
Joint Antenna Allocation and Link Scheduling in
FlexRadio Networks

Zhenzhi Qian∗, Yang Yang†, Kannan Srinivasan∗, Ness B. Shroff∗‡
∗Department of Computer Science and Engineering, The Ohio State University, Columbus 43210, OH

†Qualcomm Cooperate Research and Development, San Diego 92121, CA
‡Department of Electrical and Computer Engineering, The Ohio State University, Columbus 43210, OH

Abstract—FlexRadio, a recent breakthrough in wireless Multi-
RF technology, has introduced a new way to unify MIMO and
full-duplex into a single framework with a fully flexible design.
FlexRadio allows a wireless node to use an arbitrary number of
RF chains to support transmission and reception, which makes
MIMO and full-duplex subset configurations of FlexRadio. This
new architecture has greatly changed the feasibility constraint in
wireless networks, which makes the design of high performance
MAC layer algorithms even more challenging. First, the RF chain
becomes a new resource that needs to be allocated across the
network, and the optimal configuration depends not only on the
network topology and flow demand, but also on the number of
available RF chains at each node. Second, it is not clear how
to jointly allocate links and RF chain resources based on the
arrival rates and queueing dynamics. In this paper, we introduce
a new virtual link model to characterize the feasibility constraint
from the perspective of contending RF chain usage. Based on this
novel model, a distributed CSMA-like framework is developed
to fully leverage the flexibility of RF chain resource allocation.

I. INTRODUCTION

Mobile data traffic is expected to increase by seven times
from 2016 to 2021 [1], which poses a data challenge for pro-
viding super-high-speed, super-high-capacity wireless commu-
nication services. Multi-antenna, a main feature in 5G systems,
was first proposed to support Multiple-Input Multiple-Output
(MIMO) that could increase the capacity linearly with the
number of radio frequency (RF) chains [2]. In MIMO, it is
required that all of the RF chains must be used for either
transmission or reception with respect to another node. This
flow constraint becomes a system bottleneck when multiple
users are involved, e.g., in a cellular downlink system. As a
result, multi-user (MU) MIMO [3] was developed to support
the communication with multiple users simultaneously. How-
ever, bi-directional data streams are still not allowed on the
same node due to self-interference.

With the help from self-interference cancellation modules,
[4] have shown that a wireless node can transmit and receive
data streams simultaneously on the same frequency, namely,
full-duplex mode is enabled. Based on the physical layer
design of full-duplex radios, a node must activate an equal
number of RF chains to support simultaneous transmission
and reception [5]. In other words, if a node has M RF chains
in full-duplex mode, M/2 of them are used for transmission
while the remaining M/2 are designated to be receive RF
chains. Compared to the case of MIMO multiplexing, where
all M RF chains are used for either transmission or reception,

full-duplex does not further increase the capacity region within
a pair of nodes or in networks where each node has only 2
RF chains [6]. Even though full-duplex offers the opportunity
to enable M/2 bi-directional data streams, the same can
be achieved by MIMO that supports M unidirectional data
streams with time-division for both directions.

To make the design fully flexible, the authors in [5] im-
plemented FlexRadio, a system that enables flexible RF chain
resource allocation. FlexRadio allows a single wireless node
to use any number of its RF chains for transmission and
reception. Specifically, a FlexRadio node can use Mt, Mr and
Mn RF chains to transmit, receive or withstand interference as
long as Mt +Mr +Mn ≤M . The adaptability of FlexRadio
enables a wide range of flexible configurations and provides
a fundamental improvement in throughput compared to any
of the previous Multi-RF technologies as illustrated in Fig.
1. From the network-layer perspective, apart from contending
for channel access, data links in FlexRadio networks also
need to contend for RF chain usage. This opens a completely
new dimension that the scheduler needs to consider, which
in turn calls for a redesign of high performance scheduling
algorithms for FlexRadio networks, especially when the RF
chain resources are limited. The key challenge is how to
effectively and distributedly choose the optimal configuration
which depends on the network topology, flow demands and
number of RF chains available at each node?

MIMO multiplexing Multi-user MIMO Full-duplex FlexRadio

Tx streams

Rx streams

(a) Tx streams
Node A Node B

Rx streams

Node A Node B

Tx streams

Rx streams

Tx streams

Rx streams

Interference
streams

(b)

(a)

(b)

Fig. 1. The development path of Multi-RF technologies

Scheduling algorithms are responsible for dynamically ad-
justing the transmission configurations, including ON/OFF
status of each link, and number of streams on each link in
accord with the queueing dynamics of the system, and play
a key role in obtaining high throughput and good QoS for
different wireless applications. The design of high perfor-
mance scheduling algorithms is an important problem that

has been extensively studied for many years [7]. A famous
algorithm called Max-Weight scheduling (MWS) is known
to be throughput-optimal, meaning that it can stabilize the
network queues under any arrival rates within the capacity
region. However, MWS is not practical because of its high
computational complexity and centralized design.

A class of Carrier Sensing Multiple Access (CSMA)
scheduling algorithms have been investigated in recent works
[8, 9] that emulate the functionality of the MWS. CSMA uses
a Glauber dynamics-based solution to approximate the optimal
solution of the maximum weighted matching problem. CSMA
is a simple and distributed scheduling algorithm that achieves
throughput-optimality. The authors in [10, 11] provide further
enhancements that reduces the delay in CSMA.

Although CSMA is a powerful framework that can solve
many problems in wireless scheduling [12, 13], it cannot be
directly applied to the scheduling problem in FlexRadio net-
works. In fact, designing a CSMA-like scheduling algorithm
in FlexRadio networks is much more challenging because 1)
CSMA relies on a conflict graph to check coexistence criterion,
but in FlexRadio networks, concepts like conflict graph do not
even exist, because even interfering links may coexist with
each other. 2) The feasibility constraint is related to RF chain
utilization, which depends on the node’s operation mode (is a
receiver node or not) and the number of active RF chains at
neighboring nodes. Therefore, an important question is: Is it
possible to design a fully-distributed CSMA-like algorithm
that achieves throughput-optimality in FlexRadio networks?

In this paper, we answer this question in the affirmative
by proposing a FlexCSMA scheduling framework. The key
contributions of this paper are summarized as follows:
• We introduce a new way to model the RF chain resource

allocation problem in FlexRadio networks. To the best
of our knowledge, this is the first work to consider the
scheduling problem in FlexRadio networks.

• A CSMA-like framework is proposed to dynamically
allocate links and RF resources. Throughput-optimality
results have been established for the base version (FlexC-
SMA), distributed version and delayed version (D-
FlexCSMA).

The rest of the paper is organized as follows. In Section II,
we introduce the network model and feasibility constraint.
In Section III, we propose a CSMA-like scheduling algo-
rithm called FlexCSMA that achieves throughput-optimality.
In Section IV, we provide a distributed implementation of
the FlexCSMA algorithm. In Section V, we design a delayed
version of FlexCSMA, which we call D-FlexCSMA to further
reduce the delay. We use numerical simulations to validate our
theoretical results and compare the performance under differ-
ent scheduling algorithms in Section VI and make concluding
remarks in Section VII.

II. SYSTEM MODEL

We consider a wireless network with n FlexRadio nodes
where each node i ∈ {1, 2, · · · , n} has mi RF chains. Based
on the physical layer constraint, each RF chain can be used to

either transmit/receive a single intended data stream, or receive
and null one interfering stream [6].
A. Network Model

We use G = (V, E) to denote the network topology graph,
where V is the set of nodes and E is the set of data links.
There exists a directed data link (i, j) if and only if node j
is in node i’s transmission range. Let GI = (V, EI) denote
the interference graph, where EI denotes the interference
relationship between wireless nodes. For any two wireless
nodes i and j, (i, j) ∈ EI if and only if node j is in node
i’s interference range. For each node i ∈ V , we define its
neighbor set N (i) = {j|(j, i) ∈ EI}, note that each node
belongs to its own neighbor set, i.e., i ∈ N (i). We assume G
and GI are both bi-directional and symmetric, and data link
set E is a subset of interference link set EI .

We consider the high SNR regime, where for each link that
utilizes mt transmit RF chains and mr receive RF chains,
transmission with min{mt,mr} degree-of-freedom can be
achieved [2], and for the rest of this paper we will refer to
this as min{mt,mr} multiplexed data streams.

For any data link l = (i, j) ∈ E , there could be up to
Cl = min{mi,mj} multiplexed data streams on this data
link. We use a virtual link lv = (i, j, v), 1 ≤ v ≤ Cl to
denote the vth data stream. Throughout this paper, virtual links
{lv}Cl

v=1 defined on the same data link l are treated equally,
and v is used only for indexing purpose. If link l is using the
configuration that supports r multiplexed data streams, then
we should have r active virtual links (i.e., any r out of Cl
virtual links) on link l. In other words, let Sl denote the set of
all active virtual links on link l, then the link rate rl is equal to∑Cl

v=1 1{lv∈Sl}. For each virtual link l, we use s(lv), d(lv) to
denote the transmitter node, receiver node of the virtual link
lv (in this case, s(lv) = i, d(lv) = j). We further denote the
set of all possible virtual links as

Ev = {lv = (i, j, v)|l = (i, j) ∈ E , 1 ≤ v ≤ Cl}.
Remark 1: To activate each virtual link, we need to activate

one transmit RF chain on the transmitter node and one receive
RF chain on the receiver node. Virtual links are not tied with
any specific RF chains – whenever a virtual link were to be
activated, a random available pair of transmit and receive RF
chains is picked.

For the wireless networks with FlexRadio nodes, RF chains
distributed at each node become a new type of resource that
needs to be scheduled and coordinated. Data link l could
activate more virtual links to reach a higher link rate at the cost
of more RF chain resource utilization, which leaves less room
for the activation of its neighboring links. In the next section,
we will provide a precise characterization of the feasibility
constraint, capturing such conflicts between data links.
B. Feasibility Constraint

A schedule S is a subset of virtual link set Ev . For ease of
presentation, we use xlv to denote the virtual link activation
status with xlv = 1 if lv ∈ S and xlv = 0 otherwise. For a
given schedule, we first define a receiver indicator vector e,
where its ith element ei denotes the number of virtual links

that use node i as the receiver. Formally, ei =
∑
d(lv)=i

xlv
for 1 ≤ i ≤ n.

Definition 1: A node i is in receiving (Rx) mode if ei > 0.
If ei = 0, then node i is not a receiver for any active virtual

link, node i is either inactive or only in transmitting (Tx) mode.
With the support of full-duplex, it is possible for node i to be
in both Tx and Rx mode simultaneously.

Next, we use a vector a to indicate each node’s RF chain
utilization state. The ith element ai denotes the number of
occupied RF chains on node i. Given vectors x and e, ai is
given by:

ai =



∑
i∈{s(lv),d(lv)}

xlv +
∑

d(lv) 6=i,
s(lv)∈N (i)\{i}

xlv , if ei > 0,

∑
s(lv)=i

xlv , otherwise.

(1)
For each node that is in Rx mode, one RF chain is required

to support each active transmission or reception. In addition,
in order to decode the intended data streams successfully,
node i needs to use one additional RF chain to withstand
each interference stream from its neighboring nodes. For all
other nodes that are not in Rx mode, we do not need to do
interference management, in which case, ai simply counts the
number of data streams that node i should transmit (if there
is any). Note that if node i is in idle state (not in Tx mode or
Rx mode), no RF chain is utilized and ai = 0.

Depending on the node state (Rx mode or non-Rx mode),
the computation of a is completely different as evident from
(1). Whenever a virtual link lv is added to a schedule, it
may change the mode of the receiver node d(lv). Prior to
the addition of the new virtual link, if node d(lv) is not in Rx
mode, then ad(lv) only needs to account for all transmitting
data streams originated from node d(lv). Now, after we add
link lv to the existing schedule, node d(lv) is in Rx mode. In
order to cancel interference streams from neighboring links,
we have to allocate one RF chain for each interfering data
stream. Similarly, when we delete a link lv from the existing
schedule, we may also change the state of node d(lv) (from Rx
mode to non-Rx mode). In the non-Rx mode, it is no longer
necessary to allocate additional dimensions of RF resources
for interference nulling, but we still need to keep track of
the number of “overhearing” interference streams to prepare
for any potential state change and the update of RF chain
utilization vector a.

We use a vector h to denote the number of data streams that
node i hears (including both its intended data streams and the
interfering streams):

hi =
∑
lv

xlv1{s(lv)∈N (i)\{i}},∀i ∈ V, (2)

where 1{·} is the indicator function.
A feasible schedule S is a schedule such that each data link

l can successfully receive
∑Cl

v=1 xlv data streams. A feasible
schedule S must satisfy that each wireless node has enough RF
chain resources to handle transmitting, receiving data streams

and nulling interference. In particular, a schedule S is feasible
if the following constraint is satisfied:

aSi ≤ mi,∀i ∈ V. (3)
Constraint (3) says that the number of RF chains needed

to support S should not exceed the number of RF chains on
each node. This represents the physical layer limitation that
one RF chain can only be used to transmit one data stream or
receive one data stream.

For each data link l = (i, j), there is a queue storing all
the data packets to be transmitted from node i to node j.
We assume the single-hop traffic model, where data packets
leave the network immediately after they are received by the
receiver nodes. Consider a slotted system, and denote Ql(t)
as the queue length of data link l in time-slot t. Based on the
model, we have the following queue-length evolution equation:

Ql(t) =
[
Ql(t− 1) +Al(t)−

Cl∑
v=1

xlv (t)
]+
, (4)

where (x)+ = max{x, 0}, and Al(t) is the number of new
data requests from node i to node j in time-slot t.

Given a feasible schedule S, the data rate (number of
multiplexed data streams) rSl on data link l is given by
rSl =

∑Cl

v=1 xlv . Let M denote the set of all possible feasible
schedules and D denote the set of feasible rate vectors of all
schedules in M, i.e., D = {rS |S ∈M}.
C. Objective

In this paper, we mainly focus on the single-hop traffic and
our goal is to achieve the capacity region of the network. A
scheduling algorithm governs which antenna configurations
to be used and which data links to be activated in each
time-slot t. In this problem, the scheduling problem boils
down to select a feasible (virtual) link schedule in each
time-slot. The capacity region is defined as the set of all
arrival rate vectors λ = {λ1, λ2, · · · , λ|E|} such that there
exists a scheduling algorithm that can stabilize the queueing
network. In other words, given the stochastic arrival process,
the queueing network behaves as a discrete-time Markov chain
(DTMC), and stability refers to the positive recurrent property
of this Markov chain. It is well-known in [14] that the capacity
region is given by:

Λ = {λ|λ � θ for some θ ∈ Co(D)}. (5)

where Co(D) is the convex hull of D.
Definition 2: A scheduling algorithm is throughput-optimal

if it can stabilize all arrival rates inside Λ.
Our objective is to find a low-complexity joint antenna allo-

cation and link scheduling algorithm that achieves throughput-
optimal performance.

III. FLEXCSMA: A CSMA ALGORITHM FOR
SCHEDULING FLEXRADIO NETWORKS

In this section, we aim to develop a CSMA-like algorithm
that provides provably throughput-optimal performance. Q-
CSMA [9] algorithms are promising because they incur low-
complexity and can be shown to maximize throughput un-
der certain assumptions. However, the traditional Q-CSMA

algorithms cannot be directly applied to this problem for the
following reasons:
• The traditional Q-CSMA relies on the construction of a

conflict graph which characterizes the interference rela-
tionship between different links. However, the constraint
captured in (3), is node-oriented, and thus there is no
clear conflict graph between virtual links in FlexRadio
networks. Whether two virtual links can be scheduled
simultaneously or not depends not only on the interfer-
ence relationship, but also on the number of available RF
chains and node state (Rx or non-Rx mode).

• The feasibility constraint is no longer binary, the co-
existence criterion may depend on the link activation
decisions of other virtual links. A new design of the
decision schedule is needed to satisfy Markov property.

Fortunately, with the introduction of a novel two-stage
procedure for each iteration, we are still able to develop
a CSMA-like joint antenna allocation and link scheduling
algorithm and restore the throughput-optimality. We divide
each time slot t into two phases, the first phase is called control
slot, which is used to generate a feasible transmission schedule
S(t) ∈ M and its corresponding link state vector x(t). Then,
in the second phase, namely data slot, each node will use the
configuration specified by x(t) to randomly assign RF chains
for the transmission.

A. Decision Schedule

The algorithm first selects a set of virtual linksM(t) in each
time-slot t, such that for any two virtual links lv, l′u ∈ M(t),
we have:

N (s(lv)) ∩N (s(l′u)) = ∅, (6)

indicating that the transmitters inM(t) do not have a common
neighbor node. M(t) is also called the decision schedule
in time-slot t. The intuition behind the decision schedule
requirement (6) is to make sure the CSMA-like algorithm
satisfies Markov property.

Recall that in Q-CSMA [9], after k − 1 links have made
their activation decisions, the coexistence criterion such that
activating the kth link fromM(t) does not incur any interfer-
ence remains unchanged regardless of the activation decisions
of the previous k−1 links. In other words, each link inM(t)
is able to check its coexistence criterion based on the previous
schedule S(t− 1).

In this problem, we aim to emulate the same role of
the decision schedule in Q-CSMA. Consider any decision
schedule M(t) that satisfies (6), the coexistence criterion
of each virtual link lv ∈ M(t) is related to the RF chain
utilization states of all nodes in its neighborhood N (s(lv)) to
make sure the reception is successful. On the other hand, the
link activation decision of lv may also change the RF chain
utilization states of nodes from the same set N (s(lv)). Based
on (6), it is clear that the link activation decision of any other
virtual link l′u ∈M(t) will not change the RF chain utilization
states of nodes in N (s(lv)). Hence, the coexistence criterion
of lv remains unchanged regardless of the other virtual links’
activation decisions, and the following lemma holds.

Lemma 1: M(t) is also a feasible schedule.
Remark 2: An alternative decision schedule is to use a set

of virtual links that can coexist with each other. However, it
does not work because it violates the Markov property.

A simple example is shown in Fig. 2, we consider a
network with 4 nodes {A,B,C,D} and number of RF chains
{4, 3, 3, 5}, respectively. Now, given the existing schedule
S(t− 1) = {(A,C, 1), (B,A, 1), (B,D, 1)}, only one virtual
link from the decision scheduleM(t) = {(A,C, 2), (B,A, 2)}
is allowed to be included in S(t). Adding both of them will
cause collision (lack of RF chains) at node A. Hence, there is
a dependency between the activation decisions of virtual links
in M(t), which violates the Markov property.

A

B C

D

4-RF

3-RF

3-RF

5-RF

A

B C

D

4-RF

3-RF

3-RF

5-RF

Decision Schedule Existing Schedule

(B, A, 1) (A, C, 1)

(B, D, 1)

(B, A, 2) (A, C, 2)

Fig. 2. A counter example.

B. Overview of the FlexCSMA Algorithm

Let M0 ⊆M denote the set of all decision schedules. In the
control slot, the network randomly selects a decision schedule
M(t) with non-negative probability α(M(t)). α : M0 →
[0, 1] is a probability measure with

∑
M(t)∈M0

α(M(t)) = 1.
The transmission schedule S(t) and link state vector x(t) are
determined as follows. For each virtual link lv ∈ M(t), we
update vectors a, h and e as if we already include virtual link
lv in the current schedule S(t) (omit this step if virtual link
lv ∈ S(t−1)). If vector a satisfies the feasibility constraint (3),
we include lv in the current schedule with probability plv and
deactivate lv with probability plv = 1 − plv . If constraint (3)
does not hold for vector a, virtual link lv will not be included
in the current schedule S(t), and all vectors a, h and e will
be recovered to the original value. For all other virtual links
lv /∈M(t), the link state remains the same as in the previous
time-slot, i.e., xlv (t) = xlv (t−1). In the subsequent data slot,
we activate virtual link lv if lv ∈ S(t), i.e., xlv (t) = 1.

Algorithm 1 FlexCSMA Scheduling Algorithm
1: 1. In the control slot, randomly select a decision schedule
M(t) from M0 with probability α(M(t)).

2: for each virtual link lv ∈M(t) do
3: if AddCheck(lv)=True then
4: a. xlv (t) = 1 with probability plv ;
5: b. xlv (t) = 0, Del(lv) with probability 1− plv ;
6: else
7: xlv (t) = 0;
8: Del(lv);
9: for each link lv /∈M(t) do

10: xlv (t) = xlv (t− 1);
11: 2. In the data slot, if xlv (t) = 1, include lv in S(t).

Unlike the traditional Q-CSMA framework, checking link
coexistence is no longer easy and intuitive. There is no
counterpart of conflict graph, instead, we use two important
procedures, namely AddCheck(lv) and Del(lv) to check coex-
istence and update vectors a, h and e.

C. Add Link and Check Coexistence

The purpose of the procedure AddCheck(lv) is to 1) Update
vectors a, h and e as if lv has already been included in the
current schedule S(t). 2) Use feasibility constraint (3) to check
if the combining schedule S(t− 1) ∪ {lv} is feasible.

If virtual link lv appears in the previous schedule, i.e.,
xlv (t − 1) = 1, we have S(t − 1) ∪ {lv} = S(t − 1). The
combining schedule is always feasible and there is no need to
update vectors a, h and e.

For each virtual link lv such that lv /∈ S(t − 1), adding lv
only affects nodes that are within the interference range of the
source node s(lv), i.e., nodes belong toN (s(lv)). In particular,
the receiver node d(lv) is the only one that changes receiver
indicator value ei, which could result in a state change from
non-Rx mode to Rx mode. If the state change does happen, the
RF chain utilization value ad(lv) is added by the previous link
hearing value hd(lv) and data rate 1 of virtual link lv . If node
d(lv) is already in Rx mode in the previous time-slot, then
the hearing information has already been considered in the
previous ad(lv), we just simply add ad(lv) by link rate 1. We
can apply the same argument to any other neighboring nodes
i ∈ N (s(lv)) (node i is either the source node of lv or ei > 0)
to update the value of ai. Each node i that belongs to N (s(lv))
except for s(lv) itself hears one more data stream and hi is
updated accordingly. Finally, given the updated vector a, we
check the feasibility constraint (3) and return the coexistence
result of virtual link lv against the previous schedule S(t−1).

Algorithm 2 Add Link and Check Coexistence
1: procedure ADDCHECK(lv)
2: if xlv (t− 1) 6= 1 then
3: for each node i ∈ N (s(lv)) do
4: if i = d(lv) then
5: if ei = 0 then
6: ai = ai + hi + 1;
7: else
8: ai = ai + 1;
9: ei = ei + 1;

10: else
11: if i = s(lv) or ei > 0 then
12: ai = ai + 1;
13: if i 6= s(lv) then
14: hi = hi + 1;
15: for each node i ∈ N (s(lv)) do
16: if ai > mi then
17: return False;
18: return True;

D. Delete Link and Update States

After FlexCSMA algorithm invokes AddCheck(lv), we al-
ready update vectors a,h and e as if lv is included in the
current schedule. However, if we decide to delete lv from the
current schedule, we must recover the original vectors a,h
and e. The purpose of the procedure Del(lv) is to deactivate
lv from the current schedule and recover vectors a,h and e.

Algorithm 3 Delete Link and Recover States
1: procedure DEL(lv)
2: for each node i ∈ N (s(lv)) do
3: if i = d(lv) then
4: ei = ei − 1;
5: if ei = 0 then
6: ai = ai − hi;
7: else
8: ai = ai − 1;
9: else

10: if i = s(lv) or ei > 0 then
11: ai = ai − 1;
12: if i 6= s(lv) then
13: hi = hi − 1;

Remark 3: Let a(t),h(t) and e(t) take the value of the
corresponding vector a,h and e at the end of each time-
slot t. The value of vectors a(t),h(t) and e(t) are actually
determined by x(t). Instead of recomputing these vectors in
each time-slot, we use a, h and e to keep track of these vectors
from time to time.

E. Throughput Analysis

In this section, we analyze the throughput of Algorithm 1.
Lemma 2: If S(t−1) ∈M andM(t) ∈M0, then S(t) ∈M.

Proof: Note that S(t) ∈ M if constraint (3) is satisfied.
Consider any node i ∈ V , and the set of virtual links that
could affect node i’s RF chain utilization state L(i) = {lv|i ∈
N (s(lv))}. Then S(t) ∩ L(i) is the set of active virtual links
that occupy node i’s RF chains under schedule S(t). Among
all virtual links in this set, there is at most one virtual link lm
that belongs to M(t). The uniqueness is guaranteed by the
property of the decision schedule requirement (6).

If such virtual link lm does not exist, then all virtual links
in S(t) ∩ L(i) are not selected in M(t). From Algorithm 1,
a virtual link lm could change its link state from xlm(t − 1)
to xlm(t) if and only if virtual link lm ∈ M(t). Therefore,
all virtual links in S(t) ∩ L(i) have already appeared in the
previous schedule S(t − 1). Since the schedule S(t − 1) is
feasible, we have aS(t)i ≤ aS(t−1)i ≤ mi.

On the other hand, if there exists a unique virtual link lm
that belongs to S(t)∩L(i)∩M(t). According to Algorithm 1,
virtual link lm could be included in S(t) only if aS(t−1)∪{lm}

satisfies constraint (3). Thus, we have a
S(t−1)∪{lm}
i ≤ mi.

We only need to show that the sets of active virtual links that
occupy node i’s antennas under schedules S(t−1)∪{lm} and
S(t) are the same, i.e., S(t)∩L(i) = (S(t− 1) ∪ {lm})∩L(i).

Applying the distributive law with L(i) ∩ {lm} = {lm}, it
suffices to show S(t) ∩ L(i) = (S(t− 1) ∩ L(i)) ∪ {lm}.
First, note that any virtual link in (S(t) ∩ L(i)) \{lm} does
not belong to M(t), so all these virtual links have already
appeared in S(t − 1) ∩ L(i). We have S(t) ∩ L(i) ⊆
(S(t− 1) ∩ L(i)) ∪ {lm} by taking the union of {lm} on
both sides. Next, let us assume there exists a virtual link
l′u ∈ (S(t− 1) ∩ L(i)) ∪ {lm} such that l′u /∈ S(t) ∩ L(i).
Obviously, since lm ∈ S(t) ∩ L(i), we have l′u 6= lm and
l′u ∈ S(t − 1) ∩ L(i). In addition, we know that l′u is not
included in S(t), otherwise l′u ∈ S(t) ∩ L(i). Note that
l′u ∈ S(t − 1) but l′u /∈ S(t), virtual link l′u has changed
its link state from 1 (active) to 0 (inactive), so virtual link l′u
must belong to M(t). Therefore, we have already found two
different links lm and l′u inM(t), such that lm, l′u ∈ L(i) and
i ∈ N (s(lm)) ∩ N (s(l′u)). This contradicts with the property
of the decision schedule (6), there is no such link l′u and we
have derived the desired result.

It is clear that a(t− 1),h(t− 1) and e(t− 1) are all deter-
mined by x(t−1). Algorithm 1 uses x(t−1), a(t−1),h(t−1),
e(t− 1) and a randomly selected set M(t) to generate x(t).
Thus, S(t) only depends on S(t−1) andM(t). S(t) satisfies
Markov property and it evolves as a discrete-time Markov
chain (DTMC).

Lemma 3: A feasible schedule S ∈M can make a feasible
transition to another state S ′ ∈ M if and only if S ∪ S ′ ∈ M
and there exists a decision schedule M∈M0 such that

S4S ′ = (S\S ′) ∪ (S ′\S) ⊆M, (7)

and the transition probability from S to S ′ is:

P (S,S ′) =
∑

S4S′⊆M

α(M)

 ∏
lv1∈S\S′

plv1

 ∏
iv2∈S′\S

piv2


 ∏
jv3∈M∩(S∩S′)

pjv3

 ∏
qv5∈M\(S∪S′)\I((S∪S′))

pqv5

 .

(8)
where I(S) denote the set of virtual links that do not belongs
to S and cannot coexist with S.

The proof is omitted due to space limitation, we only present
the following lemma, which is essential to make sure the
Markov Chain with the transition probability (8) is reversible.

Lemma 4: M∩ (I(S ∪ S ′)\I(S)) = ∅.
Proof: Assume there exists a virtual link lv ∈ M, such

that lv ∈ I(S ∪S ′) but lv /∈ I(S). According to the definition
of set I, we know lv /∈ S, lv /∈ S ′, lv could coexist with S but
cannot coexist with S∪S ′. Since lv is selected by the decision
scheduleM, it is the only virtual link that could affect the RF
chain utilization state for nodes in N (s(lv)). As a result, in
schedule S ∪S ′, nodes in N (s(lv)) do not change its vector a
from S. Therefore, lv should still coexist with S ∪ S ′, which
is a contradiction.

Proposition 1: For any virtual link lv ∈ Ev , let the activation
probability plv =

exp(wlv (t))
exp(wlv (t))+1 , where wlv (t)s are appropriate

functions of queue-length Ql(t) on link l. Then Algorithm 1

is throughput-optimal.
We omit the proof since it is standard under the time-scale

separation assumption. In fact, if we define wlv (t) = wl(t)
for all v, then the steady-state probability of selecting a
schedule S is proportional to the sum weight of virtual
links

∑
lv∈S wlv (t) =

∑
l∈E wl(t)r

S
l , which approximates

the solution for the Max-Weight problem under multi-rate
scenarios. Some appropriate functions for wlv (t) are: wlv (t) =
log(γQl(t)), wlv (t) = log log(Ql(t) + e) and wlv (t) =
log(1 +Ql(t))

1−γ for a small γ > 0.

F. An Alternative Definition of the Virtual Link

A natural way to define the virtual link is based on the link
configuration as in [13]. Specifically, given a data link l, virtual
link lv represents the link configuration on data link l with rate
v, for v = 1, 2, · · · , Cl. In this virtual link model, we can show
that by slightly changing our existing FlexCSMA framework,
the resulting scheduling algorithm is still throughput-optimal
under the time-scale separation assumption.

Now, the key question is: How long does it take to converge
to the steady-state? In FlexCSMA, each virtual link only repre-
sents one data stream. The scheduler can activate or deactivate
at most one virtual link lv at a time to change the link rate
of data link l. As time goes on, the link rate will gradually
accumulate or depreciate based on the queueing dynamics.
Whereas in this approach, link configurations are changed as
we change the schedule, hence, the link rate transition is much
more dramatic. One may expect it to converge much faster due
to its fast response and high efficiency. Surprisingly, it is the
other way around.

Here is a simple example. Suppose there is only one link
l, the transmitter and receiver both have 10 RF chains so that
Cl = 10. Consider a feasible arrival rate of 9.9, FlexCSMA
will activate more and more virtual links with high probability.
In the end, link schedule will have all 10 virtual links activated
for most of time. On the other hand, in this approach, let us
assume the first virtual link activated by this approach is l8,
which provides link rate of 8. Now if the decision schedule
happens to select l8, then with high probability, l8 will remain
active. Hence, the schedule will stuck in the state {l8} for
a long time before it becomes empty again, and the decision
schedule may not necessarily select l10 even after the scheduler
decides to deactivate l8.

In general, if the queue-length of Ql becomes very large
and the scheduler has the incentive to increase the link rate
from v1 to v2. In this approach, there is no direct transition
from lv1 to lv2 on link l. Virtual link lv1 must be deactivated
first to make room for the rate increase, which does not make
sense from the perspective of virtual link lv1 . As a result, the
schedule will keep lv1 for a long time and take a much longer
time to converge to the steady-state.

IV. DISTRIBUTED IMPLEMENTATION OF THE FLEXCSMA
ALGORITHM

In this section, we propose a distributed implementation of
the FlexCSMA scheduling algorithm. We divide the control

slot into control mini-slots. At the beginning of each time-slot
t, each data link l randomly selects an index v to generate a
candidate virtual link lv . Virtual link lv then selects a random
backoff time Tl uniformly from the interval [0,W − 1] and
wait for Tl control mini-slots. A node is MARKED if it
has transmitted an INTENT message without collision or
it has received a MARK message so far. If any node in
N (i) is MARKED before (Tl + 1)th control mini-slot, then
adding virtual link lv to the decision schedule violates the
requirement (6) and virtual link lv will not be included in the
decision schedule M(t). Otherwise, if all nodes in N (i) are
not MARKED before (Tl+1)th control mini-slot, virtual link
lv will transmit INTENT message and if there is no collision
at any node in N (i), a MARK message will be broadcasted,
and we will apply the same procedure in Algorithm 1 to
determine the link state of virtual link lv in time-slot t.

Algorithm 4 Distributed FlexCSMA Algorithm (At data link
l in time-slot t)

1: Data link l = (i, j) randomly selects an index v uniformly
in [1, Cl] to generate a virtual link lv = (i, j, v) and set
xlk(t) = xlk(t− 1), ∀1 ≤ k ≤ Cl, k 6= v.

2: Data link l selects a random backoff time Tl uniformly
in [0,W − 1] and waits for Tl control mini-slots. If the
receiver node j hears an MARK message before the (Tl+
1)th control mini-slot, node j is MARKED.

3: IF any node in the set N (i) is MARKED before the (Tl+
1)th control mini-slot, virtual link lv will not be included
in the decision schedule M(t) and the data link l will
no longer transmit an INTENT message any more. Set
xlv (t) = xlv (t− 1).

4: IF all nodes in the set N (i) are not MARKED before
the (Tl + 1)th control time-slot, data link l will broadcast
an INTENT message at the beginning of the (Tl + 1)th

control mini-slot.
• If there is a collision or multiple INTENT messages

are heard by a certain node in N (i) in (Tl + 1)th

control mini-slot, Virtual link lv is not included in the
decision schedule M(t), and set xlv (t) = xlv (t− 1).

• Otherwise, set the sender node i as MARKED and
broadcast a MARK message to N (i), virtual link lv
will be included in M(t) and determine its state as
follows:
If AddCheck(lv)=True

a. xlv (t) = 1 with probability plv ;
b. xlv (t) = 0, Del(lv) with probability 1− plv ;

Else
xlv (t) = 0, Del(lv);

5: IF xlv (t) = 1, sender node i and receiver node j will
randomly allocate one available RF chain to transmit one
data stream on link l.

Proposition 2: Algorithm 4 is throughput-optimal if W ≥
2 and the activation probability takes the form of plv =
exp(wlv (t))

exp(wlv (t))+1 for some appropriate wlv (t)s.
We can extend the proof of Proposition 1 here.

V. DELAY REDUCTION OF THE FLEXCSMA ALGORITHM

Despite the merit that CSMA is a simple and distributed
algorithm that can achieve throughput-optimality, empirical
evidence [10] has found that CSMA often results in large
queue lengths. Hence, a key problem in CSMA scheduling is
how to reduce the delay. Queueing delay depends not only on
arrival/service rate but also on the correlation of service over
time. In Q-CSMA, if two links are contending for channel
access, one link has to wait for the other link (if it is active)
to release the channel first before it can be active in the
next time-slot. Since there is no direct transition from one
active link to the other, the scheduler spends a non-negligible
time on the switch between schedules which wastes quite a
few transmission opportunities during the transient schedules.
In FlexCSMA, the delay problem becomes more severe as
one link may need to wait for the other links to release
RF chain resources to start ramping up its own link rates.
Also, the release and ramping up process may take at most
min{ms(l),md(l)} time-slots to complete on link l, where
ms(l) and md(l) is the number of RF chains on the transmitter
and receiver node, respectively. In this paper, we borrow the
idea from [11] to develop a delayed version of FlexCSMA, we
call D-FlexCSMA, which takes T -step-back state of vectors
a, e,h to determine the next schedule S(t). In this way, the
system behaves as if T independent chains take turn to decide
the next schedule. The formal description of D-FlexCSMA is
shown in Algorithm 5.

Algorithm 5 D-FlexCSMA Scheduling Algorithm
1: 1. In the control slot, randomly select a decision schedule
M(t) from M0 with probability α(M(t)).

2: for each virtual link lv ∈M(t) do
3: if AddCheck(lv , t mod T)=True then
4: a. xlv (t) = 1 with probability plv =

exp(wlv (t))
exp(wlv (t))+1 ;

5: b. xlv (t) = 0, Del(lv, t mod T) otherwise;
6: else
7: xl(t) = 0;
8: Del(l, t mod T);
9: for each link lv /∈M(t) do

10: xlv (t) = xlv (t− T);
11: 2. In the data slot, if xlv (t) = 1, include lv in S(t).

Note that we only need to maintain vectors a, e,h for T
time-slots, e.g., a(0),a(1), · · · ,a(T − 1) for a. Now we only
need to use our aforementioned procedures AddCheck(lv, t
mod T) and Del(lv, t mod T) to update the state of a(t
mod T), e(t mod T) and h(t mod T) and check the feasi-
bility constraint (3).

Proposition 3: Given ε > 0, if we set the virtual link weight
as

wlv (t) = max

{
fl(Ql(t)),

ε

2|Ev|
fl(Qmax(t))

}
. (9)

where fl(Ql) = log log(Ql + e). Then D-FlexCSMA is
throughput-optimal for any finite delay time T .

We use the similar approach in [11] with minor modifica-
tions due to multiple RF chains and multiple link rates.

With D-FlexCSMA, we are able to de-correlate the sched-
ules over time to reduce the delay. We will run numerical
simulations in Section VI to evaluate the delay performance
and compare the results with other scheduling algorithms.
This is an initial attempt to improve the delay performance
of FlexCSMA framework, it is still interesting to see how to
effectively expedite the process of accumulating or depreciat-
ing link rates when the maximum number of RF chains on
one FlexRadio node mmax is not small.

VI. NUMERICAL SIMULATIONS

In this section, we use simulations to 1) verify the theoretical
results of our proposed scheduling algorithms and 2) compare
the performance of different scheduling algorithms, including
FlexCSMA, D-FlexCSMA and MIMO-only CSMA, which
directly applies traditional Q-CSMA framework to select non-
interfering links and point-to-point MIMO is enforced.

A. A 5-Node FlexRadio Network

We first study a 5-node network as shown in Fig. 3 with
5 FlexRadio nodes (circles) A, B, C, D and E. We assume
there are 6 RF chains on node C, 5 RF chains on node E, and
the remaining nodes all have 3 RF chains. Furthermore, the
interference range is assumed to be the same as the transmis-
sion range, and the interference relationship is indicated by a
dotted line between nodes.

3
A

B C

D E

3 6

53

1

32

3
A

B C

D E

3 6

53

1

5

3
A

B C

D E

3 6

53

3

3

2

Fig. 3. A 5-node FlexRadio network with three maximal schedules

Recall that a maximal schedule is a feasible schedule such
that adding any rate to any link will violate our feasibility
constraint (3). We consider three maximal schedules S1, S2
and S3 in Fig. 3. We use a red line and a number to denote
an active data link and its associated link rate. Here, we do
not specify the indices of the virtual links in each maximal
schedule, since only the count matters.

Take S1 as an example, node C is using 1 RF chain to
receive data from node A, 3 RF chains to transmit data to
node E and the last 2 RF chains to withstand the interference
streams from node B. At the same time, node E uses 3 RF
chain to receive data from node C and 2 RF chains to withstand
interference from node B. Node C and E have used up all
their RF chains, hence, adding any more rate to any link will
compromise the data reception at node C and E. In fact, this
is a topology that has intense interference relationships, in
which interference cancellation is expected to be quite useful
in improving system throughput.

We set the arrival rate vector to be a convex combination of
the link rates from maximal schedules S1, S2 and S3 scaled
by a utilization factor ρ, namely:

λ = ρ

3∑
i=1

νir
Si . (10)

where ν = {0.3, 0.3, 0.4}. If we choose the utilization factor
ρ < 1, arrival vector λ stays inside the capacity region Λ.
Any throughput-optimal scheduling algorithm should be able
to stabilize λ for any positive number ρ < 1.

In our simulation, we use Bernoulli arrival process and each
simulation runs for 107 time-slots. For activation probability
pl, we choose virtual link weight wlv (t) = log(0.1Ql(t)). In
addition, we choose delay time T = 200 in D-FlexCSMA. The
queue-length performance against different utilization vector ρ
is shown in Fig. 4.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ρ

0

500

1000

1500

2000

2500

3000

T
o
ta

l
Q

u
e
u
e
-l

e
n
g
th

FlexCSMA
D-FlexCSMA
MIMO-only CSMA

Fig. 4. Total queue-length against utilization factor ρ in the 5-node network

We have the following observations:
• Both FlexCSMA and D-FlexCSMA stabilize the queue-

ing system for any ρ < 1, maximal schedules are usually
achieved within 20 iterations. Compared to FlexCSMA,
D-FlexCSMA saves nearly 35% of the total queue-length
and packet delay.

• MIMO-only CSMA cannot stabilize the system for any
ρ > 0.6, which indicates that the capacity region of
FlexRadio is enlarged by more than 60% for this specific
topology.

B. A 9-Node Ring Network

A 9-node ring network is shown in Fig. 5, where each
circle stands for a FlexRadio node with 6 RF chains. Each
node could be interfered by its two neighbors, i.e., one on
each side. Considering two maximal schedules, S1 activates all

A

B

C

E

D

F

G

H

I

Fig. 5. A 9-node ring network with 6 RF chains on each node

clockwise links with rate 2, S2 activates all counter-clockwise
links with rate 2. In both cases, each node is in Rx mode,
and uses 2 RF chains to receive, transmit data and withstand
interference streams. As in (10), we can define the arrival
rate vector λ similarly with S1 and S2. It is easy to check

that, compared with the MIMO-only transmission scheme,
the additional flexibility of FlexRadio does not increase the
capacity region of this specific network. We can easily apply
the MIMO-only CSMA to stabilize any traffic pattern with
ρ < 1. Now, the question remains: Is it still worthwhile to use
FlexRadio in this case?

To answer this question, we run simulations to evaluate
queue-length and delay performance. The results are shown
in Fig. 6 and Table. I.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ρ

0

500

1000

1500

2000

2500

3000

3500

4000

T
o
ta

l
Q

u
e
u
e
-l

e
n
g
th

FlexCSMA
D-FlexCSMA
MIMO-only CSMA

Fig. 6. Total queue-length against ρ in the 9-node ring network

TABLE I
DELAY COMPARISON BETWEEN DIFFERENT ALGORITHMS

ρ 0.3 0.5 0.7 0.9
MIMO-only CSMA 57.60 77.07 115.12 228.56

FlexCSMA 13.23 19.32 36.32 137.61
D-FlexCSMA 6.67 8.01 13.17 47.74

Although the FlexCSMA framework is more complicated
than the MIMO-only CSMA, FlexCSMA framework is still
able to converge very quickly and offers much better delay
performance. The better delay performance is attributed to
the flexibility of RF chain resource allocation, which is fully
leveraged to meet different flow demands and provides faster
response time in the case of bursty arrivals.

VII. CONCLUSION

FlexRadio, which allows flexible RF chain resource al-
location, introduces a new feasibility constraint in wireless
networks, which makes it challenging to design a high per-
formance joint antenna allocation and link scheduling algo-
rithm. In this paper, we use a novel model to characterize
the feasibility constraint from the perspective of RF chain
resource allocation. Based on this model, we propose a
FlexCSMA scheduling framework that dynamically allocates
and releases RF chain resources based on traffic rates and
queueing dynamics in a distributed way. In addition, we prove
that FlexCSMA achieves throughput-optimality and carry out
numerical simulation to validate our results.

ACKNOWLEDGMENT

This work is funded in part by NSF grants CNS-
1514260, CNS-1547306, CNS-1518829, and CNS-1254032,
ONR grants N00014-17-1-2412, N00014-17-1-2417.

REFERENCES

[1] Cisco visual networking index: Forecast and methodol-
ogy, 2015-2020. http://www.cisco.com.

[2] D. Tse and P. Viswanath, Fundamentals of wireless
communication. Cambridge University Press, 2005.

[3] C. B. Peel, Q. H. Spencer, A. L. Swindlehurst, and
M. Haardt, “An introduction to the multi-user MIMO
downlink,” IEEE communications Magazine, vol. 61,
2004.

[4] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti,
“Achieving single channel, full duplex wireless commu-
nication,” in Proc. of Mobicom. ACM, 2010, pp. 1–12.

[5] B. Chen, V. Yenamandra, and K. Srinivasan, “Flexradio:
Fully flexible radios and networks.” in Proc. of NSDI,
2015, pp. 205–218.

[6] Y. Yang, B. Chen, K. Srinivasan, and N. B. Shroff,
“Characterizing the achievable throughput in wireless
networks with two active RF chains,” in Proc. of IEEE
INFOCOM, 2014, pp. 262–270.

[7] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-
layer optimization in wireless networks,” IEEE Journal
on Selected Areas in Communications, vol. 24, no. 8, pp.
1452–1463, 2006.

[8] L. Jiang and J. Walrand, “A distributed CSMA algorithm
for throughput and utility maximization in wireless net-
works,” IEEE/ACM Transactions on Networking (TON),
vol. 18, no. 3, pp. 960–972, 2010.

[9] J. Ni, B. Tan, and R. Srikant, “Q-CSMA: Queue-
length-based CSMA/CA algorithms for achieving max-
imum throughput and low delay in wireless networks,”
IEEE/ACM Transactions on Networking (TON), vol. 20,
no. 3, pp. 825–836, 2012.

[10] P.-K. Huang and X. Lin, “Improving the delay perfor-
mance of CSMA algorithms: A virtual multi-channel
approach,” in Proc. of IEEE INFOCOM. IEEE, 2013,
pp. 2598–2606.

[11] J. Kwak, C.-H. Lee, D. Y. Eun, J. Kwak, C.-H. Lee et al.,
“A high-order markov-chain-based scheduling algorithm
for low delay in CSMA networks,” IEEE/ACM Transac-
tions on Networking (TON), vol. 24, no. 4, pp. 2278–
2290, 2016.

[12] Y. Yang and N. B. Shroff, “Scheduling in wireless
networks with full-duplex cut-through transmission,” in
Proc. of IEEE INFOCOM, 2015, pp. 2164–2172.

[13] D. Qian, D. Zheng, J. Zhang, N. B. Shroff, and
C. Joo, “Distributed CSMA algorithms for link schedul-
ing in multihop MIMO networks under SINR model,”
IEEE/ACM Transactions on Networking (TON), vol. 21,
no. 3, pp. 746–759, 2013.

[14] C. Joo, X. Lin, and N. B. Shroff, “Understanding the
capacity region of the greedy maximal scheduling algo-
rithm in multihop wireless networks,” IEEE/ACM Trans-
actions on Networking (TON), vol. 17, no. 4, pp. 1132–
1145, 2009.

