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Abstract—Mobile applications that provide ever-changing in-
formation such as social media and news feeds applications are
designed to consistently update their contents in the background.
This operation, often called ‘“‘prefetching”, provides the users
with immediate access to up-to-date contents. However, such
updates often result in the unwanted side-effect of draining the
battery of mobile devices. It is considered as pure waste when
updated contents are not accessed before being renewed. In this
paper, we develop an optimal strategy to update the contents in the
background under a given energy constraint. The key challenge is
to predict when the user will access the contents in a probabilistic
manner from the statistics of the accessed patterns in the past. We
model our problem as a constrained Markov decision process (C-
MDP) and propose to tackle its high complexity with a two-step
solution that combines: (1) a threshold-based backward induction
algorithm for the Lagrangian relaxation of our C-MDP, and (2)
an iterative root finding algorithm, iMUTE (iterative Method for
optimal UpdaTe policy with Energy constraint). We prove that
iMUTE converges superlinearly to the optimal solution of the
original C-MDP under a mild condition. We also experimentally
verify that iMUTE outperforms the periodic policy as well as the
additive and multiplicative increase policies that are adopted in
the Doze mode of Android systems and HUSH, in terms of user
experience and energy saving.

I. INTRODUCTION

In the latest mobile devices, a myriad of user applications
are designed to update their contents in the background to
obtain better user experience. However, such updates are
mostly unaware of the user behavior and often end up wasting
the battery without effectively improving the user experience.
Therefore, an immediate yet important question arises: what
is the optimal strategy to feed or update the contents in the
background that keeps the contents as fresh as possible while
meeting a given battery constraint?

The energy wastage caused by inefficiently updating mo-
bile application data has been reported in various studies
such as [1]-[3]. Rosen et al. [1] revealed that many mobile
applications such as social media, email, and information
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Fig. 1: Daily network usage and application states of the
Facebook app. “fore” means foreground states (i.e., the user
is interacting with the application), and “back” means back-
ground states. The intervals are less than 20 minutes.

delivery applications (e.g., weather and stocks) employ a naive
periodic update policy and the background updates followed
by tail energy' consume about 84% of the total communication
energy. Another study by Pathek et al. [5] made a similar
observation showing that 65% to 75% of the networking
energy is spent on updating advertisements included in the
applications in the background.

To more deeply understand this problem, we performed
our own measurement with Galaxy S7 running Android 6.0.1,
specifically for Facebook application, which is the most widely
mentioned battery draining culprit. Our measurement for 24
hours captures intensive networking behaviors of the Facebook
application as in Fig. 1, which persist even when the applica-
tion is put in the background. Our energy measurement with
the Monsoon power meter [6] further confirms that a single
background update consumes about 1.7mAh (i.e., 6 Joule)
and about 5% of the entire battery capacity is drained by the
background updates of Facebook alone per day.

There are several practical works that are heuristically
designed to alleviate the energy wastage from background
activities. Android version 6.0 (Marshmallow), released in
October 2015, adopts a new feature called Doze mode [7]
for preventing an evident energy leakage. The Doze mode is
enabled when a user leaves the device unattended for a certain
amount of time (e.g., 2 hours), and increases the interval of
restricting background behaviors (i.e., suppression interval),
which in turn increases the update intervals of applications in
the background. Another work [8] proposed a simple algorithm
called HUSH that suppresses off-screen background activities.
HUSH increases the suppression duration of a background

ITail energy is the energy from being in the high power state after each
data transfer during a predefined period (around 4 to 10 seconds). [4]
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application exponentially? if it has not been brought to the
foreground. Even with these simplistic approaches, it is shown
that about 15-17% of the battery time can be extended.

We speculate that these algorithms are partially effective
because it is typical that the users are less likely to launch an
application as its unused period gets longer. This statistical be-
havior is explained by a so-called heavy-tailed inter-launching
time distribution that is experimentally captured in [9], [10].
However, we point out that those algorithms neither perform
closely to the optimal nor adapt flexibly to individual users.

In this work, we first formulate a contents update scheduling
problem that minimizes the user inconvenience under an
energy constraint.?> Given the knowledge of usage statistics, we
model the problem as a Constrained Markov decision process
(C-MDP). To provide a solution, we take a divide and conquer
approach. We first consider an Unconstrained MDP (U-MDP)
and devise a low-complexity optimal backward induction
algorithm by exploiting the threshold structure of optimal
policies. Then, we develop an iterative algorithm based on the
Dekker’s method [12], in order to find a Lagrange multiplier
by which the corresponding U-MDP becomes equivalent to
the original C-MDP with a given constraint.

Our main contributions are as follows:

(1) We develop a threshold-based backward induction algo-
rithm that solves U-MDP (i.e., minimizes a weighted sum
of user inconvenience and energy cost).

(2) We develop iMUTE, an iterative algorithm based on the
Dekker’s method, which obtains an optimal Lagrange
multiplier and an optimal update policy for a C-MDP
problem. We prove that our iterative algorithm converges
superlinearly under a mild condition.

(3) We report that the inter-launching times of social net-
working applications conform to a heavy-tailed distribu-
tion. Using trace-driven simulations over the real usage
statistics of social applications, we demonstrate that our
algorithm for C-MDP outperforms periodic and multi-
plicative/additive increase policies.

II. RELATED WORK

Suppression algorithms with increasing update intervals:
Android version 6.0 (Marshmallow), released in October 2015,
adopted a new feature called Doze mode [7] for energy saving.
The Doze mode is enabled when a user leaves the device
for a certain amount of time and restricts the background
activities of applications. Doze mode has a short maintenance
window during which the restrictions are relaxed, where the
interval between maintenance windows increases as the device
gets untouched longer. A recent paper [8] proposed a simple
suppression algorithm called HUSH. HUSH increases the
suppression interval of an application if it has not been used in

2Using an exponential backoff method in which the duration is multiplied
by a given scaling factor.

3We consider a pull-based update system. A push-based update system
(e.g., notification) is beyond the scope of this paper. We note that although
push-based updates are highly responsive, they consume significant energy if
such pushes happen frequently and incur user disruption [11].
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Fig. 2: Our system model for inter-launching time X (r.v.).
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Fig. 3: Two types of costs (depicted with c(a) = a").

the foreground using exponential backoff (i.e., the interval is
multiplied by a scaling factor o). Once an application is used
in the foreground, the interval goes back to an initial value.

Inspection/maintenance problems: Inspection and mainte-
nance problems [13]-[17] are closely related to our content
update problem. The goal of an inspection problem is to
efficiently detect the failure of a system, whose lifetime (i.e.,
inter-failure time) is arbitrarily distributed and the failure can
be detected only by inspection. An optimal inspection policy
minimizes the total expected cost composed of the inspection
cost and the loss from the system failure. The main difference
between an inspection problem and our problem is the cost.
Our cost occurs from the time interval between an update and
a system event (i.e., application launching) while the cost of
the inspection problem comes from the time interval between
a system event (i.e., system failure) and an inspection.

A maintenance problem is to find both inspection schedules
and a replacement decision policy, where parts of machines
deteriorate as they age. There are several approaches used
to tackle these problems such as Markov renewal decision
processes [15] and approximation algorithms from functional
optimization under the assumption of concave cost func-
tions [16]. However, most works have focused on solving a
weighted sum cost minimization problem. To the best of our
knowledge, there has been little effort in solving a constrained
inspection or maintenance problem in which one of the costs
is constrained. A constrained problem is more natural when
the system has a budget for inspection/update, or targets to
meet a specific system down/user inconvenience cost.

III. SYSTEM MODEL

We consider a time-slotted scheduling system for a mobile
application that downloads data in order to update its contents
in the background. Facebook, Twitter, and Gmail are examples
of such applications. We assume that once a user stops using
the application by putting it in the background, the user
next uses this application after an inter-launching time X as
depicted in Fig. 2, which we model as a discrete random
variable with finite expectation E[X]. The distribution of X



with prob. r(?),
cost = c(a)

If u = 0 (not update),
with prob. 1-r(f), cost =0

If u =1 (update),
with prob. 1-r(z), cost = 4

Fig. 4: State transition model with immediate costs in transi-
tion. State s is a tuple of the elapsed time ¢ and age a.

is known a priori from history, and is stationary (i.e., the
distribution does not change over time). X is also assumed to
be independent from any update policy. This is a reasonable
practical assumption because users in general revisit applica-
tions without the knowledge of how the background update
works. We denote the elapsed time from the last user activity
as a time slot £. During the inter-launching time, the update
schedules T' = (Th,T5, - - -) specify when to retrieve contents
from the server. We assume that the update completes instantly,
because the sizes of update feeds are typically small.

We consider two types of costs, update cost n(X, f) and
user inconvenience c(a(X,T)), where age a(t,T) = t —
maxr,<¢ 13, as depicted in Fig. 3. The age is the elapsed
time from the latest background update. The update cost
n(t,T) = max{i|T; < t} is defined as the number of updates.
We note that the energy consumed by updates is proportional
to the number of updates.* The inconvenience cost captures the
user’s quality of experience degraded by staleness (i.e., aging)
of contents. An older age for a certain application implies
that there may exist a high amount of pending updates, hence
results in longer latency in fetching all the latest feeds.” An
application that has a large number of pending updates often
slows the mobile device. The user inconvenience function
c(a) of age a is assumed to be non-decreasing in a, which
is intuitive. This function can be of various forms with its
dependency on the type of an application and user’s attributes.
Our problem is formally formulated to minimize the user
inconvenience cost under a given update cost V' as follows:

P1: min E[c(a(X,T))] subject to E[n(X,T)] <V. (1)
T

The energy budget V' can be tuned based on the battery level or
target lifetime. The key challenge is that the update decision at
a given timeslot is correlated with the costs of the entire future
timeslots. To tackle the difficulty, we model it as a Markov
decision process (MDP) with finite states and actions, which
can capture these correlations with a value function of states.

A. Markov Decision Process

(1) State transition model: Our state transition model is
illustrated in Fig. 4. The system state is defined as s = (¢, a), a

“4This assumption is valid when the amount of download data in an update is
relatively small and the update interval is longer than a tail duration (typically
about 10 seconds) as most energy consumption is from the tail energy for
small-sized packets [4].

SLong start-up latency of applications is one of the major complaints of
smartphone users in a user survey of about 100 users [10].

tuple of the elapsed time ¢ and age a < ¢t. We also denote by s,
the system state at time slot ¢. The initial state sq is (0,0). We
let t1ax be the maximum time slot, which can be regarded as
the longest time the system tracks, and ¢ < t,,x. In practice,
tmax 1S typically no longer than 24 hours for actively used
applications. We also define a terminating (i.e., absorbing)
state s., in which the system state enters whenever the user
launches the application. We let S denote the set of all states,
and S’ = S\ s denote the transient states.

To model the transition to a terminating state, we define the
failure rate rx (¢) that quantifies the frequency that a random
variable X is t (e.g., the user launches the application at t)
under the condition that X > ¢ [18]. We omit the subscript
X and use r(t) = rx(t) unless confusion arises. Formally,
rx(t) = %, for ¢ such that Fx(t) < 1, where fx(t)
and Fx (t) = ]P’EX < t] are the probability mass function and
cumulative distribution function of X, respectively. X is said
to have negative (positive) aging [16] when its failure rate
strictly decreases (increases) as time goes by. Intuitively, the
failure rate rx (¢) defines the probability that the system goes
to the terminating state at the elapsed time ¢. Typical machines
go through positive aging as their failing probabilities increase
as time goes by. We define p : s — p(s) as an update policy
which is defined for each state s = (t,a), where a control
wu(s) = p(t,a) € {0,1} decides whether to update (=1) or
not to update (=0) contents at each state s. In this paper, we
only consider the class of deterministic stationary policies,
since there exists an optimal deterministic stationary policy
in a transient Markov decision process with non-negative
immediate costs from Theorem 9.1 in [19].

We define the transition probability from state s = (¢, a)
to state s’ = (¢,a’) under a control u by p(s’|s,u) =
p((t',a’)|(t,a),u). Note that >, op(s'|s,u) = 1,Vs,u.
For the transition from other states to the terminating state
Soo, We have

P(Sool(t,a),u) = r(t),Vu € {0,1}.
If the next state s’ is not the terminating state, s,
p((t',0)[(t,a),1) =1 —r(t), p((t',a+ 1)t a),0) = 1 —r(t),

for t' = min(t + 1,tmax)- If pu(s) = 1, the age is reset to 0
as the device refreshes the contents, and if u(s) = 0, the age
and the elapsed time slot are increased by one time slot. In all
other cases, the transition probability is zero.

(2) Cost model for MDP: Immediate update and inconve-
nience costs in state transition from s = (¢,a) to 8’ = (¥, a’)
under a control u are denoted by g, (s, u) = ¢g,((t,a),u) and
ge(8'|s,u) = go((t',a")|(¢,a),u), respectively. Note that the
update cost is not dependent on the next state.

gn(sa 'LL) = 1{u=1}7 gc(8/|(t, a),u) = C(a’) ’ 1{8/=800,u=0}7

where 1y is the indicator function. The expected update and
inconvenience costs from a scheduling policy p are denoted
by N(u) and C(u), respectively:

N = E[i gu(stn(s)]. Cu) = E[i ge(suan s p(s)].



Remark 3.1: The Markov decision process (.S, p, pt) is a S’-
transient MDP or absorbing to s, for all policies.

(3) Problem Definition: Our objective is to minimize the
expected user inconvenience C(u) under a given constraint on
the expected number of updates, N () <V, where V' is the
threshold. We define the C-MDP (Constrained MDP) which
is equivalent to P1 as follows:

C-MDP: miII} C(p) subjectto N(u) < V. (2)
He

It is well known that a C-MDP problem is hard to solve

by using standard MDP solution techniques such as dynamic

programming. Thus, we define an U-MDP()\) (Unconstrained

MDP) problem with a Lagrange multiplier A > 0, as follows:

U-MDP(): - minC(p) + A+ (N () = V). 3)

From the Theorem 9.9 in [19], it is proven that solving C-
MDP is equivalent to solving the corresponding U-MDP()\)
for some A under the transient framework and non-negative
immediate costs. Our Markov decision process model satisfies
these conditions. In U-MDP(}), we denote u3 as an optimal
solution of U-MDP(}), i.e., u§ = argmin, ey C'(p)+A-N ().
Note that V' is a constant term in U-MDP()\). We define
C°(A\) = C(u3) and N°(X) = N(u}) to emphasize the
dependency of optimal expected costs on .

Proposition 3.1: (i) N°(\) is non-increasing and (ii) C°(\)
is non-decreasing in A.

Proof: We prove (i) and (ii) by contradiction. Consider
any A1 and Ay such that A\; < Ao.
(i) Suppose N°(A2) > N°(A1). From the optimality of 13,

Co(/\z) + /\QNO(/\Q) < CO()\l) + )\QNO()\l).
By rearranging terms and using Ay > Aq,
C?(A)—C°(A2) > X2 (N°(A2) —N°(A1)) > A1 (N°(A2) —N°(\y)).

Thus, CO()\Q) + AlNO()\Q) < Co(Al) + >\1NO()\1) and it
contradicts that ,ujl is optimal for U-MDP(\,).
(ii) Suppose that C°(\z) < C°(A1). Then, from (i),

CO(/\Q) + )\1N0(/\2) < CO()\l) + )\1NO()\1).

It contradicts that “§1 is optimal for U-MDP()\1). [ |

We denote A, as the optimal Lagrange multiplier such that
C-MDP is equivalent to U-MDP()\},) for the threshold V.
Deriving the optimal Lagrange multiplier for a threshold V'
is not trivial since we do not have any explicit expressions
for N°(A) or C°(\). Thus, the proposed algorithms to solve
the C-MDP problem are divided into two parts. We first
focus on solving U-MDP()\) for a Lagrange multiplier .
Then, we develop an iterative algorithm based on the Dekker’s
method [12], to find the optimal Lagrange multiplier A, for
the equivalent U-MDP()) problem to C-MDP problem with
a threshold V.

IV. ALGORITHM DESIGN

In this section, we propose iIMUTE (iterative Mechanism
for optimal UpdaTe policy with Energy constraint) to solve C-
MDP. iMUTE consists of two stages: (A) an optimal backward
induction algorithm for U-MDP()\) and (B) an iterative algo-
rithm to find Aj,. We explain these stages in each subsection.

A. Optimal Update Policy for U-MDP())

For a fixed ), there exists an optimal stationary deterministic
policy for U-MDP()\) from Theorem 9.1 in [19]. The policy
iteration algorithm [20] updates a value and a control of each
state iteratively to find an optimal policy, where a value func-
tion h¥)(s) is defined as the expected sum of the immediate
costs g from state s to the terminating state S, at k-th iter-
ation. g(s’|s,u), the immediate cost at a state s for a control
u, is defined as the weighted sum of immediate update and
inconvenience costs, i.e., g(s’|s,u) = g.(8'|s, u)+ A gn(s,u).
The initial value function, 1(?)(s) can be set arbitrarily (e.g.,
h°(s) = 0) for all state s. The policy iteration algorithm
that converges to an optimal policy ) for U-MDP(}) is as
follows [20]:

pF ) (s) = argmin A (s, u),
u€e{0,1}
R+ (5) = RO+D (g, 1B+ (g)),

where h(5+D(s,u) = S p(s|s,u) [hF) (") + g(s'|s, u)].
When max, |h*+1 (s) — h(¥)(s)| < n,Vs, for a sufficiently
small 7, the policy p* = p*+1) becomes an optimal schedul-
ing policy. We also use h(s) as the value of state s after they
are converged. It is well known that this optimal algorithm is
practically hard to use due to the curse of dimensionality [21].
The computational complexity involved is quadratic in the
number of states, where the number of states is also quadratic
in the maximum time slot, i.e., ¢;,.x. Therefore, the complexity
is O(tL..). To reduce the complexity, we first prove that a
threshold-based policy is optimal, and then develop an optimal
backward induction algorithm, whose complexity is O(¢2 ).

Theorem 4.1 (Threshold structure of an optimal policy):

(i) The value function h(t,a) is non-decreasing in a, and

(ii) an optimal policy *(¢, a) is non-decreasing in a. In other
words, an optimal policy updates contents if and only if
a > a*(t) at time ¢ for the threshold age a*(t) at t.

Proof: We prove (i) and (ii) by induction. For an update
policy u € {0,1}, A**+ D (¢ a,u) is computed as follows.

R (4 a,1) = A+ (1 — r(t)h (¢, 0),
RE+D (¢ a,0) = r(t)e(a) + (1 — r(t)R® (', a + 1),

where ¢/ = min(t+1, tpay ). Initially, set 2(9) (¢, a) = 0. At the
first iteration, M (¢, a) = 1 if r(t)c(a) > A and 0 otherwise.
Since c(a) is non-decreasing in a, V) (¢, a) is non-decreasing
in a for all t. Also, h(Y)(t,a) = min(\,r(t)c(a)) which is
non-decreasing in a.

Suppose that h(¥)(t,a) and u*)(t,a) are non-decreasing
in a. We will show that h**D (¢ a) and p*tV(t,a) are



non-decreasing in a. Observe that ﬁ(k“)(t,a, 1) is not de-
pendent on a. A1 (t,a,0) is non-decreasing in a, since
both c(a) and h*)(#',a 4 1) are non-decreasing in a. There-
fore, if At (¢ a,0) > h*+D(¢ a,1) for some a, then
A0 (¢ a +1,0) > A*+D(¢,a + 1,1). This indicates that
pF (@) =1 = p++t(a 4+ 1) = 1, ie., p**+Y(a) is non-
decreasing in a. Also, h(’““)(t7 a) is non-decreasing in a from
R (¢, a) = min(A*+D (¢, a, 1), A6+ (£, a, 0)). ]

Before we describe our threshold-based backward induc-
tion algorithm, we first consider the case with geometrically
distributed X. Because of its memoryless property, we can
simply calculate the optimal threshold age and this will be
used in calculating the optimal threshold age at the maximum
time slot, t;,,x in the general distribution.

(1) Geometrically distributed X (constant failure rate): If
the inter-launching time X is memoryless or geometrically
distributed (i.e., the failure rate is constant, or r(t) = r), then
we can ignore the state variable ¢. Thus, we can simply use
a to denote the state and fL(a; ) as the value of the state a
with update policy p. In such a case, we can find an optimal
threshold age using a simple equation, and then a periodic
update policy with the chosen threshold age becomes optimal.
Denote pi,/ as an update policy such that p,/(a) = 1 fora > a’
and 0 otherwise. For a threshold age o/, the value function at
the initial state a = 0 is computed as follows.

AL =)@+ 4 S (1 = r)ie(i)

}AL(O;/JJG’) = 1— (1 _ )a +1 @

from h(a;pa) = A+ (1 — 7)h(0; o) for a > o and
h(a; piar) = 7+ c(a)+(1—7r)h(a+1; pa) for a < o’. Then, the
optimal threshold age is a* = argmin, 4 (0; siq). If multiple
threshold ages attain minimum, we choose one randomly.

(2) Threshold-based optimal update policy for U-MDP()):
Using the Theorem 4.1 and the results from a geometrically
distributed inter-launching time, we develop a threshold-based
backward induction algorithm that obtains an optimal update
policy for U-MDP()). Eq. (4) is used to obtain an optimal
threshold age at the maximum timeslot (¢;,.x) in step (A)
and Theorem 4.1 guarantees the optimality of the threshold
age obtained in backward induction in step (B). The formal
algorithm description is as follows.

Threshold-based backward induction for U-MDP()\)

Inputs: A, tax, 7(+), c(+)
Outputs: p*, N(u*)
(A) Computing a* (tax):

I: t = tmax, T = T’(tmax).

)\(lfr)a'HJrZa L r(l1— r)lc()
1—(1— r)‘“rl

A=) O 5T (O (1) e(i)
1—(1- r)a*<t>+1

: h(t,0) =
A(L—r)* O+

3
4. hn(t,O) = W.
5
6

2: a*(t) = argmin,

2 h(t,a) = XA+ (1 —r)h(t,0) for a > a*(t).
s h(t,a) =r-cla)+ (1 —r)h(t,a+1) for 1 < a < a*(t).

7 hn(ta a) = 1{a2a*(t)} + (1 - r(t))hn(ta
(B) Backward induction:

8: fort =t —1,t=0,t—— do

9: if h(t,a*(t+1),1) < h(t,a*(t + 1),0),

0), for a > 1.

>a*(t) <a*(t+1)
10: fora=a*(t+1)—1,a=1,a—— do
11: if A(t,a,1) > h(t,a,0),
12: a*(t) = a + 1; break
13:  else > a*(t) >a*(t+1)
14: fora=a*(t+1)+1,a=t, at++ do
15: if A(t,a,1) < h(t,a,0),
16: a*(t) = a; break
17: p*(t,a) =1 for a > a*(t) and 0 otherwise.
18:  h(t,a) = h(t,a, p*(t, a)).
191 hn, (t ) 1{a>a*(t)} + (1 - T( ))hn(t + 170).
N(p*) = hn(0,0).

In line 2, if there are multiple minima, it chooses one
randomly to break the tie. In Step (B),

h(t,a,0) = r(t)c(a) + (1 —r(t)h(t+1,a+1),
h(t,a,1) = A+ (1—7r(t)h(t+1,0).

hn(t,a) is the value function for the update cost, which
accumulates immediate update cost g, (s, u*(s)) in the fu-
ture time slots. In each time slot ¢ of backward induction,
we first check whether a*(¢) is smaller than or equal to
a*(t + 1), or larger than a*(¢ + 1) in line 9. Note that if
h(t,a*(t +1),1) < h(t,a*(t +1),0), then an optimal policy
should update at state (¢,a*(t + 1)), ie., a*(t) < a*(t + 1).
The intuition behind this is that if r(¢) is slowly varying in
t such that 7(t) ~ r(t') for t < t' < t+ a*(t + 1), then
both the immediate costs and next value functions at states
(t,a*(t+1)) and (t+1,a*(t+ 1)) are similar so that a*(¢) is
also similar to a*(¢ + 1). If r(t) is slowly varying, when the
failure rate X is decreasing (increasing) or heavy-tailed, the
optimal threshold age is non-decreasing (non-increasing) in ¢,
i.e., the update intervals are increasing as the elapsed time ¢
increases. We will show this in Section V. This coincides
with the approximation algorithm in [16]. After checking this,
depending on the cases, a*(t) < a*(t+1) or a*(t) > a*(t+1),
the algorithm searches for the optimal threshold age at time ¢
by decreasing age in lines 10-12 or by increasing age in lines
14-16, respectively. The value functions h and h,, are updated
in lines 3-7 and 18-19. Finally, the expected update cost at the
initial state (0,0), N(u*) is equal to h,(0,0).

B. A Dekker’s method-based iterative algorithm to find the
optimal Lagrange multiplier \j,

Now, the next problem is to find a solution of g(\) =
N(A) — V = 0. Since N()) is non-increasing in A and
N(X) > 0, there exists a solution for 0 < V' < N(0) by the
intermediate value theorem. This problem is also equivalent
to a minimization problem, min(g(\))2. We note that the
maximum of N(A) is N(0) = E[X], where the corresponding



optimal scheduling policy is to update contents at every time
slot. The solution can be found by iterative algorithms. A
desired property is fast convergence, since an evaluation of
N (X) requires solving the U-MDP()) at each iteration.

A reliable way is to use the bisection method, whose
rate of convergence® is % In order to achieve much faster
convergence, we adopt a hybrid approach, called Dekker’s
method [12], which is a combination of the bisection method
and the secant method.” The Dekker’s method is as reliable as
the bisection method, and as fast as the secant method when
the function is “well-behaved’, which we will specify later.
The secant method is an approximation of Newton’s method,
which is useful when the derivative function ¢’ is not available,
as in our problem. Instead of using the derivative, the secant
method approximates the derivative from the function values
at the last two iteration points. From this, the secant method
is also called linear interpolation. The rate of convergence of
the secant method is 1.62, which is superlinear.

We first describe our iterative algorithm based on Dekker’s
method, and provide the fast convergence result of our algo-
rithm, i.e., the secant step is performed at each iteration, under
a condition that the time slot is sufficiently short.

IMUTE: Dekker’s-method-based iterative algorithm

Inputs: V (threshold), e (tolerance)

Outputs: A}, /f;\*v

(A) Initialization:

1: Choose sufficiently small A\j, Ao > 0 (A < A2), and large
Am such that N°(Ag) >V and N°(A\,,) < V.

2: N°(\) < U-MDP()\;), N°(A\3) + U-MDP(\y), k = 2.

(B) Iteration step:

3: while |[N°(\;) — V| <e

4 i No(\) £ N°(\e_1),

> Mt = M = wos vty - (N2 Ow) = V).

6: else )\ = 2atdm,

70 NO(Ajsr1), o < U-MDP(\ipr).

8 if sign(N°(Ap41)—V) = sign(N°(Ap)—V), A = A
90 k=k+1

10: Ay = Mg, /f;\; = L.

Initially, we choose sufficiently small \;, Ay such that
N°(X2) > N°(A\1) >V, and large A, such that N°()\,,) <
V. From the monotonicity of N°()\), the optimal A* lies in
[A2, Amm]- A will be updated such that the optimal A* is
between A\; and \,,. In the iteration, the secant step in line
5 is performed unless N°(A\;) = N°(Ag_1), as illustrated
numerically in Fig. 5(a). The condition N°(\y) = N°(A;_1)
is satisfied when the difference in A\, and A,_; becomes
sufficiently small so that the update intervals are not changed.
We note that the intervals are discrete and this may happen

App1—A"
e -2

%The rate of convergence is limg_, oo
k-th iteration.
1t is also called Broyden’s method [22] for multiple variables.

where \j is the value at
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Fig. 5: Numerical results of our iteration algorithm and the
optimal threshold age in each iteration. The chosen parameters
are E[X] = 7200 (sec), B = 0.5, V = 6, c¢(a) = a®®, and
A1 = 0.5, Ay = 0.6. The dashed line indicates the expected
update cost N°(A) and the solid line indicates the linear
interpolation (the secant step) at the first iteration. The white
dots indicate iteration points (Mg, N°(\g)).

when )\, approaches close to the optimal A*. Then, the
bisection step in line 6 is used. After the update of A,
depending on the signs of N°(A;41) —V and N°(\,,,) =V,
A* can be in either [Ag, Ag11] or [Apr1, Am] When Ay < A,
If their signs are the same, A\* is in [Ag, Ap+1], and we update
Am to be Mg, as in line 8. Otherwise, A* is in [Agt1, Aml-
This bisection interval guarantees the convergence from the
monotonicity of N°(X).

Superlinear convergence of our iterative algorithm: The
secant method is proven to superlinearly converge when the
function N°(X) is Lipschitz continuous [23].° Thus, if the
derivative of N°(\) is bounded, our Dekker’s method con-
verges superlinearly by the secant step. We prove the following
lemma for the bounded derivative of N°(\) in Appendix.

Lemma 4.1 (Bounded derivative of N°(\)): If the length of
a time slot becomes infinitely small, the derivative of N°(\)
is bounded.

If the time slot is not sufficiently short, the derivative may
not be bounded. Even in this case, the bisection step in our
iterative algorithm guarantees the convergence and the rate of

convergence is % .

V. NUMERICAL RESULTS

In this section, we illustrate our iteration algorithm and the
threshold-based update policy for Weibull distributed (heavy-
tailed) inter-launching time X.'° Later, we will show that the
empirical inter-launching times of users follow the Weibull

8When Ay > Am, A* can be in either [Am, Apy1] o [Mgp1, M)

9A function f : X — Y is called Lipschitz continuous if there exists a real
constant i > O such that forall 1,22 € X, | f(z1)—f(z2)| < K|z1—22|.

10The probability mass function of the discrete Weibull distribution with
the parameters « (scale) and 3 (shape) is exp[—(i)ﬁ] - exp[—(%)ﬁ].
When 8 < 1, the distribution is negative aging or heavy-tailed, i.e., rx (¢) is
decreasing in ¢.
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Fig. 6: Expected update and inconvenience costs of iMUTE
and the periodic policy, with different shape parameters [.
The numbers in the parenthesis indicate the update period of
the periodic policy. When either of update or inconvenience
cost is equally adjusted, the other cost is always less in iMUTE
compared to the periodic policy.

distribution in our traces. We use the following parameters:
E[X] = 7200 (sec), 8 = 0.5, V = 6, c(a) = a®®, and \; =
0.5, A2 = 0.6. The length of a time slot is 1 sec. We depict
the results in Fig. 5. Fig. 5(a) illustrates the Dekker’s-method-
based iteration algorithm. In every iteration, the secant step is
performed and the algorithm converges to the optimum in 4
steps with € = 0.02. At the optimal Lagrange multiplier \}, =
Ag, we obtain the optimal update policy for C-MDP as shown
in Fig. 5(b). Because the failure rate X is decreasing, the
optimal threshold age is non-decreasing in ¢, i.e., the update
intervals are increasing as the elapsed time ¢ increases.

In Fig. 6, we compare iMUTE with periodic policies with
the same update cost and the same user inconvenience cost, for
two different shape parameters, 5 of the Weibull distribution.
Note that as the shape parameter decreases, the distribution
becomes more heavy-tailed. The interval of a periodic policy
that has the same update cost has a slightly lower interval than
E[X]/V = 20 minutes, since the update cost is counted after
each update interval. For the shape parameter 5 = 0.5, our
optimal update policy decreases the update cost by 21% and
the user inconvenience cost by 7%. For the shape parameter
B = 0.7, the gains become 7% for the update cost and 3% for
the user inconvenience cost. Thus, our threshold-based policy
becomes more effective compared to the periodic policy, as the
inter-launching time distribution becomes more heavy-tailed.

VI. TRACE-DRIVEN SIMULATION

In this section, we evaluate the performance of our algo-
rithm over real smartphone traces by comparing with other
benchmark schemes. The key performance metrics are the
update cost and user inconvenience from stale contents.

A. Traces: Inter-launching time

To capture application usage behaviors of smartphones in
the wild, we performed our own data collection with 101
Android users selected from a few popular Internet commu-
nities of South Korea two times during Feb. 5-18, 2015 and
July 7-20, 2016. In order not to incur any bias, we did not
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Fig. 7: The CCDF (complementary CDF) and the correspond-
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Fig. 8: The average inter-launching times (left) and the best
fitted Weibull shape (3) parameters (right) of the users.

inform that the social media applications are of our particular
interests. The most popular social application in our trace data
is Facebook followed by Naver Cafe (a community app) and
Naver Band (a group chat app). We focus on Facebook in
our evaluation, where the simulation results are similar in any
social media application that is of main use. For more details,
please refer to [30]. For the trace-driven simulations, we select
26 users who regularly use Facebook at least once a day.

In Fig. 7, we plot the inter-launching time distributions of
two chosen participants and show that they are heavy-tailed.
We verify by two goodness of fit tests, Cramer-Smirnov-Von-
Mises (CSVM) [24] and Akaike [25] that the inter-launching
times of all users have the best fit with Weibull distributions
rather than exponential, log-normal, truncated Pareto, gamma,
and Rayleigh distributions. Note that if the shape parameter (3)
of a Weibull distribution is less than 1, it is heavy-tailed. When
the inter-launching time is heavy-tailed, its corresponding
failure rate is decreasing over the elapsed time (which is often
called negative aging [16]), as shown in the bottom of Fig. 7.

In Fig. 8 (a), we depict the CDFs of average individual inter-
launching times of users, where the average inter-launching
time is about 143 minutes. We also depict the CDF (cumulative
density function) of shape parameters (3) of the fitted Weibull
distributions of 26 users in Fig. 8 (b), which indicates that all
users show heavy-tailed (i.e., 5 < 1) inter-launching times.

B. Compared algorithms

Periodic policy: This policy updates contents periodically.

Multiplicative increase (MI) policy (HUSH [8]): The MI
policy have two parameters: an initial period 7; and in-
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Fig. 9: Expected update and inconvenience costs of iMUTE,
periodic, MI (HUSH), and AI policies, for two types of
inconvenience costs: (a) logistic, and (b) iso-elastic functions.
The error bars indicate 25th and 75th percentiles.

creasing parameter o, where its update interval increases as
Ty — Ty =T, - 0" for k > 2. MI is used in HUSH [8].
Additive increase (AI) policy: The Al policy is defined by
two parameters, an initial period 7} and increasing parameter
d. Then, the additive policy is T —Tp—1 = 11+ (k—1)-¢ for
k > 2. For fair comparison, we choose the best parameters of
MI/ALI policies for a given constraint.

C. Results

For each user, we use the inter-launching time data during
the first week to train the iMUTE policy for each individual.
The remaining inter-launching time data during the second
week are exploited as the testing dataset. In particular, we
first use the best fitting Weibull distribution of training dataset
to represent the inter-launching time distribution of each user.
Then, we calculate the failure rate function r(-) according to
the fitting Weibull distribution. Given the failure rate function
as input, we apply our iMUTE algorithm to find the iMUTE
policy under the cost function ¢(-). Then, we apply the iMUTE
policy, periodic policy, and MI/AI policies respectively to
make update decisions for each inter-launching interval in
the testing dataset. In all cases, the numbers of iterations to
converge are less than 10 iterations, for a tolerance parameter
e = 0.1. The performance of the policies is measured by
average update cost and average user inconvenience.

In Fig. 9, we compare our iMUTE policy with periodic
policies and MI/AI policies with the same update cost and
same user inconvenience. To make the comparison fair, we
tune the initial period and increasing parameters of MI/AI
policies to achieve the best performance. We compare the
performance results under two types of user inconvenience
functions: (1) logistic function!! ¢(a) = ﬁ%@%ﬁ) and (2)

'The logistic function gives a common S-shaped curve. The chosen
parameters show steep increase around 300.

iso-elastic function c¢(a) = a%2. For many mobile applications,
contents of applications (e.g., stock price/weather information,
coupons) may be volatile and become almost worthless after
some time. We use a logistic function that can capture the
user inconvenience of such applications. We also consider
an iso-elastic function whose exponent is smaller than 1 to
model applications and users that have decreasing marginal
inconvenience as age increases (i.e., concave inconvenience
cost function). The iso-elastic function is widely used in
economic analysis to model user behaviors, where it has a
constant elasticity.!?

Under the logistic function case, iMUTE decreases the
update cost by 28.7%, 29.1%, and 18.2% compared to the
periodic, MI, and Al policies respectively, for the same average
user inconvenience. The parameters used for the MI policy are
Ty = 60 and o = 5, and the parameters for the Al policy are
Ty = 60 and § = 2500. For the same average update costs,
our policy decreases the user inconvenience by 20.9%, 30.8%,
and 20.9%, compared to the periodic, MI, and Al policies,
respectively. The parameters for the MI policy are 77 = 60
and o = 5, and the parameters for the Al policy are 77 = 60
and 6 = 700. In all cases, our policy outperforms the others
with lower user inconvenience and update costs.

Under the iso-elastic function case, iMUTE decreases the
update cost by 18.9%, 3.7%, and 2.3%, compared to the
periodic, MI and AI policies respectively, with the same
average user inconvenience. The parameters used for the MI
policy are 7} = 300 and o = 1.015, and the parameters for
the Al policy are 77 = 300 and § = 10. On the other hand,
when the same average cost is pursued, our policy decreases
the user inconvenience by 2.9%, 3.3%, and 3.3%, compared to
the periodic, MI and Al policies, respectively. For this setting,
the parameters of the MI policy are set to be 77 = 300 and
o = 1.02, and the parameters for the Al policy are 77 = 300
and 0 = 12. Since the marginal increase shrinks quickly over
time in the iso-elastic function, the user inconvenience gain
is relatively small, but the reduction in the update cost is still
significant compared to the periodic policy.

VII. DISCUSSION

Throughout the paper, we focused on finding an optimal
update policy for given user statistics. For the actual system
implementation on mobile devices, there are several issues to
be discussed such as trace logging and processing, policy re-
computation, and policy execution.

First, the inter-launching times are logged for each launch-
ing event. After sufficient traces are collected, a distribution
is fitted with the best one (Weibull in our case). Then, the
optimal update policy is obtained from our iMUTE algorithm
for the given distribution of the inter-launching time X. In case
the underlying distribution changes over time from the change
of user behaviors, we may need to use sliding window or
discounted weighting such as in [26] to refresh the distribution

(a)

2The elasticity of a function ¢(x) is defined as oy - Intuitively, it is

the ratio of the relative (percentage) change in the function value c(z) with
respect to the relative change in its input x.



and re-compute the optimal update policy. This may happen
rarely in practice (e.g., once a week) since people tend to
stick to a certain pattern of usage after they get familiarized
with the device and the application [27], and therefore the
computational overhead of the device becomes more negligible
in the long run. Also, in order to prevent cold start from the
learning period, one may want to use collaborative filtering to
obtain statistics from other users with similar attributes, which
is out of the scope of this paper.

For the energy-efficient execution of the optimal update
policy, we can exploit timer APIs (Application Program In-
terface) of mobile devices, which wakes a device up at a
desired moment with little energy cost. This timer mechanism
is efficiently implemented in most mobile OSs such as Android
and i0S, and thus incurs minor energy overhead.

VIII. CONCLUSION

In this paper, we develop an optimal update policy for the
applications that prefetch contents in the background with a
pull-based manner, under an energy constraint. We model the
problem as a constrained MDP (C-MDP), and design a two-
step solution. We first develop a threshold-based backward
induction algorithm to solve an unconstrained MDP (U-MDP),
and then, we develop an iterative algorithm, iMUTE based on
the Dekker’s method, which converges superlinearly.

We consider two extensions for future work. The first is to
extend our framework to cover multiple applications, in which
we can further reduce energy by bundling multiple updates
from different applications. Finding an optimal policy can be
much more complex as the usage patterns can be diverse across
multiple applications. The second is to exploit surrounding
informations so-called contexts such as the time of a day or
the previously used application. A few recent measurement
studies [10], [28]—-[30] have revealed that the correlations
between usage patterns and the surrounding information can
be used to accurately predict the inter-launching time X.

We remark that the proposed algorithms in this paper are
easily extendable to the resource-constrained inspection and
maintenance problems with small modifications. Potential ap-
plications include inspection/replacement schedules for aging
parts of a machine (e.g., car tires), and clock sync updates in
battery-limited sensors with clock drift.
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APPENDIX A
PROOF OF LEMMA 4.1

We consider a continuous-time problem of P1, where P1
is equivalent to the continuous-time problem as the time
slot becomes infinitely small. In the continous-time version,
T = (T1,Ty,---) are continous variables. We let Ty = 0.
Here, we abuse some notations in out discrete-time model
for the ease of explanation. We re-define fx(t) and Fx(t)
as the probability density function and cumulative distribution



function of the inter-launching time X. Similar to the MDP
model, we let T,,.x be the maximum time duration that the
system tracks, and rx (t) = g ((t)) be constant for ¢t > Tiyax.
In other words, Tiax 1S tmax multiplied by the length of a
time slot. We remove the subscript X for simplicity, in the
rest of the proof. N(T') and C(T') are the expected update

and inconvenience costs as follows:
- > _ - Trtr—
=3 e, o=
n=1

where F(t) = 1 — F(t) is the complementary cumulative
distribution function. The Lagrangian relaxed continuous-time
problem P2 (which corresponds to U-MDP) is as follows:

P2: ming(f) = min C(T)+ X- N(T), 3)
7 7

VF(t + T,)dt,

where A is a Lagrange multiplier.

We first derive the first-order necessary condition for op-
timal update points, 7*(\) = (TF(\),T5()),---) for given
A. For notational simplicity, we use T,, = T.5(\) for optimal
update points, in the rest of the proof. From the first-order

3g o 0)

condition (i.e.,

f(Tn>(c<Tn—Tn_1> - [T ) =

for n > 1, where ¢/(t) is the derivative of the user inconve-
nience function ¢(t). Dividing by f(T,) yields

ety
A= C(Tn Tn—l) A f(Tn)

Then, we differntiate both sides by A. Note that optimal T is
dependent on A. We have

d(t)dt.  (6)

_ aTn anp, aTn—l bn—l aT'n-‘,-l bn (7)
T O f(Th) OX f(Tn)  ox f(T,)
where
ap = f(Tn)<C/(Tn — Tn—l) + f'](tz(;l_‘:)l)cl(Tn_i_l — Tn)

Tpi1—Tn
o Gy wm).

bn == f(Tn+1)C/(Crn+1 -

Now, we derive a series expression for the derivative of

T,), forn>1, by =0,

N°(X) = N(T*())). From the definition of N(T'),
8N0()\) o1y T,
— T)——— T e 8
By applying the recursive formula in Eq. (7),
ON°(A d?
— 8}\():61+62+~~,f0ren:a, C))
bn—1 3; 1
dn:f(Tn)+ dn—l, Cp =0ap — —, fornZl,
n—1 Cn—1

and dyp = 0,cp = 1. In the following lemma, we prove that
the series in Eo(% (9) converges by the ratio test. Therefore, the
derivative aNa 3 A) is bounded, which concludes the proof.

Lemma A.1: lim,,_, o < 1, and the series e; +ea+- -
converges absolutely.

Proof: From the Lemma B.2,

eni1
€En

. Cn+1 . bi .
lim = lim = lim < 1.
n—oo € n—00 CpCpi1 n—oo b, _1
APPENDIX B u

PROOF OF LEMMAS B.1 AND B.2
From the first-order necessary condition in Eq. (6), for any
n, T, — Tph—1 > 7 for 7 = inf{7|e(7) = A} since the integral
term is positive. Therefore, there exists sufficiently large n
such that T, > T ,,x for any m > n. For the update points
after Tihax, wWe prove the following lemma.

Lemma B.1: For any n, m such that T,,, > T},.x and T,, >
T ) 5 (L5532 ) = 0, i) @ = bu+ba1, Gii) T -
Ty = Tp1 — Ty and (iv) 2250 = B2t <

Proof: (i) Fort > Tipax, T ( )= 1520 = r. Thus, f(t) =
r(1 — F(¢)). By differentiating both sides, f'(t) = —r - f(t),
@ f+Tn)

i.e., HORERE The partial derivative of FTLy - over T, is
0 (f(t+Tn)):(f(t+Tn) f'(Tn )) fE+T) _
o, \  f(Tn) f+Ty)  f(Tn)/ f(Th) '

(ii) From (i), a,, = by, + by—1.

(iii) Since f'(t) = —rf(t) for t > Thax, f(t) =C1-e”
and 1 — F(t) = ©e~"* for some constant C;. Then, P2 can
be separated into two parts before T, and after 7),:

n T
ming(T) = 3 { /T et =T e+ A F(Tl))}

=1
T,l+1 T C

+e—TT”(/ c(t)Cre bt + X - —Lemr T )) o
0

Since the latter part is the same for n or m, the optimal first

interval in the latter part (i.e., 7,41 — T}, and T}, 41 — T}y 18
the same.
(iv) Recall that for ¢ > Tiax, f(t) = Cye Then,
from (i, 4 = Lfpsimes)l < e
e " (Tni2— T"+1) < 1. Also, from (iii), b’”“ = b’gﬂ < 1
" " m
Lemma B.2: lim,, _, o, g‘—: = b’g:Ll f(%:fl) =0.

Proof: Consider sufficiently large n such that T}, > Tiax.

From ap, = by + b1, = = 1+ C2 — =2 where
) bp—1

bn_1

G2 = 5

the above recurrence equation for

(=1)"(C2—1)C2C3

> 1 (from (iv) of Lemma B.1). By solving

Cn.

,wehave%:l—k

, for some constant C5. Since Cy > 1,

70%2 +(=1)"C2C3

limy, o0 % = 1+(Cy—-1) =

f(Tm+1)
dm

b’;—;l. Using the above equation,

— lim bf(Terl)

mTreo f(Tm) + ﬁf(Tm—l) +
f(Tm-‘rl)

Tw) + f(Tn) +

lim
m— 00

= e =i




