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Capacity of Compound MIMO Gaussian Channels
with Additive Uncertainty
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Abstract—This paper considers reliable communications over a
multiple-input multiple-output (MIMO) Gaussian channel, where
the channel matrix is within a bounded channel uncertainty
region around a nominal channel matrix, i.e., an instance of
the compound MIMO Gaussian channel. We study the optimal
transmit covariance matrix design to achieve the capacity of com-
pound MIMO Gaussian channels, where the channel uncertainty
region is characterized by the spectral norm. This design problem
is a challenging non-convex optimization problem. However, in
this paper, we reveal that this problem has a hidden convexity
property, which can be exploited to map the problem into a
convex optimization problem. We first prove that the optimal
transmit design is to diagonalize the nominal channel, and then
show that the duality gap between the capacity of the compound
MIMO Gaussian channel and the min-max channel capacity is
zero, which proves and generalizes a conjecture of Loyka and
Charalambous. The key tools for showing these results are a
new matrix determinant inequality and some unitarily invariant
properties.

Index Terms—Channel uncertainty, compound channel, hidden
convexity, multiple antenna.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) techniques have
been extensively used to improve the spectral efficiencies of
wireless communications. The performance of MIMO com-
munications relies on access to the channel state information
(CSI). When the CSI is perfectly known at the transmitter,
the optimal power allocation is to diagonalize the channel [1].
However, in practice, the transmitter often has some channel
uncertainty, which can result in a significant rate loss, if not
taken into consideration in the transmit covariance matrix
design.

There have been two categories of research towards reliable
communications over MIMO Gaussian channels with channel
uncertainty. The first category focuses on stochastic models of
channel uncertainty, where the transmitter has access to only
the statistics of the channel state, but not its realization. When
the channel states change quickly over time, the achievable rate
of the channel is described by the ergodic capacity, e.g., [1]–
[4]. On the other hand, when the channel states vary slowly,
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the achievable rate is characterized by the outage capacity,
which is the maximum data rate achievable at any given state
with probability no smaller than a specified value, e.g., [1],
[3]–[7].

The second category of studies were centered on deter-
ministic models of channel uncertainty, where the CSI is a
deterministic variable within a known set, but its actual value is
unknown to the transmitter. Such a model is called a compound
channel in information theory, and its capacity is determined as
the maximum of the worst-case mutual information (max-min
channel capacity) of the set of possible channel realizations
[8]. From practical viewpoint, it is the maximum data rate that
can be reliably transmitted over any channel from the given
set. Characterizing the capacity of the compound channel
is considered to be an important problem, and has received
considerable attention.

In closed-loop MIMO systems, the transmitter is able to
obtain inaccurate CSI, where the channel error may be caused
by estimation, interpolation, mobility, and/or feedback. In this
case, the channel is typically modeled as the sum of a known
nominal channel and unknown channel uncertainty. This ad-
ditive channel uncertainty model has been widely utilized in
studies on the fundamental limits of MIMO channels, e.g.,
[9]–[11], and on robust transceiver designs, e.g., [12]–[15]. In
[16], the capacity of the compound Rician MIMO Gaussian
channel with additive channel uncertainty was studied, where
the analysis was restricted to a rank-one nominal channel.
Arbitrary rank nominal channel was considered in [17], where
the channel uncertainty is limited to the singular value of
the nominal channel with no uncertainty on the singular
vectors. The capacity of the compound MIMO channel with
a multiplicative channel uncertainty model was obtained in
[11], where the region of channel uncertainty is described by
the spectral norm. In addition, the capacity of the compound
MIMO Gaussian channel with additive channel uncertainty
was derived in [11] for some special cases, such as high
signal-to-noise ratio (SNR) limit, low SNR limit, and rank-
two nominal channel.

In this paper, we design the optimal transmit covariance
matrix to achieve the capacity of the compound MIMO Gaus-
sian channel with additive channel uncertainty. We consider
the case where the channel uncertainty is in a bounded region
around the nominal channel matrix, which is characterized by
the spectral norm. This design problem is a challenging non-
convex optimization problem. However, we reveal that this
problem possesses a hidden convexity property, and hence can
be simplified into a convex optimization problem. We first
prove that the optimal transmit design is to diagonalize the
nominal channel. We then show that the duality gap between
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the capacity of the compound MIMO Gaussian channel (max-
min channel capacity) and the min-max channel capacity is
zero, which proves and generalizes a conjecture of Loyka and
Charalambous [11]. The key tools for proving these results are
a new matrix determinant inequality (Lemma 1) and some
unitarily invariant properties.

II. SYSTEM MODEL

A. Notation

The following notations are used throughout the paper.
Boldface upper-case letters denote matrices, boldface lower-
case letters denote column vectors, standard upper-case letters
denote sets and standard lower-case letters denote scalars.
Let Cm×n denote the set of m × n complex-valued ma-
trices, and Cn denote the set of n × n square complex-
valued matrices. The symbol Sn represents the set of n × n
Hermitian matrices, and Sn+ represents the set of n × n
Hermitian positive semidefinite matrices. Let S be a proper
subset of {1, 2, · · · ,max{m,n}}, then X(S) denote a sub-
matrix of X obtained by deleting the rows and columns
complementary to those indicated by S from X. The op-
erator diag(x1, x2, · · · , xn) denotes a diagonal matrix with
diagonal entries given by x1, x2, · · · , xn. The matrix In
denotes the n × n identity matrix. By x ≥ 0, we mean
that xi ≥ 0 for all i. The operators (·)H , Tr(·), and det(·)
on matrices denote the Hermitian, trace, and determinant
operations, respectively. Let σi(A) and λi(A) represent the
singular value and eigenvalue of A, respectively. The vector
σ(A) , (σ1(A), · · · , σmin{m,n}(A)) contains the singular
values of A ∈ Cm×n. Let λ(Q) , (λ1(Q), · · · , λn(Q))
denote a vector containing the eigenvalues of Q ∈ Sn. The
singular values and eigenvalues are listed in descending order.
We use 9 ·9 and ∥ ·∥ to denote matrix norm and vector norm,
respectively.

B. Channel Model

Consider the complex-valued Gaussian vector channel:

y = Hx+ n, (1)

where y is a length r received vector, H is an r × t channel
matrix, x is a length t transmitted vector with zero mean and
covariance E{xxH} = Q, and n is a complex Gaussian noise
vector with zero-mean and covariance E{nnH} = Ir.

The MIMO channel H is an unknown deterministic matrix
satisfying

H ∈ H, (2)

where H is the channel region defined by

H , {H : 9H−H092 ≤ ε}, (3)

H0 is the nominal channel, and 9 · 92 is the spectral norm
defined by

9 A92 , max
∥x∥2≤1

∥Ax∥2 = max
i

{σi(A)} = ∥σ(A)∥∞. (4)

The spectral norm is a unitarily invariant matrix norm. A
unitarily invariant matrix norm satisfies [18, Section 7.4.16]

9 UAV9 = 9A9 (5)

for all A ∈ Cm×n and for all unitary matrices U ∈ Cm and
V ∈ Cn. According to (3) and (5), the channel region H is an
isotropic set centered at H0, such that H0+U(H−H0)V ∈ H
for all H ∈ H and all unitary matrices U and V.1

Note that the channel uncertainty region (3) provides a
conservative performance lower bound for the regions defined
by any other unitarily invariant matrix norm, because

9 A92 ≥ 9A9 (6)

holds for all matrix A and all unitarily invariant matrix
norm 9 · 9 [18, Corollary 5.6.35]. More discussions on the
relationship among some matrix norms are provided in Section
IV.

C. Power Constraint

We consider a general transmit power constraint

Q ∈ Q, (7)

where Q ⊂ St+ is a nonempty compact convex set satisfying

UQUH ∈ Q, (8)
D(Q) ∈ Q, (9)

for all Q ∈ Q and all unitary matrix U ∈ Ct, where D(Q)
is the diagonal matrix with the same diagonal elements with
Q. We say that a set Q is unitarily invariant if it satisfies (8)
and (9). One can show that each unitarily invariant Q can be
equivalently expressed as

Q = {Q ∈ St+ : λ(Q) ∈ BQ,λ(Q) ≥ 0}, (10)

where BQ is a nonempty compact convex set. Two typical
examples of unitarily invariant power constraints are the sum
power constraint [1]

Q1 = {Q ∈ St+ : Tr(Q) ≤ P}, (11)

= {Q ∈ St+ :
t∑

i=1

λi(Q) ≤ P,λ(Q) ≥ 0},

and the maximum power constraint [14]

Q2 = {Q ∈ St+ : max
i

{λi(Q)} ≤ Pm,λ(Q) ≥ 0}.

III. OPTIMAL TRANSMIT COVARIANCE DESIGN

A. Main Result

The capacity of the compound MIMO Gaussian channel
(1)-(3) and (7) is [20, Theorem 7.1]

Cmaxmin , max
Q∈Q

min9H−H092≤ε
I(Q,H), (12)

1This is different from the channel uncertainty model in [19], where H is
within an isotropic set such that HU ∈ H for all H ∈ H and all unitary
matrix U.
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where I(Q,H) = I(x;y) is the mutual information of the
channel (1), i.e., [1]

I(Q,H) = log det
(
Ir +HQHH

)
.

Finding an efficient solution of the max-min problem (12) has
been open for a long time (except in some special cases [11],
[14], [16]), because I(Q,H) is nonconvex with respect to
H. However, we will show that the problem (12) possesses
a hidden convexity property when (3) holds, and thus can be
simplified into a convex optimization problem.

Suppose that the singular value decomposition (SVD) of the
nominal channel H0 is given by

H0 = U0ΣH0V
H
0 , (13)

where U0 ∈ Cr and V0 ∈ Ct are unitary matrices. The first
key result of this paper is stated as follows:

Theorem 1. If Q and H are nonempty sets, H is defined in
(3), and Q satisfies the unitarily invariant properties (8) and
(9), then

Q⋆ = V0Λ
⋆
QVH

0 , H⋆ = U0Σ
⋆
HVH

0 , (14)

is a solution to Problem (12), where U0 and V0 are defined in
(13), the diagonal matrices Λ⋆

Q and Σ⋆
H are given by Σ⋆

H =
diag(σ⋆) and Λ⋆

Q = diag(λ⋆), such that (σ⋆,λ⋆) solves the
problem

Cmaxmin = max
λ∈BQ
λ≥0

min
∥σ−σ0∥∞≤ε

σ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi), (15)

with the convex set BQ defined in (10).

Proof: The proof of Theorem 1 relies on the unitarily
invariant properties (4), (5), (8), and (9), and a new matrix
determinant inequality presented in Lemma 1 given below. The
details of the proof are provided in Appendix A.

The following lemma is a key technical contribution of this
paper, which plays an important role in proving Theorem 1.

Lemma 1 (Matrix Determinant Inequality). If Σ and Λ are
diagonal matrices with nonnegative diagonal entries, then one
solution to

min9∆92≤ε
det

[
I+(Σ+∆)Λ(Σ+∆)H

]
(16)

is a diagonal matrix.

Proof: See Appendix C.
Theorem 1 implies that the optimal transmit covariance

of the MIMO Gaussian channel with worst case channel
uncertainty is to diagonalize the nominal channel H0. Such a
solution structure was previously known only for some special
cases, such as high SNR limit, low SNR limit, low rank
nominal channels (rank(H0) ≤ 2) [11], [14], [16]. In contrast,
Theorem 1 holds for general nominal channels and all SNR
values. Further, by Theorem 1, the problem (12) reduces to
(15) with much fewer variables.

B. The Dual Problem

Now, we consider the dual of the max-min problem (12),
which is given by the following min-max channel capacity
problem

Cminmax , min
H∈H

max
Q∈Q

I(Q,H). (17)

It is important to distinguish the capacity of the compound
channel Cmaxmin and the min-max channel capacity Cminmax:
Cmaxmin can be achieved for any channel H within H, by
using the same transmit covariance matrix Q.2 Cminmax is
the minimal capacity of the channels with H ∈ H, evaluating
which requires knowledge of H at the transmitter to obtain
Q.3 We study the min-max problem (17) to gain more insight
into the max-min problem (12). We consider a more general
channel uncertainty region

H , {H : 9H−H09 ≤ ε}, (18)

where 9 ·9 is a unitarily invariant matrix norm satisfying (5).
For any unitarily invariant matrix norm 9 ·9, there is a vector
norm ∥ · ∥ such that

9 A9 = ∥σ(A)∥ (19)

holds for all A ∈ Cm×n [21, Theorem 3.5.18]. For the special
case of spectral norm, the associated vector norm in (19) is
∥ · ∥∞, as given by (4). We have the following result:

Theorem 2. If Q and H are nonempty sets, H is defined in
(18), and Q satisfies the unitarily invariant properties (8) and
(9), then

Q′ = V0Λ
′
QVH

0 , H′ = U0Σ
′
HVH

0 , (20)

is a solution to Problem (17), where U0 and V0 are defined in
(13), the diagonal matrices Λ′

Q and Σ′
H are given by Σ′

H =
diag(σ′) and Λ′

Q = diag(λ′) such that (σ′,λ′) solves the
problem

Cminmax = min
∥σ−σ0∥≤ε

σ≥0

max
λ∈BQ
λ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi), (21)

with the vector norm ∥ · ∥ and the convex set BQ defined in
(19) and (10), respectively.

Proof: The proof of Theorem 2 relies on the unitarily
invariant properties (5), (8), (9), and (19), but not the matrix
determinant inequality in Lemma 1, which has only been
proved for the spectral norm case. Therefore, Theorem 2 holds
for any unitarily invariant matrix norm. The details of the proof
are provided in Appendix B.

Note that a special case of Theorem 2 was obtained in
Theorem 3 of [11], where 9 ·9 is limited to the spectral norm9 · 92 and Q is the sum power constraint Q1.

2The outer optimization of Q in (12) is done without knowing H.
3The inner optimization of Q in (17) is done with knowledge of H.
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C. Duality Gap is Zero

It is interesting to see that the max-min problem (12) and
the min-max problem (17) have similar solution structures,
as given in (14) and (20), and the difference is only in the
solutions to (15) and (21). Next, we study whether (15) and
(21) have a common solution for the spectral norm case.

It is known that the following weak duality relation is
always true: [20]

Cmaxmin ≤ Cminmax. (22)

Moreover, equality holds in (22), i.e.,

Cmaxmin = Cminmax, (23)

if and only if (15) and (21) have a common solution [22,
Corollary 9.16]. It was conjectured in [11] that (23) holds
for the case that 9 · 9 = 9 · 92 and the power constraint
is Q = Q1. Here, using Theorems 1, 2, and von Neumann’s
minimax theorem, we can now prove this conjecture:

Theorem 3. If the conditions of Theorem 1 are satisfied, then:
1) The strong duality relation (23) holds.
2) Problems (15) and (21) have a common solution

(σ∗,λ∗), where σ∗ is given by

σ∗
i = max{σ0,i − ε, 0}, (24)

and λ∗ is determined by the convex optimization problem

Cmaxmin = max
λ∈BQ
λ≥0

min{t,r}∑
i=1

log(1+max{σ0,i−ε, 0}2λi). (25)

Proof: 1) Problem (15) can be expressed as

Cminmax = max
λ∈BQ
λ≥0

min
σ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi)

s.t. max{σ0,i−ε, 0} ≤ σi ≤ σ0,i+ε, ∀ i.

By introducing xi , log(σi), this problem can be reformulated
as the following convex optimization problem:

max
λ∈BQ
λ≥0

min
x

min{t,r}∑
i=1

log[1 + e2xiλi] (26)

s.t. log(max{σ0,i − ε, 0}) ≤ xi ≤ log(σ0,i + ε), ∀ i,

where the objective function is concave in λ and convex in
x [23]. Similarly, (21) can be reformulated as the following
convex optimization problem:

min
x

max
λ∈BQ
λ≥0

min{t,r}∑
i=1

log[1 + e2xiλi]

 (27)

s.t. log(max{σ0,i − ε, 0}) ≤ xi ≤ log(σ0,i + ε), ∀ i.

Let us use f(λ,x) to denote the objective function in (26)
and (27). We say a point (λ0,x0) is a saddle point of f if

f(λ0,x0)= min
σ0,i−ε≤exi

exi≤σ0,i+ε

f(λ0,x) = max
λ∈BQ
λ≥0

f(λ,x0). (28)

By von Neumann’s minimax theorem [22, Theorem 9.D], we
have: (1) the function f has a saddle point; (2) a point (λ0,x0)
is a saddle point of f if and only if (λ0,x0) is a common
solution to (26) and (27). Therefore, (26) and (27) must have
the same optimal objective value, and (23) follows.

2) Let us define x∗ as x∗
i = log(max{σ0,i − ε, 0}). By

von Neumann’s minimax theorem, we only need to show that
(x∗,λ∗) is a saddle point of f . When (λ0,x0) is replaced by
(x∗,λ∗), the minimization problem in (28) can be separated
into several subproblems, i.e.,

min
xi

log(1 + e2xiλ∗
i )

s.t. log(max{σ0,i − ε, 0}) ≤ xi ≤ log(σ0,i + ε), ∀ i,

and the solution is given by x∗
i . On the other hand, according

to (25), λ∗ is the solution to the maximization problem in
(28). Therefore, (x∗,λ∗) is a saddle point of f , and thus also
a common solution of (15) and (21).

We note that the conjecture in [11] is a special case
of Theorem 3 where Q is restricted to be the sum power
constraint Q1. By Theorem 1 and 3, we have shown that
the covariance design problem (12) is a convex optimization
problem in nature, if the channel uncertainty region H is
characterized by the spectral norm.

IV. DISCUSSION

It is known that any matrix norm can be bounded within a
constant multiple of the spectral norm: for any finite t, r and
any matrix norm 9 · 9, there exist αl, αh > 0 such that

αl 9 H−H092 ≤ 9H−H09 ≤ αh 9 H−H092, (29)

where αl and αh are irrelevant to the channel error H−H0 but
depend on 9·9 [18]. The values of αl and αh are summarized
in Table I of [11] for some popular matrix norms. In particular,
when 9 ·9 is a unitarily invariant matrix norm, αh = 1 as in
(6). Using this and our results in Theorem 1 and 3, one can
derive capacity lower and upper bounds for compound MIMO
Gaussian channels with channel uncertainty region described
by different matrix norms.

Another interesting open problem is whether the matrix de-
terminant inequality in Lemma 1 holds for some other unitarily
invariant matrix norms, e.g., the Frobenius (Euclidean) norm

9 A9F ,
√∑

i,j

|aij |2 = ∥σ(A)∥2. (30)

If one can generalize Lemma 1 to another unitarily invariant
matrix norm, then Theorems 1 and 3 also hold for this
particular matrix norm, with the infinite norm ∥ · ∥∞ in (15)
replaced by the corresponding vector norm defined by (19).

We have found a counterexample, which shows that
Lemma 1 does not hold for the matrix norm 9 ·9 = ∥σ(·)∥1.
Consider the matrices

Σ =

[
2 0
0 1

]
,Λ =

[
4 0
0 3

]
. (31)

If ∆ is restricted as a diagonal matrix, one can numerically
calculate that the optimal objective value of the problem

min
∥σ(∆)∥1≤1

det
[
I+(Σ+∆)Λ(Σ+∆)H

]
(32)
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is 15.63. However, when

∆ =

[
−0.5 −0.5
−0.5 −0.5

]
, (33)

the value of the objective function in (32) is 15.5. Therefore,
the solution to (31) and (32) is not necessarily a diagonal
matrix. For other unitarily invariant matrix norms, we still do
not know whether Lemma 1 holds or not.

V. CONCLUSION

In this paper, we have investigated the capacity of a com-
pound MIMO channel with an additive uncertainty of bounded
spectral norm, and derived the optimal transmit covariance
matrix in close-form. When the channel uncertainty region is
characterized by the spectral norm, we have revealed a hidden
convexity property in this problem. We have proved that
the optimal transmit covariance design is to diagonalize the
nominal channel matrix and there is zero duality gap between
the capacity of the compound MIMO Gaussian channel and
the min-max channel capacity. When the channel uncertainty
region is formulated by other matrix norms, the capacity of
the compound MIMO channel remains open.

APPENDIX A
PROOF OF THEOREM 1

First, we construct an upper bound of Cmaxmin by imposing
an extra constraint in the inner minimization problem:

Cmaxmin

≤ max
Q∈Q

min9H−H092≤ε

H=U0ΣHVH
0

log det
(
Ir +HQHH

)
(34)

= max
Q∈Q

min9H−H092≤ε

H=U0ΣHVH
0

log det
(
Ir +ΣHVH

0 QV0ΣH

)
,(35)

where U0 and V0 are defined in (13), (34) is due to the addi-
tional constraint in the inner minimization problem, and (35)
is due to H = U0ΣHVH

0 and det(I+AB) = det(I+BA).
Let us define Q̃ , VH

0 QV0 and use D(Q̃) to denote the
diagonal matrix that has the same diagonal elements as Q̃. We
then attain

Cmaxmin

≤ max
Q∈Q

min9H−H092≤ε

H=U0ΣHVH
0

log det
(
Ir +ΣHQ̃ΣH

)
= max

Q̃∈Q
min9H−H092≤ε

H=U0ΣHVH
0

log det
(
Ir +ΣHQ̃ΣH

)
(36)

= max
Q̃∈Q

min9ΣH−ΣH0
92≤ε

log det
(
Ir +ΣHQ̃ΣH

)
(37)

≤ max
Q̃∈Q

min9ΣH−ΣH0
92≤ε

log det
(
Ir +ΣHD(Q̃)ΣH

)
(38)

≤ max
D(Q̃)∈Q

min9ΣH−ΣH0
92≤ε

log det
(
Ir +ΣHD(Q̃)ΣH

)
(39)

= max
λ∈BQ
λ≥0

min
∥σ−σ0∥∞≤ε

σ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi), (40)

where (36) is derived from (8), (37) is due to 9ΣH−ΣH092 =9H−H092 which is derived from H0 = U0ΣH0V
H
0 , H =

U0ΣHVH
0 and (5), (38) is due to the Hadamard inequality

det(A) ≤
∏

i Aii, (39) is because the feasible region D(Q̃) ∈
Q is larger than the region Q̃ ∈ Q according to (9), and (40)
is due to (4) and (10) with λi representing the diagonal entries
of D(Q̃).

Next, we build a lower bound of Cmaxmin by considering
one extra constraint in the outer maximization problem:

Cmaxmin

≥ max
Q∈Q

Q=V0ΛQVH
0

min
H∈H

I(Q,H) (41)

= max
Q∈Q

Q=V0ΛQVH
0

min9∆92≤ε
log det

[
Ir+(H0+∆)Q(H0+∆)H

]
= max

ΛQ∈Q
min9∆̃92≤ε

log det
[
Ir+(ΣH0+∆̃)ΛQ(ΣH0+∆̃)H

]
,(42)

where ∆̃ , UH
0 ∆V0, (41) is because of the additional

constraint in the outer maximization, and (42) is due to
H0 = U0ΣH0V

H
0 , Q = V0ΛQVH

0 , the unitarily invariant
properties (5) and (8).

According to Lemma 1, the optimal ∆̃ in (42) is a diagonal
matrix. Hence, Σ′

H , ΣH0 +∆̃ is also a diagonal matrix.
Substituting this into (42), we have

Cmaxmin ≥ max
ΛQ∈Q

min9Σ′
H−ΣH0

92≤ε
log det [Ir+Σ′

HΛQΣ′
H]

= max
λ∈BQ
λ≥0

min
∥σ−σ0∥∞≤ε

σ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi), (43)

where the last step is due to (4) and (10) with σi representing
the diagonal entries of Σ′

H. Combining (40) and (43), the
optimal objective value of (12) is given by (15).

Finally, we show (14) is an optimal solution to (12). For
this, we substitute the solution (14) into (12), i.e.,

max
Q∈Q

Q=V0Λ
⋆
QVH

0

min9H−H092≤ε

H=U0Σ
⋆
HVH

0

log det
(
Ir +HQHH

)
= max

Q∈Q
Q=V0Λ

⋆
QVH

0

min9H−H092≤ε

H=U0Σ
⋆
HVH

0

log det
(
Ir+Σ⋆

HΛ⋆
QΣ⋆

H

)
= max

Λ⋆
Q∈Q

min9Σ⋆
H−ΣH0

92≤ε
log det

(
Ir+Σ⋆

HΛ⋆
QΣ⋆

H

)
(44)

= max
λ∈BQ
λ≥0

min
∥σ−σ0∥∞≤ε

σ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi) (45)

= Cmaxmin, (46)

where in (44) we have used (5) and (8), (45) is due to (4) and
(10). �
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APPENDIX B
PROOF OF THEOREM 2

Consider the following upper bound of Cminmax:

Cminmax ≤ min
H∈H

H=U0ΣHVH
0

max
Q∈Q

log det
(
Ir+HQHH

)
= min

H∈H
H=U0ΣHVH

0

max
Q∈Q

Q=V0ΛQVH
0

log det
(
Ir+HQHH

)
(47)

= min
∥σ−σ0∥≤ε

σ≥0

max
λ∈BQ
λ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi), (48)

where (47) is due to the fact that the optimal power allocation
result is of the form Q = V0ΛQVH

0 by using (8), (9), and
the Hadamard inequality [1], (48) is derived by using (5), (8),
(10), and (19) as in (46).

Then, we construct a lower bound of Cminmax:

Cminmax = min9H−H09≤ε
max
Q∈Q

log det
(
Ir+HQHH

)
= min9H−H09≤ε

max
Q∈Q

log det (Ir+ΣHΛQΣH) (49)

= min9H−H09≤ε
max
ΛQ∈Q

log det (Ir+ΣHΛQΣH) (50)

≥ min9ΣH−ΣH0
9≤ε

max
ΛQ∈Q

log det (Ir+ΣHΛQΣH)(51)

= min
∥σ−σ0∥≤ε

σ≥0

max
λ∈BQ
λ≥0

min{t,r}∑
i=1

log(1 + σ2
i λi), (52)

where (49) is due to the optimal power allocation result by
using (8), (9), and the Hadamard inequality [1], (50) is due to
(8), (51) is due to the following result for unitarily invariant
matrix norm: [18, Theorem 7.4.51] [21, Eq. (3.5.30)]

9ΣH −ΣH0
9 ≤ 9H−H09,

with ΣH and ΣH0 being the diagonal matrices in the SVDs of
H and H0, and (52) is derived from (10) and (19). Combining
(48) and (52), the optimal objective value of (17) is given by
(21). Further, similarly to (46), we can show that (20) is an
optimal solution of (17). Hence, the theorem is proven. �

APPENDIX C
PROOF OF LEMMA 1

In order to prove Lemma 1, we first need to show the
following result:

Lemma 2. Let Σ = [ςij ] ∈ Rr×t be a diagonal ma-
trix with non-negative diagonal entries ςii ≥ 0 for i =
1, · · · ,min{r, t}, and ∆ ∈ Cr×t be a matrix satisfying9∆92 ≤ ε.

1) The following inequality holds:

det
[
(Σ+∆)H(Σ+∆)

]
≥

t∏
j=1

max{ςjj − ε, 0}2, (53)

where ςjj are defined by ςjj = 0 for min{t, r} < j ≤ t.

2) Let S be a proper subset of {1, 2, · · · , t}, then

det
{
[Σ(S) +∆(S)]

H
[Σ(S) +∆(S)]

}
≥

∏
j∈S

max{ςjj − ε, 0}2, ∀S ⊆ {1, 2, · · · , t}, (54)

where X(S) denotes the submatrix of X obtained by
deleting the rows and columns complementary to those
indicated by S from X.

3) Let A = (Σ+∆)H(Σ+∆), then:

det [A(S)] ≥
∏
j∈S

max{ςjj − ε, 0}2,

∀S ⊆ {1, 2, · · · , t}. (55)

Proof: 1) It is known that for any A,B ∈ Cr×t the
following singular value inequality holds [24, Eq. (5.12.15)],
[18, Corollary 7.3.8]

|σi(A+B)− σi(A)| ≤ 9B92, ∀i = 1, · · · ,min{t, r}.

By this, we have

σi(Σ+∆)

≥ max {σi(Σ)− 9∆92, 0}
≥ max {σi(Σ)− ε, 0} , ∀i = 1, · · · ,min{t, r}, (56)

where the maximization is due to the fact σi(Σ + ∆) ≥ 0.
Moreover, σi(Σ+∆) = 0 for min{t, r} < i ≤ t.

Since ςii ≥ 0, the singular values of the diagonal matrix Σ
are given by {ς11, ς22, · · · , ςpp, 0, · · · , 0}. Let us define ςjj as
ςjj = 0 for min{t, r} < j ≤ t. Hence, we attain

det
[
(Σ+∆)H(Σ+∆)

]
=

t∏
j=1

σj(Σ+∆)2

≥
t∏

j=1

max {σj(Σ)− ε, 0}2

=
t∏

j=1

max{ςjj − ε, 0}2.

2) Since Σ is a diagonal matrix, after deleting the rows and
columns, the singular values of the submatrix Σ(S) are given
by {ςii : i ∈ S}. Moreover, after deleting some rows and
columns, the spectral norm of ∆(S) satisfies 9∆(S)92 ≤9∆92 [18, Thoerem 7.3.9]. Therefore

det
{
[Σ(S) +∆(S)]

H
[Σ(S) +∆(S)]

}
=

|S|∏
j=1

σj [Σ(S) +∆(S)]2

≥
|S|∏
j=1

max {σj(Σ(S))− 9∆(S)92, 0}2

≥
|S|∏
j=1

max {σj(Σ(S))− ε, 0}2

=
∏
j∈S

max{ςjj − ε, 0}2.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, SEPTEMBER 2013 7

3) For any given S ⊆ {1, 2, · · · , t}, one can interchange
the rows and columns of A and (Σ+∆) by multiplying with
two permutation matrices P ∈ St+ and Q ∈ Sr+ as B = PAP
and Φ = Q(Σ + ∆)P, such that A(S) and Σ(S) + ∆(S)
are the leading submatrices of B and Φ, respectively, i.e.,

B =

(
A(S) C
CH D

)
, Φ =

(
Σ(S) +∆(S) M

N G

)
,

Since PH = P, QH = Q, P2 = I and Q2 = I, we attain

B = P(Σ+∆)HQQ(Σ+∆)P = ΦHΦ,

thereby

A(S) = (Σ(S) +∆(S))
H
(Σ(S) +∆(S)) +NHN.

Then,

A(S) ≽ (Σ(S) +∆(S))
H
(Σ(S) +∆(S)) ≽ 0,

which further implies that [18, Corollary 7.7.4]

det [A(S)] ≥ det
[
(Σ(S) +∆(S))

H
(Σ(S) +∆(S))

]
.

Finally, by using (54), the result in (55) follows.
Using part (3) of Lemma 2, we can establish the following

lemma:

Lemma 3. Let Σ = [ςij ] ∈ Rr×t and D = [dij ] ∈ Rt×t be
two diagonal matrices with non-negative diagonal entries, and
∆ ∈ Cr×t be a matrix satisfying 9∆92 ≤ ε. Then

det
[
It + (Σ+∆)H(Σ+∆)D

]
≥

min{t,r}∏
j=1

(
1 + max{ςjj − ε, 0}2djj

)
, (57)

where equality is achieved by the diagonal matrix ∆⋆ with
diagonal entries given by

∆⋆
jj = ςjj −max{ςjj−ε, 0}, j = 1, · · · ,min{t, r}.

Then, Lemma 1 follows from (57).
Proof: We prove the inequality

det
[
It + (Σ+∆)H(Σ+∆)D

]
≥

t∏
j=1

(
1 + max{ςjj − ε, 0}2djj

)
(58)

by induction, where ςjj for min{t, r} < j ≤ t are defined as
ςjj = 0.

Let B = (Σ + ∆)H(Σ + ∆)D. By part (3) of Lemma 2
and D being a diagonal matrix, we attain

det [B(S)] ≥
∏
j∈S

(
max{ςjj−ε, 0}2djj

)
,

∀S ⊆ {1, 2, · · · , t}. (59)

For any set S satisfying {1} ⊆ S ⊆ {1, 2, · · · , t}, by the
cofactor (Laplace) expansion [24, Eq. (6.2.5)] of det[B(S)]

and (59), we attain

det [E11 +B(S)]

= det[B(S)] + det [B(S \ {1})]
≥

∏
j∈S

(
max{ςjj−ε, 0}2djj

)
+

∏
j∈S\{1}

(
max{ςjj−ε, 0}2djj

)
=

(
1+max{ς11−ε, 0}2d11

) ∏
j∈S\{1}

(
max{ςjj−ε, 0}2djj

)
.(60)

Similarly, for any set S satisfying {1, 2} ⊆ S ⊆
{1, 2, · · · , t}, by the cofactor expansion of det[E11 + B(S)]
and (60), we have

det [E11 +E22 +B(S)]

= det[E11 +B(S)] + det [E11 +B(S \ {2})]
≥

(
1+max{ς11−ε, 0}2d11

) ∏
j∈S\{1}

(
max{ςjj−ε, 0}2djj

)
+
(
1+max{ς11−ε, 0}2d11

) ∏
j∈S\{1,2}

(
max{ςjj−ε, 0}2djj

)
=

2∏
j=1

(
1+max{ςjj−ε, 0}2djj

) ∏
j∈S\{1,2}

(
max{ςjj−ε, 0}2djj

)
.

Suppose that for any set S satisfying {1, 2, · · · , k} ⊆ S ⊆
{1, 2, · · · , t}, the following inequalities hold

det [E11 + · · ·+Ekk +B(S)]

≥
k∏

j=1

(
1+max{ςjj−ε, 0}2djj

)
×

∏
j∈S\{1,2,··· ,k}

(
max{ςjj−ε, 0}2djj

)
. (61)

Then, for any set S satisfying {1, 2, · · · , k + 1} ⊆
S ⊆ {1, 2, · · · , t}, by the cofactor expansion of
det [E11 + · · ·+Ekk +B(S)] and (61), we have

det
[
E11 + · · ·+E(k+1)(k+1) +B(S)

]
= det[E11 + · · ·+Ekk +B(S)]

+ det [E11 + · · ·+Ekk +B(S \ {k + 1})]

≥
k∏

j=1

(
1+max{ςjj−ε, 0}2djj

)
×

∏
j∈S\{1,2,··· ,k}

(
max{ςjj−ε, 0}2djj

)
+

k∏
j=1

(
1+max{ςjj−ε, 0}2djj

)
×

∏
j∈S\{1,2,··· ,k+1}

(
max{ςjj−ε, 0}2djj

)
=

k+1∏
j=1

(
1+max{ςjj−ε, 0}2djj

)
×

∏
j∈S\{1,2,··· ,k+1}

(
max{ςjj−ε, 0}2djj

)
By induction, the result of (58) follows.

Finally, (58) reduces to (57) since ςjj = 0 for min{t, r} <
j ≤ t.
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