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Balancing Queueing and Retransmission:
Latency-Optimal Massive MIMO Design
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Abstract— One fundamental challenge in 5G URLLC is how to
optimize massive MIMO systems for achieving low latency and
high reliability. A natural design choice to maximize reliability
and minimize retransmission is to select the lowest allowed target
error rate. However, the overall latency is the sum of queueing
latency and retransmission latency, hence choosing the lowest
target error rate does not always minimize the overall latency.
In this paper, we minimize the overall latency by jointly designing
the target error rate and transmission rate adaptation, which
leads to a fundamental tradeoff point between queueing and
retransmission latency. This design problem can be formulated
as a Markov decision process, which is theoretically optimal, but
its complexity is prohibitively high for real-system deployments.
We managed to develop a low-complexity closed-form policy
named Large-arraY Reliability and Rate Control (LYRRC),
which is proven to be asymptotically latency-optimal as the
number of antennas increases. In LYRRC, the transmission rate
is twice of the arrival rate, and the target error rate is a function
of the antenna number, arrival rate, and channel estimation
error. With simulated and measured channels, our evaluations
find LYRRC satisfies the latency and reliability requirements of
URLLC in all the tested scenarios.

Index Terms— 5G mobile communication, mobile communica-
tion, multiuser channels, queueing analysis, cross layer design,
channel rate control, time-varying channels, precoding, OFDM,
channel estimation.

I. INTRODUCTION

NEXT-GENERATION cellular systems, labeled as 5G, are
targeting low latency and ultra-high reliability to support

new forms of applications, e.g. mission critical communica-
tions. One of the key technologies for 5G will be massive
MIMO, where the base-stations will be equipped with tens to
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hundreds of antennas [1]–[4]. In this paper, we explore how
to leverage the large number of spatial degrees of freedom to
minimize latency while ensuring high reliability.

Current cellular system design follows a layered
approach. The queueing latency1 is managed at MAC
and higher layers, while the target (block) error rate2 is
managed separately by the physical layer to maximize the
physical layer throughput. For example, the transmission rate
(usually referred to as modulation and coding scheme [5])
is often adapted to meet a fixed target error rate of around
10%. This decoupled design is shown to be nearly throughput
optimal [6] for single-antenna systems. However, such a
decoupled design may not achieve low latency.

As 5G pushes to low latency (10-100× lower than the LTE
system [7]) and ultra-high reliability, it is of paramount impor-
tance to control the latency and service unreliability caused by
retransmissions. The Ultra-Reliable Low-Latency Communi-
cation (URLLC) has a reliability requirement of 99.9999% [8],
i.e., the probability of packet successful delivery within 4
round of transmissions (0.25 ms/5G frame) should be higher
than 99.9999%. To satisfy such reliability requirement, the tar-
get error rate cannot exceed 3.16%. For a given set of possible
target error rates, it might be natural to choose the lowest
one, which leads to the highest link reliability and shortest
retransmission latency. However, since the overall latency is
the sum of latency due to queueing and due to retransmissions,
a very small target error rate might result in long queueing
latency and does not always minimize the overall latency. In
this paper, we achieve reliability guaranteed latency minimiza-
tion by finding the target error rate and the transmission rate
adaptation that jointly minimize the overall latency.

While it is widely known that the target error rate reduces
with a higher transmission power or a lower transmission
rate, the relationship between the target error rate and over-
all latency is more complex. There is a tradeoff between
retransmission latency and queueing latency, both of which are
impacted by the target error rate: On the one hand, the retrans-
mission latency reduces as the target error rate reduces. On the
other hand, if the system is fixed to an extremely low target
error rate, few packets can be transmitted in each frame,
i.e., the transmission time to send the same amount of packets
increases, and packets have to wait for a longer time in the

1In this paper, we use queueing latency to represent the waiting time that
packets spend in the MAC-layer queue. And overall latency denotes the total
latency caused by retransmission and waiting at the MAC-layer queue.

2In this paper, we use the target error rate when emphasizing the design
of transmission control. And we use block error rate when emphasizing the
probability of decoding error under a given transmission control.
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Fig. 1. An example illustrating the overall latency for different target error
rates, where the transmission rate has been optimized for each given target
error rate. A massive MIMO uplink system with 4 single-antenna users and
32 base-station antennas is considered. The channel traces are measured in an
over-the-air channel on the Rice Argos platform and the base-station estimates
the channel based on 8 pilot symbols per user. Please find the evaluation details
in Section VI.

queue. Therefore, under a given arrival process, the queueing
latency increases as the target error rate reduces. The situation
is further complicated by the fact that current mobile users
adapt their transmission power, which makes the feasible
(transmission rate, target error rate) tuple time-varying. Fig. 1
depicts an example of the minimum overall latency achieved
at different target error rates where the transmission rate is
optimized for given target error rate; the details on how
to optimize the transmission rate will be discussed later in
Section III. For the specific example in Fig. 1, a target error
rate (1%) smaller than both the LTE target error rate (10%) and
the URLLC reliability requirement (target error rate of 3.16%)
results in the minimum overall latency. It demonstrates a need
for finding an appropriate target error rate that minimizes the
overall latency by balancing the queueing latency with the
retransmission latency.

In this paper, we model practical massive MIMO systems
with retransmissions. To minimize the overall latency from
both queueing and retransmission, we optimize the target error
rate and transmission rate adaptation. The main contributions
of this paper are the following:

• We formulate a latency minimization problem for mas-
sive MIMO systems, in which the target error rate and
transmission rate are jointly optimized for minimizing
the overall latency, subject to the reliability constraint of
URLLC. The arrival process is a discrete random process
that is memoryless. This optimization problem is cast as a
constrained Markov decision process and solved by value
iteration.

• Because Markov decision process does not provide much
insight on the optimal control, we develop a deterministic
control policy for massive MIMO with a large number of
antennas and a constant arrival rate. We note that there
exists an important 5G URLLC type data traffic, e.g.,
time-sensitive and throughput-hungry virtual reality (VR)
service [9], which has a constant data arrival rate. This
deterministic control policy is named as Large-arraY
Reliability and Rate Control (LYRRC), which has a
low complexity and is in a closed form: If the packet

arrival rate is λ, the transmission rate of LYRRC is
2λ. In addition, the target error rate of LYRRC is
Fη

[
1

M1−ρ

(
1 + K

τ + pI

)]
, where Fη is the CDF of the

effective channel gain (defined later), M is the number
of base-station antennas, K is the number of users, ρ
is the traffic arrival load over link capacity, pI is the
power of the interference from neighboring cells, and
τ is the number of pilots. LYRRC is proven to be
asymptotically optimal as the number of antennas grows
to infinity. Furthermore, the total latency achieved by
LYRRC can be expressed as a closed-form function of the
number of base-station antennas M , the number of pilots
τ , the number of served users K , and ρ. In particular,
for ρ ∈ [0, 1), we show that the average waiting time
diminishes to zero as M increases to infinity.

• To verify LYRRC’s performance in the real world,
we measure massive MIMO channels on the 2.4 GHz
with Rice Argos platform [2], which consists of a
64-antenna base-station and four mobile users. The
numerical experiments based on the measured and simu-
lated channels show that LYRRC with 5G self-contained
frame [5], [10] can simultaneously meet the 1 ms latency
and 99.9999% reliability criterion. In the same scenario,
the best latency of transmission rate control policies with
a fixed target error rate of 10% is more than 5 ms. The
evaluations demonstrate that LYRRC can provide 400×
latency reduction compared to current LTE transmission
control, which has a target error rate of 10% and fixed
per-frame transmission power control. Compared to the
best queue-length based rate adaptation policy with a
fixed target error rate of 10%, LYRRC achieves a 20×
latency reduction.

Related Work: The majority of the massive MIMO lit-
erature focuses on the achievable rate maximization, which
assumes full-buffer and does not model the upper layer latency
from queueing. Massive MIMO was shown to provide higher
spectral efficiency [11], [12], wider coverage [11], [12] and
easier network interference management [11], [13], [14] than
traditional MIMO. This work differs from previous massive
MIMO physical layer work in that we provide reliability
guaranteed latency-optimal transmission control. Prior work
also optimized the retransmission process, either for through-
put [6] or energy efficiency [15] maximization. Additionally,
cross-layer optimization [16]–[19] have been proposed for
latency reduction. For a point-to-point system, past stud-
ies [20]–[23] showed that using the queue-length information
for transmission rate control can reduce queueing latency.
Finally, stochastic network calculus [24] is used to capture
the latency violation probability of multi-input single-output
systems with perfect rate adaptation. Thus, the perfect rate
adaptation of past work implies no decoding error or retrans-
mission latency.

The remainder of this paper is structured as follows.
In Section II, we provide a physical layer abstraction and
network model for a single user latency minimization prob-
lem. Section III provides an algorithm to solve the for-
mulated latency minimization problem. A simple and yet
latency-optimal transmission control policy, LYRRC, is inves-
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Fig. 2. Single-user uplink system consisting of a single antenna user and an M -antenna base-station.

Fig. 3. Structure of the self-contained frames. Each self-contained frame consists of uplink data resource blocks (blue), downlink feedback signals (green)
and the guard periods (gray). The transmitted data is encoded over N subcarriers with a single code-block.

tigated in the large-array regime in Section IV. In Section V,
we extend our single-user analytical results to multiuser
massive MIMO systems. We provide numerical results in
Section VI and conclude in Section VII.

Notations: We use boldface to denote vectors/matrices. We
use | · | to denote the magnitude of a complex number. And
the l2 norm of a complex vector is �·�. The complex space is
C. The space of real value is R whose positive half is denoted
as R

+. The following notations are used to compare two
non-negative real-valued sequences {an}, {bn}: an = O (bn)
if limn→∞ an

bn
≤ ∞; an = o (bn) if limn→∞ an

bn
= 0. And

f1 (M) ∼= f2 (M) denotes that limM→∞
f1(M)
f2(M) = 1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a massive MIMO uplink system. The
single-user case is considered first in Sections II-IV, and is
depicted in Fig. 2. The extension to multi-user systems will
be presented later in Section V. Each user is equipped with a
single antenna and the base station has M antennas. Based on
the physical layer procedures defined in the first 5G release [5],
we consider that the system operates in self-contained frames,
as shown in Fig. 3. A self-contained frame consists of both
data transmission and an immediate ACK/NACK. Without loss
of generality, the duration of each frame is of 1 unit and Frame
t spans the time interval [t, t + 1) , t ≥ 0. In each frame,
the user first transmits encoded data packets to the base-station.
The base-station then feeds back an ACK or NACK to signal
whether a decoding error occurred. The feedback is assumed
to be error free.

1) Physical Layer Model: During the uplink data transmis-
sion, the received signal by the base-station over the wideband
channel is

yn =
√

γhnxn + zn, n = 1, ..., N, (1)

where n is the subcarrier index, N is the total number
of subcarriers, xn is the transmitted signal, zn ∈ CM is
a zero-mean circularly symmetric complex Gaussian noise
vector, and 0 < γ ≤ 1 is the large-scale channel gain. We
model the channel fading processes as block Rayleigh fading,

where the small-scale fading vector ht,n maintain the same
during each frame and varies independently across frames
and subcarriers. In this paper, we may omit the frame index
t in ht,n when the frame index is clear from the context.
During each frame, the user transmits τ uplink pilots, each
with power pτ . Let ĥn be the estimated channel vector by the
base-station via the MMSE estimator. The estimated channel
satisfies that [11], [12]

hn = ĥn + en, (2)

where en ∈ CM is a zero-mean, circularly symmetric complex
Gaussian noise vector with variance of 1

1+γpτ τ . After applying
conjugate beamforming, the obtained signal is

x̂n = ĥH
n yn = ĥH

n

[√
γ
(
ĥn + en

)
xn + zn

]
=
√

γĥH
n ĥnxn +

√
γĥH

n enxn + ĥH
n zn, (3)

where the three terms on the right hand side represent the
desired signal, signal loss from imperfect channel knowledge,
and noise, respectively. The receive SINR on Subcarrier n
is [14], [25]

SINRn =
γp

γp
1+γpτ τ + 1

∥∥∥ĥn

∥∥∥2

, (4)

where p = |xn|2 is the power of uplink data transmission.
The user is aware of the large-scale channel gain γ and

the distribution of the small-scale channel fading via the
estimation of a periodic indication signal broadcast by the
base-station [5]. During each frame, all uplink packets to be
transmitted are encoded in a single code block that spans all N
subcarriers. The block error rate of the uplink transmission � is
a function of the transmission power. A closed-form character-
ization of the block error rate appears to be intractable when
the code-block length is finite [26]. Hence, we employ the
following block error rate approximation that was developed
in [6], [26]–[29]. Let L be the number of information bits in
each packet, and rt is the number of transmitted packets in
Frame t. We refer to rt as the transmission rate. The block
error rate of a code block with a code-block length Lcode can
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Fig. 4. Block error rate of a coded system as a function of SINR mean with
N = 1. In simulation, the channel gain follows the normal distribution with
labeled variance. The approximations are obtained by (6). And the simulation
is done with LDPC code [31] and sparse parity-check matrix comes from
the DVB-S.2 standard. The transmission is at a rate of 1.5 bits per symbol
(8-QAM, 0.5 code rate).

be approximated as

� ≈ Prob

[
N∑

n=1

log (1 + SINRn)− ν√
Lcode

≤ rL

]
(5)

≈ Prob

[
N∑

n=1

log (SINRn) ≤ rL

]
, (6)

where ν is the channel dispersion [26], [28] due to finite block
length and is upper bounded by log2 (e). For a systems with
strong channel coding, [26] shows that (5) closely captures
the block error rate when Lcode > 100. The approximation
in (6) is derived by considering sufficiently large code-block
length [6], [27], [29] and high SINR regime [6], [27]. Fig. 4
provides an illustration of the approximated block error rate
in (6), in which an LDPC-based massive MIMO system is
considered and the code-block length is chosen according to
DVB-S.2 standard. Our simulations confirm the conclusions
drawn from past works [6], [27], [29]. We hence adopt3 (6)
as the block error rate model.

2) Buffer Dynamics With Retransmission: We assume that
there is no packet in the buffer at time 0. During each
frame, λ new packets arrive in the queue4 and each packet
contains L-bits. In each frame, the user receives downlink
ACK/NACK feedback from the base-station. Upon ACK,
the transmitted packets are removed from the buffer. Upon
NACK, the transmitted packets remain at the buffer queue
head5. We use the indicator function 1t to represent decoding
success, 1t = 1 means success and 1t = 0 otherwise. The
distribution of the 1t is determined by the chosen target error
rate � as P [1t = 1] = 1− � and P [1t = 1] = �.

3One can also use the block error rate approximation (5) which is more
accurate in the low SINR and short code-block length regime. In this case,
the effective channel gain in (12) and power mapping in (13) should be
modified accordingly.

4Our model and analysis can be directly generalized to the case where
the number of new arrival packets across frames follow an independent and
identically distribution.

5It is possible to reduce the power of retransmissions via the joint decoding
of failed packets and retransmissions as in HARQ. For mathematical tractabil-
ity, we consider that the receiver discards undecoded packets.

At time t, let qt be the queue-length of the buffer, and rt

be the number of packets to be transmitted at Frame t as
per the control decision. The queue-length evolves according
to

qt+1 = min [max (qt + λ− 1trt, λ) , B] , (7)

where B is the size of the buffer and rt is the number of
transmitted packets in Frame t. If the buffer cannot store all
the packets waiting to be transmitted, an overflow event occurs.
The number of dropped packets due to the buffer overflow is
given by

bt = max (qt + λ− 1trt −B, λ−B) . (8)

The average number of dropped packets due to overflow, mea-
sured in packets per frame, is λdrop = limT→∞

∑T−1
t=0 bt/T .

When packet overflow happens, the dropped packets induce
significant latency to time-sensitive applications. We assume
that each overflowed packet introduces a large latency penalty
Ddrop. We are interested in minimizing the overall latency
(from arrival to successfully delivery). We consider the sta-
tionary policies are complete, i.e., the minimum latency can
be achieved by a stationary policy. Under a stationary pol-
icy, the queueing latency of successfully served packets are
limT→∞ 1

T

∑T−1
t=0

qt

λ−λdrop
, which is derived by using Little’s

Law [30]. To summarize, if a packet is dropped, its latency is
Ddrop and if a packet is successfully served (not dropped), its
latency is limT→∞ 1

T

∑T−1
t=0

qt

λ−λdrop
. The average latency is

then

D =
λ− λdrop

λ
lim

T→∞
1
T

T−1∑
t=0

qt

λ− λdrop
+

λdrop

λ
Ddrop

=
q̄

λ
+

λdrop

λ
Ddrop, (9)

where λ−λdrop
λ is the proportion of successfully served packets

and q̄ is the average queue-length, i.e., limT→∞
∑T−1

t=0
qt

T .
3) Transmission Power Adaptation: We consider the trans-

mission power of the user to satisfy a long-term power
constraint of P . In Frame t, the transmission power is adapted,
based on the transmission rate rt, and the number of pilots τ ,
to achieve the target error rate �. The transmission power is
quantified in the sequel: Substituting (4) into (6), the block
error rate is approximated as

� ≈ Prob

⎡
⎣( N∏

n=1

κn

)1/N

≤ exp (rL/N)
M

(
1

1 + γpττ
+

1
γp

)]
. (10)

where κn is the the per-antenna gain of small-scale channel
fading, given by

κn
Δ=
∥∥∥ĥn

∥∥∥2

/M. (11)

The per-antenna gain κn is the arithmetic mean of the
small-scale channel gain across the M antennas because
the received signals with different antennas are combined
during the linear beamforming. The left-hand-side of the



DU et al.: BALANCING QUEUEING AND RETRANSMISSION: LATENCY-OPTIMAL MASSIVE MIMO DESIGN 2297

inequality of (10) is determined by the small-scale fading,
and the right-hand-side of (10) is a constant independent of
small-scale fading. For the ease of subsequent presentation,
we define

η
Δ=

(
N∏

n=1

κn

)1/N

, (12)

which is called effective channel gain. The effective channel
gain (12) is the geometric mean across the N subcarriers
because the maximum outage-free rate [26] can be approx-
imated by the logarithmic of the product of the per-subcarrier
SINRn. Let Fη (x) Δ= Prob (η ≤ x) denote the cumulative
distribution function (CDF) of the effective channel η. And
the inverse CDF of η is F−1

η (�) Δ= inf {x ∈ R+ : � ≤ Fη(x)}.
Recall that the transmission power is adapted to achieve the
target error rate, from (10), we have

p (r, �, τ) =

[
MγF−1

η (�)
exp (rL/N)

− γ

1 + γpττ

]−1

, (13)

where F−1
η is the inverse CDF of the effective channel gain η

in (12). When τ increases, the base-station has a more accurate
channel estimation and the needed transmission power (at
the same rate with the same reliability) reduces. One can
observe that the required transmission power increases with
the transmission rate r and the packet size L, and decreases
with the number of base-station antennas M , the number of
subcarriers N , and the number of pilots τ .

B. Single-User Latency Minimization Problem

We now formulate the single-user latency minimization
problem. The objective of the joint target error rate and
transmission rate control is to minimize the average packet
latency under a long-term average power constraint. The
system state is the queue-length qt, whose state space is
Q = {0, 1, ..., B}. The transmission controller determines
the number of transmitted packets rt at the beginning of
each frame based on the queue-length qt, as well as the
target error rate � that remains constant in all frames over
time. Recall that the the transmission rate is the number
of transmitted packets rt. We consider the set of stationary
policies such that rt = μ(qt), where μ : Q → R+ is a
function. And the target error rate � is chosen from a finite
set E . Finally, the transmission power pt is adapted based
on the designed rate rt, target error rate �, and number
of pilot τ as in (13). Both the transmission rate function
μ and the resulting transmission power are independent of
the exact small-scale fading hn as it is unknown to the
user.

For any target error rate � and transmission rate function μ,
we assume that the resulted Markov chain of the system
states is ergodic, i.e., the unichain condition is satisfied. The
associated unique steady state of the system is denoted as π.

The latency minimization problem is formulated as:

min
ε∈E,

rt=μ(qt),

μ:Q→R
+

D = E

[
q̄

λ
+

λdrop

λ
Ddrop

]
(14a)

s.t. E

[
lim

T→∞
1
T

T−1∑
t=0

p (rt, �, τ)

]
≤ P, (14b)

� ≤ �max, (14c)

State Transition Model (4)-(8), (14d)

where �max it the maximum allowed target error rate
due to reliability requirement. For 5G URLLC, �max =
(1− 99.9999%)1/4 = 3.16%. The optimal objective value
of (14) is denoted as D∗, or D∗ (M) when we need to
emphasize the dependence on the number of antennas M .
Hence, D∗ (M) captures the minimum overall latency D∗ as
a function of the number of base-station antennas M .

III. LATENCY-OPTIMAL SINGLE-USER

TRANSMISSION CONTROL

In this section, we first formulate the latency minimization
problem (14) as a constrained average cost Markov Decision
Process (MDP) and solve it by a proposed algorithm. The
proposed algorithm can also solve the latency-optimal control
for general point-to-point MIMO systems by replacing the
per-subcarrier SINR in (4) with the SINR of the MIMO
system. The effective channel gain in (12) and power mapping
in (13) also should be modified accordingly.

A. Lagrange Duality of the MDP

For a target error rate � ∈ E , and a stationary transmission
rate adaptation Q → R+, based on the definition of average
latency (9), we define the induced latency cost mapping d on
each state action pair as

d (qt, rt, �) =
qt

λ
+

bt

λ
Ddrop,

where b is the number of the dropped packet due to buffer
overflow as shown in (8). In Frame t, a latency cost and
a transmission power cost are incurred. The average overall
latency of the problem in infinite horizon equals

Dπ = Eπ

[
lim

T→∞
1
T

T−1∑
t=0

d (qt, rt, �)

]
.

Similarly, utilizing the transmission power characterization
in (13), the average power is

Pπ = Eπ

[
lim

T→∞
1
T

T−1∑
t=0

p(rt, �, τ)

]
.

Given an average power constraint P , the objective of the
joint target error rate selection and transmission rate control
is restated as a constrained MDP as

Minimize Dπ

subject to Pπ ≤ P, � ≤ �max,

State Transition Model (4)-(8). (15)
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The constrained MDP (15) is converted to an unconstrained
MDP via Lagrange’s relaxation as

Minimize Dπ + βPπ

subject to � ≤ �max. (16)

For ergodic MDP, [22], [32] provide a sufficient condition
under which the unconstrained MDP is also optimal for the
original constrained problem (14). For all policies such that
Pπ = P , the sufficient condition provided by [22], [32] is
satisfied. Thus, when the constraint is binding, there exists
zero-duality gap between original problem (14) and the uncon-
strained MDP (16), i.e., their optimal solution is the same.

We now present the algorithm to solve (16) in Section III-B.
The closed-form solution of (16) and the characterization of
the array-latency tradeoff D∗ (M) are presented in Section IV.

B. A Value Iteration Based Algorithm

Problem (16) is an MDP with an average cost criterion in
infinite horizon. To find the optimal target error rate, we need
to find the optimal transmission rate adaptation and the cor-
responding achievable latency for each � ∈ E that is smaller
than �max. Furthermore, for each target error rate �, we can use
binary search method to find the smallest β that satisfies the
long-term power constraint P in (16). Such β corresponds to
the latency-optimal solution for (15) because that, for each �,
the average power is monotonically non-decreasing on β > 0.
Finally, for each � and β, we thus find the optimal transmission
rate adaptation μ∗ by considering α-discounted problem [33]
of (16). We now present a solution to each of the discounted
problem. For each system state q, define value cost function
as

Vα (q) Δ= min
μ

Eπ

{ ∞∑
t=0

αt [d (rt, qt, �) + βp (rt, �, τ)]

}
,

where α ∈ (0, 1) is the discount factor. For each � and β,
we need to find a stationary transmission rate adaptation for
all α-discounted problem with α ∈ (0, 1), i.e., the Blackwell
optimal policy. For the considered finite state MDP, the Black-
well optimal policy [33] exists and is also optimal for the
average cost problem (16). The Bellman’s equation of the
above α-discounted problem is then

V ∗
α (q) = min

μ

{
d(r, q, �) + βp (r, �, τ)

+
[
(1− �)V ∗

α (min (q + λ− r, B))

+ �V ∗
α (min (q + λ, B))

]}
, (17)

whose state transition is described by (6), (7), and (8). Using
dynamic programming with value iteration [33] over (17),
we can solve the α-discounted problem. Since the discounted
cost Vα is bounded, [33] shows that solving (17) generates the
optimal transmission rate control μ∗.

We summarize the above steps in Algorithm 1, which
solves (15) to find the optimal target error rate and transmis-
sion rate adaptation. To provide insights on the structure of
optimal transmission controls, we now resent a closed-form
characterizations when M →∞ in Section IV.

Algorithm 1: Latency-Optimal Joint Target Error Rate and
Transmission Rate Control

Input : Average power constraint P , number of antennas
M , number of subcarriers N , distribution of packet
arrival a, large-scale channel gain γ, CDF of effec-
tive channel gain η, number of pilots τ , pilots power
pτ .

Output: Optimal target error rate �∗, optimal transmission rate
adaptation μ∗, minimum achievable latency D∗.

For � ∈ E that � ≤ �max do // Find minimum latency for
each � ∈ E

βmin = 0, βmax = z; // z is a very large but finite
number
while βmin/βmax < 1 − δ do // Find smallest β that
satisfies the average power constraint, δ is a small constant
that controls the algorithm output accuracy

β ← (βmax + βmin) /2 ;
Initialize V 0

α (q) for every system state in Q and n = 1;
Solve for V 1

α from V 0
α via value iteration as (17);

while V n
α �= V n−1

α do // Find optimal μ for each β
and �

Update V n
α from V n−1

α via value iteration as (17);
Compute the corresponding power Ptmp;
if Ptmp > P then

βmin = β;
else

βmax = β;
Denote the solved transmission rate function as με (qt) and
the resulted latency as Dε.

Optimal policy extraction: �∗ = arg minε∈E,ε≤εmax Dε,
μ∗ (qt) = με∗ (qt), and D∗ = Dε∗ .

IV. LARGE-ARRAY LATENCY-OPTIMAL CONTROL

In this section, we derive the latency-optimal control
for the single-user problem in (14) when the number of
base-station antennas M → ∞. For the single-user system
in Rayleigh fading, the per-antenna gain κn in (11) satisfies
the following [11, A.2.4], [12], [14].

• Mean: The per-antenna gain mean is a constant that is
independent of M , i.e.,

E [κn] =
τpτγ

τpτγ + 1
, (18)

• Variance: The per-antenna gain variance is inversely
proportional to M , i.e.,

Var [κn] =
1
M

(
τpτγ

τpτγ + 1

)2

. (19)

In Section V, we will show that a multiuser massive MIMO
channel can be decoupled into parallel single-user channels.
For each of the decoupled channels, the per-antenna gain is
also of variance that is inversely proportional to M .

Based on condition (18), the achievable SINR grows with
the number of base-station antennas M linearly. As the focus
of the current section is on the asymptotic analysis with M →
∞, we can view log M as the link “capacity”. In the same
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spirit, we define the system utilization factor to be a constant
ρ ∈ [0, 1) as

ρ
Δ=

λL

N log M
, (20)

where λ is the packet arrival rate, L is the number of bits
in each packet, and N is the number of subcarriers. By (20),
the packet arrival rate λ increases with M and equals N log M

Lρ .
Conceptually, the term N log M can be viewed as the total
“capacity” of the wideband link and λL can be viewed as
the data load. Thus, the utilization factor ρ can be interpreted
as the ratio between the offered data load and the total link
“capacity”.

We also make the following assumptions for mathematical
tractability. We consider an infinite buffer (i.e., B →∞), thus
no buffer overflow or overflow latency occurs. And the target
error rate � can be chosen from a continuous set (0, 1).

A. Array-Latency Scaling Lower Bound

Notice that a trivial lower bound of D∗(M) is 1 frame,
which is the first transmission attempt of a packet. This 1
frame latency lower bound can only be achieved if the target
error rate is exactly zero. We now provide a tighter lower
bound of the array-latency curve D∗ (M).

Theorem 1 Latency Scaling Lower Bound: The optimum
array-latency curve D∗ (M) satisfies

D∗ (M)− 1 ≥ �o

1− �o
, (21)

where �o is given by

�o = Fη

[
1

M (1−ρ)

(
1

γP
+

1
γpττ

)]
, (22)

where Fη (·) is the CDF of the effective channel gain η in (12),
ρ ∈ [0, 1) is the utilization factor in (20), and τ is the number
of pilots.

Proof: The main idea is to lower bound the overall latency
by the packet retransmission latency, which monotonically
increases with the target error rate. To complete the proof,
we use Jensen’s inequality to show that there exists a minimum
target error rate �o such that for any � < �o the long-term
throughput is smaller than λ. Appendix A provides the proof
details. �

Theorem 1 presents a latency lower bound. For any trans-
mission rate adaptation, �o is the minimum target error rate
that leads to a long-term throughput no smaller than λ.
And if the target error rate is smaller than �o, the queue-
length process will not stable. By the definition of η (12),
the per-antenna mean (18), and the per-antenna variance (19),
Chebyshev’s inequality can be used to show that �o converges
(in probability) to 0 as the number of base-station antenna
M increases to infinity. The channel hardening effect can
explain such convergence. The latency lower bound (21) hence
converges to 0 as M →∞.

If τpτ is small, the channel estimation error is large. As a
result, both �o and the latency lower bound are large. In
this case, neither high reliability nor low latency can be met.
Hence, sufficiently good channel estimation is necessary for
achieving high reliability and low latency.

B. Large-Array Optimal Target Error Rate
and Transmission Rate Control

In this subsection, we present a simple transmission con-
trol policy that meets with the latency lower bound in (20)
asymptotically as M →∞.

Definition: We define the Large-arraY Reliability and Rate
Control (LYRRC) as{

�∗ = �o

μ∗ : rt (qt) = min (qt, 2λ)
, (23)

where �o is given by (22).
The LYRRC policy contains two parts: a target error rate of �o

and an transmission rate control policy μ∗. The transmission
rate adaptation μ∗ describes a simple thresholding rule: If
there are more than 2λ packets in the buffer queue, i.e., q ≥
2λ, 2λ packets will be transmitted. If less than 2λ packets
are currently in the buffer, all packet in the queue will be
scheduled for transmission in the frame. In each frame, based
on the transmission rate of min (qt, 2λ), the user utilizes power
adaptation (13) to achieve the target error rate target �o.

To evaluate LYRRC, we now first derive the latency
with arbitrary target error rate � < 1

2 and transmission
rate policy μ∗. We next prove the asymptotic optimality
of LYRRC (23) by comparing the achieved latency to the
minimum latency lower bound in Theorem 1.

1) Latency Performance of Transmission Rate
Adaptation μ∗:

Lemma 1: Under any target error rate � < 1
2 and trans-

mission rate adaptation rt (qt) = min (qt, 2λ), the overall
latency is 1 + ε

1−2ε .
Proof: The main idea is to compute the steady state

distribution of the queue-length, which is a Markov chain with
infinite countable states. Appendix B provides the complete
proof. �

Lemma 1 provides a closed-form characterization of
the transmission rate adaptation μ∗ when the maximum
buffer-length is infinite. To provide insights on the proof
of Lemma 1, we consider the associated Markov chain of
the buffer-length. The buffer-length state transition under any
target error rate � ∈ (0, 1), which is not necessarily equal
to �o, and the transmission rate adaptation μ∗ is depicted
in Fig. 5. By Little’s Law, the overall latency equals to the
ratio between the average queue-length and the arrival rate
λ. Notice that λ is the difference between the adjacent states
in Fig. 5. Hence, the average queue-length is in proportional
with λ (see Appendix B for a rigorous proof). As a result,
the overall latency depends only on the target error rate �, but
not on λ.

To summarize, the transmission rate control policy μ∗

applies a negative drift −λ with probability (1− 2�) towards
the minimum queue-length λ. To minimize the latency
as M → ∞, the queue-length needs to be regulated towards
the minimum queue-length λ. This regulation is achieved by
selecting a smaller target error rate.

By using Lemma 1, we have that the achieved latency
of LYRRC is DLYRRC (M) = 1 + εo

1−2εo
. As mentioned

above, the target error rate �o of LYRRC (23) reduces as
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Fig. 5. Evolution of the queue-length qt under any target error rate ε ∈ (0, 1) and the transmission rate adaptation μ∗ as a Markov chain. If ε > 0.5,
the average queue-length hence queueing latency is infinite.

the number of base-station antennas increases. The achieved
latency DLYRRC reduces with more base-station antennas. We
now prove the asymptotic optimality of LYRRC.

2) Asymptotic Optimality of LYRRC:
Theorem 2 Optimal Large-Array Control: For any ρ ∈

[0, 1) and positive τ , as M → ∞, LYRRC (23) guarantees
that the overall latency is within a vanishing gap from optimal
as

DLYRRC (M)−D∗ (M) ∼= (�o)
2 , M →∞, (24)

where DLYRRC (M) = 1 + εo

1−2εo
is the overall latency by

LYRRC, and �o is given by (22).
Proof: We first characterize the gap between latency under

LYRRC and minimum latency by combining Lemma 1 and
Theorem 1. The proof is complete by using the large deviation
theory to show that the power constraint is satisfied. Please see
Appendix C for details. �

Recall that f1 (M) ∼= f2 (M) denotes that
limM→∞

f1(M)
f2(M) = 1. Theorem 2 establishes the asymptotic

optimality of LYRRC. In addition, the latency gap between
the lower bound and LYRRC increases as the channel
estimation error increases (τ reduces). Furthermore, Lemma 1
and Theorem 2 suggest that the latency-optimal target error
rate increases for systems with fewer base-station antennas.
Hence, the reliability and low-latency design objectives
of 5G URLLC does not always matches with each other
for practical massive MIMO system with finite M . Finally,
we note that LYRRC can achieve optimal-latency for any
ρ ∈ [0, 1), which seems to contradict the transmission rate of
min (qt, 2λ). This can be explained by the fact that we are
considering a wireless link with power adaptation and the
probability of transmit at 2λ reduces as M →∞. Therefore,
using larger transmission power (over a few frames) can
increase the peak transmission rate beyond the long-term
average rate. We next combine Theorem 2 and Theorem 1 to
characterize the scaling of the array-latency curve D∗ (M) in
closed-form.

Theorem 3 Large-Array Latency Scaling: As M →∞, for
any positive τ and ρ ∈ [0, 1), the optimum latency converges
to 1 frame as

D∗ (M)− 1 ∼= �o, M →∞ (25)

where Fη (·) is the CDF function of the effective channel
gain η, and �o is given by (22).

Proof: Theorem 1 provides a latency lower bound. The
optimal joint control in Theorem 2 serves as an achievability
proof and provides an upper bound. The proof is complete by
showing that the ratio of the upper bound and the lower bound
converges to 1 as M →∞. �

Theorem 3 provides a closed-form characterization of the
large-array latency. In closed-form, it describes the minimum
latency D∗ as a function of the utilization factor ρ, the channel
estimation error, and the number of base-station antennas M .
As M → ∞, �o → 0. Thus, both the retransmission and
queueing latency converges to 0 frame. Finally, we comment
on the impact of imperfect channel state information. For any
τ > 0, the latency convergence to the 1 frame as M → ∞.
For a practical system with finite M , more accurate channel
leads to smaller latency.

V. MULTI-USER EXTENSION

In this section, we now consider the K-user latency mini-
mization problem over the lossy channel. In this section, suffix
[k] , k = 1, 2, · · · , K denotes the user index. The long-term
power constraint of User k is P [k]. The multiuser controller
decides the target error rate � [k] and the transmission rate
rt [k] of User k. The buffer dynamic of each user is identical
to that of the single user counterpart that is described in
Section II-A.2.

To minimize the system latency of the K users at the same
time, we associate positive weights ωk, k = 1, . . . , K to users.
The multiuser latency minimization problem is then

min
ε[k], rt[k]

∀k

K∑
k=1

ωkD [k]

s.t. E

[
lim

T→∞
1
T

T∑
t=1

pt [k] ≤ P [k]

]
, ∀k,

� [k] = Prob

[
N∑
n

log (SINRt,n [k]) ≤ rt [k] L

]
, ∀k,

� [k] ≤ �max [k] , ∀k,

(26)

where �max [k] is the maximum allowed target error rate
(minimum reliability) of User k. And SINRt,n [k] is the
receiver SINR of the n-th subcarrier in Frame t for User k.
Here, the buffer length qt [k] and buffer overflow bt [k] of User
k is given by (7) and (8), respectively.

To detect signals from the K users, the base-station applies
receive beamforming. Let matrix Hn ∈ CM×K denotes the
uplink small-scale channel fading between the M -antenna
base-station and the K users. Throughout this section,
we consider user channels follow i.i.d. Rayleigh fading.
Finally, the base-station receives an inter-cell interference that
is modeled by an additive white Gaussian noise of power pI ,
which is independent of the estimated channel.

Let the estimated channel and estimation error be Ĥn and
H̃n, respectively. With the MMSE estimator, the estimation
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error between each base-station antenna and User k is an
complex Gaussian random variable with zero mean and
variance of 1

τpτ [k]γ[k]+1 . Here, τ and pτ [k] are the number of
uplink pilots and the pilot power, respectively. The base-station
use the estimated channel to generate zero-forcing receive
beamformers to detect the uplink signal of each user. The

receive beamforming matrix is Vn
Δ=
(
ĤH

n Ĥn

)−1

ĤH
n .

On Subcarrier n, the received signal of User
k is [11], [12]

x̂k =
√

p [k] γ [k]xk+
[(

HHH
)−1

ĤH
n

(
z+zI−H̃x

)]
K

,

(27)

where z and zI are the receiver noise and inter-cell interfer-
ence, respectively. Similarly to past work [28], [29] on retrans-
mission, we compute the SINR by treating the interference as
the worst case Gaussian noise. And the effective SINR for
User k on Subcarrier n is

SINRn [k]

=
pkγk(

1 + pI +
∑K

i=1
p[i]γ[i]

τpτ [i]γ[i]+1

) [(
ĤH

n Ĥn

)−1
]

kk

,

(28)

where [·]kk denotes the k-th diagonal element of a matrix.
A crucial property of the SINRn term (28) is that the ran-
domness of both the channel variation and the interference is
concisely described by the inverse of the estimated channel,
which is a random matrix.

For a practical uplink system where each user is unaware
of other users’ channel or queue information, the joint target
error rate and transmission rate adaptation design appears
intractable. To see the difficulty of the joint policy design,
we consider the following example. For each user, the inter-
beam interference in (28) depends on other users’ large-scale
fading and transmission power. Recall that each user’s trans-
mission power changes in each frame based on its current
queue-length. Thus, it is extremely difficult for each user with
only local knowledge (queue-length and large-scale fading)
to infer the exact value of

∑K
i=1

p[i]γ[i]
τpτ [i]γ[i]+1 and hence the

proper transmission power. As a result, the target error rate and
transmission rate policy cannot be designed distributedly by
each user, which is undesirable for a practical uplink system.

Here, we proceed with the observation that, in real-world
systems, the pilot power is usually required to be higher than
the data signal power [5]. Hence, the

∑K
i=1

p[i]γ[i]
τpτ [i]γ[i]+1 term

is upper bounded by K
τ , which can be viewed as a worst

cast interference penalty. Each user then adjusts its power
based on the SINR loss upper bound. Substituting the SINR
expression (28) of the multiuser system into (6), we then have
that the target error rate as

�≈Prob

⎡
⎣
(

N∏
n=1

κn

)1/N

≤
(

1 +
K

τ
+pI

)
exp (rL/N)

Mpγ

⎤
⎦ ,

(29)

where the per-antenna gain κn is

κn =
{

M

[(
ĤH

n Ĥn

)−1
]

kk

}−1

. (30)

Similarly to the single-user case, we also compute the
per-frame transmission power as

p (r, �, τ) =
(

1 +
K

τ
+ pI

)
exp (rL/N)
F−1

η (�)Mγ
, (31)

where � is the scheduled reliability target (target error rate)
and r is the transmission rate (in unit of packet). Here, ≈
in (29) is because that each user considers the upper bound of
inter-beam interference.

The per-antenna gain (30) is independent of the large-scale
channel, transmission power, and hence queue-length
of the other K − 1 users. For each user, the distribution of
the effective channel η in (12) then becomes independent
of the channel, queue-length, and power of the other
users. Therefore, we can decouple the multiuser problem.
By adopting a new distribution of the effective channel gain
η (generated by (30)) and the new power mapping (31),
the multiuser problem is decoupled to K independent single
user problems (14). Each of the single-user problems can be
solved by Algorithm 1. We now further demonstrate that the
large-array analytical results in Section IV also apply to the
considered multiuser systems.

Theorem 4: For multiuser uplink systems, LYRRC becomes{
�∗ [k] = Fη

[
1

M1−ρ[k]

(
1 + K

τ [k] + pI

)
1

γP

]
μ∗ [k] : rt [k] = min (qt [k] , 2λ [k]) .

(32)

As M → ∞, for positive τ [k] and ρ [k] ∈ [0, 1), each user
operates under LYRRC achieves the minimum latency of

D∗ [k]− 1 ∼= �∗ [k] , k = 1, 2, . . . , K, M →∞. (33)

Proof: With random matrix theory, we prove by adopting
similar steps as in the single-user case. The key is step is to
compute the mean and variance of (30). Please find the proof
in Appendix D. �

Recall that f1 (M) ∼= f2 (M) denotes that
limM→∞

f1(M)
f2(M) = 1. LYRRC, therefore, indeed provides the

latency-optimal target error rate and transmission rate policies
to the multiuser massive MIMO system. And Theorem 4 also
captures the minimum latency of each user.

In conclusion, for any non-negative weights ωk, we can
convert the K user optimization problem into K parallel single
user problems. For finite M , Algorithm 1 solves each of the
single user problems and provides the optimal target error rate
and transmission rate policy. Furthermore, each user operates
using LYRRC distributedly is asymptotically latency-optimal.

We end this section by discussing some possible extensions
of the multiuser system analysis.

The first extension is the general multiuser MIMO sys-
tems with user correlation. For massive MIMO, the user
channels are expected to become mutually orthogonal as
M increases, which is usually referred to as “favorable
propagation” [11], [12]. The favorable proportion is expected
to hold in massive MIMO systems [11], [12] and is verified
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Fig. 6. Argos [2] Massive MIMO base-station and the over-the-air measurements setup. The background map of Fig. Fig. 6c is generated by Google
Maps [37]. The black single antennas denotes the locations of the mobile users.

by recent massive MIMO measurements [34], [35]. However,
for small scale multiuser systems, user channels might be
significantly correlated, and the multiuser scheduling prob-
lem cannot be fully decoupled. While spatial multiplexing
correlated user leads to smaller SINR, spatial multiplex-
ing only non-correlated users can lead to longer queueing
latency. Hence, we expect a latency-minimizing scheduler
should balance a tradeoff between longer queueing time and
smaller SINR.

The second extension is to model the pilot contamination
and base-station array correlation, which both can reduce the
SINR. The pilot contamination [11], [12] is caused by pilot
reuse and leads to both non-coherent and coherent interference.
In particular, without proper pilot decontamination, coherent
interference can grow linearly with the number of base-station
antennas. Recent research [12], [36] demonstrates that via
multicell joint transmission, the massive MIMO system can
reject the coherent interference if the covariance matrix of pilot
sharing users is asymptotically linearly independent. Under the
same condition, [12], [36] shows that the effective SINR can
grow linearly with M without bound with pilot contamination
and base-station array correlation. Therefore, it is reasonable
to use a finite pI to model the power of the residual inter-cell
interference after pilot decontamination.

Finally, we consider the latency-minimum transmission
control of multicell systems with pilot contamination and
base-station array correlation as an important future work.
Note that [12], [36] shows that the SINR can also grow lin-
early with M , which implies that the mean of the per-antenna
gain would be lower bounded by a positive constant. Comput-
ing the variance condition and finding the optimal transmission
control for this generalized setup is beyond the scope of
this paper. To evaluate the impact of the spatial correlation,
we utilize over-the-air measured channels in Section VI.

VI. NUMERICAL RESULTS

In this section, we utilize measured channels and simulated
channels to confirm our previous analysis in Section III
and Section V. During the numerical evaluation, the latency
duration is captured in the unit of second, which is obtained
by multiplying frame duration to latency measured in the
unit of frame. We measure the over-the-air channels between
mobile clients and a 64-antenna massive MIMO base-station
with Argos system [2] on the campus of Rice University.

Figure 6a and 6b describes the Argos array and the over-the-air
measurement setup. We measured the 2.4 GHz Wi-Fi channel
(20 MHz, 52 non-empty data subcarriers) for four pedestrian
users in non-line-of-sight environments, which are denoted by
Fig. 6c. For each user, we take channel measurements over
7900 frames of all subcarriers. The effective measured SNR
between each mobile user and each base-station antenna is
higher than 15 dB. In simulations, we consider measured over-
the-air channel traces as the perfect channel.

The base-station adopts MMSE estimator to estimate τ
uplink pilots, each of power 20 dBm, from the users. Using
the estimated channel, the base-station generates zero-forcing
receive beamformers to decode the signal of each user. The
users are assumed to follow average power constraint of
20 dBm with large-scale fading of −10 dB. The maximum
buffer length B is 10. The packet arrival rate is uniform over
the time at the rate of 5 packets per frame. And the packet
size L is 52 bits per OFDM symbol. The latency penalty
of dropped packets from buffer overflow is 0.5 s. And each
self-contained frame is considered of duration 0.25 ms. The
state space of the target error rate is [1%, 2%, . . . , 20%],
[0.1%, 0.2%, . . . , 0.9%], and [0.01%, 0.02%, . . . , 0.09%].
Each user is under a maximum target error rate con-
straint of 3.16%, which is equivalent to the 5G URLLC
reliability constraint of 99.9999% (over 1 ms). And the
power of the inter-cell interference equals the receiver noise
floor.

Fig. 7 provides the latency performance comparison of
four different policies over the measured channels and sim-
ulated i.i.d. Rayleigh fading channels. The blue lines are
the optimal array-latency curves under the proposed joint
reliability and transmission rate adaptation, which is obtained
by Algorithm 1. The red lines are the proposed low-complexity
LYRRC (23), which was discussed in Section IV. The green
colored lines capture the latency under optimal transmission
rate adaptation but fixed reliability (target error rate of 10%).
And the black lines are the latencies of fixed reliability (10%
target error rate) and transmission rate adaptation under a peak
power constraint, which is currently deployed in LTE and
Wi-Fi systems.

Over measured and simulated channels, the proposed joint
control (blue and red lines) clearly provides better latency per-
formance than the two fixed-reliability counterparts. Allowing
target error rate to be adaptive on the number of antennas M
turned out to reduce the latency significantly. Compared to
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Fig. 7. The solved latency under four different policies over measured and simulated 4-user channels. Algorithm 1 generated policy and LYRRC (23) are
labeled by blue and red,respectively. Green lines is the policy of fixed reliability (target error rate) and power adaptation based on queue-length. The peak
power constrained policy with fixed reliability is in black. The traffic arrival rate is 5 packets per frame, each of size 52-bits per OFDM symbol. The pilots
power is 20 dBm. The average power constraint is 20 dBm with large-scale fading of −10 dBm.

the fixed target error rate with peak power control, a 400×
latency reduction is observed when M > 30. Additionally,
when M is larger than 30, we find that the proposed joint
control can provide a 20× latency reduction compared to the
state-of-the-art control that fixes target error rate and adapts
transmission rate [20]–[23] (based on the number of antennas
and queue length). The large-array asymptotic latency-optimal
control, LYRRC, turned out to be near latency-optimal when
M is larger than 30. Finally, we find policies that fixed target
error rate at 10% leads to at least 5 ms latency and cannot
satisfy the URLLC latency requirement.

Fig. 7 captures the influence of imperfect channel state
information on latency. For a multiuser uplink system,
the inter-beam interference (30) reduces with the number of
pilots τ . And achieving the same target error rate becomes
more power expensive with larger inter-beam interference.
Therefore, over measured and simulated channels, the latency
increases as τ reduces.

Fig. 7 also demonstrates that the spatial correlation of
the base-station antennas reduces the minimum achievable
latency. With the same number of pilots τ , a lower latency
is observed in i.i.d. Rayleigh fading channels than that in
measured channels. The increased latency can be explained by
the reduced system capacity from spatial correlation [11], [12].
We further remark that LYRRC achieves near optimal latency

performance over both measured and simulated channels when
M > 36.

We now comment on the optimal target error rate that
minimizes the latency. Fig. 8a describes the latency-optimal
target error rate obtained during solving the latency minimiza-
tion problems in Fig. 7. The latency-optimal target error rate
increases as τ reduces due to less accurate channel estimation,
which agrees with LYRRC. Additionally, due to the reliability
constraint, the solved latency-optimal target error rates satisfy
the 5G reliability requirement (target error rate of 3.16%).

Finally, we use simulations to verify our structural analysis
in Section IV. Fig. 7 confirms that LYRRC (23) is near
latency-optimal for M larger than a finite number of 38. One
technical contribution independent of the massive MIMO sys-
tem is a simple transmission rate adaptation μl as min (q, 2λ),
which is referred to as “rule of double” and is part of LYRRC.
Lemma 1 captures that, when buffer size B →∞, the resulted
latency by using μl and a target error rate � < 0.5 is 1+ ε

1−2ε .
Fig. 8b shows the resulted latency by using μl with a finite
buffer size. The (large-buffer) asymptotic latency turned out to
accurately approximate the system latency when B is larger
than 30. And as the target reliability increases (target error
rate reduces), buffer overflow is less likely to happen and
the latency approximation in Lemma 1 becomes increasingly
accurate.
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Fig. 8. Fig. 8a shows the computed error rate that provides minimum latency in the measured channels. And the resulted minimum latencies are shown
in Fig. 7 (in blue). Fig. 8b verifies the latency characterization under “rule of double” in Lemma 1.

VII. CONCLUSION

In this work, we study the latency-optimal cross-layer con-
trol over wideband massive MIMO channels. By identifying a
tradeoff between queueing and retransmission latency, we find
that a lower physical layer target error rate does not always
guarantee lower latency. We present algorithms that generate
the optimal target error rate and transmission rate policies.
We show that to achieve the minimum latency, the target
error rate can no longer be considered fixed and needs to be
adapted based on the number of base-station antennas, channel
estimation accuracy, and the traffic arrival rate. Our results also
demonstrate that massive MIMO systems have the potential
to achieve both high reliability and low latency and are a
promising candidates of 5G URLLC.

APPENDIX A
PROOF OF THEOREM 1

We use a per packet argument. Since infinite buffer is
assumed in this section, no packet is dropped and all pack-
ets will be successfully received with a variable number
of transmissions due to the potential channel-induced error.
For any target error rate �, let r be the average number of
retransmissions. The sum of the retransmission latency and
transmission time equals

1 +
∞∑

r=0

Prob (r) r = 1 +
∞∑

r=0

r (1− �) �r = 1 +
�

1− �
,

(34)

which is a lower bound of the total latency because the
queueing latency is ignored. To finish the proof, we now lower
bound � under the long-term power constraint P . Under the
steady state, the average transmission rate equals to the packet
arrival rate, i.e.,

λ = Eπ [r (1− �)] = Eπ [r] (1− �) . (35)

The power function (13) is convex on r. We can apply Jensen’s
inequality and (20) to obtain a lower bound for the average

transmission power as

P = Eπ [p (r, �, γ)]

≥
⎧⎨
⎩ γF−1

η (�)

exp
[(

ρ
1−ε − 1

)
log M

] − γ

1 + γpττ

⎫⎬
⎭

−1

, (36)

Function F−1
η is an inverse CDF and is non-decreasing.

From (36), the � is lower bounded as

F−1
η (�) ≥M−[1−ρ/(1−ε)]

(
1

γP
+

1
γpττ

)
.

Using the monotonicity of the CDF, a lower bound on the
target error rate � is then

� ≥ Fη

[
1

M (1−ρ)

(
1

γP
+

1
γpττ

)]
. (37)

We finish the proof by combining (37) and (34).

APPENDIX B
PROOF OF LEMMA 1

We compute the queueing latency by considering the steady
state. Under transmission rate adaptation μl, the buffer length
process (7) is rewritten as qt+1 = max [qt + (1− 2 1t)λ, λ] .
The buffer length process under μl thus constitutes a Markov
chain with countably infinite states [38]. The distribution of 1t

is determined by target error rate � as Prob (1t = 1) = � and
Prob (1t = 0) = 1− �. The state transition is shown in Fig. 5.
Denote the steady state distribution of the buffer length as πq .
We then have that

πλ = (1− �)πλ + (1− �)π2λ

πiλ = �π(i−1)λ + (1− �)π(i+1)λ, i ≥ 2,

where
∑N

i=0 πiλ = 1. The steady state distribution is then
computed as

πiλ =
(

1− �

1− �

)(
�

1− �

)i−1

, i = 1, 2, . . . . (38)
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Using (38), the average latency is then computed as

1
λ

Eπq [q] =
1
λ

( ∞∑
i=1

πiλiλ

)

=
∞∑

i=1

(
�

1− �

)i−1

i−
∞∑

i=1

(
�

1− �

)i

i

= 1 +
�

1− 2�
,

which completes the proof.

APPENDIX C
PROOF OF THEOREM 2

We characterize the gap between latency under LYRRC as

DLYRRC −D∗ (M) = (DLYRRC − 1)− (D∗ − 1)

≤ �o

1− 2�o
− �o

1− �o

=
(�o)

2

(1− 2�o) (1− �o)
, (39)

where the last step is obtained via applying Theorem 1
and (37). Equ. (39) provides the characterization of the latency
gap. To finish the proof, it is sufficient to show that the average
power constraint P is satisfied under the large-array simple
control.

With utilization factor ρ (20), the packet arrival rate scales
as λ = (ρN log M) /L. Using the per-frame power (13) and
the definition of �o (23), the transmission power with rate r is

P εo (r)=
[(

1
P

+
γ

τγpτ + 1

)
1

Mρ(r/λ−1)
− γ

τγpτ + 1

]−1

.

(40)

Since we assume empty buffer at time 0 and constant arrival
rate of λ, the transmission rates under policy μl is either λ
or 2λ. Based on the queue length steady state characteriza-
tion (38), we have that Prob(u = λ) = πλ = 1 − εo

1−εo
and

Prob(r = 2λ) =
∑∞

i=2 πiλ = εo

1−εo
. Conditioning on the rate

expression in (40), the average power under LYRRC is

P εo,μl

=
1− 2�o

1− �o
P εo (λ) +

�o

1− �o
P εo (2λ)

=
1− 2�o

1− �o
P +

�o

1− �o
P εo (2λ) . (41)

We want to show that the power constraint is satisfied,
i.e., P εo,μl ≤ P . Using (40), the second power consumption
term of (41) is upper bounded as

�o

1− �o
P εo (2λ) ≤ �oP

εo (2λ) ≤ �oM
ρ. (42)

Therefore, the sufficient condition (41) is equivalent to

lim
M→∞

�o exp (ρ logM) = lim
M→∞

�oM
ρ = 0. (43)

Before proving (43), we first present an upper bound of �o.
The effective channel gain η (12) is the average of N i.i.d.
random variables log κ. For x < 0, we thus have an upper
bound as

Fη (x) = F�N
n=1 log κn

(Nx) ≤ Flog κ (Nx)

= Pr (κ ≤ exp (Nx)) , (44)

where the last step is by the definition of CDF. We now upper-
bound (44) as the follows.

Fη (x) ≤ Pr (κ− E [κ] ≤ exp (Nx)− E [κ])
≤ Pr (|κ− E [κ] | ≥ E [κ]− exp (Nx)) .

Here, the last term denotes the probability that κ has a
larger deviation (to its mean) than E [κ] − exp (Nx). Using
Chebyshev’s Inequality, a new upper-bound is obtained as

Fη (x) ≤ Var [κ]
(E [κ]− exp (Nx))2

=
1
M

1
( τpτγ
1+τpτγ − exp (Nx))2

(
τpτγ

1 + τpτγ

)2

= O

(
1
M

)
, (45)

where the last step is by conditions (18) and (19). By the
definition of �o, using the above upper bound proves (43) and
completes the proof.

APPENDIX D
PROOF OF THEOREM 4

The multi-user mapping (31) can be viewed as a scaled
version of (13) when τ = ∞. Recall that the proof of
Theorem 1 and Lemma 1 is independent of the distribution
of the per-antenna gain κn. To complete the proof, we only
need to prove the mulituser version of Theorem 2 by following
the same derivations as in Appendix C. As the proof from (39)
to (44) is also independent to the distribution of κn, we finish
the proof by proving that (30) satisfies (45). By the multiuser
setup in Section V, κn (30) equals τpτ [k]γ[k]

τpτ [k]γ[k]+1
1

M [W−1]kk
,

where W is a K × K central complex Wishart matrix with
M degrees of freedom and covariance matrix of I. Since

τpτ [k]γ[k]
τpτ [k]γ[k]+1 is a positive constant, we only need to capture the
mean and variance of 1

M [W−1]kk
to verify (45). We first check

the mean condition by Jensen’s inequality as E
[

1
M [W−1]kk

]
≥

1

E[M [W−1]kk]
. Using the first moments of inverse Wishart [39]

gives that

E
[
M
[
W−1

]
kk

]
=

1
K

E
[
M tr

(
W−1

)]
=

M

M −K
. (46)

Therefore, the per-antenna gain is lower bounded by a constant
as M →∞. Recall that the κn in systems with perfect channel
case serves as an upper bound. In the upper bound case,
the per-antenna gain expectation is 1 as M →∞. By random
matrix theory [39], the variance of the trace of inverse Wishart
satisfies

Var
[
tr
(
W−1

)]
= E

{[
tr
(
W−1

)]2}− E
[
tr
(
W−1

)]2
=

MK(
(M −K)2 − 1

)
(M −K)2

.
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Using Taylor’s expansion, we complete the proof by checking
the variance as

Var
[

1
M [W−1]kk

]
=

Var
[
M tr

(
W−1

)]
kk

E
[

1
M [W−1]kk

]4 + o

(
1
M

)

= O

(
1
M

)
, M →∞.
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