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Abstract—Social networking platforms are responsible for the
discussion and formation of opinions in diverse areas including,
but not limited to, political discourse, market trends, news and
social movements. Often, these opinions are of a competing
nature, e.g., radical vs. peaceful ideology, one technology vs.
another. We study the battle of such competing opinions over
evolving social networks. The novelty of our model is that it
captures the exposure and adoption dynamics of opinions that
account for the preferential and random nature of exposure as
well as the persuasion power of different opinions. We provide
a complete characterization of the mean opinion dynamics over
time as a function of the initial adoption as well as the particular
exposure and adoption dynamics. Our analysis, supported by case
studies, reveals the key metrics that govern the spread of opinions
and establishes the means to engineer the desired impact of an
opinion in the presence of other competing opinions.

I. INTRODUCTION

Social networks, whether face-to-face or digital, capture the
connections and interactions between people on a wide range
of platforms. They are a medium for the spread of diverse
influences including opinion, information, innovation, riots,
biological or computer viruses, and even obesity [1]. As such,
social networks play a key role in shaping human behavior.

We are interested in understanding the principles and dy-
namics of multiple competing influences spreading over an
evolving social network. As an example, we regularly see
battles of opinions on social platforms, e.g., Twitter, as a
reaction to some news. The information spread and opinion
formation start with a set of initial nodes. Over time, followers
of these initial nodes are exposed to the news and join
the dynamically growing opinion subnetwork, the network of
nodes that have heard the news and formed an opinion. Even
though the underlying social network platform, here Twitter,
might be considered static over a shorter time frame, the
opinion subnetwork over which the new influence originates
and spreads is dynamically growing.

Understanding the evolution of such competing opinions
over social networks demands new models that capture the
spreading and adoption dynamics of opinions over a common
network platform. This motivates us to model and study the
spreading dynamics of multiple influences over a growing
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dynamic network. We require our network model to capture
several phenomena, such as a heavy-tailed degree distribution,
that are observed in many real-world social networks.

The degree or connectivity of a node in a network is
the number of its connections. Online social networks such
as Twitter have been shown to have a heavy-tailed degree
distribution [2]. One class of networks with heavy-tailed
degree distribution is scale-free networks in which the fraction
P (d) of vertices with degree d is proportional to d−γ , where
γ is a constant. The preferential attachment model has been
proposed as a mechanism that gives rise to a power-law degree
distribution [3]. In this model, the probability that a node is
connected to a given node is proportional to the degree of the
given node. This is in contrast to the random attachment model
where any two nodes are connected with a given probability
independently of other connections in the network.

Various hybrid models that mix preferential and random
attachment have been studied in several scenarios of growing
networks, social or otherwise (e.g., [4], [5], [6]). In these
works, the authors show that networks evolving according
to hybrid random-preferential attachment models exhibit a
power-law degree distribution and other desirable properties
that mimic social networks (e.g., short average distance, large
clustering coefficients and positive degree correlation).

There is a rich history of research on the problem of
evolving complex networks (e.g., [7], [8]) as well as influence
propagation on static networks (e.g., [9], [10], [11]). However,
to the best of our knowledge these topics have always been
studied individually. In addition, there is very little work that
concentrates on influence propagation specifically on scale-
free networks. In [12] and [13], the authors study the spread
of a single virus in a static network generated according to the
preferential attachment model. However, they do not seek to
characterize the time evolution of the virus spread; their focus
is on conditions that give rise to a persistent epidemic.

In this work, we propose a new model for influence spread
over an evolving network. Our model captures the preferential
versus random nature of attachment, the varying persuasive-
ness of different types of influence and the varying respon-
siveness of nodes to adopt different influences. In particular,
we want to answer the following key questions:

• How do the initial acceptance and the persuasiveness of
influences affect their evolution? If the source of influence
has limited resources to control the initial acceptance and
the persuasiveness, how should it distribute it?



• What is the impact of preferential versus random attach-
ment dynamics on the influence spread? Is the influence
spread sensitive or robust to such dynamics?

• If persuasion parameters are not known a priori, can we
infer them based on the observed influence spread?

In order to answer these questions, we first analyze the
mean system dynamics to obtain insights into the evolution of
influence. We then translate our analytical results into insights
on the characteristics and essential dynamics of important
instances of the problem. These investigations reveal the
impact of different attachment and adoption dynamics on the
transient and limiting behavior of influence spread.

II. NETWORK EVOLUTION & INFLUENCE SPREAD MODEL

We propose a model where multiple influences interact with
each other on a network that expands with newcomer nodes.
Our model captures both the popularity or prominence of the
existing nodes as measured by their degree and the differences
in the persuasion power of the influences themselves.

A. Network Evolution: Exposure to Opinions

The network evolution starts at time zero with N0 > 0 initial
nodes of total degree D0 > 0. At the end of each discrete-
time period t ∈ {1, 2, . . .}, a new node arrives1 and connects
to one of the existing nodes in the network. We use Ntot[t] and
Dtot[t] to denote the total number of nodes and total degree
at time t, respectively.

We refer to the node to which the newcomer node connects
as the parent node. Our current model accounts for a single
parent node for each newcomer node. While this assumption
is certainly limiting, it still allows us to capture many real life
scenarios where it is possible to identify a most influential
existing node for each newcomer node. One example is
singling out the node of first exposure as the parent node.

We consider two modes of attachment to capture both the
random behavior of the newcomer nodes and the prominence
of the existing nodes. Each newcomer node attaches either
randomly with probability q ∈ [0, 1] or preferentially with
probability (1− q) independently from the attachment modes
of the previous nodes. We refer to the probability q as the
attachment parameter. In the random attachment mode, the
newcomer node attaches to an existing node selected uniformly
at random, i.e., each node in the network is chosen with equal
probability 1/Ntot[t]. In the preferential attachment mode,
each node in the network is chosen with a probability that is
proportional to its degree, i.e., if a particular node has degree
d then it is chosen with probability d/Dtot[t].

B. Influence Propagation: Adoption of Opinion/Color

We consider M different influences labeled 1, . . . ,M . In-
fluence can refer to a wide range of things including opinions,
ideas, innovations or products. In the sequel, we will use the

1The model can be readily extended to the case where newcomer nodes
arrive at possibly random times {T1, T2, . . .} with independent inter-arrival
times. In that case, all our results still hold when the network is sampled right
after the arrival of a newcomer node.

word color when referring to these influences. Each node
adopts only one out of M colors at the time it joins the network
and does not change its color once adopted.

We assume that the color of its parent node is revealed to
the newcomer node only after attachment. This assumption is
justified in many scenarios where the colors of the existing
nodes are not discernable at the time of connection making,
but their prominence is readily observable by the newcomer
through their number of connections. Once the newcomer
node connects to a parent node, it becomes receptive to the
influence. The parent node’s color determines the likelihood
of the newcomer node adopting each color. In particular, if
the parent has color j ∈ {1, . . . ,M}, then the newcomer node
adopts color i ∈ {1, . . . ,M} with probability pij , i.e.,

pij = P(Node adopts color i|Parent node has color j),

where 0 ≤ pij ≤ 1 for all i and j, and
∑
i pij = 1 for each j.

The set of adoption parameters {pij} captures the persuasion
power of different types of influences. Depending on the type
of influence, these parameters may reflect the strength of an
opinion or inherent quality of a product.

We use Ni[t] and Di[t] to denote the number and the total
degree of nodes of color i at time t. In order to facilitate a
more compact presentation, we define the state vector

X[t] = (N1[t], . . . , NM [t], D1[t], . . . , DM [t])
T (1)

with initial value X[0] = X0.

III. MEAN SYSTEM DYNAMICS

In this section, we provide analytical results that describe the
mean dynamics of the evolving influence network introduced
in Section II. We first derive exact results based on a discrete-
time (DT) arrival model. The form of the exact results,
however, provides only a limited insight into the effect of
the various system parameters on the system evolution. In
order to achieve further insight, we develop and analyze an
approximate continuous-time (CT) model.

A. Discrete-Time Mean System Analysis

In this subsection, we provide an exact characterization of
the mean behavior of the system dynamics in discrete-time
by investigating the conditional mean drift of the system state
X[t] defined in (1). In particular, we obtain a linear system
with time-varying coefficients to describe the mean system
evolution and present its solution.

Theorem 1 (Linear Time-Varying DT System Description and
Solution). The one-step time evolution of the mean network
state described in Section II is governed by the following time-
varying linear difference equation

E[X[t+ 1]−X[t] | X[t]] = A[t]X[t] for t ∈ {0, 1, . . .} (2)

with initial condition X[0] = X0. A[t] is a 2M × 2M matrix
composed of four M ×M constant submatrices Aij , Ntot[t]
and Dtot[t] as follows:

A[t] =

[
A11/Ntot[t] 2A12/Dtot[t]
A21/Ntot[t] 2A22/Dtot[t]

]
, (3)



where the entries of the constant submatrices are given by

[A11]i,j = qpij ,

[A12]i,j =
1

2
(1− q)pij ,

[A21]i,j =

{
q(1 + pii), if i = j

qpij , if i 6= j
(4)

[A22]i,j =

{
1
2 (1− q)(1 + pii), if i = j
1
2 (1− q)pij , if i 6= j.

The mean state of the system at time t is given by

E[X[t] | X0] =

(
t−1∏
s=0

(A[s] + I)

)
X0,

where I is the 2M × 2M identity matrix.

Proof. The proof is given in [14].

B. Continuous-Time Approximation

In this subsection, we provide a heuristic continuous-time
approximation to the mean evolution of the influence network.
Throughout the paper, we use (t) instead of [t] to distinguish
continuous-time variables from their discrete-time counter-
parts. We introduce the short-hand notation x(t) , E[X(t)] to
denote the CT approximation of the mean state vector. Next,
we obtain a heuristic continuous-time approximation for the
evolution of the network by replacing the difference equation
in (2) by a differential equation.

Definition 1 (Continuous-Time Approximation of the System
State Evolution). The continuous-time evolution of the mean
system state x(t) is described by the following time-varying
linear differential equation:

dx(t)

dt
= A(t)x(t), for t ≥ 0, and x(0) = X0 (5)

where A(t) has the same form as A[t] defined in (3).

It is possible, and insightful, to derive an explicit solution to
(5) by imposing a restriction on the initial state of the system.
We observe that the total degree in the network Dtot(t) = 2t+
D0 approaches twice the number of nodes Ntot(t) = t + N0

with increasing time t. If we impose the condition D0 = 2N0

from the onset to ensure Dtot(t) = 2Ntot(t) for all t, then we
can write A(t) = A/(t+N0) where A is the constant matrix
composed of the submatrices defined in (4) as follows:

A =

[
A11 A12

A21 A22

]
. (6)

In this case, we note that A(s) commutes with A(t) for all
values of s and t, i.e., A(s)A(t) = A(t)A(s) for all s, t. The
Magnus series [15] consists of a single term and yields the
solution given in Corollary 1.

Corollary 1. When D0 = 2N0, the solution to (5) is given by

x(t) = exp

(
log

(
t+N0

N0

)
A
)
X0.

For diagonalizable A, we can further reduce (1) by substituting
the eigendecomposition A = V diag

(
{λi}2Mi=1

)
V−1 in the

definition of the matrix exponential to obtain

x(t) = Vdiag

{( t+N0

N0

)λi
}2M

i=1

V−1X0.

In [14], we compare both DT and CT results and Monte
Carlo simulations of our model for several sets of system
parameters. Our results verify that the difference between the
DT and CT evolutions is negligible.

In the subsequent two sections, we translate these analytical
results into insights on the characteristics and essential dynam-
ics of important instances of the problem. These investigations
reveal the impact of different attachment and adoption dynam-
ics on the transient and limiting behavior of influence spread.

IV. BATTLE OF TWO OPINIONS

Two opinion systems arise in a vast number of scenarios
that are based on adopting or rejecting an opinion, belief,
technology or product. The importance of studying the two in-
fluence case is not only due to its wide applicability though. Its
relative simplicity allows us to gain insights into the dynamics
of influence spread, which can be generalized to scenarios with
larger number of influences. In this section, we present the
detailed solution to the continuous-time approximation with
two competing influences in the network.

We consider an evolving network in which nodes adopt
opinion 1 or 2 as described in Section II. The system can
be fully described in terms of the attachment parameter q, the
cross-adoption parameters p12 and p21, and the initial state X0.
We impose the condition D1(0)+D2(0) = 2(N1(0)+N2(0))
for X0 in order to facilitate an algebraic solution. The cross-
adoption parameters p12 and p21 quantify the rate of defection
from an opinion, i.e., the failure rate of an existing node to
persuade newcomer nodes to subscribe to the same opinion as
itself. We define p̃ = p12 + p21 and exclude the degenerate
case of p̃ = 0 from our discussion. In this case, newcomer
nodes adopt their parent node’s opinion without fail.

The following main result of this case study describes
the evolution of mean adoption dynamics in terms of initial
conditions as well as attachment and influence dynamics.

Theorem 2. For the network evolution and influence prop-
agation dynamics described above, the continuous-time ap-
proximation to the mean number of nodes ni(t) = E[Ni(t)]
adopting each opinion is given by

n1(t) = α1(t+N0) + β

(
t+N0

N0

)λ
+ γ,

n2(t) = α2(t+N0)− β
(
t+N0

N0

)λ
− γ,

(7)

where the coefficients αi, β, γ and the exponent λ depend on
the system parameters as follows:

λ = 1− 1

2
(1 + q)p̃, α1 =

p12
p̃
, α2 =

p21
p̃
,



β =
2(1− p̃)(p21N1(0)− p12N2(0))

p̃(2− (1 + q)p̃)
,

γ =
(1− q)(p21N1(0)− p12N2(0))

2− (1 + q)p̃
.

Proof. The proof is given in [14].

Several observations can be made concerning the evolution
of the mean number of nodes adopting each opinion.

Linear and Sublinear Terms in the Evolution: The first
terms in (7) indicate a linear growth of the mean number
of nodes with time. The exponent that governs the second
terms is common, and satisfies λ ∈ [−1, 1] with λ = 1 only
when p̃ = 0. Hence, the second terms are sublinear and will
eventually be dominated by the linear first terms. It is also
interesting to observe that λ can take negative values, in which
case the contribution of the second terms vanishes with t.

Long-Term Adoption Characteristics: As long as p̃ 6= 0,
the linear terms in (7) dominate the long-term adoption of
an opinion. The fractions of the two opinions in the network
converge to α1 = p12/p̃ and α2 = p21/p̃. Thus, the long-
term fraction of an opinion is not influenced by the attachment
dynamics (captured by q) or the initial number of the early
adopters (captured by X0), but solely by the persuasiveness
of the opinions (captured by p12 and p21). Fig. 1 shows how
the fractions of two opinions converge to the same limit for
different values of q and confirms this observation.
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Fig. 1. The impact of a varying attachment parameter q ∈ {0, 0.5, 1} on the
mean fraction of opinions for p12 = 0.3, p21 = 0.1. The upper and lower set
of curves depict the fraction of nodes adopting opinion 1 and 2, respectively.

Impact of Attachment Model on the Evolution: The
sublinear terms in (7) associated with the exponent λ and
coefficient β may have non-negligible short-term effects. Such
short-term characteristics may be of greater interest for scenar-
ios in which the influence spread occurs over a short/moderate
lifetime. We observe that for a fixed defection rate p̃ the
exponent λ increases as the rate of random attachment q
decreases. As the attachment model tends more towards pure
preferential attachment, i.e., q decreases towards 0, the effects
of the sublinear term are more pronounced. Fig. 1 shows how
the evolution with pure preferential attachment, i.e., q = 0,
approaches the limits α1 and α2 more slowly.

Impact of Initial Adopters on the Evolution: The coeffi-
cient β of the sublinear term depends on the composition of
the early adopters as well as the cross-adoption probabilities.
The effect of the initial network composition on the evolution
of the system is through this coefficient only and is depicted
in Fig. 2. First, we note how in accordance with the previous
observations the long-term limits of α1 and α2 are unaffected
by the initial network composition. We also observe that even
starting from an extreme initial condition, i.e., all initial nodes
of a single opinion, the expected fraction of nodes of each
opinion reaches an equilibrium in relatively short time.
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Fig. 2. The dependence of the mean evolution on the initial state X0,
where the evolution starts with ratios {0, 0.25, 0.5, 0.75, 1} of nodes of each
opinion. The remaining parameters are q = 0.5, p12 = 0.3, p21 = 0.1. The
upper and lower set of curves depict the fraction of nodes adopting opinion
1 and 2, respectively.

The above observations suggest an interesting connection
between attachment dynamics and the early spread of an
influence. In particular, the emergence of prominent (well-
connected) members in the network as determined by the
attachment dynamics allows the initial influence of the early
adopters to survive longer. More specifically, as the attachment
parameter q decreases, the degree distribution has heavier
tails, thereby indicating emergence of influential/prominent
nodes. The color of these prominent nodes will be shaped
by the initial composition of the network, which, in turn, will
sustain these early impacts for increasingly longer time frames
depending on the value of λ. Yet, our model also reveals that
the long-term spread of two competing opinions is ultimately
governed by their persuasion power.

V. TWO COMPETING TECHNOLOGIES IN A NETWORK
WITH INDIFFERENT POPULATIONS

In this section, we study the adoption dynamics of two com-
peting technologies in an evolving network where nodes are
allowed to remain indifferent, i.e., they adopt neither of the two
technologies. We model a word-of-mouth marketing scenario
in which newcomer nodes are exposed to the innovation only if
their parent node has adopted one version of it. Once exposed,
they can adopt one of the innovations (including the competitor
of the technology adopted by the parent node) or they can
remain indifferent. Indifferent nodes do not expose newcomer



nodes to either technology. Any newcomer node that connects
to an indifferent node remains indifferent with probability 1.

With the presence of indifferent nodes, not every node
partakes in adopting the innovation. This is in contrast to the
model in Section IV where each node actively participated in
the battle of opinions. With indifferent nodes in the network,
we are interested both in the individual number of adopters of
each technology and the size of the entire market.

In the language of Section II, we have three colors: adopting
one of the two technologies (labeled 1 and 2) and remaining
indifferent (labeled 3). Given the adoption dynamics described
above, the system can be fully described by the initial state
X0, the attachment parameter q and the adoption parameters
p11, p12, p21 and p22. Note that p13 = p23 = 0, p33 = 1,
p31 = 1−p11−p21 and p32 = 1−p12−p22. As in Section IV,
we assume that the initial number of nodes and initial total
degree satisfy D0 = 2N0.

Theorem 3. For the network evolution and influence prop-
agation dynamics described above, the continuous-time ap-
proximation to the mean number of nodes ni(t) = E[Ni(t)]
adopting each technology is given by

n1(t) = α1

(
t+N0

N0

)λ1

+ β1

(
t+N0

N0

)λ2

+ γ1,

n2(t) = α2

(
t+N0

N0

)λ1

+ β2

(
t+N0

N0

)λ2

+ γ2,

(8)

while the mean number of indifferent nodes is

n3(t) = t+N0 − n1(t)− n2(t).

The coefficients αi ≥ 0, βi, γi are constants that depend on
the system parameters q, p11, p12, p21, p22 and initial state X0.
The exponents λ1 and λ2 are given by

λ1 =
1

2
(1− q) +

1

4
(1 + q)(p11 + p22 + ∆),

λ2 =
1

2
(1− q) +

1

4
(1 + q)(p11 + p22 −∆),

(9)

where ∆ =
√

(p11 − p22)2 + 4p12p21. The exponents satisfy
λ2 ≤ λ1 ≤ 1 and the latter equality holds if and only if

p11 + p21 = p12 + p22 = 1. (10)

Proof. The derivation of (8) and (9) is similar to the proof
of Theorem 2 given in [14]. Hence, we omit the details. To
establish the range of the exponents, we note that

∆ =
√

(p11 − p22)2 + 4p12p21

≤
√

(p11 − p22)2 + 4(1− p22)(1− p11) (11)

=
√

((p11 + p22)− 2)2 = 2− p11 − p22. (12)

Hence, we obtain the bound p11 + p22 + ∆ ≤ 2 and conclude
that λ1 ≤ 1. Note that (11) is met with equality if and only if
(10) is satisfied, i.e., λ1 = 1 if and only if (10) holds.

The dependence of the coefficients αi, βi, γi in Theorem 3
on the system parameters {pij}, q and X0 is quite complex.

Several observations can be made concerning the evolution
of the mean number of nodes adopting each technology and
can be contrasted to the two opinion case in Section IV.

Sublinear Growth of the Market Size: We note that only
the expression for the mean number of indifferent nodes n3(t)
has a linear term. The mean number of nodes adopting one
of the two active influences is governed by the sublinear
tλ1 term. According to Theorem 3, λ1 < 1 unless nodes
exposed to either form of innovation do not have the option of
remaining indifferent. We omit this case from the discussion
below. As a result, the fraction of each active influence within
the total network population tends to zero in the long term.
Nevertheless, there are two important measures to be studied:
the total number of nodes adopting a new technology and the
fraction of each technology among these nodes, i.e., the market
size and the market share.
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evolution starts with one node of each color and q = 0.5.

Impact of Adoption Model on the Market Size: The size
of the market is given by the total number of nodes adopting
a new technology, i.e., n1(t)+n2(t). While the market size is
affected by all system parameters, the largest effect is due to
the adoption parameters {pij}. In particular, the market grows
monotonically with growing sums p11 + p21 and p12 + p22, as
these sums represent the probability that a node exposed to the
innovation does adopt either form of it. We call this measure
the technology retention probability. Fig. 3 depicts the growth
of the market with increasing technology retention probability.

Impact of Attachment Model on the Market Size: The
growth of the market size is dominated by the (α1 + α2)tλ1

term. Hence, the largest impact of the attachment parameter
q on the market size, especially in the long term, is through
its effect on the exponent λ1. Since, from (9), λ1 is a linearly
decreasing function of q for all sets of adoption parameters
{pij}, the market size grows as the rate of random attachment
q decreases. A higher rate of preferential attachment enables
early technology adopters to establish higher prominence,
thereby attracting more of the newcomer nodes to one of the
technologies. Fig. 4 illustrates this effect.
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Long-Term Market Share Characteristics: The long-
term market share of each technology is determined by the
coefficients α1 and α2 of the tλ1 term in (8). These depend
not only on the adoption parameters {pij} but also on the
attachment parameter q and the initial state of the network X0.
This dependence is in apparent contrast to the previous case
of two opinions presented in Section IV, where the leading
coefficients α1 and α2 in (7) depended only on the adoption
parameters. Nevertheless, the long-term market share of each
technology is not influenced by the attachment dynamics (as
captured by q) nor the initial number of the early adopters
(as captured by X0). In particular, the long-term fraction of
technology 1 within the market is given by:

α1

α1 + α2
=

p11 − 2p12 + ∆− p22
2(p11 − p12 + p21 − p22)

.

Consequently, the attachment model and the preferences of
the initial adopters have only short-term effects on the market
share. Fig. 5 shows the diminishing effect of the initial network
composition on the evolution of the market shares with time.

These observations reiterate the suggestion that the long-
term spread of two competing influences is ultimately governed

by their inherent persuasion power. The attachment dynamics
and the early adopters have only a secondary effect on the
market size and market share.

VI. CONCLUSION

In this paper, we have introduced a new analytical model
to study the battle of opinions over social networking plat-
forms. In particular, we focused on the spread of multiple
competing influences over a simultaneously evolving network.
This simple yet powerful model, has allowed us to capture a
range of exposure and adoption dynamics, which account for
both the preferential and random nature of exposure, as well
as different persuasion power of different opinions. We have
analytically characterized the evolution of the mean influence
spread over time as a function of the initial adoption, as well
as, exposure and adoption dynamics. Our analysis, supported
by two case studies for further insights, has shown that the
persuasion power of an influence has the most potent effect
on the extend of its spread. We have further observed how
exposure dynamics determine whether the initial adopters play
a short or long lived effect on the evolution of the influence
spread. Our work has provided a useful new model with
several potential directions for extension.
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