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Abstract—Cognitive Radio Networks allow unlicensed users to
opportunistically access the licensed spectrum without causing
disruptive interference to the primary users (PUs). One of the
main challenges in CRNs is the ability to detect PU transmissions.
Recent works have suggested the use of secondary user (SU)
cooperation over individual sensing to improve sensing accuracy.
In this paper, we consider a CRN consisting of multiple PUs
and SUs to study the problem of maximizing the total expected
system throughput. First, we study the sensing decision problem
for maximizing the system throughput subject to a constraint on
the PU throughput and we design a Bayesian decision rule based
algorithm. The problem is shown to be strongly NP-hard and
solved via a greedy algorithm with time complexity O( N5

log 2 1
1−ϵ

)

where N is the total number of SUs. The algorithm achieves a
throughput strictly greater than 1

2
(1− ϵ) of the optimal solution

and results in a small constraint violation that goes to zero with ϵ.
We then investigate the more general problem with constraints on
both PU throughput and the sensing time overhead, which limits
the number of SUs that can participate in cooperative sensing.
We illustrate the efficacy of the performance of our algorithms
and provide sensitivity analysis via a numerical investigation.

I. INTRODUCTION

Cognitive radio networks (CRNs) have been proposed to
address the spectrum scarcity problem by allowing unlicensed
users (secondary users, SUs) to access licensed spectrum
on the condition of not disrupting the communication of
licensed users (primary users, PUs). To this end, SUs sense
licensed channels to detect the primary user (PU) activities
and find underutilized “white spaces”. FCC has opened the
TV bands for unlicensed access [6], and IEEE has formed a
working group (IEEE 802.22 [8]) to regulate the unlicensed
access without interference. Many other organizations are also
making efforts on the spectrum access policy in the CRN
environment, e.g., DARPA’s ‘Next Generation’ (XG) program
[21] mandates cognitive radios to sense signals and prevent
interference to existing military and civilian radio systems. A
practical example is the opportunistic access of the police radio
spectrum. Since the PU activity is not known by the SUs in
real time, SUs have to sense the spectrum and make sure their
transmissions do not collide with the primary traffic. To avoid
the interference to PUs, sensing becomes an indispensable part
of CRN design.
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Sensing can be performed via several methods, including
energy detection, cyclostationary feature detection, and com-
pressed sensing [1]. Energy detection is a simple method
and requires no a priori knowledge of PU signals [26]. Its
main disadvantage is its decreased accuracy in the presence
of fading, shadowing, and unknown noise power profiles.
For instance, if an SU suffers from shadowing or heavy
fading, the sensed signal tends to be weak while the PU is
transmitting, leading to incorrect decisions. To address these
problems while maintaining sensing simplicity, cooperative
sensing schemes that fuse the sensing results of multiple SUs
have been proposed in the literature [13][16][18].

Cooperative sensing overcomes the shortcomings of indi-
vidual sensing results by jointly processing observations. SUs
report their individual sensing results, which are then used in
a predefined decision rule to optimize an objective function.
Examples of such functions include maximizing sensing accu-
racy (generally, a function of false alarm probability and mis-
detection probability) or maximizing the system throughput.
Aside from sensing accuracy related metrics, cooperative
sensing schemes are also designed to estimate the maximum
transmit power for SUs so that they do not cause disruptive in-
terference to PUs [14]. On the other hand, cooperative sensing
incurs additional sensing delay over individual sensing.

Three main categories of decision rules have been identified
in [1]: Soft Combining, Quantized Soft Combining, and Hard
Combining. In each of them, a control channel is required
to collect information. It is a common dedicated channel
orthogonal to the PU channel as in [1]. However, different
rules have different requirement on control channel bandwidth.
In soft combining, raw sensing results, i.e., data sequences,
are sent to the fusion center. In quantized soft combining,
quantized sensing results are sent to the fusion center for
soft combining to reduce the control channel communication
overhead. While in hard combining, binary local decisions on
the sensing results are reported. Compared to the other two
categories, only a single bit is sent to the fusion center in
hard combining.

Among hard combining rules, linear fusion rules [1] are
widely applied to achieve a cooperative decision, such as
AND, OR and majority rules [18]. AND and OR both take
extreme approaches: In AND, only when all stations decide
the channel to be “busy”, the decision after fusion is “busy”,
which promotes the SU activity; In OR, only when all stations
decide the channel to be “idle”, the decision after fusion is
“idle”, which tends to protect the PU activity. The majority
rule uses the majority of the local decisions as the final
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decision, which places it between AND and OR in terms of SU
transmission eagerness. In addition, a linear-quadratic fusion
rule that utilizes statistical knowledge [25] has been devised
to capture the correlation between SUs in cooperative sensing.
None of the aforementioned rules are shown to be optimal.
In [25], the fusion rule is shown to not be optimal, and its
performance compared to optimal has not been analytically
characterized.

In this work, sensing quality is our main concern, which
has two components: misdetection probability and false alarm
probability. As a unifying objective, we adopt system through-
put as a means to quantify the effects of misdetection and false
alarm probabilities on the system performance. We design an
optimal data fusion rule to (hard) combine the reported sensing
results. More specifically, we aim to maximize the system
throughput in a CRN composed of multiple PUs operating
on orthogonal channels and SUs where SUs are allowed to
sense all the channels in the network. We reflect two practical
system requirements in the constraints: PU throughput above
a threshold and limited sensing overhead. We assume that
sensing decisions are made on a per channel basis and each
SU can sense all the PUs in the system. Thus, we only
need to solve the system throughput maximization problem
per channel. Our main contributions can be summarized as
follows:

• In contrast to previous works that restrict the class of
fusion rules, we propose a Bayesian decision rule based
algorithm to solve the throughput maximization problem
optimally with constant time complexity.

• To guarantee that the PU throughput is at least a pre-
scribed fraction δ of the PU capacity, we study the
system throughput maximization problem with a con-
straint on the PU throughput. This constrained problem
is shown to be strongly NP-hard by a reduction from the
product partition problem [17]. A greedy algorithm is
developed with the time complexity O( N5

log 2 1
1−ϵ

) where

ϵ = 1 − 10−N10−r

, N is the total number of SUs,
and r is the decimal places kept for the input. This
approximation algorithm is analytically shown to achieve
the system throughput (the sum of PU throughput and SU
throughput) strictly greater than 1

2 (1− ϵ) of the optimal
solution. The PU throughput fraction achieved is shown
to be at least δ

1−ϵ −
ϵ

1−ϵ .
• We investigate the system throughput maximization prob-

lem with two constraints: PU throughput is above a
threshold and the number of sensing SUs is restricted.
Our theoretical results show that the maximum system
throughput is monotonic with respect to the sensing set.
We propose a greedy heuristic whose performance is
verified in simulation.

The paper is organized as follows: Related work is presented
in Section II. In Section III, the system model is introduced
and the sensing decision problem for maximizing system
throughput subject to two constraints on PU throughput and
the number of sensing SUs, respectively, is formulated. In Sec-
tion IV, we solve the simple throughput maximization problem
without any constraint optimally via the Bayesian decision

rule, and then the PU throughput constrained maximization
problem is studied, which is shown to be strongly NP-hard.
A greedy algorithm is proposed with an approximation factor
strictly greater than 1

2 (1− ϵ). The general problem is studied
in Section V where the system throughput performance is
investigated subject to two constraints on PU throughput and
the number of sensing SUs used, respectively. In Section VI,
numerical results are presented to illustrate the performance
of our algorithms. We conclude in Section VII.

II. RELATED WORK

Cooperative sensing solutions have been investigated in
recent years. They rely on multiple SUs to exchange sensing
results or a central controller to collect the sensing results from
the SUs. The network is usually divided into clusters and each
cluster head makes the decision on the channel occupancy.
Collaborations among SUs have been shown to improve the
efficiency of spectrum access and allow the relaxation of
constraints at individual SUs [4][29]. One branch of the papers
in cooperative sensing assume that the length of the sensing
time at individual SUs is proportional to the sensing accuracy.
However, longer sensing time decreases the transmission time.
The trade-off is called the sensing efficiency problem and is
discussed in [10] and [15]. In our work, we assume that the
observation time at each SU is fixed so that the individual
sensing accuracy does not depend on it. We focus on the
optimal decision rule based on the sensing results collected.

Decision rules so far mainly focus on AND, OR, majority
rules and other linear rules (the definitions provided in Sec-
tion I). AND, OR are two extremes on SU transmission: AND
promotes the SU activity while OR tends to protect the PU
activity. Majority rule makes final decision on the majority
of the local decisions. It is in the middle of AND, OR on
aggressiveness. All these rules ignore the heterogeneity of
SUs. Zhang et. al. [31] show that the best fusion rule among
AND, OR, majority (half-voting) to minimize the cooperative
sensing error rate is the half-voting rule in most cases. They
show that AND or OR rules are better than half-voting only
in rare cases. Based on these results, a fast spectrum sensing
algorithm is proposed for a large network where not all
SUs are required for sensing while satisfying a given error
bound. However, the optimal number of sensing nodes and
the complexity of this problem have not been discussed.

AND, OR, and Majority rules treat SUs equally and the
different sensing abilities of SUs are not taken into account.
In [18], the SU throughput is maximized subject to constraints
on collisions with PUs. The optimal k-out-of-N fusion rule
is determined and the sensing/throughput trade-off is also
analyzed. As in [31], only AND, OR, and Majority rules
are considered. They do not establish any conditions under
which these rules are optimal. The spatial variation of SUs
is considered by Shahid et. al. [22] and the fusion rule
is a weighted combination of SU observations. The weight
depends on the received power and path loss at each SU.
Though more advanced than AND, OR, and majority rules,
the weighted form is restricted to the linear function domain.
In [5], optimal multi-channel cooperative sensing algorithms
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Fig. 1. System model of an SU network coexisting with three PU networks.
Small circles are SUs and rectangles are PUs. Each big circle represents the
transmission range of the corresponding SU-BS/PU-BS. Each SU can sense
all PUs in the system.

are considered to maximize the SU throughput subject to per
channel detection probability constraints. The resulting non-
convex problem is solved by an iterative algorithm. Compared
to [5], our work focuses on the maximization of the system
throughput, including the PUs and SUs. Furthermore, our
algorithm solves the system throughput maximization problem
with constant time complexity, which is better than an iterative
algorithm whose time complexity is high as shown in their
simulations though not analytically established. Moreover, a
soft decision rule is considered in [5], which requires signifi-
cant amount of data to be transmitted to the coordinator while
our hard decision rule requires only one bit of information
to be sent from each SU. In [30], a general sensing quality
metric is defined to measure the spectrum sensing accuracy.
This metric does not characterize throughput as in this paper,
but is rather designed to capture the correlations of sensing
between SUs.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted cognitive radio network in which
multiple PU networks, consisting of a PU base station (PU-BS)
and PU receivers in each network, co-exist in the same area
with an SU base station (SU-BS) and M SUs (Figure 1). Since
PUs that are in the interference range of each other operate
on orthogonal channels, for the purpose of the analysis, one
can focus on a single PU and SU parameters corresponding
to that PU. We consider the uplink part for the SU system,
i.e., only one SU can be active and transmit to the SU-BS at
any given time over the same channel. For each PU network,
we denote the set of all SUs by S and the set of SUs whose
uplink transmission causes interference to any PU receivers by
S and |S| = N (|S| = M ≥ N ). They are indexed from 1 to
N . SUs outside S can use the corresponding PU channel to
transmit at any time slot without causing interference to the
PUs. For instance, PUs 1, 4, and 8 lie in the interference range
of SUs in Figure 1, and any transmission from SUs 1 and 2
may cause interference to PU 1.

Collection of 

sensing results 

Notification 

Tc Td 

1 mini-slot 

Fig. 2. Control slot Tc and data slot Td.

A. Cooperative Sensing

SUs in S are close to the PU network and they are used to
sense the channel cooperatively to reduce the sensing errors.
The sensing results of individual SUs are assumed to be
independent. We assume that each SU is allowed to sense
any number of channels. Thus sensing decisions can be made
per channel and we investigate the sensing behaviors of SUs
on each channel separately. Let B represent the PU activity
such that B = 1 if PU is active, and B = 0 otherwise. Let
P i
f denote the probability of a false alarm for SU i, which

is the probability that SU i senses the PU to be active given
that the PU is actually idle. P i

m represents the probability
of mis-detection for SU i, which is the probability that SU
i senses the PU to be idle given that the PU is actually
active. We assume that these probabilities are readily available
as in [2][20]. In practice, they can be calculated by power
level, noise power, path loss, etc, which can be learned from
historical data.

Cooperative Sensing: Multiple SUs are chosen to sense
the channel and the SU-BS predicts PU activity by collecting
the sensing results from these SUs. We let S0

1 denote the
set of SUs that participate in cooperative sensing. Note that
S0 ⊆ S ⊆ S . In the cooperative sensing model, we assume
that the SU-BS collects sensing results from SUs in S0.

Cooperative Sensing Indicator: Let Yi denote how SU
i senses the PU activity, which is a random variable. More
precisely, Yi = 1 indicates that SU i observes the PU to be
active, while Yi = 0 indicates that SU i observes the PU to
be idle. In this paper, our objective is to maximize the system
throughput by characterizing S0 and estimating the PU activity
based on observations from S0 (called the decision rule). The
decision rule is denoted as a function F : {0, 1}|S0| → {0, 1}.
The observations form a vector Y , where Y ∈ {0, 1}|S0|

while the decision is denoted by Z where Z ∈ {0, 1},
i.e., Z = F (Y ). The false alarm probability of cooperative
sensing is denoted by P c

f = P (Z = 1|B = 0). The mis-
detection probability of cooperative sensing is denoted by
P c
m = P (Z = 0|B = 1). Each time slot is divided into a

control slot Tc and a data slot Td where Tc+Td = 1 (Figure 2).
In the control slot, the SU-BS collects sensing results from the
set of SUs S0 and notifies an SU in S if the cooperative sensing
result is “idle” (Z = 0). If the PU is active (mis-detection),
the PU transmission will collide with the transmission from
the SU. The length Tc of the control slot is regarded as the
sensing overhead and assumed to be constant throughout the
paper, that is, a fixed time period is allocated for cooperative
sensing in each slot.

The uplinks of SUs in S are assumed to have the same

1Note that S0 = S in Section IV where there is no budget constraint on
the number of SUs sensing the channel; S0 ⊆ S in Section V where the size
of S0 is constrained.
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TABLE I
NOTATION LIST

Symbol Meaning

S The set of all SUs in the secondary network

M Total number of SUs in the secondary network. |S| = M

S Set of SUs which cause interference to PU receivers

N |S|
S0 Set of SUs that are chosen to sense the channel. S0 ⊆ S

P i
f False alarm probability of SU i

P i
m Mis-detection probability of SU i

P c
f False alarm probability of cooperative sensing

P c
m Mis-detection probability of cooperative sensing

Tc Control slot

Td Data slot

π0 Probability that the PU is idle

γ Average throughput of PUs in the interference range of a SU

B PU activity: 0 is idle and 1 is active

Z Fusion decision on the PU activity of cooperative sensing

F Decision rule: {0, 1}|S0| → {0, 1}

capacity which is normalized to 1. We assume that SUs in
S are always backlogged. The scheduling of the transmitting
SUs is beyond the scope of this paper. However, any work-
conserving scheduling policy operating on idle slots can be
used together with the decision rule to maximize the total
system throughput. We let π0 denote the probability that the
PU is idle and we assume that the prior distribution of PU
activity is accurately acquired over time. Our only assumption
is that state changes occur at the beginning of a time slot.
The average throughput of PUs whose transmission would be
interfered by SUs in S is denoted as γ. Table I summarizes
the notations used in the paper.

B. Communication Model
The outline of operations for cooperative sensing is as

follows.
1) Each SU i reports its probability of misdetection (P i

m)
and probability of false alarm (P i

f ) to the SU-BS;
2) The SU-BS determines the sensing set S0 and the

decision rule F based on P i
m, P i

f ’s and the optimization
metric;

3) The SU-BS notifies SUs in S0 with an ACK and also
assigns each one of them a SEQ number for reporting sensing
results;

4) SUs receiving an ACK sense the channel and report the
results to SU-BS in the order of SEQ;

5) SU-BS makes the decision of the PU activity based on the
sensing results and F and schedules an SU for transmission
if the decision is 0 (PU idle).

Considering that the sensing decisions are made per channel,
only a simplified single-channel problem is investigated in
each section and the sum of maximum system throughput over
each channel leads to the maximum system throughput of the
entire PU-SU network.

C. Problem Formulation
In this section, we formulate the general cooperative sensing

problem with the assumption that the sensing results from all

SUs in the sensing set are reported to SU-BS within Tc. SUs
outside S can transmit without causing interference to the PUs.
Thus, their performance does not depend on the choice of the
sensing set or the decision rule. Our goal is to maximize the
sum of the expected throughput of the SUs in S and that of the
PUs whose transmission may be interfered by the SUs, subject
to the constraints of PU throughput and sensing budget. Instead
of an abstract measure of sensing quality [30], we choose the
system throughput to combine the effects of misdetection and
false alarm probabilities in a meaningful manner. Misdetection
and false alarm probabilities are related to PU throughput and
SU throughput, respectively.

The system throughout then consists of both expected SU
throughput and PU throughput defined as follows. Let Y
denote a random vector of observation and y denote a concrete
observation vector. Let yi denote the observation that SU i
senses the PU to be idle (yi = 0) or busy (yi = 1). Further,
let y denote the observation vector, i.e., y = {yi}i∈S . Now,
given B = 0 (the PU is idle), the probability of a particular
observation vector y occurring is

P (Y = y|B = 0) =
∏

i∈S,yi=1

P i
f

∏
j∈S,yj=0

(1− P j
f ). (1)

Note that Y is a function of S0, and we omit S0 for sim-
plicity. Now, the probability that the decision of cooperative
sensing is idle given that the PU is idle involves summing over
all values of y, such that the decision F (y) = 0, i.e.,

P (Z = 0|B = 0) =
∑

y:F (y)=0

P (Y = y|B = 0). (2)

Hence, the false alarm probability of cooperative sensing is
P c
f = 1−P (Z = 0|B = 0) = 1−

∑
y:F (y)=0

P (Y = y|B = 0).

(3)
Likewise, given B = 1 (the PU is active), the probability

of a particular observation vector y occurring is

P (Y = y|B = 1) =
∏

i∈S,yi=1

(1− P i
m)

∏
j∈S,yj=0

P j
m. (4)

And

P (Z = 1|B = 1) =
∑

y:F (y)=1

P (Y = y|B = 1). (5)

Then, the mis-detection probability of cooperative sensing
is
P c
m = 1−P (Z = 1|B = 1) = 1−

∑
y:F (y)=1

P (Y = y|B = 1).

(6)
Note that Equation (2) is the conditional probability that

SU-BS correctly identifies the PU activity when it is idle so
that one SU could transmit successfully; Equation (5) is the
conditional probability that SU-BS correctly detects the PU is
active so that no SU would transmit and the PU could transmit
successfully. Hence, the expected throughput of the SUs can
be represented by
(1− Tc)P (B = 0, Z = 0) = (1− Tc)π0P (Z = 0|B = 0)

= (1− Tc)π0

∑
y:F (y)=0

P (Y = y|B = 0), (7)
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since the uplinks of SUs in S have unit capacity and only one
of them could be scheduled in each time slot. Now, let the PU
capacity be γ. Then, the expected throughput of the PU in the
interference range of the SUs is given by (8).

γP (Z = 1|B = 1) = γ
∑

y:F (y)=1

P (Y = y|B = 1) (8)

The problem of interest to us is formulated as follows:
Problem (A):

max
F,S0

(1− Tc)π0

∑
y:F (y)=0

P (Y (S0) = y|B = 0)

+γ
∑

y:F (y)=1

P (Y (S0) = y|B = 1)

s.t. γ
∑

y:F (y)=1

P (Y (S0) = y|B = 1) ≥ α, (9)

|S0| ≤ k. (10)

Note that the system throughput as the objective function
in Problem (A) combines the effects of misdetection and
false alarm probabilities, which is more meaningful than an
arbitrary weighted sum of them. A nice property of this
objective function is that the SU capacity (1− Tc)π0 and PU
capacity γ are taken into account. Note that constraint (9)
indicates that the PU throughput is above a threshold α, and
constraint (10) requires the sensing budge within k SUs. We
study the solutions step by step in Sections IV and V.

IV. GUARANTEEING A TARGET PU THROUGHPUT

In this section, we take the first step by investigating the
maximum throughput problem under a single PU throughput
constraint (Problem (B)). The reason why this is important is
to ensure that the PU receives at least a guaranteed amount of
throughput. We show that this constrained problem is strongly
NP-hard by reducing the classical product partition problem
[17] to it. Then a greedy approximation algorithm is proposed
to achieve throughput that is strictly greater than 1

2 (1 − ϵ)
of the optimal solution. The complexity of the algorithm
is shown to be O( N5

log 2 1
1−ϵ

) by solving a two-dimensional
dynamic programming problem. Note that the algorithm only
needs to run once until P i

m or P i
f changes.

Problem (B):

max
F

(1− Tc)π0

∑
y:F (y)=0

P (Y = y|B = 0)

+γ
∑

y:F (y)=1

P (Y = y|B = 1)

s.t. γ
∑

y:F (y)=1

P (Y = y|B = 1) ≥ α. (11)

Equation (11) is the constraint we put on Problem (B) where
the expected PU throughput must be no less than a preset
system-dependent threshold. Note that α = δ ·γ where δ is the
fraction of the full PU throughput without any SU transmitting.

Algorithm 1 Bayesian Decision Rule Based Algorithm for maxi-
mizing the system throughput (given Y = y, decide Z)

1: if (1 − Tc)π0
∏

yi=1
P i
f

∏
yj=0

(1− P j
f ) ≥ γ

∏
yi=1

(1− P i
m)

∏
yj=0

P j
m

then
2: Z ← 0
3: else
4: Z ← 1

Problem (B) maximizes the expected system throughput given
that the lowest PU throughput can be met. This is important
because in cognitive radio applications, PU transmissions need
to have higher importance than SU transmissions. Note that
for the multichannel formulation, α in Equation (11) varies
over difference PUs. By solving the constrained optimization
problem on each channel and summing the throughput, we get
the optimal system throughput across all channels subject to
the throughput constraints of all PUs.

A. Bayesian Decision Rule Based Algorithm

To solve Problem (B), we start with Problem (C) which
is an unconstrained problem and propose an optimal solution
with Bayesian decision rule. Based on it, we will investigate
Problem (B) in Section IV-B.

Problem (C):

max
F

(1− Tc)π0

∑
y:F (y)=0

P (Y = y|B = 0)

+γ
∑

y:F (y)=1

P (Y = y|B = 1)

We show that Problem (C) can be converted to a Bayesian
Decision problem. Algorithm 1 is then developed based on
the Bayesian decision rule to minimize the posterior expected
loss [3] and it is of constant time complexity.

To solve Problem (C), we formulate the equivalent problem
as follows.

min
F

L(B = 0, Z = 1)

π0

∑
y:F (y)=1

P (Y = y|B = 0)


+L(B = 1, Z = 0)

(1− π0)
∑

y:F (y)=0

P (Y = y|B = 1)

 ,

(12)
where L(B,Z) is the loss of decision Z based on observation
x, which is a non-negative number. L(B = 0, Z = 1) =
(1 − Tc) and L(B = 1, Z = 0) = γ

1−π0
. Thus Equation (12)

is the posterior expected loss of decision Z (Definition 8
of Chapter 4.4 in [3]). Using the Bayesian decision rule,
Problem (12) can be solved optimally [3]: given Y = y, the
decision Z = 1 if L(B = 0, Z = 1)π0P (Y = y|B = 0) <
L(B = 1, Z = 0)(1 − π0)P (Y = y|B = 1) and Z = 0
otherwise. Algorithm 1 is designed accordingly.

B. Achieving a Target PU Throughput

Based on the optimal solution to Problem (C), we propose
a greedy approximation algorithm to solve Problem (B). We
define Y0 = {y|Fb(y) = 0}, Y1 = {y|Fb(y) = 1} where Fb
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is the Bayesian rule. We also define Y∗
0 = {y|F ∗(y) = 0}

and Y∗
1 = {y|F ∗(y) = 1} where F ∗ is the optimal solution

to Problem (B). For convenience, we define G(y) = (1 −
Tc)π0P (Y = y|B = 0) and H(y) = γP (Y = y|B = 1).
Note that if G(y) ≥ H(y), we have Fb(y) = 0; otherwise
Fb(y) = 1. By observing the structure of Problem (B), we
state Lemma 4.1 and show that Y1 ⊆ Y∗

1 . In other words,
observations that have decision 1 by the Bayesian rule have
decision 1 as well in the optimal decision.

Lemma 4.1: In the optimal solution to Problem (B), all ob-
servations y with Fb(y) = 1 has the property that F ∗(y) = 1.

(By contradiction) Assume that Y1 * Y∗
1 , that is, Fb(y) = 1

and F ∗(y) = 0 for some y (y ∈ Y1∩Y∗
0 ). By Bayesian rule, it

means G(y) < H(y). We find another rule F̃ where F̃ (y) = 1
if y ∈ Y1 ∩ Y∗

0 ; otherwise F̃ (y) = F ∗(y). Obviously,∑
y:F̃ (y)=1

P (Y = y|B = 1) >
∑

y:F∗(y)=1

P (Y = y|B = 1) so

that this operation still results in a feasible solution. Further-
more, the expected system throughput increases considering
G(y) < H(y), which results in a better solution than the
current optimal one. It causes a contradiction. Hence, we have
F ∗(y) = 1 for all y ∈ Y1.

With the property of Lemma 4.1, to solve Problem (B),
we only need to find the set Y0 \ Y∗

0 that is composed of
observations y with Fb(y) = 0 and F ∗(y) = 1.

a) Proof of Strong NP-hardness: We show that Prob-
lem (B) is strongly NP-hard. By Lemma 4.1, it suffices to
show the following problem to be strongly NP-hard: finding
all y with Fb(y) = 0 and F ∗(y) = 1. Recall that a problem
is said to be strongly NP-complete, if it remains so even when
all of its numerical parameters are bounded by a polynomial
in the length of the input. A problem is strongly NP-hard
if a strong NP-complete problem can be reduced to it in
polynomial time [7].

Theorem 4.2: Problem (B) is strongly NP-hard.
Proof: We will reduce the product partition problem to the

equivalent problem stated above and the strong NP-hardness
of Problem (B) can be proved accordingly. We first state the
product partition problem [17] - Given N positive integers: y1,
· · · , yN , is there a way to have them partitioned into two equal-
sized subsets that have the same product? For the reduction, we
construct an instance of Problem (B) by setting (1−Tc)π0 = γ,
α = ϵ +

∑
y:G(y)<H(y)

H(y) with ϵ ≤ min
y:G(y)≥H(y)

H(y). For

this instance, putting any y with G(y) ≥ H(y) to Z = 1
would make a feasible solution given that observations with
G(y) < H(y) have all been put in Z = 1. Choosing the obser-
vation with the minimum non-negative G(y)−H(y) would be
the optimal solution. Note that G(y)−H(y) = 0 is equivalent
to G(y)

H(y) = 1. By setting
1−P i

f

P i
m

=
1−P i

m

P i
f

= ηi for all i, we have
G(y)
H(y) =

∏
yi=0,i=1,··· ,N

ηi ·
∏

yj=1,j=1,··· ,N

1
ηj

. Now the instance

becomes: given N pairs of integers (η1,
1
η1
), · · · , (ηN , 1

ηN
),

exactly one number should be chosen from each pair; with
this constraint, what is the minimum product that is no less
than 1? Note that the operations above take polynomial time.

To verify the correctness of the reduction, we can check:
if the minimum G(y)

H(y) no less than 1 is 1, that is, the optimal

Algorithm 2 Greedy Approximation Algorithm for Problem (B)
Input: N , Tc, π0, γ, α, P i

m, P i
f for all i

Output: F or “infeasible”
1: G(y)← (1− Tc)π0

∏
i∈S,yi=1

P i
f

∏
j∈S,yj=0

(1− P j
f ) for all y

2: H(y)← γ
∏

i∈S,yi=1
(1− P i

m)
∏

j∈S,yj=0
P j
m for all y

3: if γ < α then
4: output “infeasible” and return
5: F (y)← 1 for all y, sum1←

∑
y:G(y)<H(y)

H(y)

6: if sum1 ≥ α then
7: F (y) = 0 for all y with G(y) ≥ H(y) and return
8: Sort y’s with G(y) ≥ H(y) in non-increasing order of G(y)

H(y)
and

denote them as {y1,y2, · · · ,yl}
9: sum2← 0

10: for i = 1 to l do
11: if sum2 +H(yi) > γ − α then break
12: sum2← sum2 +H(yi), F (yi)← 0

13: if
i−1∑
n=1

(G(yn)−H(yn)) < G(yi)−H(yi) then

14: F (yn)← 0 for all n = 1, · · · , i− 1

solution of the instance is 1, we can answer “Yes” to the
partition problem; if it is greater than 1, we can answer
“No” to the partition problem. If Problem (B) can be solved
in polynomial time, then the product partition problem can
be solved in polynomial time as well. The product partition
problem is well-known to be strongly NP-complete [17].
Assuming P ̸=NP, Problem (B) has been proven to be strongly
NP-hard.

It has been shown in Theorem 4.2 that finding the observa-
tion with G(y) closest to H(y) from above is strongly NP-
hard. Hence, unless P=NP, one cannot even find a pseudo-
polynomial time algorithm to solve Problem (B) [28]. Hence,
we next focus on designing a good approximation algorithm.

b) Greedy Approximation Algorithm: We propose
a greedy algorithm (Algorithm 2) that initially assigns all
observations to Z = 1 and then moves observations with
G(y) ≥ H(y) by G(y)

H(y) from the highest to lowest to Z = 0
until the feasibility constraint of Problem (B) is violated. By
transforming Problem (B) into the Knapsack Problem [28], we
will show that the algorithm achieves strictly greater than 1/2
of the optimal solution for Problem (B). Although the sum of
G(y) or H(y) in the worst case has an exponential number
of terms, we will design an approximation algorithm.

In Algorithm 2, observations are chosen by G(y)
H(y) from the

highest to the lowest and assigned to Z = 0 after those
with G(y) < H(y) are assigned to Z = 1. Ties are broken
by putting observations with smaller H(y) in the front. In
Lines 3-4, the algorithm checks whether a feasible solution
exists for the given input by comparing the extreme case
where all observations are assigned to Z = 1 (

∑
y
H(y) = γ)

with the threshold α. In Line 5, observations are initialized to
Z = 1. Lines 5-7 checks whether the feasibility constraint in
Problem (B) has been satisfied under the initial assignment.
If yes, observations with G(y) ≥ H(y) are assigned to
Z = 0 by Bayesian decision rule. Lines 8-12 searches for
observations with G(y) ≥ H(y) from the highest G(y)

H(y) to
lowest until sum2 + H(yi) ≤ γ − α is violated (Line 11).
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Note that
∑

y:F (y)=0

H(y) ≤ γ − α and
∑

y:F (y)=1

H(y) ≥ α

(feasibility constraint) are equivalent since
∑
y
H(y) = γ.

F (y) of these observations are set to be 0 (Line 12) in the
searching process. To guarantee the 1

2 approximation ratio, we
have to do the comparison in Lines 13-14 (shown in the proof
of Theorem 4.3). Next, we state Theorem 4.3 that gives the
approximation factor of Algorithm 2.

Theorem 4.3: Algorithm 2 achieves strictly greater than 1/2
of the optimal solution to Problem (B).

Proof: We define A =
∑

y:y∈Y1

H(y), B =∑
y:y∈Y0\Y∗

0

G(y), B′ =
∑

y:y∈Y0\Y∗
0

H(y) (B ≥ B′ by Bayesian

rule), C =
∑

y:y∈Y∗
0

G(y), and C ′ =
∑

y:y∈Y∗
0

H(y) (C ≥ C ′ by

Bayesian rule). Then, A + B + C is the optimal solution to
Problem (B) without the PU throughput constraint since

A+B + C = A+ (B + C) =
∑

y:y∈Y1

H(y) +
∑

y:y∈Y0

G(y)

and A+B′ +C is the optimal solution to Problem (B) since

A+B′ + C = (A+B′) + C =
∑

y:y∈Y∗
1

H(y) +
∑

y:y∈Y∗
0

G(y)

which is no greater than A+B+C. Note that A+B′+C ′ =∑
y
H(y) = γ. Let APX be the solution to Problem (B) output

by Algorithm 2. Let OPT be the optimal solution to Problem
(B). Then, we have

OPT = A+B′ + C (13)
= γ + (C − C ′).

We then show that Y∗
0 is the optimal solution to Problem (14)

and C−C ′ =
∑

y:y∈Y∗
0

(G(y)−H(y)) is the optimal objective

value.
max

W :W⊆Y0

∑
y:y∈W

(G(y)−H(y))

s.t.
∑

y:y∈W

H(y) ≤ γ − α (14)

Clearly, we only need to show that the constraint of Prob-
lem (14) and that of Problem (B) are equivalent. By definitions,
we have

γ
∑

y:F (y)=1

P (Y = y|B = 1) ≥ α

⇔
∑

y:F (y)=1

H(y) ≥ α

(a)⇔
∑

y:y∈Y1

H(y) +
∑

y:y∈Y0\W

H(y) ≥ α

⇔
∑

y:y∈Y1

H(y) +
∑

y:y∈Y0\W

H(y)− α ≥ 0

⇔
∑

y:y∈Y1

H(y) +
∑

y:y∈Y0\W

H(y)

+
∑

y:y∈W

H(y)− α ≥
∑

y:y∈W

H(y)

Algorithm 3 Algorithm to Find the Joint Distribution of
(log G(y)

H(y)
, logH(y))

Input: N , P i
f , P i

m for all i, r
Output: C(N, j, j′) for all j, j′

1: ai ← round(log
1−P i

f

P i
m

, r)× 10r for all i

2: zi ← round(log
P i
f

1−P i
m
, r)× 10r for all i

3: λi ← round(logP i
m, r)× 10r for all i

4: µi ← round(log (1− P i
m), r)× 10r for all i

5: Q←
N∑
i=1

max {ai, zi}, q ←
N∑
i=1

min {ai, zi}

6: Q′ ← max {max
i

λi,max
i

µi}, q′ ←
N∑
i=1

min {λi, µi}

7: C(i, j, j′)← 0 for all i, j, j′, C(1, a1, λ1)← 1, C(1, z1, µ1)← 1
8: for i = 1 to N − 1 do
9: for j = q to Q do

10: for j′ = q′ to Q′ do C(i + 1, j, j′) = C(i, j − ai+1, j
′ −

λi+1) + C(i, j − zi+1, j
′ − µi+1)

⇔
∑

y:y∈W

H(y) ≤ γ − α.

Note that (a) holds because W corresponds to all obser-
vations y with F (y) = 0. Problem (14) is a Knapsack
Problem and can be solved by a greedy approach [28]:
choosing observations with G(yi) ≥ H(yi) from the highest
G(yi)−H(yi)

H(yi)
to the lowest until (14) is violated (the index

of the observation added when the constraint is violated
is labeled as s), which is exactly what we do in Algo-
rithm 2 since G(yi)−H(yi)

H(yi)
≥ G(yj)−H(yj)

H(yj)
if and only if

G(yi)
H(yi)

≥ G(yj)

H(yj)
; A further comparison to find the maximum

of
s−1∑
n=1

(G(yn)−H(yn)) and G(ys) − H(ys) guarantees
1
2 (C−C ′) [28]. Hence, APX ≥ γ+1/2(C−C ′) holds. Since
γ > 0, we always have APX/OPT > 1/2 for Problem (B).

So far, we have shown that the greedy algorithm (Algo-
rithm 2) gives an approximation factor of strictly greater than
1/2 for Problem (B). However, when γ ≫ C−C ′, this factor
could be arbitrarily close to 1.

c) Approximate Throughput Calculation: To calculate
system throughput in Algorithm 2, we need to calculate the
sum of G(y) or H(y). The worst case complexity is exponen-
tial since there are exponential number of terms due to its com-
binatorial nature. To address this problem, we design an ap-
proximation algorithm via dynamic programming to estimate
the joint distribution of (log G(y)

H(y) , logH(y)), by counting the

number of observations with the same log G(y)
H(y) and the same

logH(y). Note that 1) We take logarithmic functions to make
the recursive function additive (Line 10 in Algorithm 3); 2)
We find the joint distribution of (log G(y)

H(y) , logH(y)) instead

of (logG(y), logH(y)) because we need to evaluate G(y)
H(y) in

Lines 5 and 8 in Algorithm 2. The details of the algorithm
will be introduced next, followed by the complexity analysis.
For simplicity, we assume (1 − Tc)π0 = γ in Algorithm 3.
This assumption is only for ease of illustration, and is relaxed
in our online technical report [11].

In Algorithm 3, we use dynamic programming to calculate
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the joint distribution of log G(y)
H(y) and logH(y), which counts

the number of observations with the same log G(y)
H(y) and the

same logH(y). Note that we only need to run this algorithm
once in the time period where P i

m, P i
f , π0 and γ are fixed.

Lines 3, 6, 9 and 12 of Algorithm 2 can be calculated
based on these counts. round(b, r) rounds b to r decimal
places by removing all digits after r decimal places. We use
round(b, r)×10r to scale and round a real b to an integer. The
values of r lead to different accuracy levels for the algorithm.
Q and q specify the maximum and minimum contribution,
respectively, an observation y can have to log G(y)

H(y) , while
Q′ and q′ specify the maximum and minimum contribution
an observation y can have to logH(y) respectively. Let
yi = {y1, · · · , yi} denote the observation vector for SUs 1
to i. C(i, j, j′) is defined as the number of observations with
log G(yi)

H(yi)
(after rounding) equal to j and logH(yi) (after

rounding) equal to j′. In particular, C(N, j, j′) records the
number of observations with log G(yN )

H(yN )
(after rounding) equal

to j and logH(yN ) (after rounding) equal to j′. Lines 7-
10 use iterations to find C(i, j, j′) for all i = 1, · · · , N ,
q ≤ j ≤ Q and q′ ≤ j′ ≤ Q′. The recursive function in
Line 10 distinguishes two situations: if yi+1 = 0, log G(yi)

H(yi)

is increased by ai+1 and logH(yi) is increased by λi+1;
on the other hand, if yi+1 = 1, log G(yi)

H(yi)
is increased by

zi+1 and logH(yi) is increased by µi+1. Note that Line 10
may encounter C(i, j, j′) beyond the boundaries of j or j′,
the value of which will be treated as 0. Lines 3, 6, 9 and
12 of Algorithm 2 can be calculated accordingly, the time
complexity of which is dominated by that of Algorithm 3.
For special cases satisfying one or more of the following
conditions: P i

m = 0, P i
m = 1, P i

f = 0 and P i
f = 1, the

values of G or H are straightforward which does not require
running Algorithm 3. For instance, when P i

m = 0, H(y) = 0
for all observations with yi = 0. In the following, we consider
only other more general cases. We will first show the tradeoff
between the accuracy of G(y) or H(y) calculation and the
time complexity of Algorithm 3 in Lemma 4.4. Next, we
prove that Algorithm 2, together with Algorithm 3, can achieve
strictly greater than 1

2 (1 − ϵ) of the optimal solution, where
ϵ ∈ (0, 1) is a constant, with the time complexity O( N5

log 2 1
1−ϵ

),
and we also bound the feasibility gap in Theorem 4.5. As ϵ
decreases, better accuracy is achieved at the cost of higher
time complexity. The algorithm only needs to run once before
P i
m or P i

f changes. We define G′(y) and H ′(y) as the values
of G(y) and H(y), respectively, calculated by Algorithm 3.

Lemma 4.4: With the complexity of O( N5

log 2 1
1−ϵ

), Algo-
rithm 3 calculates G′(y) ≥ (1 − ϵ)G(y) and H ′(y) ≥
(1− ϵ)H(y).

Proof: The rounding in Lines 1-4 makes log
1−P i

f

P i
m

,

log
P i

f

1−P i
m

, logP i
m and log 1− P i

m lose at most 10−r in
their values, respectively. By the definition of G(y), we
have logG(y) − logG′(y) ≤ N10−r, which is equivalent
to G′(y) ≥ 10−N10−r

G(y). Similarly, we have H ′(y) ≥
10−N10−r

H(y). Let ϵ = 1− 10−N10−r

, then given the input

P i
m and P i

f , the complexity of Algorithm 3 is O(N3102r),
which is O(N5/ log 2 1

1−ϵ ).
Based on Lemma 4.4, we prove the approximation factor of

1
2 (1 − ϵ) in the following theorem. We also characterize the
feasibility gap which tends to 0 as ϵ goes to 0.

Theorem 4.5: Algorithm 2, together with Algorithm 3,
achieves strictly greater than 1

2 (1− ϵ) of the optimal solution
with the time complexity of O( N5

log 2 1
1−ϵ

); it also achieves a PU

throughput fraction of at least δ
1−ϵ −

ϵ
1−ϵ where δ · γ = α.

Proof: As in the proof of Theorem 4.3, we focus on the
equivalent Problem (14). We denote the optimal assignment of
observations without any approximations of G or H by Γ, the
optimal assignment of observations with the approximations of
G or H in Algorithm 3 by Γ′, and the assignment generated
by Algorithm 2 with Algorithm 3 by Γ′

g . We also denote the
value of the objective function in Problem (14) by Θ(·) and the
approximated value of the objective function in Problem (14)
(by the calculation of Algorithm 3) by Θ′(·), given the
observation assignment. Then,

Θ(Γ′
g)

(a)
> Θ′(Γ′

g)
(b)

≥ 1

2
Θ′(Γ′)

(c)

≥ 1

2
Θ′(Γ)

(d)

≥ 1

2
(1− ϵ)Θ(Γ).

where (a) is by the rounding assumption, (b) is by Theo-
rem 4.3, (c) is by the definition of Γ′, and (d) is by Lemma 4.4.
We denote the optimal solution to Problem (B) by OPT
and the solution to Problem (B) output by Algorithm 2
together with Algorithm 3 by APX ′, respectively. Then,
OPT = γ+Θ(Γ) and APX ′ ≥ γ+1/2(1−ϵ)Θ(Γ) following
a similar argument in the proof of Theorem 4.3. Hence, we
always have APX ′/OPT > 1/2(1− ϵ).

On the other hand, the complexity is dominated by that of
Algorithm 3, which is O( N5

log 2 1
1−ϵ

) as shown in Lemma 4.4.
To check the feasible gap, we denote the set of observations

assigned to O = 0 in Γ′
g by ∆. By Line 11 in Algorithm 2, we

have
∑
y∈∆

H ′(y) ≤ γ −α. Also by Lemma 4.4,
∑
y∈∆

H ′(y) ≥

(1−ϵ)
∑
y∈∆

H(y) holds. Then we have
∑
y∈∆

H(y) ≤ γ−α
1−ϵ . The

PU throughput achieved can be represented by∑
y/∈∆

H(y) ≥ γ − γ − α

1− ϵ
=

α

1− ϵ
− γ

ϵ

1− ϵ
.

The PU throughput fraction is then calculated as∑
y/∈∆

H(y)

γ
≥ δ

1− ϵ
− ϵ

1− ϵ
.

V. GENERAL THROUGHPUT MAXIMIZATION PROBLEM

In Problem (B), the SU-BS is free to choose any subset of
S as the sensing set and maximizes the expected throughput
of the system. However, a large number of SUs in the sensing
set causes high overhead. In this section, we investigate the
general problem with constraints of PU throughput above
a threshold and the sensing set size below a threshold in
Problem (A). To this end, we first show that the maximum
throughput subject to PU throughput constraint in Problem (B)
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is monotonic over the number of SUs in the sensing set. By
utilizing our solution to Problem (B), we then propose a greedy
heuristic to Problem (A).

A. Monotonicity of Optimal System Throughput

Intuitively, sensing accuracy is increased by adding more
SUs into the sensing set while guaranteeing the PU throughput
above a threshold. In this section, we confirm this intuition and
show that the optimal throughput for Problem (B) is monotonic
over the number of SUs in the sensing set. We define

J∗(S0) = max
F

[
(1− Tc)π0

∑
y:F (y)=0

P (Y (S0) = y|B = 0)

+γ
∑

y:F (y)=1

P (Y (S0) = y|B = 1)
]
.

s.t. γ
∑

y:F (y)=1

P (Y (S0) = y|B = 1) ≥ α

Proposition 5.1: The optimal throughput for Problem (B)
is monotonic over the SUs chosen in the sensing set; i.e.,
J∗(S′

0) ≥ J∗(S0), for all S0 ⊆ S′
0.

Proof: Given the sensing set S′
0, we design a decision rule

as follows: we always ignore the observations made by SUs in
S′
0 \ S0 and make the optimal decision based on observations

of SUs in S0. Then we have J∗(S0) as the system throughput
with sensing set S′

0 under this rule. Since J∗(S′
0) is the system

throughput with sensing set S′
0 under the optimal rule, we have

J∗(S′
0) ≥ J∗(S0).

Using Proposition 5.1, we know that it is best to choose the
full set as the sensing set if there is no sensing set constraint.

B. Subset Selection

We now investigate (Problem (A)) where the number of
SUs in S0 is constrained. It has been shown in [19] that no
non-exhaustive search method in finding a feature subset of a
given size k that has minimal Bayes risk always exists when
observations are correlated. Due to the successful mapping
between our problem and a Bayesian Decision problem (Prob-
lem (12)), the SU subset selection problem is equivalent to the
feature subset problem in [19], except that the observations
are assumed to be independent. The hardness of this problem
has been a long standing open issue. It is not clear whether
exhaustive search would be necessary as shown in [27] with
independent observations, not to mention the general problem
with the constraint of the PU throughput above a threshold
as well. Although we characterize the monotonic property
of maximum throughput over the number of SUs in the
sensing set, the complexity of the problem is not clear. Many
heuristics such as Sequential Forward Selection (SFS, [23]),
Sequential Backward Selection (SBS, [23]) and their variations
[9] have been proposed to solve problems of this type. We
propose Algorithm 4 based on SFS [23] and Algorithm 2. In
Algorithm 4, we start from an empty sensing set. At every
step, only the SU that is not yet chosen and has the largest
marginal increase on the maximum throughput is added to the
set. The algorithm stops when the size of the set reaches k.

Algorithm 4 SFS Algorithm for Problem (C)
Output: sensing set S0

1: if k ≥ N then
2: S0 ← S
3: else
4: R← S, S0 ← ∅
5: for i = 1 to k do
6: l∗ ← argmaxl∈R

[
J∗(S0 ∪ {l})− J∗(S0)

]
7: S0 ← S0 ∪ {l∗}
8: R← R \ {l∗}

Note that the optimal system throughput with a given set is
approximately calculated by Algorithm 2.

VI. SIMULATIONS

In this section, we study the throughput and analyze the
sensitivity. We first compare the performance of the Bayesian
decision rule (Algorithm 1), majority, AND and OR policies
[31] in Section VI-A. Then we present the performance of
the greedy algorithm for Problem (B) (Algorithm 2), the
random selection and the optimal solution, and also compare
the performance of Algorithm 4 with the optimal solution to
Problem (A) in Section VI-A. Finally, we conduct sensitivity
analyses with inaccurate P i

m, P i
f or π0 information.

A. Simulation Setting

In all of the simulation studies, if not specifically mentioned,
our model is that of a cognitive radio network with N = 20,
Tc = 0.2, π0 = 0.4, and γ = 2. We generate 100 groups of
practical P i

m and P i
f based on randomly generated locations

of SUs. In a 50 × 50 square area, the locations of the PU
are randomly generated and fixed over the simulation. The
power level P of the PU is also randomly generated between
1 and 10 and fixed then. In each of the 100 runs, we randomly
generate the locations of N SUs within the area and calculate
the distance d(i) between the PU and SU i. We assume free-
space path loss [2] and the SNR at SU i when the PU is
transmitting is then calculated as P/d(i)2

θ(i) , where θ(i) is the
normalized noise at SU i randomly generated between 0.01
and 0.1. The channel gain from the PU to SU i is denoted by

1
d(i)2

. We let λ(i) denote the threshold of the energy detector
at SU i, which is randomly generated between 0 and 10. We
use Equations (15) and (16) from [24] to generate 100 groups
of P i

m and P i
f where the time bandwidth product u = 3:

P i
m = 1− e−

λ(i)
2

u−2∑
n=0

1

n!

(λ(i)
2

)n

−
(1 + SNR(i)

SNR(i)

)u−1

×
[
e−

λ(i)
2(1+SNR(i))

− e−
λ(i)
2

u−2∑
n=0

1

n!

( λ(i)SNR(i)

2(1 + SNR(i))

)n]
(15)

P i
f =

Γ(u, λ(i)
2 )

Γ(u)
(16)
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Fig. 3. Performance comparison of Bayesian decision rule, majority, AND
and OR with N = 20, Tc = 0.2 and π0 = 0.4.

In the equations above, Γ(·, ·) is the incomplete gamma
function, and Γ(·) is the gamma function [24]. SNR(i) is
the SNR at SU i when the PU is transmitting.

B. Maximum System Throughput without Sensing Budget Con-
straint

We have shown in Section IV-A that Algorithm 1, the
Bayesian decision rule based algorithm is optimal. In Figure 3,
we compare its performance versus majority, AND, OR rules
in terms of system throughput, which is the objective function
value of Problem (C). When using the majority rule, the
decision is 1 only when the majority of the SUs sense an
active PU; for the AND rule, the decision is 1 only when all
SUs sense an active PU; for the OR rule, the decision is 1 if
any of the SUs senses an active PU. We vary γ, the average
PU throughput in Figure 3. The Bayesian decision rule strictly
outperforms the other algorithms. Among them, the OR and
majority rules have similar performance and are both better
than AND since the PU transmission is better protected by
the OR rule. We show different scenarios where the Bayesian
wins over other rules by a small gap in Figure 3(a) and
by a significant gap in Figures 3(b) and 3(d). Also, we
show the scenarios where OR is always better than AND in
Figure 3(c) and AND performs better than OR when γ is low
in Figure 3(b). Note that in Figure 3(a), the performance of
majority is close to that of Bayesian while they are far apart
in [12] with randomly generated P i

m and P i
f . We observe that

P i
m + P i

f ≥ 1 occurs often there while it never does in the
practically generated P i

m and P i
f ; majority rule over bad SUs

(P i
m + P i

f ≥ 1) leads to unwise decisions. In Figure 3(d) we
reduce the time bandwidth product to 2 and regenerate 100
groups of P i

m and P i
f . We observe a significant number of

SUs with P i
m +P i

f ≥ 1 in each group, which leads to the big
gap between Bayesian and majority compared to Figure 3(a)
when u = 3.
C. Maximum System Throughput with General Constraints

As shown in Section IV, greedy algorithm (Algorithm 2)
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Fig. 5. Performance of PU and SU throughput over α.

can achieve throughput strictly greater than 1/2 of the optimal
throughput in Problem (B). We compare it with its counter-
part using the OR rule (Greedy OR) and random selection.
Greedy OR initially assigns observations to Z = 0 or Z = 1
by OR rule (only observation 0 is assigned to Z = 0 in
this step); if feasibility is not met, it moves observation 0
to Z = 1 as the last chance to satisfy feasibility; if feasibility
after the initial step (only observation 0 in Z = 0) is met,
observations are sorted in Z = 1 in decreasing order of G(y)

H(y)
and moved to Z = 0 until feasibility is violated. Random
selection is based on Bayesian decision rule, which means
Algorithm 1 is first executed; after that, observations with
G(y) ≥ H(y) are randomly selected to put in Z = 1 until
the feasibility is satisfied. Thus, the main difference between
greedy algorithm and random selection lies in the selection
criterion of observations with G(y) ≥ H(y) after the initial
assignment based on Bayesian decision rule.

In addition, we set r = 2. We vary parameters such as γ, the
average PU throughput, α, the PU throughput constraint, and
N , the number of SUs in Figure 4. Normalized throughput is
defined as the system throughput under the algorithm over
the optimal solution. Two boundary cases are excluded in
the result presentation where both the greedy algorithm and
random selection will give the optimal solution: 1) Bayesian
decision rule gives the optimal solution; 2) It is optimal to
put all observations in Z = 1. Hence, we only show their
performance when at least one but not all observations with
G(y) ≥ H(y) have to be moved to Z = 1.

In Figure 4(a), the normalized throughput of the greedy
algorithm, random selection and Greedy OR are compared for
different values of γ, the average PU throughput in the system.
We set α to be 0.8γ for a fair comparison. With a higher
γ, the factor decreases gradually for all three algorithms.
The greedy algorithm, which has a provable lower bound,
outperforms the other two algorithms. Potentially, the Bayesian
decision rule assigns more SUs to Z = 1 compared to a
lower γ case. Thus, the initial assignment is closer to α,
the PU throughput constraint. Since we only consider cases
where Bayesian decision rule is not optimal, all algorithms
tend to have worse performance when the initial assignment
approaches α because they get more sensitive to wrong ob-
servation selections. Random selection wins over Greedy OR
in that the decision rule still plays an important role in the
constrained problem.

In Figure 4(b), we vary α, the minimum PU throughput
constraint, and compare the performance of the algorithms.
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(a) With different γ (N = 20, α = 0.8γ).
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(b) With different α (N = 20, γ = 2).
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(c) With different N (γ = 2, α = 1.6).
Fig. 4. Performance comparison of greedy algorithm and random selection when Tc = 0.2, π0 = 0.4 and r = 2.

Again, the greedy algorithm outperforms the other two. The
normalized throughput increases with α, although it is a minor
increase in the two greedy algorithms. The increase can be
explained similarly as in Figure 4(a): a higher α makes the
initial assignment farther away from it so that the performance
is less sensitive to the choice of observations.

In Figure 4(c), we test the performance of our greedy
algorithm by varying the number of SUs from 10 to 20. The
normalized throughput of all algorithms degrades with more
SUs while the actual system throughput increases. However, it
is always far above 1/2 for the greedy algorithm, as proved in
Theorem 4.3. Greedy OR drops below 1/2 when N is large
as shown in the figure.

We also vary the PU throughput threshold α and show the
corresponding PU and SU throughput achieved in Figure 5.
Algorithm 2 always leads to a feasible solution as shown in
the PU throughput while the SU throughput degrades as the
threshold increases since the more strict requirement on PU
throughput makes the decision biased toward achieving PU
throughput.

As stated in Section V, the hardness of Problem (A) is
unknown. Therefore, here, we focus on the performance of
Algorithm 4, heuristic we proposed, and compare it with
random selection. In this random selection, SUs are randomly
selected for sensing. The selection is repeated till the sensing
set size is no more than k. Then the PU throughput achieved is
calculated based on Algorithm 1. This process is repeated till
the PU throughput is above the prescribed threshold. In this
way, the time complexity of the random selection algorithm
is not low. In Figure 6, we vary k, the size of the sensing
set, from 1 to N and show the normalized throughput of
Algorithm 4 and random selection. When k increases, the
performance of Algorithm 4 degrades and the performance
of random selection increases. However, the former is always
better than the latter and the gap is especially large when
k is small. Algorithm 4 on average achieves at least 0.9 of
the optimal solution achieved by exhaustive search in our
simulation.
D. Sensitivity Analysis

So far, we have assumed that parameters such as P i
m and P i

f

are accurate. However, they are collected using empirical data.
Hence, the actual values could be different from those used
in the calculations. We investigate the sensitivity of system
throughput to these errors for Problems (A) in Figures 7
and 8. We define Efficiency as the throughput with inaccurate
parameters over the throughput with accurate parameters. For
sensitivity analysis to P i

m and P i
f , the value of P i

m used falls

2 4 6 8 10 12 14

0.9

0.95

1

k

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

 

 

SFS−based
Random

Fig. 6. Performance comparison of Algorithm 4 over different numbers of
SUs in the sensing set when N = 20, Tc = 0.2, π0 = 0.4, γ = 2 and
α = 1.6.
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Fig. 7. Sensitivity to P i
m, P i

f when N = 20, Tc = 0.2, π0 = 0.4, γ = 2,
r = 2 and α = 1.6.

in the range of [P i
m − ϵ, P i

m + ϵ] where P i
m is the actual

value; similarly, the value of P i
f used falls in the range of

[P i
f − ϵ, P i

f + ϵ] where P i
f is the actual value. The efficiency

is more than 97% even when the error range ϵ reaches 0.1.
So Algorithm 4 is not sensitive to sensing inaccuracies.

The sensitivity analysis of system throughput to π0 is more
optimistic as in Figure 8. The value of π0 used falls in the
range of [π0 − ϵ, π0 + ϵ] where π0 is the actual value. The
efficiency is always greater than 99% when ϵ ≤ 0.2. In
both figures, we have feasible solutions even with inaccurate
information in all 100 samples. These results suggest that our
solution is robust to inaccuracies in P i

m, P i
f or π0.

VII. CONCLUSION

In this paper, we investigated a general problem for max-
imizing the system throughput using cooperative sensing in
cognitive radio networks. To solve it, we formulated a sensing
decision problem of maximizing the system throughput. The
first problem we considered is the unconstrained problem of
maximizing the weighted sum of the PU and SU throughput
in the cognitive radio system. We developed a Bayesian rule
based algorithm to find the optimal decision. To guarantee a
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Fig. 8. Sensitivity to π0 when N = 20, Tc = 0.2, π0 = 0.4, γ = 2, r = 2
and α = 1.6.

minimum PU throughput, we then studied a system through-
put maximization problem with PU throughput constraint.
We proved that the new problem is strongly NP-hard, and
proposed a greedy algorithm that achieves an approximation
factor strictly greater than 1

2 (1− ϵ) with the time complexity
O( N5

log 2 1
1−ϵ

) where N is the total number of SUs. We also
characterized the feasibility gap which tends to 0 when ϵ goes
to 0. Finally, we studied the general problem with both PU
throughput and sensing set size constraints. We established the
monotonicity of the system throughput function, and proposed
a simple greedy heuristic that performs well in the numerical
results. However, proving a performance guarantee for it
remains elusive, which is one of our future research directions.
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