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Abstract—Cognitive Radio Networks allow unlicensed users to ~ Sensing can be performed via several methods, including
opportunistically access the licensed spectrum without esing energy detection, cyclostationary feature detection, Gom-
disruptive interference to the primary users (PUs). One of he pressed sensing [8]. Energy detection is a simple method

main challenges in CRNs is the ability to detect PU transmissns. d . iori k led f PU si s (211 It
Recent works have suggested the use of secondary user (SUFNC TEQUIrES NO a prior knowiedge o signals [21]. Its

cooperation over individual sensing to improve sensing accacy. Main dis_advantage is its decr_eased accuracy in face _ofg‘adin
In this paper, we consider a CRN consisting of a single PU shadowing, and unknown noise power profiles. For instance,

and multiple SUs to study the problem of maximizing the total if an SU suffers from shadowing or heavy fading, the sensed
expected system throughput. We propose a Bayesian decisiorle  gjgna) tends to be weak while the PU is transmitting, leading

based algorithm to solve the problem optimally with a constat toi t decisi To add th bl hil .
time complexity. To prioritize PU transmissions, we re-fomulate 0 Incorrect decisions. 10 address these problems whil@-mai

the throughput maximization problem by adding a constraint taining sensing simplicity, cooperative sensing scherhas t

on the PU throughput. The constrained optimization problemis fuse the sensing results of multiple SUs have been proposed
shown to be strongly NP-hard and solved via a greedy algoritm  [6][13][14].

with pseudo-polynomial time complexity that achieves stiitly Cooperative sensing overcomes shortcomings of individual

greater than 1/2 of the optimal solution. We also investigate . - . . .
the case for which a constraint is put on the sensing time S€NSING results by jointly processing observations. SUa in

overhead, which limits the number of SUs that can participae locality report their individual sensing results, whicteahen
in cooperative sensing. We reveal that the system throughpu used in a predefined decision rule to optimize an objective

is monotonic over the number of SUs chosen for sensing. We function. Examples of such functions include maximizing
illustrate the efficacy of the performance of our algorithms via sensing accuracy (generally, a function of false alarm @rob
a numerical investigation. bility and mis-detection probability) or maximizing thestgm

. INTRODUCTION throughput. Aside from maximizing sensing accuracy relate

Cognitive radio networks (CRNs) have been proposed gaetrics, cooperative sensing schemes are also designed to

address the spectrum scarcity problem by allowing unliegnsEstimate the maximum transmit power for SUs so that they

users (secondary users, SUs) to access licensed spectrurf®ROt cause disruptive interference to PUs [11]. On therothe
the condition of not disrupting the communication of liceds hand, cooperative sensing incurs additional sensing demy
users (primary users, PUs). To this end, SUs sense licen8e$? individual sensing. o o
channels to detect the primary user (PU) activities and ﬁndThree main categories of de_C|S|on rules hav_e _been identified
the underutilized “white spaces”. FCC has opened the T [8]: Soft Combining, Quantized Soft Combiniagd Hard
bands for unlicensed access }3and IEEE has formed a Combining In the first two categories, the sensing results are
working group (IEEE 802.22 [7]) to regulate the unlicenseﬁe”t to the fu5|on_ center with I|tt_Ie_ or no processing, while
access without interference. Many other organizations dfethe last one, binary local decisions are usually reported
also making efforts on the spectrum access policy in tr%mllar to sensor networks, linear fusion rules are widely
CRN environment, e.g., DARPAs ‘Next Generation’ (XG)appIied to achieve a cooperative decision, such as AND, OR
program [17] mandates cognitive radios to sense signals gl majority rules [14]. In addition, a more advanced fusion
prevent interference to existing military and civilian imd t€chnique that utilizes statistical knowledge [20] hasrbee

systems. To avoid the interference to PUs, sensing becorfig¥ised to capture the correlation between SUs in cooperati
an indispensable part of CRN design. sensing. However, the resulting algorithm is suboptimal an

its approximation factor is unknown. None of the above-
This work has been funded by ARO MURI award W911NF-08-1-0238 mentioned works identify optimal decision rules for gemera

1The recent FCC ruling requires the use of central TV Bandeisagabases decision structures and they require decision rules torassu
to verify spectral availability. While respecting this ind, our work explores

local cooperative methods to improve sensing accuracy ti¢h potential partlcu_lar forms (e.g., Illnear) for .opt|maI|ty aqaly3|s.
outcome of relieving this burdensome requirement. In this paper, we design an optimal data fusion rule to (hard)



combining of the reported sensing result. More specifically sensing accuracy does not depend on it. We focus on the
aim to maximize the system throughput in a CRN composegtimal decision rule based on the sensing results cotlecte
of a single PU (i.e., single channel) and several SUs. Whide t Decision rules so far mainly focus on AND, OR, majority
target system is a simplified one, it is helpful in revealihg t rules and other linear rules. Zhang et. al. [25] show thabihe
challenges associated with the design of optimal fusioestul timal fusion rule to minimize the cooperative sensing erabe
Moreover, the resulting algorithms can easily be genezdlizis the half-voting rule in most cases. They show that AND or
to more complex systems comprised of multiple channel®R rules are optimal only in rare cases. However, other rules
where sensing decisions are made per channel. Our mwith more complicated forms have not been considered in [25]
contributions can be summarized as follows: Based on these observations, a fast spectrum sensingtafgori
. In contrast to previous works that restrict the class & Proposed for a large network where not all SUs are required
fusion rules, we propose a Bayesian decision rule basé¥ Sensing while satisfying a given error bound. Howeve, t
algorithm to solve the throughput maximization problerfPtimal number of sensing nodes and the complexity of this
optimally with constant time complexity. problem have not been discussed. In [14], the SU throughput
. To guarantee resources for the PU, we re-formulate tifemaximized subject to sufficient protection provided tosPU
problem by adding a constraint on the PU throughputhe .optimal k-out-of-N fusion_ rule is determined an_d the
This constrained problem is shown to be strongly NFsensing/throughput trade-off is also analyzed. As in [25],
hard by reducing the classical product partition problefi fusion rules of general forms are considered. Thus, the
[2] to it. A greedy algorithm is obtained with pseudofPtimization is restricted to a small fusion rule domainalsid
polynomial time complexity. This approximation algo-t- &l [18] consider the spatial variation of SUs and théofus
rithm is analytically shown to achieve strictly greatertharule is @ weighted combination of SU observations. The wteigh
1/2 of the optimal solution. depends on the received power and path loss _at.each Su.
« We investigate systems where limited sensing overheaB0ugh more advanced than AND, OR, and majority rules,
is allowed, i.e., the number of sensing SUs is restrictetl® weighted form is restricted to the linear function damai
Our theoretical results show that the performance 81 [5], optimal multi-channel cooperative sensing alguris

cooperative sensing is monotonic over the number of S@&€ considered to maximize the SU throughput subject to per
used for sensing. channel detection probability constraints. The resultiog-

. . ] . convex problem is solved by an iterative algorithm. Comgdare
The paper is organized as follows: Related work is presente Y
0 [5], our work focuses on the maximization of the system

in Section Il. In Section lll, the_sygtem model is introduce roughput, including the PUs and SUs. Although we only

The system throughput maximization problem is formulate . . T 2

. : . . ; . _._consider a single-channel network, which is a simplifiaatio

in Section 1V, and solved optimally via Bayesian decision . ; :
made on the model, our decision algorithms can be applied

rule. In Section V, the constrained maximization problem Rr each channel individually. Moreover, a soft decisioteru
formulated, which is shown to be strongly NP-hard. A pseudo- Y- y

o ) ) : IS considered in [5], which requires significant amount afda

polynomial time greedy algorithm is proposed with an ap- . : . .
S : S 0 be transmitted to the coordinator while our hard decision

proximation factor strictly greater thary2. Another direction : .

: . ; : rule requires only one bit sent from each SU.

is considered in Section VI where the system throughput is

maximized subject to a constraint on the number of sensing I1l. SYSTEM MODEL

SUs used. In Section VII, numerical results are presented fo

the performance of our alaorithms. The paper is concluded inWe consider a time-slotted cognitive radio network in which
Sec'gon Vil 9 ' pap a PU network, consisting of a PU base station (PU-BS) and

PU receivers, co-exists in the same area with an SU base
station (SU-BS) and/ SUs (Figure 1). We focus on the PU
transmissions over a particular channel. We consider kiplin
Cooperative sensing solutions have been investigated part for the SU system, i.e., only one SU can be active and
recent years. They rely on multiple SUs to exchange sensimgnsmit to the SU-BS at any given time. Some PU receivers
results or a central controller to collect the sensing teftbm may lie in the interference range of SUs such as Plin
SUs. The network is usually divided into clusters and eadtigure 1. Any transmission from these SUs such as $Us
cluster head makes the decision on the channel occuparXyand 3 in Figure 1 may cause interference to those PU
Collaborations among SUs have been shown to improve tteeeivers. We denote the set of SUs whose uplink transmissio
efficiency of spectrum access and allow the relaxation ouses interference to PU receivers Byand |S| = N
constraints at individual SUs [4][24]. One branch of thegrap (M > N). They are indexed from to N. SUs outsideS can
in cooperative sensing assume that the length of sensirgy tiose the channel to transmit at any time slot without causing
at individual SUs is proportional to the sensing accuracyterference to the PUs.
However, longer sensing time decreases the transmissien ti  SUs inS are close to the PU network and they may sense the
The trade-off is called thesensing efficiencyroblem and channel cooperatively to reduce the sensing errors. Thergen
is discussed in [10] and [12]. In our work, we assume thesults of individual SUs are assumed to be independenf3Let
observation time at each SU is fixed so that the individuegpresent the PU activity such thBt= 1 if PU is active, and

II. RELATED WORK



TABLE |
NOTATION LIST

| Symbol| Meaning

M Total number of SUs in the secondary network
S Set of SUs which cause interference to PU receivers
N |S|
So Set of SUs that are chosen to sense the charielC S
k [Sol
) ) P} False alarm probability of SU
Fig. 1. System model of an SU network overlayed with a PU ngtwo " - - —
Py, Mis-detection probability of SU
SU-BS P}? False alarm probability of cooperative sensing
Py Mis-detection probability of cooperative sensing
IR T. Control slot
@ @ @ T, Data slot
) ) ) ) 0 Probability that the PU is idle
I‘cO||ection of i;}ocessflng o 5 Average throughput of PUs in the interference range of a [SU
sensing results and notification
Te Ty

one of the SUs inS (not limited to Sy, the sensing set) to

_ , - transmit. We assume SUs ifi are always backlogged. The

B = 0 otherwise. LetP; denote theprobability of a false  scheduling of the transmitting SUs is beyond the scope of

alarm for SU i, which is the probability that SU senses this paper. However, any work-conserving scheduling golic

the PU to be active given that the PU is actually idi§,  operating on idle slots can be used together with the deisio

represents therobability of mis-detection for SU i, which e to maximize the total system throughput. Werdgtlenote

is the probability that SU senses the PU to be idle given thafne probability that the PU is idle and we assume that the prio

the PU is actually active. distribution of PU activity is acquired over time accurgtel
Cooperative SensingMultiple SUs are chosen to sense thote that we do not restrict the PU activity to any specific

channel and the SU-BS predicts the PU activity by collectingstribution except that it does not change within one titoé s

the sensing results from these SUs. We denote the set of S§& average throughput of PUs whose transmission would be

that participate in the cooperative sensingSaswhere[So| = interfered by SUs inS is denoted asy. Table | summarizes

k. Note thatS, C S. In the cooperative sensing model, Wehe notations used in the paper.

assume the SU-BS collects sensing results from SUsin The SU communication follows a protocol with the follow-
Cooperative Sensing Indicator The observation of the ing outline:

PU activity by SU: is denoted byo;. o; = 1 indicates that i i .

SU s obsgrveys the PU to be ac%f/e, white = 0 indicates 1) SUs reportry, S. and P’;'s to S.U-BS' .

. : : 2) SU-BS determines the sensing skt and the decision
that SU ¢ observes the PU to be idle. In this paper, Ourrulef based onPi, Pi’s and the optimization metric;
objective is to characteriz8, and estimate the PU activity m - f '

based on observations frofy (called the decision rule). The 3) SU-BS notifies SUs i, with an AOK. and als_o aSS|gns.
decision rule is denoted as a functigh: QF — © where each one of them 8FEQ number for reporting sensing results;

Q = {0,1}. The observations form a vector whereo € Q* 4) SUs receiving amlC' K sense the channel and report the

while the decision is denoted b@ where O € Q. The results to SU-BS in the order (5@,

false alarm probability of cooperative sensing is denoted b 5) SU-BS makes the decision of the PU activity based on
P§ = P(O = 1|B = 0). The mis-detection probability of the sensing results arfdand schedules an SU for transmission

cooperative sensing is denoted B, = P(O = 0|B = 1). if the decision is0 (PU idle).
One time slot is divided into a control sl@. and a data slot

Fig. 2. Control slotT. and data slof;.

Ty whereT, + T, = 1 (Figure 2). In the control slot, the IV. SYSTEM THROUGHPUTMAXIMIZATION
SU-BS collects sensing results frofy and notifies an SU
in S if the cooperative sensing result is “idleO(= 0). If In this section, we formulate the cooperative sensing prob-

the PU is active (mis-detection), the PU transmission wéll dem with the assumption that, = S, that is, the sensing
collided with the transmission from the SU. The length results from all SUs inS are reported to SU-BS withiff,.
of the control slot is regarded as the sensing overhead &®lds outsideS can transmit without causing interference to the
assumed to be constant throughout the paper. It means th&uUs. Thus, their performance is independent of the choice of
fixed time period is allocated for cooperative sensing irheathe sensing set or the decision rule. Our goal is to maximize
slot. the sum of the expected throughput of SUsSirand that of
The uplinks of SUs inS are assumed to have the samthe PUs whose transmission may be interfered by the SUs.
capacity which is normalized ta. If the decision of the It is equivalent to maximizing the expected throughput @& th
cooperative sensing at the SU-BS is “idle”, the SU-BS ndtifiesystem with PU-SU co-existence.



A. Problem Formulation Algorithm 1 Bayesian Decision Rule Based Algorithm for
maximizing the system throughput (given decideO)
Given B = 0 (the PU is idle), the probability of a particular L (1T pi 1— Pl >
observation vectoo occurring is Hif (1= Te)mo 0}11 ijH:O( - Pp) =
PB=0)= [[ 7 [I a-PH. @ v 1 1—=Pi) ] Pi then
’ 0

i€S,0i=1  j€S,0;=0 0;=1 0=

The sum of allP(o|B = 0)’s with f(o) =0 is given as 3 els(()e 0
PO=0B=0)= 3 P(o|B=0). 2 -0l
flo)=0
Then, the false alarm probability of cooperative sensing is
Pf=1-PO=0B=0)=1- Y P(o|B=0). (3) min L(B = 0,0 = 1) lwo > P(o|B=0)
f(0)=0 ! flo)=1
Likewise, givenB = 1 (the PU is active), the probability
of a particular observation vecter occurring is +L(B=1,0=0) |(1 —m) Z PolB=1)|, (9)
PoB=1)= [[ a-r,) [ P.. ©® f(0)=0
i€5,0,=1 JES,0;=0 whereL(B, O) is the loss of decisio) based on observation
The sum of allP(o|B = 1)'s with f(o) =1 is given as o, which is a non-negative numbdr(B =0,0 =1) = (1 —
PO=1B=1)= Z P(o|B =1). (5) Tc)andL(B =10 =0) = 1= Thus Equation (9) is the
Flor=1 posterior expected lossf decisionO (Definition 8 of Chapter
Then, the mis-detection probability of cooperative segsirft-4 N [1]). Using the Bayesian decision rule, Problem (9)
is can be solved optimally [1]: givem, the decisionO = 1 if
c _ 1. -~ N1 _ L(B =0,0 =1)mP(o|B =0) < L(B=1,0=0)(1-
Prn=1-PO=1B=1)=1 f(z):_l PlolB=1). (6) 70)P(0| B = 1) andO = 0 otherwise. Algorithm 1 is designed
Note that Equation (2) is the conditional probability tha?ccordlngly.

SU-BS correctly identifies _the PU activity When_it is idlg SOV GUARANTEEING A TARGET PU THROUGHPUT

that one SU could transmit successfully; Equation (5) is the _ ) ) ) )

conditional probability that SU-BS correctly detects thg¢ @ [N this section, we investigate the maximum throughput
active so that no SU would transmit and the PU could transriitoblem with a PU throughput constraint. With higher pipri

successfully. Accordingly, the expected throughput of$his @ minimum PU - throughput is guaranteed in the problem
can be represented by formulation. We first show that this constrained problem is

(1—T)P(B=0,0=0) = (1 - T.)mP(O = 0|B = 0) strongly NP-ha_rd by reducing the classi_cal product partiti_
problem [2] to it. Then a greedy approximation algorithm is
= (1-Tc)mo Z P(o|B =0), (7) proposed to achieve strictly greater thaf2 of the optimal
f(0)=0 solution. The complexity of the algorithm is shown to be
since the uplinks of SUs i are assumed to have capacitpseudo-polynomial by solving a two-dimensional dynamic
1 and only one of them could be scheduled in each time slgtogramming problem.
The expected throughput of the PU can be represented by . .
YPO=1B=1) =~ Z P(o|B =1) ®) A. Problem Formulation and Properties
Flo)=1 We formulate the constrained optimization problem as fol-
since~ is the average throughput of the PU whose transmiows:
sion would be interfered by SUs ifi. The problem is then Problem (B):

formulated as follows: max (1 —Te)mg »  Plo|B=0)+v Y  P(o|B=1)
Problem (A): ! f(0)=0 flo)=1
m?xu Ty Y PB=0)17 Y PlolB=1) st. » Pl|B=1)>a. (10)
- - flo)=1
_ f_(o)fo_ _ f(_o)_fl Equation (10) is the constraint we put on Problem (B)
B. Optimal Solution with Bayesian Decision Rule where the expected PU throughput must be no less than a

We show that Problem (A) can be converted to a Bayesigrreg' et Sﬁtem('ldip;? ?entﬁhre;r}olg. 1”_: z%lé':/ealle_nltiz

Decision problem. Algorithm 1 is then proposed based o1 ieS,0i—1 j€S,0;=0

Bayesian decision rule to minimize the posterior expeated | the collision factor. This can be interpreted as the prdigbi

[1] and it is of constant time complexity. that a PU transmission colliding with an SU transmissiomgei
Problem (A) is equivalent to Problem (9) in terms of optimaho greater than — a. Problem (B) maximizes the expected

f. system throughput given that the lowest PU throughput can be



Proof: We first state the classical product partition prob-
lem [2] - Given N positive integersyi, ---, yn, iS there
B"'"}u a way to have them partitioned into two equal-sized subsets

< A that have the same product? For reduction, we construct

, _ o _ o _ _ an instance of Problem (B) by setting — T.)mg = ~,
Fig. 3.  Assignment of observations with no constraint anel ¢iptimal o= et Z H(o) with € < min H(o) For this
assignment for Problem (B)A + B + C' is the optimal assignment with o G(o)<H (o) = 0:G(0)>H (o)

no constraint whiled + B’ 4 C' is the optimal solution to Problem (B). . ; .
P ® instance, putting any with G(o) > H(o) to O = 1 would

met considering the high priority of the PU in cognitive radi make a feasible solution given that observations Wiflo) <

networks. H (o) have all been put i@ = 1. Obviously, choosing the ob-
By observing the structure of Problem (B), we stat&€rvation with minimum non-negativé(o) — H (o) would be

Lemma 5.1 that shows the optimal assignment of observatidh§ Optimal solution. Note thdf(o) — /(o) = 0 is equivalent

with G(0) < H(o) whereG(o) = (1-T.)mP(o|B = 0) and to % = 1. By setting-=—~ — 1;1;"1 — y; for all i, we have

H(o) = vP(o|B = 1). We definef* as the optimal solution (o " :

to(onbIgm ((B|>). ) f p Slo) Oizo.’}:—[lﬁN yi - ojzl,jl;[l,~~~.,zv L. Now the instance
Lemma 5.1:In the optimal solution to Problem (B), webecomes: givenV pairs of integers(y, y%),... . (yn, UL),

have f*(o0) = 1 for all G(o) < H(o). exactly one number should be chosen from each pair; with this

Proof: (Prove by contradiction) Assume thit(o) = 0 constraint, what is the minimum product no less th&nThe
for someo whereG(o) < H(o). Moving it from O = 0 to reduction from the product partition problem to this instan
O =1lincreases >, P(o|B = 1) so that this operation still of Problem (B) can be done in polynomial time.

L flo)=1 To verify the correctness of the reduction, we can check:
makes a feasible solution. Furthermore, the expectedmys L G(o) . . .
. . . It the minimum no less thar is 1, that is, the optimal
throughput increases consideri6jo) < H (o), which makes . H(o) . o
. ; solution of the instance ig, we can answer “Yes” to the
a better solution than the current optimal one. It causes_a

o partition problem; if it is greater thah, we can answer “No”
contradiction. Hence, we hay& (o) = 1 for all G(o) < H (o) L .
in the optimal solution to Problem (B). to the partition problem. If Problem (B) can be solved in poly

, . nomial time, then the product partition problem can be sblve

W'th the property Of. Lemma 5.1, we only need to de_c'dfﬁ polynomial time as well. The product partition problem is
which observations withi(o) > H(o) should be putin oy 1w to be strongly NP-complete [2]. AssumingRP,
O = 1to solve Problerr: (B) optlmally_. W_e defing = Problem (B) has been proven to be strongly NP-hard. m
{o: G(q) > H(o) andf*(0) = 1}, Wh'Ch. s the S?t of It has been shown in Theorem 5.2 that finding the observa-
obselrva'tlons that need to be movedao*: 1 in the optlmal tion with G(o) closest toH (o) from above is strongly NP-
;olut|on,w = {o: G(.O) > H(o) and f (O). = 0}, Wh'Ch hard. Hence, it is unlikely to find an efficient algorithm tdv&o
Isso|t3t?0ietMcgrsgjs:v\?vtéogzﬁtr?;t—Stay @15 0 Inb;?oe) OVF\)I:']?;‘E:I Problem (B) optimally. We will focus on the approximation

: ’ 0:C(e) 2 H (o) ' algorithm design in Section V-C.

is the contribution of observations witi(o) < H(o) in the
optimal solution; B = Y G(o), which is the contribution

C. Greedy Approximation Algorithm

_ _ o€x _ We propose a greedy algorithm (Algorithm 2) that initially
of observations iny when put inO = 0; B" = > H(o), assigns all observation(s?@: 1 and then moves observations
oEx : G(o .
which is the contribution of observations ip when put in With G(o) > H (o) by 7725 from the highest to lowest t0 =

O =1 (B> B); C =Y G(o), which is the contribution 0 until the feasibility constraint of Problem (B) is violateily
B = transforming Problem (B) into the Knapsack Problem [23],

of observations in when put inO = 0; C" = } H(o), we will show that the algorithm achieves strictly greatearth
Y 1/2 of the optimal solution for Problem (B), which id +
B’ + C in Figure 3. Although the sum of+(o) or H(o)
in the worst case has exponential number of terms, we will
design a pseudo-polynomial time algorithm in Section V-D
3(:onsidering its combinatorial nature. Ignoring roundinges,
the implementation calculates these sums accurately.
In Algorithm 2, observations are chosen Z) from the
highest to the lowest and assigned@o= 0 after those with
We focus on identifying the hardness of deciding observato) < H(o) are assigned t@® = 1. Ties are broken by
tions with G(o) > H (o) that should be put i) = 1 in this putting observations with smalléf (o) in the front. In Line3,
section. It is shown to be strongly NP-hard by reducing thg is assigned to be the sum of contributions of all observation
classical product partition problem [2] to the subproblenito if putin O = 1 (A+ B’ +C"). In Lines4-5, whether a feasible
in Theorem 5.2. solution exists for the given input is checked by comparing
Theorem 5.2:Problem (B) is strongly NP-hard. the extreme case where all observations are assign@d-tad

which is the contribution of observations i when put in
O =1(C=>C"). Then, A+ B+ C is the optimal solution to
Problem (B) without the PU throughput constraidty B’ +C
is the optimal solution to Problem (B), which is no greatenth
A+ B+ C. The optimal assignment is illustrated in Figure

B. Proof of Strong NP-hardness



Algorithm 2 Greedy Approximation Algorithm for Problem moying them toO = 1.

(B)
Input: N, T, m, 7, a, Pj,, P} for all i max > _ (G(0s) — H(oi)):
Output: f or “infeasible” G(oi)2H(0:),i=1, 1
1 Glo)« (1-Tym [ P; I (1—P) forall S.t. H(oj)z; <U—-axy  (12)
ieS,Oizl jGS,OJ‘:O G(O,,)ZH(O.L),’Lzl .l
o
22 H(o)«~ [ (1-P) [ P forallo z; €{0,1} for all i,
i€S,0;,=1 j€S,0;=0 H > H
3 U« Y Ho) wh(_ere observations witlz(o ) > H(o) are labeled in an
_ p arbitrary order. Next, we will show that the constraint of
4 if U < a x v then Problem (12) and that of Problem (B) are equivalent. As shown
5. output “infeasible” and return in Figure 3, we have
6: f(o) « 1 for all o, suml « .G(éH()H(o) A+B >axyoA+B —axy>0
7. if suml > a x v then SA+B +C —axy>C" =0 <U—-axy. (13)
8 f(o) =0 for all o with G(o) > H (o) and return

Problem (12) is a Knapsack Problem [23]. By the fol-
lowing greedy approach, at leasy2 of (C' — C’) can be
achieved [23]: choosing observations witho;) > H(o;)
from the highestw to the lowest until (12) is
violated, which is exactfy what we do in Algorlthm 2 since

9: Sort o's with G(o) > H(o) in non-increasing order of
EJE?) and label them fron to !
10: sum2 <0

11: for i=1to [ do

12:  if sum2+ H(o;) > U — a x  then G(Oﬂ H(‘-"?) > Glos)Hlo) it and only if G120 > G(0:)
‘ H(o;) H(o;)"
13: break Hence APX U + 1/2(0 C") holds. Sincell > 0, we

14 sum2 « sum2 + H(oy), f(0i) - 0 always havedPX/OPT > 1/2 for Problem (B). n

So far, we have shown that the greedy approximation algo-
rithm (Algorithm 2) exists for Problem (B) with an approxi-
with the thresholdy x . In Line 6, observations are initialized mation factor strictly greater thah/2. WhenU > C — (',
to O = 1. Lines6-8 checks whether the feasibility constraint irthis factor could be arbitrarily close th
Problem (B) has been satisfied under the initial assignnient.
yes, observations wit(o) > H (o) are assigned t® = 0 by
Bayesian decision rule. Lines13 searches for observations In Lines 3, 6, 9 and 12 of Algorithm 2, exponential
with G(o) > H(o) from the highestfl(‘;) to lowest untii number of observations are involved in the worst case due
sum2 + H(o;) < U — a x v is violated (Line12). Note 10 its combinatorial nature. We design a pseudo-polynomial
that 5. H(o) <U—-ax~yand 5 H(o)> «ax time algorithm by means of dynamic programming for the
0:f(0)=0 o:f(0)=1 implementation. The running time of a pseudo-polynomial
7 (feasibility constraint) are equivalent sin@ H(o) = U. time algorithm is polynomial in the numeric value of the

(o) of these observations are set to (be(Llne 13) in the input, which is exponential in the length of them assuming
searching process. Next, we state Theorem 5.3 that gives #y@y are rational numbers [23]. For simplicity, we assume

D. Pseudo-Polynomial Implementation

approximation factor of Algorithm 2. (1-T.)mo = ~ in Algorithm 3, which can though be extended
Theorem 5.3:Algorithm 2 achieves strictly greater thagiz {0 9eneral cases without the assumption easily.
of the optimal solution to Problem (B). In Algorithm 3, dynamic programmmg is applied to cal-
Proof: Recall the following notations: A = culate the joint distribution ofog 773 (0), which
> H(o), B = 5 G(o), BB = Y H(o), countsthenumber ofobservations W|th the sangec% and
0:G(0)<H (o) 0€X o€X the samdog H (o). Note that this algorithm does not require

¢ = o%:w G(o), €' = O%:wH(O)* andW = A+ B+ C.  fyyre information - only the collection of all sensing résu
We definell = A+ B’ + C" = Y. H(o). Let APX be the from SUs in the current time slot is required. Lin8s 6,

. o . 9 and 12 of Algorithm 2 can be calculated based on these
solut|or_1 0 Problgm (B) output by Algorithm 2. LELPT" be counts.round(a,r) roundsa to r decimal places. We use
the optimal solution to Problem (B). Then, we have

round(a,r) x 10" to scale and round a realto an integer.
OPT =W — (B - B') (1) A7 andm specify the maximum and minimum contribution an
=A+C+B =(A+B'+C")+(C-C")=U+(C~-C"). observatioro can have tdog HE j respectively, whilel!” and
Equation (11) holds by Figure 3 since moving observatioms’ specify the maximum and minimum contribution an obser-
from O =0 to O = 1 losesB — B’ in throughput compared vationo can have tdog H (o) respectivelyC(N, j, j') records
to the optimal solution with no constraint, whichli§. Note the number of observations witlog SJE
that (C' — C") is the optimal solution to Problem (12) and it isequal toj andlog H (o) (after rounding) equal t¢’. Boundary
the difference of contribution to throughput between kegpi conditions are set in Ling. Lines 8-10 use iterations to
observations withtG(o) > H(o) andf*(o) =0in O =0and find C(i,j,5') forall i = 1,--- N, m < j < M and




Algorithm 3 Pseudo-Polynomial Algorithm to Find the Joinggy,
Distribution of (log £(2) log H (o))

H(o)’ -
Input: N, P§, Pi, for all i A Nd+d<T
Output:C(N, j, ') for all j, j' Without the constraint of the number of SUsSg, we will
1 y; < round(log 1;2; r) x 10" for all i show that the full set gives the most information. First, we
' m define
2: z; + round(log 1*,P£1’T) x 10" for all ¢ P(0%|B =0) = H P H (1- P})’ (14)
3. A\; = round(log Py,,7) x 10" for all i . i€S0,0i=1  j€S0,0;=0
4 pi rj?[und(log (1="P5)r) " 107 for all 4 which is the probability of a particular observation veade
50 M« > max {yi, 2}, m < > min {y;, z;} where S, is the sensing set occurring givéh= 0, and
i=1 i=1 . .
N P(o®|B=1) = (1-FP) Pi. (15)
6: M’ + max {m?X/\ivm?X:ui}' m' ;min { i, i} iesgi:l jesgj—o
7. C(i,4,5') « 0 for all i, j, 7, éf(lvyl, A1) « 1, Wwhichis the probability of a particular observation veaor
C(1, 21, 1) + 1 where S, is the sensing set occurring givéh= 1. Then we
g fori=1to N —1do formulate the problem as follows:
9. for j=mto M do Problem (C):
10: for 3/ =m’ to M’ do max (1 — T,)mo Z P(0%|B = 0)
1L C(i+1,5,5") = C(i, j—=Yiv1,J = Nip1) +C (i, j — f:50 F(o)=0
. iy
Ri+1,] ,uz+1) + Z P(OSO|B:1).
flo)=1

) o Proposition 6.1:Let F*(S,) be the optimal solution to
m' < j' < M'. The recursive function in Lind0 matches p.opiem (C) withS, fixed. Then

the fact that when thé observation from SU-+1 is added to

observations from SU to 4, log ggz)) is added byy;,; and Fr({iv, - ik g1 }) > F*({in, -+ ik}).  (16)
log H(o) is added by\;;1; on the other hand, when the Proof: (sketch) By adding thé+1-th SU into the sensing
observatiog from SU + 1 is added to observations from SUset, we can at least achieve the same system throughput as
1 to i, log HEZ)) is added byz; 1 andlog H(o) is added by pefore by ignoring its observation. The detailed proof can b
pi+1. Note that Linel0 may encounte€'(i, j, j') beyond the found in our technical report [16]. ]
boundaries ofj or j', the value of which will be treated @&  Using Proposition 6.1, we will prove it is the best choice
The time complexity isO(N(M —m)(M" —m’)), which is o0 choose the full set as the sensing set in Corollary 6.2.
pseudo-polynomial. Corollary 6.2: For all D c S, we haveF*(S) > F*(D).

After the C(N, j, j') distribution is found, Lines3, 6, 9 Proof: Given D C S, we index the elements ifi\ D from

and12 of Algorithm 2 can be calculated accordingly, the timgne smallest to the largestas- - - , I, wherem = |S\ D| and
complexity of which is dominated b)(N (M — m)(M" — (<, < N. By Proposition 6.1, we hav&* (D) < F*(D U
m')). (L)) < F*(DU{l,l}) < - S FF DUl ln}) =
F*(9). [ |

By Corollary 6.2, Problem (B) can be solved by first setting
In this section, we formulate a new problem where the Slg;g = § and then applying Algorithm 1 to find the optimal

BS is free to choose any subset $fas the sensing set andgecision rule. Note that the time complexity is stil1).
maximizes the expected throughput of the system. We define

d as the homogeneous reporting delay Qf the sensing res@tsng + d > T,
from an SU to the SU-BS, and as the miscellaneous delay
which covers all the processing required after the colbecti : - i -
of sensing results at the SU-BS . No matter how many 'S constrained, and state that it is unlikely to have an effici
SUs are chosen in the sensing set, we always allocate flgorithm to find the optimal solution. By Proposition 6.liet
length of T, as the control slot. Thus, the control overheaBblem can b? formulated as follows:

is still a constant in this section. Two cases are consideredProblem (D):

VI. SENSING SET IDENTIFICATION

We also investigate the case where the number of S in

Nd +d < T., where all SUs are allowed in the sensing set max (1 — T,)m Z P(0*|B = 0)
(Section VI-A); Nd + d > T., where at most = LTCT‘dJ 150 f(0)=0

SUs are allowed in the sensing set (Section VI-B). We show Ty Z P(0%|B =1)

that the system throughput is monotonic over the number of Hoy=1

SUs chosen inSy in Proposition 6.1. The hardness of the St [So| = k

constrained problem witivd + d > T. is unknown and there
is no efficient algorithm proposed for this type of problem saherek = LTCd‘dJ.
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“|-e-Bayesiar
T i T — Greedy algorithm (Algorithm 2) can achieve strictly greate
Q2.5 =3 . . .
g —OR 5,4 than1/2 of the optimal solution to Problem (B), as shown in
§15 § Section V. We compare its performance with that of random
- —e—Bayesian . . . . . .
5 1////' 5 1 IZS‘%”‘Y selection. Random selection is also based on Bayesiariatecis
2 Pog  [—or rule, which means Algorithm 1 is first executed; after that,
. o observations withG(o) > H(o) are randomly selected to
1 12141618 2 22242628 3 5 6 7 8 9 10 . . T . . . .
5 (PU throughput) N (number of SUs) put in O = 1 until the feasibility is satisfied. Thus the main
a) With different~'s. ith different N's. ifference between greedy algorithm and random seledgsn
(a) With diff i (b) With diff N diff bet dy algorith drand leatasn |
Fig. 4. Performance comparison of Bayesian decision rulority, AND in the selection criterion of observations with(o) > H(o)
and OR. after the initial assignment based on Bayesian decisian rul

It has been shown in [15] that no non-exhaustive searchln addition, we setr = 0.8, andr = 2. We vary parameters
method over the subset 6f of sizek can always solve it op- Such asy, the average PU throughput, the PU throughput
timally when observations are correlated. For the independ constraint, andV, the number of SUs in Figure 5. To show
observation problem such as Problem (D), however, it is n¢ approximation factor of our algorithm accurately, two
clear whether exhaustive search would be necessary as shB@tndary cases are excluded in the result presentatiorewher
in [22]. Many heuristics such as Sequential Forward Seiactiboth greedy algorithm and random selection will give the
(SFS, [19]), Sequential Backward Selection (SBS, [19]) arfptimal solution: 1) Bayesian decision rule gives the optim
their variations [9] have been proposed to solve problems $#lution; 2) It is optimal to put all observations @ = 1.
this type. Although we characterize the monotonic propefty Hence, we only show their performance when at least one but
system throughput over the number of SUs in the sensing &t all observations witltz(o) > H (o) have to be moved to
the complexity of the problem is not clear in the case whéd = 1. The average case and worst case performances are

T. is small, compared tov. calculated based on the results after the exclusion.
In Figure 5(a), the approximation factors of greedy algo-
VII. SIMULATIONS rithm and random selection over the optimal solution are-com

In this section, simulation results are presented for ttgred over different values of, the average PU throughput
performance of solutions proposed for Problems (A), (B the system. With a highey, the factor decreases gradually
(C) and (D). We first compare the performance of Bayesidn both average and worst cases of Algorithm 2 and it is
decision rule (Algorithm 1), majority, AND and OR policiesthe same with random selection although it fluctuates a bit
[25] in Section VII-A. Then the performance of the greedflue to the random selection. Greedy algorithm outperforms
algorithm for Problem (B) (Algorithm 2), the random selecti random selection in both average and worst cases. Potgntial
and the optimal solution are presented in Section VII-B. THEe Bayesian decision rule assigns more SUsOto= 1
performance of Sequential Forward Selection (SFS, [19]) ¢9mpared to a lowety case. Thus the initial assignment is
compared with the optimal solution to Problem (D) in Secloser to«, the PU throughput constraint. Since we only
tion VII-C. In all simulation studies, we consider a cogwiti consider cases where Bayesian decision rule is not optimal,
radio network withN = 10, 7, = 0.2, mp = 0.4, and~ = 2. both algorithms tend to have worse performance when the
For each parameter setting, we generiegroups of P ’s initial assignment approachesbecause it gets more sensitive
and Pj’s randomly, which represents the random geographid@l & wrong observation selection.

locations of SUs in a CRN. In Figure 5(b), we varya, the PU throughput constraint,
. o and compare the performance of greedy algorithm and random
A. Performance of Bayesian Decision rule selection. Greedy algorithm is obviously better than rando

Algorithm 1, the Bayesian decision rule based algorithrselection in both average and worst cases. Furthermore, the
has been proven to be optimal in Section IV. In Figure 4yorst performance of all random runs generated in greedy
we demonstrate the increase from majority, AND, OR ruledgorithm wins over the average performance in random
in terms of system throughput, which is the objective fumtti selection. Approximation factors in both of them increase,
value of Problem (A). In majority rule, the decisionlisonly although it is minor in greedy algorithm. The increase can be
when the majority of the SUs sense an active PU; in ANBxplained similarly to that in Figure 5(a): a highermakes
rule, the decision id only when all SUs sense an active PUthe initial Bayesian decision assignment farther away from
in OR rule, the decision id if any of the SUs senses anit so that the performance is less sensitive to the choice of
active PU. We varyy, the average PU throughput, ad, observations. Due to its randomness, random selection may
the number of SUs, respectively. Among all four algorithméyave poor performance with the factor as low as alfiotiin
Bayesian decision rule strictly outperforms the other géhreour simulation.

Among them, the OR rule is better then AND and majority We test the performance of greedy algorithm with different
rules since the PU transmission is better protected by the G&ales of the network. The number of SUs is varied ffom
rule. OR rule is too conservative to guarantee SU transarissito 10. The approximation factors of both algorithms degrade
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remains elusive, which is our future work. Moreover, we are
also interested in investigating cases where the obsensti
of SUs are correlated.
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