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Fundamental Limits of Approximate Gradient Coding
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In the distributed graident coding problem, it has been established that, to exactly recover the gradient under s
slow machines, the mmimum computation load (number of stored data partitions) of each worker is at least
linear (s + 1), which incurs a large overhead when s is large [17]. In this paper, we focus on approximate
gradient coding that aims to recover the gradient with bounded error ϵ . Theoretically, our main contributions are
three-fold: (i) we analyze the structure of optimal gradient codes, and derive the information-theoretical lower
bound of minimum computation load: O(log(n)/log(n/s)) for ϵ = 0 and d ≥ O(log(1/ϵ)/log(n/s)) for ϵ > 0,
where d is the computation load, and ϵ is the error in the gradient computation; (ii) we design two approximate
gradient coding schemes that exactly match such lower bounds based on random edge removal process; (iii)
we implement our schemes and demonstrate the advantage of the approaches over the current fastest gradient
coding strategies. The proposed schemes provide order-wise improvement over the state of the art in terms of
computation load, and are also optimal in terms of both computation load and latency.
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1 INTRODUCTION
Large-scale machine learning has shown great promise for solving many practical applications [7].
Such applications require massive training datasets and model parameters, and force practitioners to
adopt distributed computing frameworks such as Hadoop [4] and Spark [23] to increase the learning
speed. However, the speedup gain is far from ideal due to the latency incurred in waiting for a few
slow or faulty processors, called “stragglers” to complete their tasks [3]. For example, it was observed
in [20] that a straggler may run 8× slower than the average worker performance on Amazon EC2. To
alleviate the straggler issue, current frameworks such as Hadoop deploy various straggler detection
techniques and usually replicate the straggling tasks on other available nodes.

Recently, gradient coding techniques have been proposed to provide an effective way to deal with
stragglers for distributed learning applications [17]. The system being considered has n workers,
in which the training data is partitioned into n parts. Each worker stores multiple parts of datasets,
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computes a partial gradient over each of its assigned partitions, and returns the linear combination of
these partial gradients to the master node. By creating and exploiting coding redundancy in local
computation, the master node can reconstruct the full gradient even if only a part of results are
collected, and therefore alleviate the impact of straggling workers.

The key performance metric used in gradient coding scheme is the computation load d(s), which
refers to the number of data partitions that are sent to each node, and characterizes the amount
of redundant computations to resist s stragglers. Given the number of workers n and number of
stragglers s, the work of [17] establishes a fundamental bound d(s) ≥ s + 1, and constructs a random
code that exactly matches this lower bound. Two subsequent works [5, 14] provide a deterministic
construction of the gradient coding scheme. These results imply that, to resist one or two stragglers,
the best gradient coding scheme will double or even triple the computation load in each worker,
which leads to a large transmission and processing overhead for data-intensive applications.

In practical distributed learning applications, we only need to approximately reconstruct the
gradients. For example, the gradient descent algorithm is internally robust to the noise of gradient
evaluation, and the algorithm still converges when the error of each step is bounded [1]. In other sce-
narios, adding the noise to the gradient evaluation may even improve the generalization performance
of the trained model [13]. These facts motivate the idea to develop an approximate gradient coding
methodology. More specifically, suppose that s of the n workers are stragglers, the approximate
gradient coding allows the master node to reconstruct the full gradient with a multiplicative error ϵ
from n − s received results. The computation load in this case is a function d(s, ϵ) of both number
of stragglers s and error ϵ . By introducing the error term, one may expect to further reduce the
computation load. Given this formulation, we are interested in the following key questions:

What is the minimum computation load for the approximate gradient coding problem? Can we
find an optimal scheme that achieves this lower bound?

There have been two computing schemes proposed earlier for this problem. The first one, intro-
duced in [14], utilizes the expander graph, particularly Ramanujan graphs to provide an approximate
construction that achieves a computation load of O(ns/(n − s)ϵ) given error ϵ . However, expander
graphs, especially Ramanujan graphs, are expensive to compute in practice, especially for a large
number of workers. Hence, an alternate computing scheme was recently proposed in [2], referred to
as Bernoulli Gradient Code (BGC). This coding scheme incurs a computation load of O(log(n)) and
an error of O(n/(n − s) log(n)) with high probability.

1.1 Main Contribution
In this paper, we provide the information-theoretic lower bound of minimum computation load
given number of data partitions, straggler tolerance and error of gradient, which implies that the
optimum computation load can be far less than what the above two schemes achieve. More specifically,
we first show that, if we need to exactly (ϵ = 0) recover the full gradients with high probability, the
minimum computation load satisfies

d(s, 0) ≥ O

(
log(n)
log(n/s)

)
. (1)

We also design a coding scheme, referred to as d-fractional repetition code (FRC) that achieves the
optimum computation load. This result implies that, if we allow the decoding process to fail with a
vanishing probability, the computation load in each worker can be significantly reduced: from s + 1
to O(log(n)/log(n/s)). For example, when n = 100 and s = 10, each worker in the original gradient
coding strategy needs to store 11× data partitions, while in the approximate scheme, we only need to
store 2× data partitions.
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Table 1. Comparison of Existing Schemes

Scheme Computation load Error of gradient
cyclic MDS [17] s + 1 0

expander graph code [14] O
(

ns
(n−s)ϵ

)
ϵ

BGC [2]1 O(log(n)) O
(

n
(n−s) log(n)

)
FRC1 O

(
log(n)
log(n/s)

)
0

BRC1 O
(
log(1/ϵ )
log(n/s)

)
ϵ

1 result holds with high probability, i.e., 1-o(1).

Furthermore, we identify the following three-fold fundamental tradeoff among the computation
load d(s, ϵ), recovery error ϵ , and the number of stragglers s in order to approximately recover the
full gradients with high probability. The tradeoff reads

d(s, ϵ) ≥ O

(
log(1/ϵ)
log(n/s)

)
.

This result provides a quantitative characterization that the noise of the gradient plays a logarithmic
reduction role, i.e., from O(log(n)) to the O(log(n)) − O(log(ϵn)) in the desired computation load.
For example, when the error of gradient is O(1/log(n)), the existing BGC scheme in [2] provides a
computation load of O(log(n)), while the information-theoretical lower bound is O(log(log(n))). We
further give an explicit code construction, referred to as batch raptor code (BRC), based on random
edge removal process that achieves this fundamental tradeoff. We compare our proposed scheme
with existing gradient coding schemes in TABLE 1.

We finally implement and benchmark the proposed gradient coding schemes at a super computer
center 1 and empirically demonstrate its performance gain compared with existing strategies.

1.2 Related Literature
The work of Lee et al. [8] initiated the study of using coding technique such as MDS code for
mitigating stragglers in the distributed linear transformation problem and the regression problem.
Subsequently, one line of studies was centered on designing the coding scheme in distributed linear
transformation problem. Dutta et al. [5] constructed a deterministic coding scheme in the product
of a matrix and a long vector. Lee et al. [9] designed a type of efficient 2-dimensional MDS code
for the high dimensional matrix multiplication problem. Yu et al. [22] proposed the optimal coding
scheme, named as polynomial code, in the matrix multiplication problem. Wang et al. [18, 19] further
initialized the study of computation load in the distributed transformation problem and design several
efficient coding schemes with low density generator matrix.

The second line of researches focus on constructing the coding schemes in the distributed algorithm
in machine learning application. The work of [6] first addressed the straggler mitigation in linear
regression problem by data encoding. Our results are closely related to designing the code for general
distributed gradient descent or the problem of computing sum of functions. The initial study by [17]
presented an optimal trade-off between the computation load and straggler tolerance for any loss
functions. Two subsequent works in [2, 14] considered the approximate gradient evaluation and
proposed the BGC scheme with less computation load compared to the scheme in [17]. Maity et
al. [12] applied the existing LDPC to a linear regression model with sparse recovery. Ye et al. [21]
further introduced the communication complexity in such problem and constructed an efficient code
for reducing both straggler effect and communication overhead. None of the aforementioned works

1Omitted due to the double-blind policy
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Fig. 1. Gradient coding framework.

characterizes the fundamental limits of the approximate gradient coding problem. In the sequel, we
will systematically investigate this problem.

2 PRELIMINARIES
2.1 Problem Formulation
The data set is denoted by D = {(xi ,yi )}

N
i=1 with input feature xi ∈ Rp and label yi ∈ R. Most

machine learning tasks aim to solve the following optimization problem:

β∗ = argmin
β ∈Rp

N∑
i=1

L(xi ,yi ; β) + λR(β), (2)

where L(·) is a task-specific loss function, and R(·) is a regularization function. This problem is usually
solved by gradient-based approaches. More specifically, the parameters β are updated according to
the iteration β (t+1) = hR (β

(t ),д(t )), where hR (·) is the proximal mapping of gradient-based iteration,
and д(t ) is the gradient of the loss function at the current parameter β (t ), defined as

д(t ) =
N∑
i=1

∇L(xi ,yi ; β (t )). (3)

In practice, the number of data samples N is quite large, i.e., N ≥ 109, the evaluation of the
gradient д(t ) will become a bottleneck of the above optimization process and should be distributed
over multiple workers. Suppose that there are n workers W1,W2, . . . ,Wn , and the original dataset
is partitioned into n subsets of equal size {D1,D2, . . . ,Dn}. In the traditional distributed gradient
descent, each worker i stores the dataset Di . During iteration t , the master node first broadcasts
the current classifier β (t ) to each worker. Then each worker i computes a partial gradient д(t )i over
data block Di , and returns it to the master node. The master node collects all the partial gradients
to obtain a gradient evaluation д(t ) =

∑n
i=1 д

(t )
i and updates the classifier correspondingly. In the

gradient coding framework, as illustrated in Figure. 1, each worker i stores multiple data blocks and
computes a linear combination of partial gradients, then the master node receives a subset of results
and decodes the full gradient д(t ).
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More formally, the gradient coding framework can be represented by a coding matrix A ∈ Rn×n ,
where the ith worker computes2 д̃i =

∑n
j=1Ai jдj . Let д ∈ Rn×p (д̃ ∈ Rn×p ) be a matrix with each row

being the (coded) partial gradient

д̃ = [д̃1; д̃2; . . . ; д̃n] and д = [д1;д2; . . . ;дn].

Therefore, we can represent д̃ = Aд. Suppose that there exist s stragglers and the master node receives
n − s results indexed by set S . Then the received partial gradients can be represented by д̃S = ASд,
where AS ∈ R(n−s)×n is a row submatrix of A containing rows indexed by S . During the decoding
process, the master node solves the following problem,

u∗ = argminu ∈Rn−s ∥A
T
Su − 1n ∥2, (4)

and recovers the full gradient by u∗д̃, where 1n ∈ Rn denotes the all one vector.

DEFINITION 1. (Recovery error) Given a submatrix AS ∈ R(n−s)×n , the corresponding recovery
error is defined as

err(AS ) = min
u ∈Rn−s

∥ATSu − 1n ∥2, (5)

Instead of directly measuring the error of recovered gradient, i.e., minu ∥uASд − 1nд∥, this metric
quantifies how close 1n is to being in the span of the columns of AS . It is also worth noting that the
overall recovery error is small relative to the magnitude of the gradient, since the minimum decoding
error satisfies minu ∥uASд − 1nд∥ ≤ ∥д∥ ·minu ∥uAS − 1n ∥.

DEFINITION 2. (Computation load) The computation load of a gradient coding scheme A is
defined as

κ(A) = max
1≤i≤n

∥Ai ∥0, (6)

where ∥Ai ∥0 is the number of nonzero coefficients of the ith row Ai .

The existing work [17] shows that the minimum computation load is at least s + 1 when we
require decoding the full gradient exactly, i.e., err(AS ) = 0, among all S ⊆ [n], |S | = n − s. The
approximate gradient coding relaxes the worst-case scenario to a more realistic setting, the “average
and approximate” scenario. Formally, we have the following systematic definition of the approximate
gradient codes.

DEFINITION 3. (ϵ-approximate gradient code) Given number of s stragglers in n workers, the set
of ϵ-approximate gradient code is defined as

Gϵ = {A ∈ Rn×n |P[err(AS ) > ϵn] = o(1)}, (7)

where AS ∈ R(n−s)×n is a randomly chosen row submatrix of A.

The above definition of gradient code is general and includes most existing works on approximate
gradient coding. For example, let δ = s/n, the existing scheme based on Ramanujan graphs is a
ϵ-approximate gradient code that achieves computation load of O(s/(1 − δ )ϵ); the existing BGC [2]
can be regarded as a O(1/(1 − δ ) log(n))-approximate gradient code that achieves computation load
of O(log(n)/(1 − δ )).

2Here we omit iteration count t .
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2.2 Main Results
Our first main result provides the minimum computation load and corresponding optimal code when
we want to exactly decode the full gradient with high probability.

THEOREM 1. Suppose that out of n workers, s = δn are stragglers. The minimum computation
load of any gradient codes in G0 satisfies

κ∗0(A) ≜ min
A∈G0

κ(A) ≥ O

(
max

{
1,

log(n)
log(1/δ )

})
. (8)

And we construct a gradient code, we call d−fractional repetition code AFRC ∈ G0, such that

lim
n→∞

κ(AFRC)/κ∗0(A) = 1. (9)

The following main result provides a more general outer bound when we allow the recovered
gradient to contain some error.

THEOREM 2. Suppose that out of n workers, s = δn are stragglers. If 0 < ϵ < O(1/log2(n)), the
minimum computation load of any gradient codes in Gϵ satisfies

κ∗ϵ (A) ≜ min
A∈Gϵ

κ(A) ≥ O

(
max

{
1,

log(1/ϵ)
log(1/δ )

})
.

And we construct a gradient code, named as batch raptor code ABRC ∈ Gc , such that

lim
n→∞

κ(ABRC)/κ∗ϵ (A) = 1. (10)

Theorem 2 provides a fundamental tradeoff among the gradient noise, the straggler tolerance
and the computation load. And the gradient noise ϵ provides a factor of logarithmic reduction, i.e.,
− log(ϵn) of the computation load.

Notation: Suppose that AS ∈ R(n−s)×n is a row submatrix of A containing (n − s) randomly and
uniformly chosen rows. Ai (or AS ,i ) denotes ith column of matrix A (or AS ) and ai (or aS ,i ) denotes
ith row of matrix A (or AS ). The supp(x) is defined as the support set of vector x . ∥x ∥0 represents the
number of nonzero elements in vector x .

3 0-APPROXIMATE GRADIENT CODE
In this section, we consider a simplified scenario that the error of gradient evaluation is zero. It can
be regarded as a probabilistic relaxation of the worst-case scenario in [17]. We first characterize the
fundamental limits of the any gradient codes in the set.

G0 = {A ∈ Rn×n |P[err(AS ) > 0] = o(1)}.

Then we design a gradient code to achieve the lower bound.

3.1 Minimum Computation Load
The minimum computation load can be determined by exhaustively searching over all possible
coding matrices A ∈ G0. However, there exist Ω(2n2

) possible candidates in G0 and such a procedure
is practically intractable. To overcome this challenge, we construct a new theoretical path: (i) we first
analyze the structure of the optimal gradient codes, and establish a lower bound of the minimum
failure probability P(minu ∈Rn−s ∥ATSu − 1n ∥2 > 0) given computation load d; (ii) we derive an exact
estimation of such lower bound, which is a monotonically non-increasing function of d; and (iii) we
show that this lower bound is non-vanishing when the computation d is less than a specific quantity,
which provides the desired lower bound.
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The following lemma shows that the minimum probability of decoding failure is lower bounded
by the minimum probability that there exists an all-zero column of matrix AS in a specific set of
matrices.

LEMMA 1. Suppose that the computation load κ(A) = d and define the set of matrices Ad
n = {A ∈

Rn×n |κ(A) = d}, we have

min
A∈Ad

n

P(err(AS ) > 0) ≥ min
A∈Ud

n

P

(
n⋃
i=1

∥AS ,i ∥0 = 0

)
, (11)

where set of matrices Ud
n ≜ {A ∈ Rn×n |∥ai ∥0 = ∥Ai ∥0 = d,∀i ∈ [n]}.

Based on the inclusion-exclusion principle, we observe that the above lower bound is dependent
on the set system {supp(Ai )}

n
i=1 formed by matrix A. Therefore, one can directly transform the above

minimization problem into an integer program. However, due to the non-convexity of the objective
function, it is difficult to obtain a closed form expression. To reduce the complexity of our analysis,
we have the following lemma to characterize a common structure among all matrices in set Ud

n .

LEMMA 2. For any matrix A ∈ Ud
n , there exists a set Id ⊆ [n] such that |Id | ≥ ⌊n/d2⌋ and

supp(Ai ) ∩ supp(Aj ) = ∅,∀i , j, i, j ∈ Id . (12)

Based on the results of Lemma 1 and Lemma 2, we can get an estimation of the lower bound (11),
and obtain the following theorem.

THEOREM 3. Suppose that out of n workers, s = δn are stragglers. If s = Ω(1), the minimum
computation load satisfies

d∗(s, 0) ≜ min
A∈G0

κ(A) ≥
log(n log2(1/δ )/log2(n))

log(1/δ )
; (13)

otherwise, d∗(s, 0) = 1.

Based on Theorem 5, we can observe the power of probabilistic relaxation in reducing the
computation load. For example, if the number of stragglers s is proportional to the number of workers
n, the minimum computation load d∗(s, 0) = O(log(n)), while the worst-case lower bound is Θ(n); if
s = θ (nλ), where 0 < λ < 1 is a constant, the minimum computation load d∗(s, 0) = 1/(1 − λ) is a
constant, while the worst-case one is Θ(nλ). The Figure 2 provides a quantitative comparison of the
proposed ϵ−approximate gradient coding and existing ones.

3.2 d-Fractional Repetition Code
In this subsection, we provide a construction of coding matrix A that asymptotically achieves the
minimum computation load. The main idea is based on a generalization of the existing fractional
repetition code [17].

DEFINITION 4. (d-Fractional Repetition Code) Divide n workers into d groups of size n/d. In
each group, divide all data equally and disjointly, and assign d partitions to each worker. All the
groups are replicas of each other. The coding matrix AFRC is defined as

AFRC =


Ab
Ab
...
Ab


,Ab =


11×d 01×d · · · 01×d
01×d 11×d · · · 01×d
...

...
. . .

...
01×d 01×d · · · 11×d

 n
d ×n

.
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Fig. 2. Information-theoretical lower bound of existing worst-case gradient coding [17] and proposed
ϵ-approximate gradient coding when n = 1000.

REMARK 1. Compared to the original construction in [17], we do not need the assumption that n
is a multiple d . In this case, we can construct the FRC as following: let the size of each group equal
to ⌊n/d⌋. Then randomly choose mod(n,d) groups and increase the size of each by one. Besides, we
the parameter d is adjustable in our construction, while the oringal one requires d = s + 1.

The decoding algorithm for the above FRC is straightforward: instead of solving the problem (4),
the master node sums the partial gradients of any n/d workers that contain disjoint data partitions.
The following technical lemma proposed in [10] is useful in our theoretical analysis.

LEMMA 3. (Approximate inclusion-exclusion principle) Let n be integers and k ≥ Ω(
√
n), and let

E1, E2, . . . , En be collections of sets, then we have

P
©«
⋃
i ∈[n]

Ai
ª®¬ =

(
1 + e−

2k√
n

) |I | ≤k∑
I ⊆[n]

(−1) |I | · P

(⋂
i ∈I

Ai

)
.

The above lemma shows that one can approximately estimate the probability of event E1 ∩ · · · ∩En
given the probability of events

⋂
i ∈I Ei , |I | < Ω(k0.5).

THEOREM 4. Suppose that there exist s = δn stragglers in n workers. If d satisfies

d = max
{
1,
log(n log(1/δ ))

log(1/δ )

}
, (14)

then we have P(err(AFRC
S ) > 0) = o(1).

Combining the results of Theorem 3 and Theorem 4, we can obtain the main argument of
Theorem 1. In practical implementation of FRC, once the decoding process fails in kth iteration,
a straightforward method is to restart kth iteration. Due to the fact that the decoding failure is less
happen during the iteration, such overhead will be amortized. As can be seen in the experimental
section, during 100 iterations, only one or two iterations are decoding failure.

4 ϵ-APPROXIMATE GRADIENT CODE
In this section, we consider a more general scenario that the error of gradient evaluation ϵ is larger
than zero. We first provide a fundamental three-fold trade-off among the computation load, error of
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gradient and the number of stragglers of any codes in the set.

Gϵ = {A ∈ Rn×n |P[err(AS ) > ϵn] = o(1)}. (15)

Then we construct a random code that achieves this lower bound.

4.1 Fundamental Three-fold Tradeoff
Based on the proposed theoretical path in Section 3.1, we can lower bound the probability that the
decoding error is larger than ϵn by the one that there exist larger than ϵn all-zero columns of matrix
AS . However, such a lower bound does not admit a close-form expression since the probability event
is complicated and contains exponential many partitions. To overcome this challenge, we decompose
the above probability event into n dependent events, and analyze its the second-order moment. Then,
we use Bienayme-Chebyshev inequality to further lower bound the above probability. The following
theorem provides the lower bound of computation load among the feasible gradient codes Gϵ .

THEOREM 5. Suppose that out of n workers, s = δn are stragglers, and ϵ < O(1/log2(n)), then
the minimum computation load satisfies

κ∗(A) ≜ min
A∈Gϵ

κ(A) ≥
log(n log2(1/δ )/(2ϵn + 4) log2(n))

log(1/δ )
.

Note that the above result also holds for ϵ = 0, which is slightly lower than the bound in Theorem 3.
Based on the result of Theorem 5, we can see that the gradient noise ϵ provides a logarithmic reduction
of the computation load. For example, when n = 1000 and s = 100, the 0-approximate gradient
coding requires each worker storing 3× data partitions, while even a 0.01-approximate gradient
coding only requires 2× data partitions. Detailed comparison can be seen in Figure 2.

4.2 Random Code Design
Now we present the construction of our random code, we name batch rapter code (BRC), which
achieves the above lower bound with high probability. The construction of the BRC consists of two
layers. In the first layer, the original data set {Di }

n
i=1 are partitioned into n/b batches {Bi }

n/b
i=1 with the

size of each batch equal to b. The data in each batch is selected by Bi = {D j }
ib
j=1+(i−1)b , and therefore

the intermediate coded partial gradients can be represented by дbi =
∑ib

j=1+(i−1)b дj ,∀i ∈ [n/b]. In the
second step, we construct a type of raptor code taking the coded partial gradients дb as input block.

DEFINITION 5. ((b, P)-batch rapter code) Given the degree distribution P ∈ Rn/b and batches
{Bi }

n/b
i=1 , we define the (b, P)-batch rapter code as: each worker k ∈ [n], stores the data {Bi }i ∈I and

computes

д̃k =
∑
i ∈I

дbi =
∑
i ∈I

ib∑
j=1+(i−1)b

дj , (16)

where I is a randomly and uniformly subset of [n/b] with |I | = d, and d is generated according to
distribution P . The coding matrix ABRC is therefore given by

ABRC ≜



random d nonzero blocks︷                 ︸︸                 ︷
11×b 01×b 11×b · · · 01×b
01×b 01×b 11×b · · · 01×b
...

...
...

. . .
...

01×b 11×b 01×b · · · 11×b


.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 52. Publication date: December 2019.



52:10

g1

g2

g3
g4
g5

g6

gb
1

gb
2

gb
3

gb
4

g̃1

g̃2

g̃3

g̃4

gb
1

gb
2

gb
4

g̃1

g̃2

g̃3

g̃1

g̃3

gb
2

g̃1

g̃3

gb
4

g̃3

g̃4

gb
3

g̃4

gb
2

gb
3

gb
4

(a) (b)

g̃5 g̃5

Fig. 3. Example of the batch raptor code and peeling decoding algorithm.

Note that when n is not a multiple d, we can tackle it using a method similar to the one used in
FRC. The decoding algorithm for the BRC goes through a peeling decoding process: it first finds a
ripple worker (with only one batch) to recover one batch дbi and add it to the sum of gradient д. Then
for each collected results, it subtracts this batch if the computed gradients contains this batch. The
whole procedure is listed in Algorithm 1.

Example 1. (Batch raptor code, n = 6, s = 2) Consider a distributed gradient descent problem
with 6 workers. In the batch raptor code, the data is first partitioned into 4 batches with B1 = {D1},
B2 = {D2}, B3 = {D3,D4}, B4 = {D5,D6}. After random construction, 6 workers are assigned the
tasks: д̃1 = д1+д2, д̃2 = д1, д̃3 = д2+ (д5+д6), д̃4 = (д3+д4)+ (д5+д6), д̃5 = д5+д6, д̃6 = д2+ (д5+д6).
Suppose that both the 5th and 6th workers are stragglers and the master node collects partial results
from workers {1, 2, 3, 4}. Then we can use the peeling decoding algorithm: first, find a ripple node д̃2
. Then we can use д̃2 to recover д2 by д̃1 − д̃2. Further, we can use д2 to get a new ripple д5 + д6 by
д̃3 − д2, and use ripple д5 + д6 to recover д3 + д4 by д̃4 − (д5 + д6). In another case, change the coding
scheme of 3th, 4th and 6th worker to д̃3 = д2, д̃4 = д3 +д4 and д̃6 = д1 +д2. Suppose that both the 4th
and 6th workers are stragglers. We can use a similar decoding algorithm to recover д1 + д2 + д5 + д6
without д3,д4. However, the computation load is decreased from 4 to 2. Actually, the above peeling

Algorithm 1 Batch raptor code (master node’s protocol)
repeat

The master node assign the data sets according to Definition 5.
until the master node collects results from first finished n − s workers.
repeat

Find a row Mi in received coding matrix M with ∥Mi ∥0 = 1.
Suppose that the column index of the nonzero element in matrix Mi is k0 and let д = д + д̃k0 .
for each computation results д̃k do

if Mkk0 is nonzero then
д̃k = д̃k −Mkk0д̃k0 and set Mkk0 = 0.

end if
end for

until n(1 − ϵ) partial gradients is recovered.

decoding algorithm can be viewed as an edge-removal process in a bipartite graph. We construct
a bipartite graph with one partition being the original batch gradients {дbi } and the other partition
being the coded gradients {д̃i }. Two nodes are connected if such a computation task contains that
block. As shown in the Figure 3, in each iteration, we find a ripple (degree one node) on the right
and remove the adjacent edges of that left node, which might produce some new ripples in the right.
Then we iterate this process until we decode all gradients.
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Based on the above graphical illustration, the key point of being able to successfully decode for
BRC is the existence of the ripple during the edge removal process, which is mainly dependent on
the degree distribution P and batch size b. The following theorem shows that, under a specific choice
of P and b, we can guarantee the success of decoding process with high probability.

THEOREM 6. Define the degree distribution Pw

pk =



u

u + 1
,k = 1

1
k(k − 1)(u + 1)

, 2 ≤ k ≤ D

1
D(u + 1)

,k = D + 1

, (17)

where D = ⌊1/ϵ⌋, u = 2ϵ(1 − 2ϵ)/(1 − 4ϵ)2 and b = ⌈1/log(1/δ )⌉ + 1. Then the (⌈1/log(1/δ )⌉, Pw )-
batch rapter code with decoding Algorithm 1 satisfies

P(err(ABRC
S ) > c) < e−c0n,

and achieves an average computation load of

O

(
log(1/ϵ)
log(1/δ )

)
. (18)

The above result is based on applying a martingale argument to the peeling decoding process [11].
In practical implementation, the degree distribution can be further optimized given the n, s and error
ϵ [16].

5 SIMULATION RESULTS
In this section, we present the experimental results at a super computing center. We compare our
proposed schemes including d-fractional repetition code (FRC) and batch raptor code (BRC) against
existing gradient coding schemes: (i) forget-s scheme (stochastic gradient descent): the master node
only waits the results of non-straggling workers; (ii) cyclic MDS code [17]: gradient coding scheme
that can guarantee the decodability for any s stragglers; (iii) bernoulli gradient code (BGC) [2]:
approximate gradient coding scheme that only requires O(log(n)) data copies in each worker. (iv)
Asynchronous gradient descent (AsySG) [15]: the master do not need to wait the results of straggling
workers and update the parameter every fix number of iterations. To simulate straggler effects in a
large-scale system, we randomly pick s workers that are running a background thread.

5.1 Experiment Setup
We implement all methods in python using MPI4py. Each worker stores the data according to the
coding matrix A. During the iteration of the distributed gradient descent, the master node broadcasts
the current classifier β (t ) using Isend(); then each worker computes the coded partial gradient д̃(t )i
and returns the results using Isend(). Then the master node actively listens to the response from
each worker via Irecv(), and uses Waitany() to keep polling for the earliest finished tasks.
Upon receiving enough results, the master stops listening and starts decoding the full gradient д(t )

and updates the classifier to β (t+1).
In our experiment, we ran various schemes to train logistic regression models, a well-understood

convex optimization problem that is widely used in practice. We choose the training data from
LIBSVM dataset repository. We use N = 19264097 samples and a model dimension of p = 1163024.
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Fig. 4. The generalization AUC versus running time of applying distributed gradient descent in a
logistic regression model. The two proposed schemes FRC and BRC are compared against three
existing schemes. The learning rate α is fixed for all the experiment.

We evenly divide the data into n partitions {Dk }
n
k=1. The key step of gradient descent algorithm is

β (t+1) = β (t ) + α
n∑

k=1

д(t )i︷                       ︸︸                       ︷∑
i ∈Dk

η(yi − hβ (t ) (xi ))xi ,

where hβ (t ) (·) is the logistic function, α is the predetermined step size.

5.2 Generalization Error
We first compare the generalization AUC of the above five schemes when number of workers n = 30
or 60 and 10% or 20% workers are stragglers. In Figure 4, we plot the generalization AUC versus the
running time of all the schemes under different n and s. We can observe that our proposed schemes
(FRC and BRC) achieve significantly better generalization error compared to existing ones. Both
the forget-s scheme and AsySG scheme converges slowly, since it does not utilize the full gradient
and only admits a small step size α compared to other schemes. In particular, when the number of
workers increases, our proposed schemes provide even larger speed up over the state of the art.

5.3 Impact of Straggler Tolerance
We further investigate the impact of straggler tolerance s. We fix the number of workers n = 30 or
n = 60 and increase the fraction of stragglers from 10% to 30%. In Figure 5, we plot the job completion
time to achieve a fixed generalization AUC = 0.8. The first observation is that our propose schemes
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Fig. 5. The final job completion time of achieving a generalization AUC = 0.8 in a logistic regression
model. The two proposed schemes FRC and BRC are compared against three existing schemes. The
learning rate α is fixed for all the experiments.

reduce the completion time by 50% compared to existing ones. The cyclic MDS code and forget-s
(stochastic gradient descent) scheme are sensitive to the number of stragglers. The main reasons are:
(i) the computation load of cyclic MDS code is linear in s; (ii) the available step size of forget-s is
reduced when the number of received partial gradients decreases.

The job completion time of the proposed FRC and BRC are not sensitive to the straggler tolerance
s, especially when the number of workers n is large. For example, the job completion time of BRC
only increases 10% when fraction of straggler increases from 10% to 30%. Besides, we observe that,
when the straggler tolerance is small, i.e., s/n < 0.1, the job completion time of FRC is slightly lower
than that of BRC, because the computation loads are similar for both FRC and BRC in this case, and
the FRC utilizes the information of the full gradient.

6 CONCLUSION
In this paper, we formalized the problem of approximate gradient coding and systematically char-
acterized the fundamental three-fold tradeoff among the computation load, noise of gradient ϵ and
straggler tolerance s. We further constructed two schemes, FRC and BRC, to achieve this lower bound.
Theoretically, the proposed fundamental tradeoff uncovers how the “probabilistic relaxation” and
the “noise of gradient” quantitatively influence the computation load: (i) the probabilistic relaxation
provides a linear reduction in computation load, i.e, a reduction from Θ(n) to O(log(n)) redundant
computations of each worker; (ii) the gradient noise ϵ introduces another logarithmic reduction in
computation load, i.e, a reduction from O(log(n)) to O(log(n) − log(ϵn)) redundant computations. In
practice, we have experimented with various gradient coding schemes on super computing center.
Our proposed schemes provide 50% speed up over the state of the art.
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A PROOF OF LEMMA 1
PROOF. Since the event that there exists i ∈ [n] such that ∥AS ,i ∥0 = 0 implies the event that

err(AS ) = ∥ATSu − 1n ∥2 ≥ 1, we can obtain

P(err(AS ) > 0) ≥ P

(
n⋃
i=1

∥AS ,i ∥0 = 0

)
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Suppose that A∗ = argminA∈Ad
n
P(err(AS ) > 0), A∗

S is the row submatrix of A∗ containing (n − s)
randomly and uniformly chosen rows, we have

min
A∈Ad

n

P(err(AS ) > 0) ≥ P

(
n⋃
i=1

∥A∗
S ,i ∥0 = 0

)
≥ min

A∈Ad
n

P

(
n⋃
i=1

∥AS ,i ∥0 = 0

)
We next show that

minA∈Ad
n
P

(⋃n

i=1
∥AS ,i ∥0 = 0

)
=minA∈Ud

n
P

(⋃n

i=1
∥AS ,i ∥0 = 0

)
We will prove that the above probability is monotonically decreasing with the support size of each
row and column of matrix A. Assume that there exists k ∈ [n] such that ∥ak ∥0 < κ(A). We change one
zero position of row ak , i.e., ak j to an nonzero constant. Define the new matrix as A′. For simplicity,
define the event Ei as ∥AS ,i ∥0 = 0 and E ′

i as ∥A′
S ,i ∥0 = 0. Then we can write

P

(
n⋃
i=1

Ei

)
= P

(⋃
i,j

Ei

)
+ P

[
Ej\

(⋃
i,j

Ei

)]
(a)
≥ P

(⋃
i,j

E ′
i

)
+ P

[
E ′
j\

(⋃
i,j

E ′
i

)]
= P

(
n⋃
i=1

E ′
i

)
.

The above, step (a) is based on the fact that Ei = E ′
i , i , j and E ′

j ⊂ Ej . Similarly, we can prove
the monotonicity for support size of each column. Therefore, based on the monotonicity and the
Definition 2 of computation load, the lemma follows. □

B PROOF OF LEMMA 2
PROOF. Given any matrix A ∈ Ud

n . We construct the set Id as follows. First, choose a column Ai1
and construct set I1 as follows,

I1 = {j ∈ [n]|supp(Ai1 ) ∩ supp(Aj ) , ∅, j , i1} (19)

Since A ∈ Ud
n , suppose that supp(Ai1 ) = {k1,k2, . . . ,kd }. We can obtain

|I1 | =

����� d⋃
l=1

{
j ∈ [n]|Ajki , j , i1

}�����
(a)
≤

d∑
i=1

|
{
j ∈ [n]|Ajki , j , i1

}
|
(b)
≤ d2. (20)

The above, step (a) utilizes the union bound and step (b) is based on the definition of set Ud
n .

Furthermore, we choose a column Ai2 such that i2 ∈ [n]\I1. Based on the definition of index
set I1, we have supp(Ai2 ) ∩ supp(Ai1 ) = ∅. Similarly, we can construct the index set I2 = {j ∈

[n]|supp(Ai2 ) ∩ supp(Aj ) , ∅, j , i1} with |I2 | ≤ d2. Continue this process k times, we can construct
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a set Id = {i1, i2, . . . , ik } such that for any i, j ∈ Id , supp(Ai ) ∩ supp(Aj ) = ∅, and corresponding
I1, I2, . . . , Ik . Since each |Ik | ≤ d2, we have |Id | ≥ ⌊n/d2⌋. □

C PROOF OF THEOREM 3
PROOF. Suppose that

A∗ = argmin
A∈Ud

n

P

(
n⋃
i=1

∥AS ,i ∥0 = 0

)
. (21)

Based on the results of Lemma 2, we can construct a set I ∗d such that |I∗
d | ≥ ⌊n/d2⌋ and

supp(A∗
i ) ∩ supp(A∗

j ) = ∅,∀i , j, i, j ∈ Id . (22)

Combining the results of Lemma 1, we have

min
A∈Ad

n

P(err(AS ) > 0) ≥ min
A∈Ad

n

P

(
n⋃
i=1

∥AS ,i ∥0 = 0

)
= min

A∈Ud
n

P

(
n⋃
i=1

∥AS ,i ∥0 = 0

)
= P

(
n⋃
i=1

∥A∗
S ,i ∥0 = 0

)
≥ P

©«
⋃
i ∈I ∗d

∥A∗
S ,i ∥0 = 0ª®¬ (23)

The above, last step is based on the fact that I ∗d ⊆ [n]. Suppose that |I ∗d | = t . Based on the inclusion-
exclusion principle, we can write

P
©«
⋃
i ∈I ∗d

∥A∗
S ,i ∥0 = 0ª®¬

=
∑
I ⊆I ∗d

(−1) |I |+1P

(⋂
i ∈I

∥A∗
S ,i ∥0 = 0

)
(a)
=

∑
I ⊆I ∗d , |I | ≤ ⌊ sd ⌋

(−1) |I |+1
(
n −

∑
i ∈I |supp(A∗

S ,i )|

s −
∑

i ∈I |supp(A∗
S ,i )|

)/ (
n

s

)
=

min{t , ⌊ sd ⌋ }∑
k=1

(
t

k

)
(−1)k+1

(
n − kd

s − kd

)/ (
n

s

)
(b)
≥

k≤min{t , ⌊ sd ⌋ }∑
k is odd

(
t

k

) (
n − kd

n

)n−kd+0.5 ( s

s − kd

)s−kd+0.5 ( s
n

)kd
−

k≤min{t , ⌊ sd ⌋ }∑
k is even

(
t

k

)
144s(n − kd)

(12s − 1)(12(n − kd) − 1)

(
n − kd

n

)n−kd+0.5
( s

s − kd

)s−kd+0.5
. (24)
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The above, step (a) is based on the property of set I ∗d . Step (b) utilizes the following Sterlin’s
inequalities

√
2πn

(n
e

)n
≤ n! ≤

√
2πn

(n
e

)n 12n
12n − 1

. (25)

Case 1: The number of stragglers s = δn and δ = Θ(1).
Since the event ∥A∗

S ,i0
∥0 = 0 belongs to event

⋃
i ∈I ∗d

∥A∗
S ,i ∥0 = 0 for some i0 ∈ I ∗d , we have

P


⋃
i ∈I ∗d

∥A∗
S ,i ∥0 = 0

 ≥ P
[
∥A∗

S ,i0 ∥0 = 0
]
=

(
n − d

s − d

)/ (
n

s

)
(a)
= (1 + o(1))

(
1 −

d

n

)n−d+0.5 (
1 +

d

s − d

)s−d+0.5
δd

=(1 + o(1))δd . (26)

The above, step (a) is based on the Sterlin’s approximation. This result implies d > Ω(1) (otherwise,
the failure probability is nonvanishing). Then we have t = ⌊n/d2⌋ < ⌊s/d⌋ and kd = o(n) for any
1 ≤ k ≤ t , and obtain the following approximation,(

n − kd

n

)n−kd+0.5 ( s

s − kd

)s−kd+0.5
= 1 − α(n,k) and

lim
n→∞

α(n,k) = 0,∀1 ≤ k ≤ t .

144s(n − kd)

(12s − 1)(12(n − kd) − 1)
= 1 + β(n,k) and

lim
n→∞

β(n,k) = 0,∀1 ≤ k ≤ t .

Utilizing the above approximation and choosing d such that δdt → 1/e, we have

P
©«
⋃
i ∈I ∗d

∥A∗
S ,i ∥0 = 0ª®¬

≥

k≤t∑
k is odd

(
t

k

)
(1 − α(n,k))

( s
n

)kd
−

k≤t∑
k is even

(
t

k

)
(1 − α(n,k))

(1 + β(n,k))
( s
n

)kd
=1 − (1 − δd )t −

k≤t∑
k is odd

(
t

k

)
α(n,k)δkd+

k≤t∑
k is even

(
t

k

)
(α(n,k) − β(n,k) + α(n,k)β(n,k))δkd

(a)
=1 − (1 − δd )t + o(1)
(b)
=1 − e−e

−1
+ o(1) > 0.307. (27)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 52. Publication date: December 2019.



52:18

The above, step (a) utilizes the fact that
(t
k

)
≤ (et/k)k , then the quantity

(t
k

)
δkd ≤ (etδd/k)k = 1/kk

and
t∑

k=1

(
t

k

)
(−1)k+1o(1)δkd ≤

t∑
k=1

o(1)
kk
= o(1). (28)

Step (b) is based on the choice of d such that δdt → 1/e. It is obvious that the probability
P(

⋃
i ∈I ∗d

∥A∗
S ,i ∥0 = 0) is monotonically non-increasing with the computation load d. Therefore,

the minimum computation load d∗ should satisfy d∗ > d0, where δd0n/d20 → 1/e. It is easy to see that

d0 =
log(ne log2(1/δ )/log2(n))

log(1/δ )
. (29)

Case 2: The number of stragglers s = δn, δ = o(1) and δ = Ω(1/n).
In this case, we can choose d = d0. The conditions δ = Ω(1/n) implies that s = Ω(1).
Then, for k ∈ [min{t, s/d0}] and k = o(s/d0), we have following similar estimation.(

n − kd0
n

)n−kd0+0.5 (
s

s − kd0

)s−kd0+0.5
= 1 − α(n,k) (30)

lim
n→∞

α(n,k) = 0. (31)

For k ∈ [min{t, s/d0}] and k = Θ(s/d0) = cs/d0, we have(
t

k

) (
n − kd0

n

)n−kd0+0.5 (
s

s − kd0

)s−kd0+0.5
δkd0

=

(
t

k

) (
1

1 − c

) (1−c)s+0.5
δcs

≤

(
1

1 − c

)0.5 [(e
c

)1/d0 (
1

1 − c

)1/c−1
δ

]kd0
. (32)

For all k ∈ [min{t, s/d0}], we have
144s(n − kd0)

(12s − 1)(12(n − kd0) − 1)
= 1 + β(n,k) (33)

lim
n→∞

β(n,k) = 0,∀1 ≤ k ≤ t . (34)

Therefore, we can obtain the following estimation.∑
k=Θ(s/d0)

(
t

k

) (
n − kd0

n

)n−kd0+0.5 (
s

s − kd0

)s−kd0+0.5
δkd0 = o(1). (35)

Utilizing the above approximation, we have

P
©«
⋃
i ∈I ∗d0

∥A∗
S ,i ∥0 = 0

ª®®¬
≥

k=o(s/d0)∑
k is odd

(
t

k

)
(1 − α(n,k))

( s
n

)kd0
−

k=o(s/d0)∑
k is even

(
t

k

)
(1 − α(n,k)) (1 + β(n,k))

( s
n

)kd0
+ o(1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 3, Article 52. Publication date: December 2019.



52:19

=1 − (1 − δd0 )t −

k=o(s/d0)∑
k is odd

(
t

k

)
α(n,k)δkd0+

k=o(s/d0)∑
k is even

(
t

k

)
(α(n,k) − β(n,k) + α(n,k)β(n,k))δkd0 + o(1)

=1 − (1 − δd0 )t + o(1)

=1 − e−e
−1
+ o(1) > 0.307. (36)

Therefore, the minimum computation load d∗ should satisfy d∗ > d0. In the case s = Θ(1), the lower
bound 1 is trivial (otherwise, some gradients are lost).Therefore, the theorem follows. □

D PROOF OF THEOREM 4
PROOF. Based on the structure of coding matrix AFRC and decoding algorithm, we can define the

following event

Ei ≜
d−1⋂
j=0

(
jn

d
+ i

)
th worker is straggler, 1 ≤ i ≤ n/d, (37)

and we have

P(err(AFRC
S ) > 0) = P

(n/d⋃
i=1

Ei

)
. (38)

Utilizing the approximate inclusion-exclusion principle and choose k = n0.6 andd = 1+log(n)/log(1/δ ),
we have

P(err(AFRC
S ) > 0) = (1 + e−2n

0.1
)

∑
I ⊆[n], |I | ≤k

(−1) |I |+1P

(⋂
i ∈I

Ei

)
(a)
= (1 + o(1))

k∑
i=1

(
n/d

i

)
(−1)i+1P

(
i⋂
j=1

Ej

)
(b)
= (1 + o(1))

k∑
i=1

(
n/d

i

)
(−1)i+1

(
n − id

s − id

)/ (
n

s

)
(c)
≤(1 + o(1))

i≤k∑
i is odd

(
n/d

i

)
144s(n − id)

(12s − 1)(12(n − id) − 1)(
n − id

n

)n−id+0.5 ( s

s − id

)s−id+0.5 ( s
n

) id
− (1 + o(1))

i≤k∑
i is even

(
n/d

i

) (
n − id

n

)n−id+0.5 ( s

s − id

)s−id+0.5 ( s
n

) id
(d )
= (1 + o(1))

i≤k∑
i is odd

(
n/d

i

)
(1 + β ′(n,k)) (1 − α ′(n,k))

( s
n

)kd
−

i≤k∑
i is even

(
t

k

)
(1 − α ′(n,k))

( s
n

)kd
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(e)
=1 − (1 − δd )n/d −

n/d∑
i=k+1

(
n/d

i

)
(−1)i+1δ id + o(1)

(f )
= 1 − (1 − δd )n/d + o(1)
(д)
=o(1). (39)

The above, step (a) is based on the symmetry of events Ei . Step (b) utilizes the definition of event Ei
and the structure of coding matrix AFRC. Step (c) utilizes Sterlin’s inequality (25). In the step (d),
since k = n0.6, we have id = o(n) for 1 ≤ i ≤ k and(

n − id

n

)n−id+0.5 ( s

s − id

)s−id+0.5
= 1 − α ′(n,k)

lim
n→∞

α ′(n,k) = 0,

and
144s(n − id)

(12s − 1)(12(n − id) − 1)
= 1 + β ′(n,k)

lim
n→∞

β ′(n,k) = 0.

Step (e) is based on the similar argument in the proof of (28). The last step utilizes the fact that, when
i ≥ n0.6 and d = log(n log(1/δ ))/log(1/δ ),(

n/d

i

)
δ id ≤

(en
di

δd
) i

≤ n−0.6n
0.6
.

The last step (g) is based on the choice of d such that (1 − δd )n/d = e−1/log(n log(1/δ )) = 1 − o(1).
Therefore, the theorem follows. □

E PROOF OF THEOREM 5
PROOF. Define the indicator function

Xi =

{
1, ∥AS ,i ∥0 = 0
0, ∥AS ,i ∥0 > 0 (40)

Then we can obtain

P[err(AS ) > c] ≥ P

[
n∑
i=1

Xi > c

]
. (41)

Based on the similar proof of Lemma 1, we have

min
A∈Ad

n

P[err(AS ) > c] ≥ min
A∈Ud

n

P

[
n∑
i=1

Xi > c

]
. (42)

Suppose that

A∗ = argmin
A∈Ud

n

P

[
n∑
i=1

Xi > c

]
. (43)

Based on the results in the Lemma 2, we can construct a set I ∗d such that |I∗
d | ≥ ⌊n/d2⌋ and

supp(A∗
i ) ∩ supp(A∗

j ) = ∅,∀i , j, i, j ∈ Id . (44)
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Therefore, we have

min
A∈Ad

n

P[err(AS ) > c] ≥ P
[
Y (I ∗d ) > c

]
, (45)

where random variable Y (I ∗d ) =
∑

i ∈I ∗d
Xi .

Suppose that d = o(s). Each indicator function Xi is a Bernoulli random variable with

P(Xi = 1) =
(
n − d

s − d

)/ (
n

s

)
(a)
= (1 + o(1))

(
1 −

d

n

)n−d+0.5 (
1 +

d

s − d

)s−d+0.5
δd

(b)
= (1 + o(1))δd .

The above, step (a) utilizes sterlin’s approximation; step (b) is based on the fact that s = Ω(1) and
d = o(s). First, the expectation of Y (I ∗d ) is given by

E[Y (I ∗d )] = t(1 + o(1))δd . (46)

Furthermore, considering the fact that, for any i, j ∈ I ∗d with i , j, the random variable XiX j is a also
Bernoulli random variable with

P(XiX j = 1) =
(
n − 2d
s − 2d

)/ (
n

s

)
=(1 + o(1))

(
1 −

2d
n

)n−2d+0.5 (
1 +

2d
s − 2d

)s−2d+0.5
δ 2d

=(1 + o(1))δ 2d ,

the variance of Y (I ∗d ) is given by

Var[Y (I ∗d )] =E[Y
2(I ∗d )] − E

2[Y (I ∗d )]

=E


∑
i ∈I ∗d

X 2
i + 2

∑
i , j ∈I ∗d ,i,j

XiX j

 − E2[Y (I ∗d )]
=(1 + o(1))

[
tδd + t(t − 1)δ 2d − t2δ 2d

]
=(1 + o(1))

[
tδd (1 − δd )

]
(47)

Therefore, utilizing the Chebyshev inequality, we have the following upper bound.

P
{
Y (I ∗d ) ≤ E[Y (I

∗
d )] − 2E0.5[Y (I ∗d )]

}
≤P

{
|Y (I ∗d ) − E[Y (I

∗
d )]| ≥ 2E0.5[Y (I ∗d )]

}
≤

Var[Y (I ∗d )]

4E[Y (I ∗d )]
= (1 + o(1))

1 − δd

4
. (48)

Assume that c ≤ E[Y (I ∗d )] − 2E0.5[Y (I ∗d )], then we have

P
{
Y (I ∗d ) ≤ c

}
≤P

{
Y (I ∗d ) ≤ E[Y (I

∗
d )] − 2E0.5[Y (I ∗d )]

}
≤ 1/4. (49)

This result implies that

P[err(AS ) > c] >
3
4
, (50)
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which is a contradiction. Therefore, the parameter c should satisfy c > E[Y (I ∗d )]−2E0.5[Y (I ∗d )], which
implies that

E[Y (I ∗d )] < 2c + 4. (51)

Since E[Y (I ∗d )] = (1 + o(1))tδd and ⌊n/d2⌋δd is monotonically non-increasing with d , the minimum
computation load should satisfy

d ≥
log(n log2(1/δ )/(2c + 4) log2(n/(2c + 4)))

log(1/δ )
. (52)

Therefore, the theorem follows. □

F PROOF OF THEOREM 6
We use the analysis of the decoding process as described in [11]. Based on the choice of b =
⌈1/log(1/δ )⌉ + 1 and δ = s/n, we can obtain that

n(1 − 2ϵ)
b(1 − 4ϵ)

< n − s . (53)

Based on the results in [11], to successfully recover n/b(1 − ϵ) blocks from n(1−2ϵ )
b(1−4ϵ ) received results

with probability 1 − e−cn , we need to show the following inequality holds.

e−
1−2ϵ
1−4ϵ Ω

′(x ) < 1 − x,∀x ∈ [0, 1 − ϵ], (54)

where Ω′(x) is the derivative of the generating function fo the degree distribution Pw . Note that

Ω′(x) =
1

u + 1

(
u − ln(1 − x) + xD −

∞∑
d=D+1

xd

d

)
(55)

Utilizing the fact that xD >
∑∞
d=D+1 x

d/d , the theorem follows.
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