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Abstract—In this paper, we consider transmission scheduling in
a status update system, where updates are generated periodically
and transmitted over a Gilbert-Elliott fading channel. The goal is
to minimize the long-run average age of information (AoI) at the
destination under an average energy constraint. The channel state
is revealed by the feedback (Ack/Nack) of a transmission; while
it remains unknown if there is no transmission. Thus, we have to
design a scheduling policy that balances tradeoffs across energy,
AoI, channel exploration, and channel exploitation. The problem
is formulated as a constrained partially observable Markov
decision process problem (POMDP). We show that the optimal
policy is a randomized mixture of no more than two stationary
deterministic policies each of which is of a threshold-type in the
belief on the channel. We propose a finite-state approximation for
our infinite-state belief MDP and show convergence. Based on
the theoretical insights gained from studying this problem, we
develop an optimal algorithm using the structure of the problem.

I. INTRODUCTION

For status update systems, where time-sensitive status up-
dates of certain underlying physical process are sent to a
remote destination, it is important that the destination receives
fresh updates. The age of information (AoI) is a performance
metric that is a good measure of the freshness of the data at the
destination. In particular, AoI is defined as the time elapsed
since the generation of the recently received status update.

The problem of minimizing the AoI in status update systems
has attracted significant recent attention (e.g., [1]–[10]). Due
to the fact that sensors in the status update system are usually
battery-powered and thus have limited energy supply, the
problem of minimizing the long-run average AoI has to take
energy constraints into account. Moreover, communication
over a wireless channel is subject to multiple impairments
such as fading, path loss and interference, which may lead
to status updating failure. Since each failed transmission
consumes unnecessary energy, there is a strong motivation
for designing intelligent transmission scheduling algorithms
i.e., retransmission or suspension of transmission to increase
channel utilization as well as prolong battery life.

Many existing works that deal with the AoI minimization
problem under energy constraints in status update systems
assume either perfect knowledge of the channel state or
noiseless channel to guarantee successful transmission. In [11],
[12], the authors assume that the channel is noiseless, and
propose offline or online status updating policies. In [13], the
authors jointly design sampling and updating processes over
a channel with perfect channel state information. However,
in many practical scenarios, the channel state may not be

known a priori. Thus, more recent works have also considered
unreliable transmissions with imperfect knowledge of wireless
channels. For example, in [14], the authors consider a block
fading channel, where the channel is assumed to vary inde-
pendently and identically over time slots. In [15], the authors
consider an error-prone channel, where decoding error depends
only on the number of retransmissions.

However, these works neglect an important characteristics
of the wireless fading channel: The channel memory or time
correlation [16] when studying unreliable transmissions with
imperfect knowledge of channel states. Indeed, the memory
can be intelligently exploited to predict the channel state and
thus to design efficient scheduling policies in the presence of
transmission cost. A finite state Markov chain is an often used
and appropriate model for fading channel [17]. A somewhat
simplified but often-used abstraction is a two-state Markovian
model known as the Gilbert-Elliot channel [18]. The model
assumes that the channel can be either in a good or bad state,
and captures the essence of the fading process. In [19], the
authors consider status updating in cognitive radio networks.
The occupation of primary user’s channel is modeled as a two-
state Markov chain. Although a Markov chain is used to model
occupation of primary channel, their threshold-type structural
result is built on perfect knowledge of the channel state since
update decisions are made based on perfect sensing results. In
contrast, in our work, we do not assume that the channel state
is known a priori at the time of making updating decisions.

Motivated by the time-correlation in a fading channel and
the fact that sensors in practice are typically configured to
generate status updates periodically [20], in this paper, we
consider a status update system where the status update is
generated periodically and transmitted over a Gilbert-Elliot
channel. We do not assume that the channel state is known
a priori. In particular, we consider the case (without channel
sensing) that the channel state is revealed by the ACK/NACK
feedback of a transmission, so its state remains unknown if
there is no transmission. In our technical report [21], we also
study the case (with delayed channel sensing) that delayed CSI
is always available via delayed channel sensing regardless of
transmission decisions. To increase the reliability of received
status updates, retransmissions are allowed. With these, we
study the problem of how to minimize the average AoI under
a long-run average energy constraint, which is formulated as
a constrained partially observable Markov decision process
problem (POMDP). Our key contributions are as follows:

(i) We show that the optimal transmission scheduling policy
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Fig. 1: System Model

is a randomized mixture of no more than two stationary
deterministic threshold-type policies (Theorem 1 and Corollary
2). Note that although there are some works that deal with
showing optimality of threshold-type policies in POMDPs
[22]–[26], the techniques in these papers cannot be applied to
our problem. This is because, given hidden state and action,
the one-stage cost in these papers is constant and bounded,
while the one-stage cost in our paper depends on varying and
unbounded AoI.

(ii) We propose a finite-state approximation for our infinite-
state (unbounded AoI and belief on channel state) belief MDP
and show that the optimal policy for the approximated belief
MDP converges to the original one (Theorem 2). Based on this,
we propose an optimal efficient structure-aware transmission
scheduling algorithm (Algorithm 1) for the approximate belief
MDP.

II. SYSTEM MODEL

We consider a status update system where status updates are
generated periodically and transmitted to a remote destination
over a time-correlated fading channel as shown in Fig. 1. We
consider a time-slotted system, where a time slot corresponds
to the time duration of the packet transmission time and
feedback period. Every K consecutive time slots form a frame.
Updates are generated at the beginning of each frame. In any
frame, if the generated status update is not delivered by the
end of the frame, then it gets replaced by a new one in the
next frame. Define K as the set of relative slot index within a
frame, K , {1, 2, · · · ,K}. Use t ∈ {1, 2, · · · } as an absolute
index for the time slot count, which increments indefinitely
with time. For any time slot t, the corresponding frame index
lt ∈ {1, 2, · · · } is determined by lt = d tK e and relative slot
index kt ∈ K is determined by kt = ((t− 1) mod K) + 1,
where d·e is the ceiling function.

A. Channel Model
The time-correlated fading channel for transmission is as-

sumed to evolve as a two-state Gilbert-Elliot model [18]. Let
ht denote the channel state at time slot t. Then, ht = 1
(ht = 0) denotes that channel is in a “good” (“bad”) state.
In the “bad” state, the channel is assumed to be in a deep
fade such that transmission fails with probability one; while in
the “good” state, a transmission attempt is always successful.
This assumption conforms with the signal-to-noise ratio (SNR)
threshold model for reception where successful decoding of
a packet at the destination occurs if and only if the SNR
exceeds a certain threshold value. The channel transition
probabilities are given by P(ht+1 = 1|ht = 1) = p11 and
P(ht+1 = 1|ht = 0) = p01. We assume that the channel
transitions occur at the end of each time slot, and that p11

and p01 are known.
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Fig. 2: On the top, a sample sequence of deliveries during four frames.
Each frame consists of 4 time slots. The upward arrows represent the
times of deliveries. On the bottom, the associated evolution of AoI.

The presence of channel memory (time correlation) makes
it possible to predict the channel state. Define Markovian
channel memory as µ = p11−p01 [27], [28]. In this paper, we
assume that p11 ≥ p01 (positively correlated channel) (similar
assumptions have been used in [24], [26]).

B. Transmission Scheduler
At the beginning of each slot t, the scheduler takes a

decision ut ∈ U , {0, 1}, where ut = 1 means transmitting
(retransmitting) the undelivered statues update, and ut = 0
denotes suspension of transmission (retransmission). In each
frame, if the generated update is delivered at the kt-th slot of
the frame, then we have ut = 0 for the remaining slots in
the frame. For simplicity, we use transmission to refer to both
transmission and retransmission in the remaining content. If a
transmission is attempted, then the scheduler receives an error-
free ACK/NACK feedback from the destination specifying
whether the status update was delivered or not before the end
of the time slot. We use Θ to denote the set of observations,
Θ , {0, 1}. Let θt ∈ Θ be the observation at time slot t. Then,
θt = 1 denotes a successful transmission, while θt = 0 denotes
either a failed transmission or the transmission is suspended.

C. Age of Information
Age of information (AoI) reflects the timeliness of the

information at the destination. Let ∆t denote the AoI at the
beginning of the time slot t. Let U(t) denote the generation
time of the last successfully received status update for time
slot t. Then, ∆t is given by ∆t , t− U(t).

If a status update is not successfully delivered in a given
slot, then the AoI increases by one, otherwise, the AoI drops
to the time elapsed since the beginning of the frame. Then,
the evolution of AoI is as follows:

∆t+1 =

{
kt if ut = 1, θt = 1,

∆t + 1 otherwise.
(1)

Let Ak denote the set of all possible AoI values at the k-th
slot of a frame. By (1), Ak = {∆ : ∆ = mK+(k)−,m ∈
{0, 1, 2, · · · }}, where (k)− , ((K + k − 2) modK) + 1
denotes the relative slot index before k. An example of the
AoI evolution with K = 4 is illustrated in Fig. 2.

We aim to design an energy efficient scheduler, where
each transmission consumes one unit energy. Therefore, the
long-run average energy consumption cannot exceed a certain
limit Emax ∈ (0, 1]. Observe that Emax = 1 means that we



have enough energy to support a transmission in every time
slot. Although a failed transmission does not decrease AoI, it
provides channel state information at the cost of energy. Thus,
the transmission scheduler has to balance tradeoffs across
energy, AoI, channel exploration, and channel exploitation.

III. CONSTRAINED POMDP FORMULATION AND
LAGRANGIAN RELAXATION

A. Constrained POMDP Formulation
Recall that when a transmission is suspended in a time slot,

the channel state cannot be revealed in that time slot. Together
with the average energy constraint, the problem we consider
in the paper turns out to be a constrained partially observable
Markov decision problem (POMDP). It has been shown in [29]
that for any slot t, a belief state ωt is a sufficient statistic to
describe the knowledge of underlying channel state and thus
can be used for making optimal decisions at time slot t.

Definition 1. The belief state ωt is the conditional probability
(given observation and action history) that channel is in a
good state at the beginning of the time slot t.

Thus, adding the belief to the system state, the constrained
POMDP can be written as constrained belief MDP [30]. We
describe the components of the framework as follows:

States: The system state consists of completely observable
states and the belief state, i.e., the system state at slot t is
defined by st=(∆t, kt, ωt), where ∆t∈Akt is the AoI state
that evolves as (1); kt ∈ K is the relative slot index in the
frame lt that evolves as kt+1 = (kt)+, where (y)+ , (y
mod K) + 1; ωt is the belief state whose evolution is defined
in the following paragraph.

Belief Update: Given ut and θt, the belief state in time slot
t+ 1 is updated by ωt+1 = Λ(ωt, ut, θt), where Λ(ωt, ut, θt)
is given by

ωt+1 =Λ(ωt, ut, θt) =


p11 ifut = 1, θt = 1,

p01 ifut = 1, θt = 0,

T (ωt) ifut = 0,

(2)

where T (ωt) = ωtp11+(1−ωt)p01 denotes the one-step belief
update. Observe that, if ut = 0, then the scheduler will not
learn the channel state and the belief is updated only according
to the Markov chain. If ut = 1, the observation θt after the
transmission provides the true channel state before the state
transition, which occurs at the end of the time slot.

Let T m(ωt) , P(ht+m = 1|ωt) denote m-step belief
update when the channel is unobserved for m consecutive
slots, where m ∈ {0, 1, · · · } and T 0(ω) = ω. Note that
by (2), after a transmission (ut = 1), ωt+1 is either p01

or p11. The belief state ω is, hereafter, updated by T upon
each suspension until next transmission attempt. Thus, the
belief state ω is in the form of T m(p01) or T m(p11), where
m ≥ 0. Moreover, an increase in AoI by one results from
either a failed transmission or suspension. Thus, given AoI
state ∆t, the maximum suspension time after last transmission
is no longer than ∆t − 1. By this, given AoI state ∆, the
belief state belongs to the following set Ω∆ , {ω : ω =
T m(p01) or T m(p11), 0 ≤ m < ∆}. As a result, the state
space is given by S , {(∆, k, ω) : k ∈ K,∆ ∈ Ak, ω ∈ Ω∆}.

Actions: Action set is U = {0, 1} defined in Section II-B.
Transition probabilities: Given the current state st =

(∆t, kt, ωt) and action ut at time slot t, the transition proba-
bility to the state st+1 = (∆t+1, kt+1, ωt+1) at the next time
slot t+ 1, which is denoted by Pstst+1

(ut), is defined as

Pstst+1
(ut) , P(st+1|st, ut)

=
∑
θt∈Θ

P(θt|st, ut)P(st+1|st, ut, θt), (3)

where

P(θt|st, ut) =


ωt if ut = 1, θt = 1,

1− ωt if ut = 1, θt = 0,

1 if ut = 0, θt = 0,

0 otherwise,

(4)

P(st+1|st, ut, θt)

=


1 if st+1 =(kt, (kt)+,Λ(ωt, ut, θt)), ut=1, θt=1,

1 if st+1 =(∆t+1, (kt)+,Λ(ωt, ut, θt)), θt=0,

0 otherwise.
(5)

Costs: Given a state st = (∆t, kt, ωt) and an action choice
ut at slot t, the cost of one slot is the AoI at the beginning of
this slot, i.e., we have C∆(st, ut) = ∆t. Moreover, the energy
consumption of one slot is CE(st, ut) = ut.

A transmission scheduling policy π = {d1, d2, · · · } spec-
ifies the decision rule for each time slot, where a decision
rule dt maps the history of states and actions, and the current
state to an action. A policy is stationary if the decision rule
is independent of time, i.e., dt = d, for all t. Moreover, a
policy is randomized if dt : S → P(U) specifies a probability
distribution on the set of actions. The policy is deterministic if
dt : S → U chooses an action with certainty. For any policy π,
we assume that the resulted Markov chain is a unichain (same
assumptions are also made in [13], [31]). Our objective is to
design a policy π that minimizes the long-run average AoI
Ā(π) while the long-run average energy consumption Ē(π)
does not exceed Emax, which is formulated as

Problem 1 (Constrained average-AoI belief MDP):

Ā? , min
π

Ā(π) = lim sup
T→∞

1

T
Eπ
[ T∑
t=1

C∆(st, ut)
]

(6)

s.t. Ē(π) = lim sup
T→∞

1

T
Eπ
[ T∑
t=1

CE(st, ut)
]
≤ Emax.

We use Ā? to denote the optimal average AoI, which is the
solution to the problem (6). We show in Section IV that there
exists a stationary policy which is a randomized mixture of
no more than two deterministic policies that achieves Ā?.

B. Lagrange Formulation of the Constrained POMDP
To obtain the optimal transmission scheduling policy, we

reformulate the constrained average-AoI belief MDP in (6) as
a parameterized unconstrained average cost belief MDP using
the Lagrangian approach. Given Lagrange multiplier λ, the
instantaneous Lagrangian cost at time slot t is defined by

C(st, ut;λ) = C∆(st, ut) + λCE(st, ut). (7)



Then, we have an unconstrained average cost belief MDP
which aims at minimizing the average Lagrangian cost:

Problem 2 (Unconstrained average cost belief MDP):

L̄?(λ) , min
π

lim sup
T→∞

1

T
Eπ
[ T∑
t=1

C(st, ut;λ)
]
, (8)

where L̄?(λ) is the optimal average Lagrangian cost with
regard to λ. A policy is said to be average cost optimal if
it minimizes the average Lagrangian cost.

The relation between the optimal solutions of the problems
(6) and (8) is provided in the following corollary.

Corollary 1. The optimal average AoI of problem (6) and the
optimal average Lagrangian cost of problem (8) satisfy

Ā? = sup
λ≥0

L̄?(λ)− λEmax. (9)

Proof. Please see our technical report [21].

IV. STRUCTURE BASED ALGORITHM DESIGN

A. Structure of the Constrained Average-AoI Optimal Policy
We begin by showing that there exists a stationary de-

terministic threshold-type scheduling policy that solves the
unconstrained average cost belief MDP in (8).

Theorem 1. Given λ, there exists a stationary deterministic
unconstrained average cost optimal policy that is of threshold-
type in belief. Specifically, (8) can be minimized by a policy
of the form π?λ = (d?λ, d

?
λ, · · · ), where

d?λ(∆, k, ω) =

{
0 if 0 ≤ ω < ω?(∆, k;λ),

1 if ω?(∆, k;λ) ≤ ω,
(10)

where ω?(∆, k;λ) denotes the threshold given pair of AoI and
relative slot index (∆, k) and Lagrange multiplier λ.

Proof Sketch: We obtain the result by relating the average cost
belief MDP to a discounted belief MDP. For the discounted
belief MDP, we show that the relation between the Q-functions
corresponding to the available actions, either u=0 or u=1, can
be one of two possible cases. For one case, we obtain threshold
property by concavity and monotonicity of the value function.
In the other case, we show that it is optimal to always take
u = 0 via value iteration. Moreover, the properties of the value
function and threshold structure need to be proved jointly. For
details, please see our technical report [21].

Note that the techniques in papers dealing with threshold prop-
erty in POMDP [22]–[26] cannot be applied to our problem.
This is because, given hidden state and action, the one-stage
cost in these papers is constant and bounded, while the one-
stage cost in our paper depends on varying and unbounded
AoI. Next, we show that the optimal policy for the original
problem (6) is a mixture of no more than two stationary
deterministic threshold-type policies.

Corollary 2. There exists a stationary randomized policy π?

that is the optimal solution to the constrained average-AoI
belief MDP in (6), where π? is a randomized mixture of
threshold-type policies as follows:

π? = qπ?λ1
+ (1− q)π?λ2

, (11)

where q ∈ [0, 1] is a randomization factor, and π?λ1
and π?λ2

are the optimal threshold-type policies (10) for some Lagrange
multipliers λ1 and λ2, respectively.

Proof. Please see our technical report [21].

The method to determine λ1, λ2 and q will be discussed in
Section IV-B2.

B. Structure-Aware Algorithm Design
We exploit Corollary 2 to design a structure-aware algorithm

for (6) in two steps: We first design a structure-aware algorithm
for (8), and then construct a way to determine parameters λ1,
λ2 and q.

1) Structure-Aware Algorithm for the approximate uncon-
strained average cost belief MDP: In practice, classic value
iteration cannot work if state space is infinite. To deal with
this, we first propose a finite-state approximation for infinite-
state belief MDP in (8) and show the convergence of our
approximate belief MDPs to the original one.

Let N be an upper bound for the AoI and the number
of Markov transitions from p01 or p11. Since T i(p01) ≤
T i+1(p01) and T i(p11) ≥ T i+1(p11) for i ∈ N, we have
that with bound N , the state space of the approximate belief
MDP is given by SN , {(∆, k, ω) ∈ S : ∆ ≤ N, p01 ≤ ω ≤
T N (p01) or T N (p11) ≤ ω ≤ p11}. Without loss of generality,
we assume N > K.

Given the state (∆t, kt, ωt) ∈ SN , the state st+1 =
(∆t+1, kt+1, ωt+1) ∈ SN is updated as follows:

st+1=


(
kt, (kt)+, p11

)
ifut=1, θt=1,(

φ(∆t+1), (kt)+, p01

)
ifut=1, θt=0,(

φ(∆t+1), (kt)+, ϕ(T (ωt))
)

ifut=0,

(12)

where φ(x) = min{x,N}, and ϕ(y) is given by1

ϕ(y) =

{
T N (p11) if T N (p01) < y < T N (p11),

y otherwise.
(13)

Given action u, the transition probability from s to s′ on
state space SN , denoted by PNss′(u), is expressed as

PNss′(u) = Pss′(u) +
∑

r∈S−SN

Psr(u)1{ν(r)=s′}, (14)

where Pss′(u) and Psr(u) are the transition probabilities on S
defined in (3), 1{·} is the indicator function, and approxima-
tion operation to state is ν ((z1, z2, z3)) , (φ(z1), z2, ϕ(z3)).

In general, a sequence of approximate MDPs may not
converge to the original MDP [32]. In Theorem 2, we show the
convergence of our approximate MDPs to the original MDP.

Theorem 2. Let L̄N?(λ) be the minimum average Lagrangian
cost for the approximate MDP with regard to bound N and
Lagrange multiplier λ. Then, L̄N?(λ)→ L̄?(λ) as N →∞.

Proof. Please see our technical report [21].

The Relative Value Iteration (RVI) algorithm can be utilized
to obtain an optimal stationary deterministic policy for the

1We upper bound the belief state by T N (p11). This ensures that the optimal
policy for the approximate unconstrained belief MDP is of threshold-type.



approximate MDP. In particular, RVI starts with V N0 (s) = 0,
∀s ∈ SN and updates V Nn+1(s) by minimizing the RHS of
equation (15) in the (n+ 1)-th iteration, n ∈ {0, 1, 2, · · · }.
V Nn+1(s)=min

u

{
C(s, u;λ)+

∑
s′∈SN

PNss′(u)hNn (s′)−hNn (0)
}
, (15)

where 0 is the reference state and hNn (s) = V Nn (s)− V Nn (0).
Note that similar to the proof in Section IV-A, it can be
shown that the optimal policy for the approximate MDP is
still of threshold-type. Thus, we utilize the threshold property
in RVI algorithm and propose a threshold-type RVI to reduce
the complexity in Algorithm 1 (Line 4-24). For each iteration,
we update the threshold ω?(∆, k;λ) (Line 16) in addition to
V N (s). If certain state satisfies the threshold condition (Line
11), then the optimal action for the state in this iteration
is determined immediately without doing the optimization
operation (Line 12), which reduces the algorithm complexity.

Algorithm 1: Structure-Aware Scheduling without Channel Sensing

1 given tolerance ε > 0, ελ > 0, λ?−, λ?+, N ;
2 while |λ?+ − λ?−| > ελ do
3 λ = (λ?+ + λ?−)/2;
4 V N (s) = 0, hN (s) = 0, hNprev(s) =∞, for all s ∈ SN ;
5 while maxs∈SN |hN (s)− hNprev(s)| > ε do
6 ω?(∆, k;λ) =∞ for all s = (∆, k, ω) ∈ SN ;
7 foreach s = (∆, k, ω) ∈ SN do
8 if ∆ < K then
9 u? = 0;

10 else
11 if ω ≥ ω?(∆, k;λ) then
12 u? = 1;
13 else
14 u? = arg minu∈{0,1}{C(s, u;λ) +∑

s′∈SN PN
ss′ (u)hN (s′)};

15 if u? = 1 then
16 ω?(∆, k;λ) = ω;
17 end
18 end
19 V N (s) = C(s, u?;λ) +∑

s′∈SN PN
ss′ (u

?)hN (s′)− hN (0);
20 end
21 hNprev(s) = hN (s);
22 hN (s) = V N (s)− V N (0);
23 end
24 end
25 Compute the average energy cost Ē(λ);
26 if Ē(λ) > Emax then
27 λ?− = λ;
28 else
29 λ?+ = λ;
30 end
31 end

2) Lagrange Multiplier Estimation: By Lemma 3.4 of [33],
for λ1<λ2, we have Ā(π?λ1

)≤Ā(π?λ2
) and Ē(π?λ1

)≥Ē(π?λ2
).

Thus, the optimal Lagrangian multiplier λ? is defined as
λ? , inf{λ > 0 : Ē(π?λ) ≤ Emax}. If there exists λ?

such that Ē(π?λ?) =Emax, then the constrained average-AoI
optimal policy is a stationary deterministic policy where q in
Corollary 2 is either 0 or 1. Otherwise, the optimal policy π?
chooses policy π?λ?− with probability q and policy π?λ?+ with
probability 1−q. The randomization factor q can be computed
by

q =
Emax − Ē(π?λ?+)

Ē(π?λ?−)− Ē(π?λ?+)
. (16)

The bisection method is used to compute λ?−, λ?+ and thus
q (Line 2-3 and Line 26-30 in Algorithm 1). The algorithm
starts with λ?− = 0 and sufficiently large λ?+.

V. SCHEDULING WITH DELAYED CHANNEL SENSING

With delayed channel sensing, the CSI of the last time slot
is always available at the beginning of each time slot. Thus,
the problem in this case reduces to a constrained MDP. We
show that the optimal policy in this case is also a random-
ized mixture of no more than two stationary deterministic
threshold-type policies. However, due to the simplification in
the state, the threshold here is on AoI. This further reduces
the complexity of the structure-aware algorithm. The details
are provided in our technical report [21]

VI. NUMERICAL RESULTS

We assume the approximation bound N = 1000. Let et
denote total energy consumption before time slot t. Then,
ēt , et/(t− 1) denotes the average energy consumed before
time slot t. We compare the proposed transmission scheduling
policies with a greedy policy that transmits when the update
is not delivered and ēt < Emax. We set K = 3, p11 = 0.7,
p01 = 0.3, in which case the optimal AoI with no energy
constraint is achieved with 0.6167 units energy on average.
Thus, the comparison is conducted with energy constraint
ranging from 0.1 to 0.6. In Fig. 3, we can observe that the
proposed policies outperform the greedy policy in both cases
(with delayed channel sensing and without channel sensing).
Due to space limitation, we provide more numerical studies
and discussions of the proposed algorithms for the two cases
in our technical report [21].
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Fig. 3: Comparison with greedy policy

VII. CONCLUSION

We studied scheduling transmission of periodically gen-
erated updates over a Gilbert-Elliott fading channel. The
problem is a constrained POMDP and is rewritten as a
constrained belief MDP by introducing the belief state. We
show that the optimal policy for the constrained belief MDP is
a randomization of no more than two stationary deterministic
policies, each of which is of a threshold-type in the belief on
the channel. We propose a finite-state approximation for our
infinite belief MDP and show convergence. Based on this, we
propose an optimal structure-aware algorithm.
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