fig. 1 depicts the evolution of the theoretical CT approxi-
mation and results of Monte Carlo simulations which confirm
this long-term behavior by showing that the fraction of two
opinions converges to the same limit for different values of q.
The datapoints are generated by running 100 simulation exper-
iments with the given parameters on synthetically generated
networks, and display the average.
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Fig. 1. The impact of the attachment parameter q on the mean fraction of
nodes in an evolving network with two opinions. The graph depicts both the
CT approximation given in Theorem 2 (continuous lines) and the average of
100 simulated experiments (individual datapoints). The attachment parameter
varies as q ∈ {0, 0.5, 1}, while the cross-adoption parameters are fixed as
p12 = 0.3 and p21 = 0.1 resulting in the limit α1 = 0.75 for the fraction of
nodes adopting opinion 1. Note that the fraction of nodes adopting opinion 2
can be obtained by subtracting the fraction of nodes adopting opinion 1 from
1 and approaches α2 = 0.25 in the limit.

Impact of Attachment Model on the Evolution: Despite
the dominance of the linear term in the long-term, the sublinear
terms associated with the exponent λ and the coefficient β may
have non-negligible short-term effects. In fact, such short-term
characteristics may be of greater interest for many scenarios
in which the influence spread occurs over a short/moderate
lifetime. Here, we first observe that the exponent λ increases
both with decreasing defection rate p̃ and with decreasing
randomness of attachment q. In other words, as the attach-
ment model tends more towards pure preferential attachment,
i.e., q decreases towards 0, the short-term effects are more
pronounced in the exponent. Fig. 1 depicts this effect. The

evolution curves with q = 0 corresponding to pure preferential
attachment approach the limiting ratios α1 and α2 more
slowly.

Impact of Initial Adopters on the Evolution: The coeffi-
cient β of the sublinear term depends on the composition of
the early adopters as well as the cross-adoption probabilities.
The dominant effect of the initial network composition on the
evolution of the system is through this coefficient only. Fig. 2
depicts the evolution of the theoretical CT approximation and
results of Monte Carlo simulations. First, we note how in
accordance with the previous observations the long-term limits
of α1 and α2 are unaffected by the initial network composition.
We also observe that even when starting from an extreme
initial condition, i.e., all initial nodes of a single opinion,
the expected fraction of nodes of each opinion reaches an
equilibrium in relatively short time.
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Dependence on Initial State X
0

CT approx. for 25% of initial nodes of opinion 1

Simulation for 25% of initial nodes of opinion 1

CT approx. for 50% of initial nodes of opinion 1

Simulation for 50% of initial nodes of opinion 1

CT approx. for 75% of initial nodes of opinion 1

Simulation for 75% of initial nodes of opinion 1

Fig. 2. The dependence of the mean fraction of nodes in an evolving
network with two opinions on the initial state X0 of the network. The graph
depicts both the CT approximation given in Theorem 2 (continuous lines) and
the average of 100 simulated experiments (individual datapoints). Individual
curves depict the fraction of nodes adopting opinion 1 over time starting with
varying initial ratios {0.25, 0.5, 0.75} of nodes of opinion 1. The attachment
parameter is q = 0.5 and the cross-adoption parameters are p12 = 0.3 and
p21 = 0.1 resulting in the limit α1 = 0.75 for the fraction of nodes adopting
opinion 1. Note that the fraction of nodes adopting opinion 2 can be obtained
by subtracting the fraction of nodes adopting opinion 1 from 1 and approaches
α2 = 0.25 in the limit.

The above observations suggest an interesting connection
between attachment dynamics and the early spread of an
influence. In particular, the emergence of prominent (well-
connected) members in a society as determined by the at-
tachment dynamics allows the initial influence of the early
adopters to survive longer. More specifically, as the q pa-
rameter decreases, the degree distribution has heavier tails,
thereby indicating emergence of influential/prominent agents.
The color of these prominent members will be shaped by
the initial composition of the network, which, in turn, will
sustain these early impacts for increasingly longer time frames
depending on the value of λ. Yet, our model also reveals that
the long-term spread of two competing opinions is ultimately
governed by their inherent strengths.
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V. TWO COMPETING TECHNOLOGIES IN A NETWORK
WITH INDIFFERENT POPULATIONS AND INFINITE NODE

LIFETIME

In this section, we study the dynamics of innovation spread
in the case of two competing alternatives in an evolving
network where nodes are allowed to remain indifferent, i.e.,
they adopt neither of the two technologies. We model a word-
of-mouth marketing scenario in which newcomer nodes are
exposed to the innovation only if their parent node has adopted
one of the technologies. In that case, they can adopt one of
the innovations (including the competitor of the technology
adopted by their parent node) or they can remain indifferent.
Indifferent nodes, on the other hand, play a special role in this
model in which they do not expose newcomer nodes to either
innovation. Any newcomer node that connects to an indifferent
node remains indifferent with probability 1.

With the presence of indifferent nodes, not every node
partakes in adopting the innovation. This is in contrast to the
model in Section IV where each node actively participated in
the battle of opinions. With indifferent nodes in the network,
we are interested in both the individual number of adopters of
each technology and the size of the entire market.

In the language of Section II, we have three colors: adopting
one of the two technologies (labeled colors 1 and 2) and
remaining indifferent (labeled color 3). Given the adoption
dynamics described above the system can be fully described
by the attachment parameter q and the adoption parameters
p11, p12, p21 and p22. (Note that p13 = p23 = 0, p33 = 1,
p31 = 1− (p11 + p21) and p32 = 1− (p12 + p22). ) As in the
previous section, we assume, without loss of generality, that
the network evolution starts at time t0 = 0. We also assume
that the initial number of nodes and initial total degree in the
network satisfy D0 = 2N0.

Theorem 3. For the network evolution and influence prop-
agation dynamics described above, the continuous-time ap-
proximation to the mean number of nodes ni(t) = E[Ni(t)]
adopting each technology is given by

n1(t) = α1

(
t+N0

N0

)λ1

+ β1

(
t+N0

N0

)λ2

+ γ1,

n2(t) = α2

(
t+N0

N0

)λ1

+ β2

(
t+N0

N0

)λ2

+ γ2,

(14)

while the mean number of indifferent nodes is

n3(t) = t+N0 − n1(t)− n2(t).

The coefficients αi ≥ 0, βi, γi are constants that depend on
the system parameters p11, p12, p21, p22, q and initial state X0.
The exponents λ1 and λ2 are given by

λ1 =
1

2
(1− q) +

1

4
(1 + q)(p11 + p22 + ∆),

λ2 =
1

2
(1− q) +

1

4
(1 + q)(p11 + p22 −∆),

(15)

where ∆ =
√

(p11 − p22)2 + 4p12p21. The exponents satisfy
λ2 ≤ λ1 ≤ 1, and λ1 = 1 if and only if

p11 + p21 = p12 + p22 = 1. (16)

Proof. The derivation of (14) and (15) is similar to the proof of
Theorem 2 given in Appendix B. Hence, we omit the details.
To establish the range of the exponents, we note that

∆ =
√

(p11 − p22)2 + 4p12p21

≤
√

(p11 − p22)2 + 4(1− p22)(1− p11) (17)

=
√

((p11 + p22)− 2)2 = 2− p11 − p22. (18)

Hence, we obtain the bound p11 + p22 + ∆ ≤ 2 and conclude
that λ1 ≤ 1. Note that (17) is met with equality if and only
if (16) is satisfied. Therefore, λ1 = 1 if and only if (16)
holds.

The dependence of the coefficients αi, βi, γi in Theorem 3
on the system parameters {pij}, q and X0 is quite complex.
For the case of q = 1 corresponding to pure random attach-
ment, we have

α1 =
1

2∆
((p11 − p22 + ∆)N1(0) + 2p12N2(0)) ,

α2 =
1

2∆
(2p21N1(0) + (−p11 + p22 + ∆)N2(0)) ,

β1 =
1

2∆
((−p11 + p22 + ∆)N1(0)− 2p12N2(0)) ,

β2 =
1

2∆
((−2p21N1(0) + (p11 − p22 + ∆)N2(0)) ,

γ1 = γ2 = 0.

Several observations can be made concerning the evolution
of the mean number of nodes adopting each technology and
can be contrasted to the two-color case without indifferent
nodes.

Sublinear Growth of the Market Size: We note that only
the expression for the mean number of indifferent nodes n3(t)
has a linear term. The mean number of nodes adopting one of
the two active influences is governed by the sublinear tλ1 term.
According to Theorem 3, λ1 < 1 unless nodes exposed to
either form of innovation do not have the option of remaining
indifferent. We exclude this case from the discussion below.
As a result, the fraction of each active influence within the
total network population tends to zero in the long term.
Nevertheless, there are two important measures to be studied:
the total number of nodes adopting a new technology and the
fraction of each technology among these nodes, i.e., the market
size and the market share.

Impact of Adoption Model on the Market Size: The
size of the market is given by the total number of nodes
adopting a new technology, i.e., n1(t) + n2(t). While the
market size is affected by all system parameters, the largest
effect is due to the adoption parameters {pij}. In particular, the
market size grows monotonically with growing sums p11+p21
and p12 + p22, as these sums represent the probability that
a node exposed to the innovation does adopt either form of
it. We call this measure the technology retention probability.
Fig. 3 depicts the growth of the market size with increasing
technology retention probability.

Impact of Attachment Model on the Market Size: The
growth of the market size is dominated by the (α1 + α2)tλ1

term. Hence, the largest impact of the attachment model on
the market size, especially in the long term, is through the
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Dependence of the Market Size on Adoption Parameters
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Fig. 3. The impact of the adoption parameters {pij} on the market size in an
evolving network with indifferent nodes. The technology retention probability
p11 + p21 = p12 + p22 varies as {0.1, 0.3, 0.5, 0.7, 0.9}. The fraction of
nodes that opt for the same technology are 80% and 70%, respectively, for
technologies 1 and 2. The attachment parameter is fixed as q = 0.5 and the
network evolution starts with one node of each color. The graph shows the
average of 100 simulated sample paths.

dependence of the exponent λ1 on the attachment parameter
q. In light of (18), λ1 = 1

4 (p11+p22+∆+2)+ 1
4q(p11+p22+

∆ − 2) is a linearly decreasing function of q for all sets of
adoption parameters {pij}. As a result, the market size grows
as the rate of random attachment q decreases. A higher rate
of preferential attachment allows individual nodes to establish
higher prominence. Early technology adopters develop high
degree, which attracts more of the newcomer nodes to one of
the technologies, resulting in a larger market. Fig. 4 visualizes
this effect of the attachment parameter q on the market size.

0 100 200 300 400 500 600 700 800 900 1000

time (t)

0

50

100

150

200

250

M
a

rk
e

t 
S

iz
e

Dependence of the Market Size on Attachment Parameter q
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Fig. 4. The impact of the attachment parameter q on the market size in
an evolving network with indifferent nodes. The attachment parameter varies
as q ∈ {0, 0.25, 0.5, 0.75, 1}, while the adoption parameters are fixed as
p11 = 0.6, p21 = 0.1, p12 = 0.2, and p22 = 0.5. The network evolution
starts with one node of each color. The graph shows the average of 100
simulated sample paths.

Long-Term Market Share Characteristics: The long-term
market share of each technology is determined by the coeffi-
cients α1 and α2 of the tλ1 term in (14). These coefficients
depend not only on the adoption parameters {pij} but also
on the attachment parameter q and the initial state of the
network X0. This dependence is in apparent contrast to the
previous case of two opinions presented in Section IV, where

the leading coefficients α1 and α2 in (13) depended only on the
adoption parameters. Nevertheless, the long-term market share
of each product is not influenced by the attachment dynamics
(as captured by q) nor the initial number of the early adopters
(as captured by X0). In particular, the long-term fraction of
technology 1 within the market is given as follows (product 2
occupies the remaining fraction of the market):

α1

α1 + α2
=

p11 − 2p12 + ∆− p22
2(p11 − p12 + p21 − p22)

.

Consequently, the attachment model and the preferences of
the initial adopters have only short-term effects on the market
share. In the long term, the effect of the adoption parameters
dominates. Fig. 5 demonstrates how the effect of the initial
network composition on the evolution of the market shares
diminishes with time.
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Fig. 5. The dependence of the market share of technology 1 on the
initial network state. The initial market share of technology 1 varies as
{0.25, 0.5, 0.75, 1}. The attachment parameter and the adoption parameters
are fixed as q = 0.5, p11 = 0.6, p21 = 0.1, p12 = 0.2, and p22 = 0.5. The
network evolution starts with ten nodes and the initial market size is 4. The
graph shows the average of 100 simulated sample paths.

These observations reiterate the suggestion that the long-
term spread of two competing influences is ultimately governed
by their inherent strength. The attachment dynamics and the
early adopters have only a secondary effect on the market size
and market share.

VI. INFLUENCE SPREAD DYNAMICS WITH FINITE NODE
LIFETIME

In the previous sections (cf. Sections III-V), we have studied
the dynamics of influence spread under the assumption that
nodes remain in the network for an infinite time. That model
captures scenarios where nodes are long-lived with respect to
the influence spread and thus the spread occurs over expanding
networks. In this section, we study an alternate setting in which
the influence of participants has finite, albeit random, lifetimes,
thereby resulting in influence spread over evolving networks.
We first present a DT and a CT model that incorporate the
lifetime dynamics into the network evolution. Then, we follow
with our results on the limiting behavior and the stability of the
resulting dynamic system, as well as numerical results in the
case of two opinions competing over such dynamic networks.
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A. Analysis of Mean System Dynamics
We model the lifetime of each node as a random variable

whose statistics may depend on the adopted color of the node.
In particular, we assume that a given node of color i leaves
the network during the time slot [t, t + 1) (i.e., between the
arrival of the tth and (t + 1)st node) with probability µi >
0 independent of its connections and their actions. This is
equivalent to assigning each node of color i a geometrically
distributed lifetime with mean 1/µi. Note that, even though
each node eventually leaves the network, the network does not
go extinct due to the constant arrival of new nodes.

We know that, in the infinite lifetime scenario, prefer-
ential attachment gives rise to networks with heavy-tailed
degree distributions (e.g., [6]). This results in the emergence
of prominent nodes with significant attraction on newcomer
nodes. In the finite lifetime scenario, this characteristic is
diminished since the degree, hence the prominence, of a
node is bounded by its finite and light-tailed lifetime. As a
result, the system evolution is less sensitive to random versus
preferential attachment dynamics. Therefore, in the remainder
of this section, we focus on the case where attachment is
purely random, i.e., q = 1.

Recall that in the presence of preferential attachment, the
system state included the number as well as the degrees of
nodes of each color (cf. Equation (1)). Now that we focus on
random attachment only, the degrees of nodes no longer need
to be part of the system state. We can therefore describe the
system in terms of the number of nodes of each color only.
In particular, we use N[t] = (N1[t], . . . , NM [t])T as the state
vector with initial state N0.

Under our random attachment dynamics (cf. Section II-A),
the newcomer node at time t attaches to an existing node
of color j with probability Nj [t]

Ntot[t]
. Then, under our influence

dynamics (cf. Section II-B), it adopts color i with probability
pij . Therefore, the number of nodes of color i increases by
one during [t, t+ 1) with probability

∑M
j=1 pij

Nj [t]
Ntot[t]

.
On the other hand, each one of the Ni[t] nodes of color

i can exit the network during [t, t + 1) independently with
probability µi. Accordingly, the number of nodes of color i
leaving in [t, t+ 1) is the sum of Ni[t] independent Bernoulli
random variables with parameter µi, resulting in a Binomial
distribution with parameters Ni[t] and µi. Hence, the mean
number of nodes of color i leaving in [t, t + 1) is given by
µiNi[t].

Combining such stochastic increase and decrease dynamics,
we can express the evolution of the mean network state E[N[t]]
by the following system of non-linear difference equations:

E[Ni[t+ 1]−Ni[t] | N[t]] =

M∑
j=1

pij
Nj [t]

Ntot[t]
− µiNi[t],

for all i = 1, . . . ,M and with the initial condition N[0] = N0.
Following the same approach as in Section III-B, we next

provide a CT approximation to this discrete-time system,
where we use the shorthand notation n(t), t ∈ R≥0, to denote
the CT approximation of the mean state vector E[N[t]].

Definition 2 (Continuous-Time Approximation of the System
State Evolution). The continuous-time evolution of the mean

system state n(t) is described by the following time-varying
non-linear differential equation: for each i = 1, . . . ,M,

dni(t)

dt
=

M∑
j=1

pij
nj(t)

ntot(t)
− µini(t), for t ≥ 0, (19)

and n(0) = N0.

Note that the dynamics of this system differ in two fun-
damental ways from that of its infinite-lifetime counterpart
given in (8). First, it includes a negative term that captures the
departure dynamics. Second, ntot(t) is not a linear function of
time, since it excludes nodes that have departed the system.

As such, the differential equation in (19) describes a non-
linear system evolution in contrast to the linear time-varying
nature of the system with infinite lifetime. This non-linear
system does not lend itself to a closed-form solution that can
describe the trajectory of the system state from any initial
condition. Instead, we are interested in understanding the
equilibrium and convergence characteristics of this system.
In the following subsection, we undertake this task for the
special case of M = 2 opinions. This case allows us to
obtain an explicit expression for the equilibrium state and
provide insights into the effects of the system parameters on
the network evolution.

B. Battle of Two Opinions over Evolving Networks

In this subsection, we study the equilibrium and conver-
gence characteristics of a system where two opinions spread
over a network consisting of nodes with finite lifetimes. In
particular, we consider the same scenario as in Section IV with
the additional assumption that each node leaves the network
after a finite time as described in Section VI-A.

The evolution of the system is governed by the attachment
parameter q, the cross-adoption parameters p12, p21, and the
exit parameters µ1, µ2. We assume that p12 > 0, p21 > 0,
µ1 > 0, and µ2 > 0. In other words, we exclude the rather
uninteresting case where each node adopts the same opinion
as its parent, and we require that every node eventually leaves
the network.

For our analysis, we focus on the case of purely random at-
tachment as discussed in Section VI-A. In this case, the evolu-
tion of the CT approximate mean state n(t) = (n1(t), n2(t))T

is governed by the following equation:

ṅ(t) =

1

ntot(t)

[
1− p21 p12
p21 1− p12

]
n(t)−

[
µ1 0
0 µ2

]
n(t), (20)

where ntot(t) = n1(t) + n2(t). In Theorem 4, we present our
results on the equilibrium and stability of this system.

Theorem 4 (Uniqueness of Equilibrium and Stability). For
the dynamic system described by (20) we have:
(i) The dynamic system has a unique equilibrium state n?

in D = {(n1, n2) ∈ R2\{(0, 0)} : n1 ≥ 0, n2 ≥ 0},
given by:



10

For µ1 = µ2 = µ:

n?1 =
p12

µ(p12 + p21)
, n?2 =

p21
µ(p12 + p21)

.

For µ1 6= µ2:

n?1 =
1− µ2n

?
tot

µ1 − µ2
, n?2 =

µ1n
?
tot − 1

µ1 − µ2
, (21)

where

n?tot =
(1− p12)µ1 + (1− p21)µ2 +

√
∆

2µ1µ2
(22)

and

∆ = [(1− p12)µ1 − (1− p21)µ2]2 + 4p12p21µ1µ2. (23)

(ii) The equilibrium state n? is asymptotically stable, i.e., for
any initial state n(0) in a small enough neighborhood of
n?, we have limt→∞ n(t) = n?.

Proof. The proof is given in Appendix C.

We note that the result in Theorem 4 when µ1 = µ2 = µ
is in full agreement with the result of Theorem 2 in that the
proportion of opinion adoptions at the equilibrium point n? is
equal to the limiting proportions α1 = p12/p̃ and α2 = p21/p̃
in the infinite lifetime scenario. When µ1 6= µ2, Theorem 4
reveals the non-trivial impact of asymmetric lifetimes on the
spread and adoption of opinions.

Next, based on Theorem 4 and additional numerical investi-
gations, we expand on the key characteristics associated with
the transient and limiting behavior of the battle of two opinions
over evolving networks.

Convergence to the Equilibrium: In Theorem 4, we have
established the uniqueness of the equilibrium n? and the
asymptotic stability of the system in (20) at that equilibrium.
It is of interest to understand whether convergence can occur
from a wide range around the equilibrium state. We have
observed through numerical investigations that the system
appears indeed to be globally asymptotically stable. A typical
evolution that supports this conjecture is illustrated in Fig. 6,
in which trajectories of the system state from various initial
states clearly converge to the unique equilibrium.
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Fig. 6. The trajectories of the continuous-time dynamic system given in (20)
starting from various initial states n(0). The system parameters are p12 =
0.1, p21 = 0.2, µ1 = 0.03, µ2 = 0.05 which corresponds to the equilibrium
state n? = (20, 8)T .

We have also performed extensive numerical investigations
of the system evolution for the discrete-time stochastic model
presented in Section VI-A. As a typical example, the mean
discrete-time stochastic state trajectory, averaged over 1000
simulated sample paths in each case, is depicted in Fig. 7 for
the same system parameters and from the same initial states
as in Fig. 6. Not surprisingly, the random and discrete nature
of the evolution in the discrete-time stochastic system causes
more jagged trajectories compared to the smooth trajectories
of the continuous-time deterministic system. However, it is
also apparent that the trajectories are drawn towards the same
equilibrium state n? with the same directional drifts.
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Fig. 7. The trajectories of the discrete-time stochastic system starting from
various initial states n(0). The system parameters are p12 = 0.1, p21 =
0.2, µ1 = 0.03, µ2 = 0.05 which corresponds to the equilibrium state n? =
(20, 8)T . The graph shows the average of 1000 simulated sample paths.

Impact of Lifetime on Opinion Adoption: Another set
of interesting observations is concerned with the impact of
lifetimes, which can also be interpreted as persistence of
opinions, on the adoption dynamics. In Fig. 8, we demonstrate
this effect in and outside of the social platform both under
symmetric and asymmetric persuasion powers of the opinions
(as measured by the adoption parameters p12 and p21).

In particular, Fig. 8(a) investigates the characteristics of the
equilibrium when both opinions have the same persuasion
powers (p11 = p22 = 0.9) and where nodes with opinion
2 have a fixed exit probability of µ2 = 0.05. The solid line
depicts the fraction of opinion 1 nodes that are active in the
social platform (i.e., which have not yet exited) as the exit
probability µ1 for opinion 1 nodes varies from 0 to 0.2. First
of all, we note that when µ1 = µ2 = 0.05, the opinion 1
and opinion 2 are equally represented in the social network.
This is to-be-expected since all parameters are symmetric. But,
when µ1 is decreased slightly below µ2, thereby assuming
opinion 1 nodes are slightly more persistent than opinion 2
nodes, the fraction of opinion 1 nodes in the social network
increases drastically. This nonlinear impact is due to the fact
that by staying longer in the social platform, opinion 1 nodes
increase their chances of influencing the newcomers and shift
the balance towards their favor.

The solid line in Fig. 8(b) shows that the same impact can be
effective even when the persuasion powers of the two opinions
are asymmetric. In that setting, the intrinsic persuasion power
of opinion 1 is taken to be smaller than that of opinion 2,
i.e., p11 = 0.8 < p22 = 0.9. In this case, when the lifetimes
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Fig. 8. Fraction of nodes of opinion 1 within the social platform and in
the entire population as a function of the varying exit parameter µ1. The
datapoints are obtained from Theorem 4.

are symmetric, opinion 1 is adopted by only 1/3 of the social
platform. Yet, reducing µ1 below µ2, opinion 1 can increase its
share to any level up to 1. These investigations reveal the fact
that persistence can trump quality in the battle of opinions.

Discrepancy of Representation in the Social Platform
and Entire Population: Another interesting phenomenon is
also illustrated in Fig. 8 that is concerned with the accuracy
of representation in the social platform. The dashed lines in
Figs. 8 (a) and (b) depict the fraction of opinion 1 nodes in the
entire population. Therefore, this fraction is not restricted to
the currently active participants, but includes those that have
left the platform with their adopted opinions.

The figures show that, except when the lifetimes of the
opinions are symmetric, the fraction of users in the social
platform exaggerates the fraction of the opinions adopted in
the entire population. This implies that the opinion distribution
in a social platform is not necessarily a good representation of
the adoption distribution of the entire population. In particular,
we can see that as the persistence levels of opinions differ, the
accuracy of the representations deviates.

VII. CONCLUSION

In this paper, we have studied the spread of multiple
competing influences over evolving social networks. Motivated
by the process of discussion and opinion formation over social
networking platforms, we have introduced a new analytical
network model where influence propagation and network
evolution occur simultaneously. Our model has allowed us to
capture a range of exposure, adoption, and lifetime dynam-
ics of multiple interacting opinions. In particular, we have

accounted for both the preferential and random nature of
exposure, different persuasion powers of different influences
as well as different degrees of persistence of nodes under each
influence. We have analytically characterized the evolution
of the mean influence spread over time as a function of the
initial adoption, the exposure and adoption dynamics, and the
persistence of nodes.

Our analysis, supported by several case studies, has pro-
vided insights on the short-term and long-term impacts of
various network dynamics. For example, our analysis has
revealed that the persistence of nodes and the persuasion power
of an influence have potent long term effects on the spread of
an influence, while the effects of exposure and initial adoption
patterns subside over time.

Our findings on the short-term and long-term impact of
initial adopters, persuasion powers, persistences, and exposure
dynamics can guide involved parties in allocating their limited
budget to maximize their influence over a social network. Our
results have also revealed counterintuitive phenomena in some
scenarios. For example, in the technology adoption setting, we
saw that it can be better for a company to lose a customer to
its competitor than to not have the customer get either of the
two competing products.

There are a number of future directions that can be pursued
to further develop our understanding of influence spread over
dynamic networks. The arrival dynamics can be enriched to
allow newcomers to possess prior biases and random arrival
times. The exposure dynamics can also be generalized to allow
influence from multiple existing nodes. Nodes can also be
allowed to change their opinion after initial adoption based on
their neighbors’ states. We hope that the model and analysis
presented in this paper form a motivation and foundation for
these potential research directions.
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[3] P. Erdös and A. Rényi, “On random graphs, I,” Publicationes Mathe-
maticae, vol. 6, pp. 290–297, 1959.

[4] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, “Random graphs
with arbitrary degree distributions and their applications,” Phys. Rev. E,
vol. 64, p. 026118, Jul 2001.

[5] A.-L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[6] B. Bollobás, O. Riordan, J. Spencer, and G. Tusnády, “The degree
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APPENDIX A
PROOF OF THEOREM 1

The number of nodes of color i increases by one when the
newcomer node adopts color i, regardless of the color of the
parent node. Thus, the mean change in the number of nodes
of color i from time t to t + 1 is captured by the following
difference equation:

E[Ni[t+ 1]−Ni[t] | X[t]]

=

M∑
j=1

P
(

New node connects to color j
and adopts color i | X[t]

)

=

M∑
j=1

pijP (New node connects to color j | X[t])

=

M∑
j=1

pij

(
q
Nj [t]

Ntot[t]
+ (1− q) Dj [t]

Dtot[t]

)
. (24)

Next, to quantify the mean change in the total degree of
the nodes of color i, note that the total degree of the nodes of
color i increases by 2 when the newcomer node connects to an
existing node of color i and adopts color i, while it increases
only by 1 when the newcomer node connects to a node of
color i but adopts another color, or when the newcomer node

connects to a node of another color and adopts color i. This
translates into the following conditional mean drift expression:

E[Di[t+ 1]−Di[t] | X[t]]

= 2P
(

New node connects to color i
and adopts color i | X[t]

)
+
∑
j 6=i

P
(

New node connects to color i
and adopts color j | X[t]

)
+
∑
j 6=i

P
(

New node connects to color j
and adopts color i | X[t]

)
= 2pii

(
q
Ni[t]

Ntot[t]
+ (1− q) Di[t]

Dtot[t]

)
+
∑
j 6=i

pji

(
q
Ni[t]

Ntot[t]
+ (1− q) Di[t]

Dtot[t]

)
+
∑
j 6=i

pij

(
q
Nj [t]

Ntot[t]
+ (1− q) Dj [t]

Dtot[t]

)
= (1 + pii)

(
q
Ni[t]

Ntot[t]
+ (1− q) Di[t]

Dtot[t]

)
+
∑
j 6=i

pij

(
q
Nj [t]

Ntot[t]
+ (1− q) Dj [t]

Dtot[t]

)
, (25)

where the last equality follows from the fact that
∑M
i=1 pij =

1. Combining (24) and (25) yields (2).
To obtain the solution to equation (2), we proceed as

follows:

E[X[t] | X0]−X0

=

t−1∑
s=t0

E[X[s+ 1]−X[s] | X0] (26)

=

t−1∑
s=t0

E[E[X[s+ 1]−X[s] | X[s],X0] | X0] (27)

=

t−1∑
s=t0

A[s]E[X[s] | X0]. (28)

We express the mean state at time t as a telescoping sum of
one-step mean drifts in equation (26). Equation (27) follows
from the law of total expectation. We obtain equation (28)
by applying the drift expression obtained in (2) to the inner
expectation.

Finally, we arrive at the iterative expression for the mean
state by grouping terms together. The final result (5) is
obtained by iterating the last equation below:

E[X[t] | X0] = X0 +

t−1∑
s=t0

A[s]E[X[s] | X0]

= X0 +

t−2∑
s=t0

A[s]E[X[s] | X0]

+ A[t− 1]E[X[t− 1] | X0]

= (I + A[t− 1])E[X[t− 1] | X0].
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APPENDIX B
PROOF OF THEOREM 2

Throughout this proof, we use the complement notation c ,
1− c in order to facilitate a compact notation.

The continuous-time evolution of the mean state is given by

d

dt
x(t) =

1

t+N0
Ax(t), for t ≥ 0,

and x(0) = X0, where A is the constant matrix given by

A =


qp21 qp12

1
2q · p21

1
2qp12

qp21 qp12
1
2qp21

1
2q · p12

q(1+p21) qp12
1
2q(1+p21) 1

2qp12
qp21 q(1+p12) 1

2qp21
1
2q(1+p12)

 .
The matrix A is diagonalizable and has eigenvalues
{1, 0, 0, λ = 1 − 1

2 (1 + q)p̃}. After an eigendecomposition,
we evaluate the expression in (10) to obtain the results.

APPENDIX C
PROOF OF THEOREM 4

We first prove the existence and uniqueness of the equilib-
rium state. Then, we apply Lyapunov stability theory to prove
the stability of the equilibrium state. The domain of interest
is given by D = {(n1, n2) ∈ R2\{(0, 0)} : n1 ≥ 0, n2 ≥ 0}
since the number of nodes of any opinion is a nonnegative
number. In what follows, we introduce new variables σ(t) =
n1(t) + n2(t) > 0 and σ? = n?1 + n?2 to simplify notation.

Proof of (i): The equilibrium state satisfies ṅ|n=n? = 0, which
translates into the following pair of equations:

ṅ1|n=n? = (1− p21)
n?1
σ?

+ p12
n?2
σ?
− µ1n

?
1 = 0, (29)

ṅ2|n=n? = p21
n?1
σ?

+ (1− p12)
n?2
σ?
− µ2n

?
2 = 0. (30)

Alternatively, we can replace (30) by the sum of (29) and (30),
which yields

σ̇|n=n? = 1− µ1n
?
1 − µ2n

?
2 = 0. (31)

Since σ? > 0, it suffices to solve the following two equations:

(1− p12 − p21)n?1 + p12σ
? − µ1n

?
1σ

? = 0, (32)
1− (µ1 − µ2)n?1 − µ2σ

? = 0. (33)

First, we consider the case when µ1 = µ2 = µ. In this
case, the total number of nodes at the equilibrium state can be
easily determined as σ? = n?1 +n?2 = 1/µ, since (33) reduces
to 1−µσ? = 0. After substituting this value for σ?, (32) yields
a linear equation in n?1 with the unique solution

n?1 =
p12

µ(p12 + p21)
.

It follows that

n?2 = σ? − n?1 =
p21

µ(p12 + p21)
,

which proves part (i) of Theorem 4 for this particular subcase.
Next, we consider the case µ1 6= µ2, and assume that µ1 >

µ2 without any loss of generality. From (33) and the definition

of σ?, it follows that n?1 and n?2 can be expressed in terms of
σ? as follows:

n?1(σ?) =
1− µ2σ

?

µ1 − µ2
, (34)

n?2(σ?) = σ? − n?1(σ?) =
µ1σ

? − 1

µ1 − µ2
.

Hence, we need to solve for σ? and show that the solution is
unique.

Combining (32) and (34), we obtain the quadratic equation

µ1µ2(σ?)2 − [(1− p12)µ1 + (1− p21)µ2]σ?

+ (1− p12 − p21) = 0. (35)

We note that the discriminant of this equation is given by

∆ = [(1− p12)µ1 + (1− p21)µ2]2

− 4(1− p12 − p21)µ1µ2

= [(1− p12)µ1 − (1− p21)µ2]2

+ 4(1− p21)(1− p12)µ1µ2 − 4(1− p12 − p21)µ1µ2

= [(1− p12)µ1 − (1− p21)µ2]2 + 4p12p21µ1µ2 ≥ 0.

Thus, (35) has always at least one real valued solution. We let
the two solutions σ?1 ≥ σ?2 be

σ?1 =
(1− p12)µ1 + (1− p21)µ2 +

√
∆

2µ1µ2
,

σ?2 =
(1− p12)µ1 + (1− p21)µ2 −

√
∆

2µ1µ2
.

This proves that one equilibrium state is indeed given by (21)
where n?tot = σ?1 . Note that we need to show that this solution
fulfills the conditions

σ?1 = n?1 + n?2 > 0, n?1 ≥ 0, n?2 ≥ 0. (36)

It is trivial to see that σ?1 > 0. In what follows, we will show
that n?1(σ?1) ≥ 0 and n?2(σ?1) ≥ 0. In addition, we will also
show that n?1(σ?2) and n?2(σ?2) cannot be both nonnegative.
Hence, this proves that n?1(σ?1) and n?2(σ?1) is the unique
equilibrium state that fulfills all the conditions in (36).

Towards this end, we consider the product

n?1(σ?)n?2(σ?) =
(1− µ1σ

?)(µ2σ
? − 1)

(µ1 − µ2)2

as a function of σ?. The conditions in (36) require that the
product n?1(σ?)n?2(σ?) is nonnegative which is the case if and
only if the value of σ? satisfies

1

µ1
≤ σ? ≤ 1

µ2
. (37)

In the following three claims, we establish that σ?1 does indeed
satisfy (37) while σ?2 does not.

Claim 1. σ?1 ≥ 1
µ1

.

Proof: We want to show that

σ?1 =
(1− p12)µ1 + (1− p21)µ2 +

√
∆

2µ1µ2
≥ 1

µ1
.

Since µ1 > 0 and µ2 > 0, this is equivalent to showing
√

∆ ≥ (1 + p21)µ2 − (1− p12)µ1. (38)
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If (1+p21)µ2 < (1−p12)µ1, we are done since the right-hand
side of (38) is negative. If (1 + p21)µ2 ≥ (1− p12)µ1, we can
safely square both sides of (38) to obtain

∆ ≥ [(1 + p21)µ2 − (1− p12)µ1]2. (39)

After substituting ∆ = [(1 − p12)µ1 − (1 − p21)µ2]2 +
4p12p21µ1µ2 and basic algebraic manipulations, (39) reduces
to

4p21(µ1 − µ2)µ2 ≥ 0,

which is true under our assumption µ1 > µ2.

Claim 2. σ?1 ≤ 1
µ2

.

Proof: We need to show that

σ?1 =
(1− p12)µ1 + (1− p21)µ2 +

√
∆

2µ1µ2
≤ 1

µ2
,

which is equivalent to showing that
√

∆ ≤ (1 + p12)µ1 − (1− p21)µ2 (40)

since µ1 > 0 and µ2 > 0.
Note that, under our assumption of µ1 > µ2, the right-hand

side of (40) is always positive. Hence, we can safely square
both sides of (40) to obtain

∆ ≤ [(1 + p12)µ1 − (1− p21)µ2]2. (41)

Further algebraic manipulations of (41) yield

4p12µ1(µ1 − µ2) ≥ 0,

which is true due to our assumption µ1 > µ2.

Claim 3. σ?2 ≤ 1
µ1

.

Proof: We want to show that

σ?2 =
(1− p12)µ1 + (1− p21)µ2 −

√
∆

2µ1µ2
≤ 1

µ1
.

Since µ1 > 0 and µ2 > 0, this is equivalent to showing
√

∆ ≥ (1− p12)µ1 − (1 + p21)µ2. (42)

The validity of (42) can be easily shown following the steps
in the proof of Claim 1.

This completes the proof of part (i) of Theorem 4.
Proof of (ii): Our proof is based on showing that the eigen-
values of the Jacobian evaluated at the equilibrium state n?

have strictly negative real parts. To that end, we introduce
the function f(n) = (f1(n), f2(n))T to describe the time
evolution of the state ṅ = f(n). In particular,[

f1(n)
f2(n)

]
=

[
(1− p21)n1

σ + p12
n2

σ − µ1n1
p21

n1

σ + (1− p12)n2

σ − µ2n2

]
,

where we continue to use the shorthand notation σ = n1 +n2
introduced in part (i).

The Jacobian matrix Jf (n) = df
dn =

[
∂fi
∂nj

]
i,j

is given by

Jf (n) = 1
σ2 ·[

(1− p12 − p21)n2 − µ1σ
2 −(1− p12 − p21)n1

−(1− p12 − p21)n2 (1− p12 − p21)n1 − µ2σ
2

]
.

We will show that the real part of the eigenvalues of Jf (n?),
i.e., the Jacobian matrix evaluated at the equilibrium point n?,
is negative. This implies the asymptotic stability of n? for the
nonlinear system [21].

The eigenvalues of Jf (n?) are the solutions to the charac-
teristic equation det(λI− Jf (n?)) = 0 and are given by

λ1/2 =
1

2σ?

(
1− p12 − p21 − (µ1 + µ2)σ? ±

√
δ
)
,

where σ? = n?1 + n?2 and

δ = (1− p12 − p21)2 + (µ1 − µ2)2(σ?)2

+ 2(1− p12 − p21)(µ1 − µ2)(n?1 − n?2). (43)

In the case when µ1 = µ2 = µ, the two eigenvalues become
λ1 = −µ and λ2 = −µ(p12 + p21). Clearly, both of these
eigenvalues are strictly negative, and therefore asymptotic
stability of n? is established.

In the following, we study the case when µ1 6= µ2. First,
we note that the λ1/2∓

√
δ/2σ? portion of the eigenvalues is

always negative valued. In particular,

λ1/2 ∓
√
δ

2σ?
=

1− p12 − p21 − (µ1 + µ2)σ?

2σ?

=
1− p12 − p21 − (µ1 + µ2)(n?1 + n?2)

2σ?

=
1− p12 − p21 − µ1n

?
1 − µ1n

?
2 − µ2n

?
1 − µ2n

?
2

2σ?

= −p12 + p21 + µ1n
?
2 + µ2n

?
1

2σ?
< 0, (44)

where (44) follows from 1− µ1n
?
1 − µ2n

?
2 = 0 (cf. (31)).

Next, we consider the real part of the ∓
√
δ/2σ? term. When

δ < 0, this term contributes no real part and (44) establishes
that <(λi) < 0 for i = 1, 2. When δ ≥ 0 (i.e., λi ∈ R), it
suffices to show that

p12 + p21 + µ1n
?
2 + µ2n

?
1 >
√
δ. (45)

Since both sides of (45) are nonnegative, we can square both
sides of the equation and validate that

(p12 + p21 + µ1n
?
2 + µ2n

?
1)2 − δ

= 4µ1µ2(σ?)2 − 4(1− p12 − p21) (46)

> 4µ1µ2

(
(1− p12)µ1 + (1− p21)µ2

2µ1µ2

)2

− 4(1− p12 − p21) (47)

= ((µ1 − µ2)− (p12µ1 − p21µ2))
2

+ 4p12p21µ1µ2 > 0, (48)

where (46) follows from substituting δ given in (43) and using
the identity in (31); (47) follows from lower-bounding σ? in
(22) using the fact that ∆ in (23) is nonnegative; and (48)
follows from algebraic manipulations.

This assures that real parts of all eigenvalues of Jf (n?) are
strictly negative, and therefore the system is asymptotically
stable at the equilibrium state n?.


