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Abstract— In a wireless network, the efficiency of scheduling
algorithms over time-varying channels depends heavily on the
accuracy of the Channel State Information (CSI), which is
usually quite “costly” in terms of consuming network resources.
Scheduling in such systems is also subject to stringent con-
straints such as power and bandwidth, which limit the maxi-
mum number of simultaneous transmissions. In the meanwhile,
communication channels in wireless systems typically fluctuate
in a time-correlated manner. We hence design schedulers to
exploit the temporal-correlation inherent in channels with mem-
ory and Automatic Repeat reQuest (ARQ) feedback from the
users for better channel state knowledge, under the assumption
of Markovian channels and the stringent constraint on the
maximum number of simultaneously active users. We model
this problem under the framework of a Partially Observable
Markov Decision Processes.

In recent work, a low-complexity optimal solution was
developed for this problem under a long-term time-average re-
source constraint. However, in real systems with instantaneous
resource constraints, how to optimally exploit the temporal
correlation and satisfy realistic stringent constraint on the
instantaneous service remains elusive. In this work, we incor-
porate a stringent constraint on the simultaneously scheduled
users and propose a low-complexity scheduling algorithm that
dynamically implements user scheduling and dummy packet
broadcasting. We show that the throughput region of the
optimal policy under the long-term average resource constraint
can be asymptotically achieved in the stringent constrained
scenario by the proposed algorithm, in the many users limiting
regime.

I. INTRODUCTION

In wireless networks, the states of the wireless channels
fluctuate in time. This characteristic calls for designing
resource allocation algorithms that dynamically adapt to
the random variation of the wireless channels. Scheduling
algorithms are essential components of resource allocation.
A scheduling algorithm is designed to control a subset
of users to consume the scarce network resources (e.g.,
bandwidth, power), so that the overall network utility is
maximized subject to link interference and queue stability
constraints. Under the assumption that accurate instantaneous
Channel State Information (CSI) is available at the scheduler,
maximum-weight-type scheduling algorithms (e.g., [1]-[3])
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are known to be throughput-optimal, i.e., they can maintain
system stability for arrival rates that are supportable by any
other scheduler.

The performance of efficient scheduling algorithm relies
heavily on the accurate instantaneous CSI at the scheduler.
In practice, however, accurate instantaneous CSI is difficult
to obtain at the scheduler, i.e., a significant amount of
system resources must be spent to accurately estimate the
instantaneous CSI. Therefore, acquiring CSI continuously
from all users is resource-consuming and impractical as the
size of network increase. Hence, in this work we consider
the important scenario where the instantaneous CSI is not
directly accessible to the scheduler, but is instead learned at
the user and fed back to the scheduler via ARQ feedback
after a certain delay. Many scheduling algorithms have been
designed that consider imperfect CSI, where the channel
state is considered as independent and identically distributed
(i.i.d.) processes over time (e.g., [4]-[6]). However, although
the i.i.d. channel models facilitate trackable analysis, it does
not capture the time-correlation of the fading channels.

Because perfect instantaneous CSI is costly to acquire, the
time-correlation or channel memory inherent in the fading
channels is an important resource that can be exploited
by the scheduler to make more informed decisions, and
hence to obtain significant throughput/utility gains (e.g., [7]-
[17]). Under imperfect CSI, channel memory, and resources
constraint, the scheduler needs to intelligently balance the
intricate ‘exploitation-exploration tradeoff’, i.e., to decide at
each slot whether to exploit the channels with more up-to-
date CSI, or to explore the channels with outdated CSI.

We consider the downlink of a single cell, where the
packets for each user are stored in a data queue for transmis-
sion. Under the complicated channel memory evolution and
queue evolution, traditional Dynamic Programming based
approaches can be used for designing scheduling schemes,
but are intractable due to the well-known ‘curse of di-
mensionality’. Recently, a low-complexity algorithm was
proposed in [7] that considers throughput-optimal downlink
scheduling with imperfect CSI over time-correlated fading
channels, under a constraint on the long-term average num-
ber of transmissions.

Scheduling in wireless systems is typically subject to
stringent instantaneous constraints, such as instantaneous
resource limitations from bandwidth, power, interference,
etc. In this work, we study scheduling with imperfect CSI
over time-correlated channels and under stringent resource
constraint where the instantaneous scheduling decision is
subject to constraint on the maximum number of scheduled
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Fig. 1: Two state Markov Chain model.

users. The stringent constraint brings with it significant
challenges, and to the best of our knowledge under the setting
of imperfect CSI, no low-complexity algorithm exists that is
optimal for general scenarios. Under the restrictive regime
where users have identical ON/OFF Markovian channel
statistics, round-robin based scheduling policies are shown
to be throughput optimal in [12][13]. Further, under these
settings, it has been shown in [14][15] that greedy scheduling
algorithms are also optimal. In [16][17], throughput-optimal
frame-based policies are proposed. These policies rely on
solving a Linear Programming in each frame, which is hin-
dered by the curse of dimensionality where the computational
complexity grows exponentially with the network size.

In this paper, we propose a low-complexity algorithm
under stringent constraint and heterogeneous Markovian tran-
sition statistics across users. We prove that the proposed
algorithm has asymptotical optimal properties in the regime
of a large number of users. Our contributions are as follows:
• Under stringent constraint on the instantaneous number

of transmissions, we propose a novel low-complexity
joint scheduling and broadcasting algorithm. At each
slot, the scheduler dynamically decides whether to
schedule a subset of users and learn their channel state
via ARQ feedback, or to broadcast a dummy packet to
a larger set of users to learn their channel states from
ARQ feedback but with no throughput gain.

• We conduct our analysis in the framework of Partially
Observable Markov Decision Process, where we utilize
Whittle’s index analysis of Restless Multi-armed Bandit
Problem (RMBP) [18]. We then use a Large-Deviation-
based Lyapunov technique over time frames to prove
the throughput performance of the proposed algorithm.

• We prove that the throughput region in [7], which is
achieved by an optimal policy under a relaxed constraint
on the long-term average number of transmissions, can
be asymptotically achieved in the stringent constrained
scenario by the proposed algorithm, in the regime of a
large number of users.

II. SYSTEM MODEL

A. Downlink Scheduling Problem

We study a time-slotted wireless downlink network with
one Base Station (BS) and N users. Each user i occupies
a dedicated wireless channel. The channel state of user i,
denoted by Ci[t], evolves as an ON/OFF Markov chain
across time slots with state space S = {0, 1}, independently
of other channels. State ‘1’ represents high channel gain
where one packet can be transmitted successfully, whereas
state ‘0’ represents deep fading state where no packet can be
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Fig. 2: Belief value evolution, pi11 = 0.8, pi01 = 0.2.

delivered. The Markovian channel state evolution is depicted
in Fig. 1, represented by the transition probabilities

pijk := Pr
(
Ci[t]=k

∣∣Ci[t−1]=j
)
, j, k ∈ S.

We assume that pi11 > pi01 for i=1, 2, · · · , N . This
assumption is called positive correlation and is commonly
made in this field (e.g., [9][10][12][16][19]). We also assume
the existence of a constant δ > 0 so that pi01>δ and pi10>δ
for all i to allow a minimum cross-state transition probability,
which captures the random varying nature of the wireless
channels.

Data packets for different users are first stored in sepa-
rate queues at the BS before successful transmission. The
queue length for user i at slot t is denoted by qi[t]. The
number of data packet that arrives at queue i is denoted
as Ai[t], which forms an i.i.d. process with mean λi and
a bounded second moment. At the beginning of every
time slot, the scheduler at the BS selects users for data
transmission. We let ai[t] ∈ {0, 1} indicate whether user
i is scheduled at slot t. The i-th data queue evolves as
qi[t+1]= max{0, qi[t]−ai[t]·Ci[t]}+Ai[t].

The scheduling decisions are made without the exact
knowledge of the channel state in the current slot. In our
model, the scheduler at the BS instead obtains the accurate
CSI via ACK/NACK feedback, only from the scheduled
users at the end of each slot following data transmission,
i.e., an ACK from scheduled user i implies Ci[t] = 1, while
an NACK implies Ci[t] = 0.

We consider the class Φ of (possibly non-stationary)
scheduling policies that make decisions based on the history
of observed channel states, arrival processes, and schedul-
ing decisions. Under the aforementioned instantaneous con-
straint, the scheduling schemes are subject to the constraint
on the number of scheduled transmissions at each slot, i.e.,

N∑
i=1

aφi [t] ≤M, (1)

where M≤N , and aφi [t]∈{0, 1} indicates if the i-th user is
scheduled at slot t under policy φ∈Φ.

B. Belief Value Evolution

The scheduler maintains a belief value πi[t] for each
channel i, which is the probability of channel i being in
state 1 at the beginning of t-th slot conditioned on the
past channel state observations. The belief values are hence
updated according to the scheduling decisions and channel



state feedbacks,

πi[t+ 1] =


pi11 if ai[t] = 1 and Ci[t] = 1,
pi01 if ai[t] = 1 and Ci[t] = 0,
Qi(πi[t]) if ai[t] = 0,

(2)

where Qi(x)=xpi11+(1−x)pi01. For our downlink scheduling
problem, the belief values are known to be sufficient statistics
to represent the past channel state feedback [20]. In the
meanwhile, the value πi[t] is also the expected throughput
for user i if it is scheduled in slot t.

We use bic,l to denote the state of i-th channel’s belief
value when the most recent channel state was observed l
time slots ago and was in state c ∈ {0, 1}, given by

bi0,l=
pi01−(pi11−pi01)lpi01

1 + pi01 − pi11

, bi1,l=
pi01+(1−pi11)(pi11−pi01)l

1 + pi01 − pi11

.

As depicted in Fig. 2, when the scheduler is
never informed of the i-th user’s channel state, πi[t]
monotonically converges to the stationary probability
bis:=p

i
01/(1 + pi01 − pi11) of the channel being in

state 1. We assume that all belief values are initially
set to their stationary values. Hence, based on (2),
each belief value πi[t] evolves over a countable state
space, denoted by Bi={bis, bic,l : c∈{0, 1}, l∈Z+}.
We also consider the τ -truncated state apace
Bτi ={bis, bic,l : c∈{0, 1}, l=1, 2, · · · , τ}.
C. Network Stability Regions

Queue i is said to be stable if there exists a limiting
stationary distribution Fi such that limt→∞ P (qi[t] ≤ q) =
Fi(q) [1]. When there are N total downlink users and at
most M users can be simultaneously scheduled, the network
stability region ΛN,M

str is defined as the closure of the set of
arrival rate vectors stably supported by all policies in class
Φ while abiding by the stringent constraint (1).

For comparison, we introduce another region ΛN,M
rel as

the closure of the set of arrival rate vectors supported by
all policies in class Φ that maintains queue stability and
satisfies the following relaxed constraint that only requires
an average number of M users to be activated in the long
run,

lim sup
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

aφi [t]
]
≤M. (3)

The region ΛN,M
rel provides a benchmark for our analysis

on stringent constrained scenarios. Contrary to the stringent
constraint (1), the relaxed constraint (3) allows the activation
of more than M users at a time if the long term average
number of transmissions does not exceed M . Hence the
corresponding region ΛN,M

rel provides an upper bound to
ΛN,M
str .

III. OPTIMAL POLICY FOR WEIGHTED
SUM-THROUGHPUT MAXIMIZATION UNDER A RELAXED

CONSTRAINT

We begin our analysis by introducing the weighted sum-
throughput maximization problem under the relaxed con-

straint, which serves as a benchmark for our main result.
Specifically, consider the following weighted sum-

throughput maximization problem Ψrel(r, N,M) for a given
non-negative vector r = (ri)

N
i=1,

max
φ∈Φ

lim inf
T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

ri·πi[t]·aφi [t]
]

s.t. constraint (3).

The above problem is a constrained Partially Observable
Markov Decision Process (CPOMDP) and can be tackled in
the framework of the Restless Multiarmed Bandit Problem
(RMBP) [18] by making use of the associated Whittle’s index
value. Specifically, for problem Ψrel(1, N,M), a closed-
form Whittle’s index value W 1

i (π) is assigned to each belief
state π ∈ Bi of channel i. These indices intelligently
capture the exploitation-exploration value to be gained from
scheduling the user at the corresponding belief state [9]. The
r-weighted index value is defined as W r

i (π) = ri ·W 1
i (π)

for all i.
For details of Whittle’s indexability analysis, please refer

to [11][7]. The following policy, denoted as φτrel(r, N,M),
was proposed in [7] to tackle problem Ψrel(r, N,M).

Algorithm φτrel(r, N,M): r-weighted Index Policy
1: Initialization phase: The parameters ωτ and ρτ are

calculated by algorithm Gτ (r, N,M).
2: At slot t: user i is scheduled if the r-weighted index

value W r
i (πi[t]) > ωτ , and stays passive if W r

i (πi[t]) <
ωτ . If W r

i (πi[t])=ωτ , user i is scheduled with probabil-
ity ρτ .

The algorithm Gτ (r, N,M) in the initialization phase is
given in the next page, where the closed-form expression of
function ατi and βi can be found in [7].

We henceforth use V ∗(r, N,M) to denote the optimal
weighted sum-throughput of problem Ψrel(r, N,M). We let
Vτ (r, N,M) be the throughput under policy φτrel(r, N,M),

V τrel(r,N,M)= lim inf
T→∞

1

T
E
[T−1∑
t=0

N∑
i=1

riπi[t]a
φτrel(r,N,M)

i [t]
]
. (4)

It was shown in [7] that Vτ (r, N,M) is arbitrarily close
to V ∗(r, N,M) for large values of τ .

IV. WEIGHTED SUM-THROUGHPUT MAXIMIZATION
PROBLEM UNDER STRINGENT CONSTRAINT

Next we also consider the r-weighted sum throughput
optimization problem as in the last section, but under the
stringent constraint, i.e., no more than M users are sched-
uled for data transmission at each time slot. We propose
a joint scheduling and broadcasting algorithm that abides
by the stringent constrained. This algorithm has novelty of
incorporating the possibility of broadcasting a dummy packet
at a slot, and can provide performance asymptotically close
to the optimal algorithm for the relaxed problem.
A. Policy with Joint Scheduling and Broadcasting

The proposed policy, denoted by φτstr
(
r, N,M,K

)
with

K≤M , builds on the policy φτrel
(
r, N,M

)
for the re-

laxed problem. However, it fundamentally differs from



AlgorithmGτ (r, N,M): Calculation of ωτ and ρτ
1: TxTime[i] = 1 for all i ∈ {1, · · · , N}
2: TotalTime = N
3: struct Index
4: { float value
5: int user
6: } I[(2τ + 1)N ],w[(2τ + 1)N ]
7: j = 0
8: for i = 1 to N do
9: for each πi ∈ Bτi do

10: W r
i (πi) = ri ·W 1

i (πi)
11: I[j].value= W r

i (πi)
12: I[j].user= i
13: j ← j + 1
14: end for
15: end for
16: w =sort(I)
17: for k = 1 to size(w) do
18: NewTime[w[k].user] = ατw[k].user(w[k].value, 1)
19: TimeDiff = TxTime[w[k].user]−NewTime[w[k].user]
20: TotalTime = TotalTime− TimeDiff
21: if TotalTime < M then
22: ωτ = w[k−1].value
23: TxTime[w[k−1].user] = M−

∑
i6=w[k−1].user

TxTime[i]

24: ρτ = βw[k−1].user(ωτ ,TxTime[w[k−1].user])
25: Break
26: end if
27: TxTime[w[k].user]=NewTime[w[k].user]
28: end for
29: return ωτ , ρτ

φτrel
(
r, N,M

)
in the following way. At the beginning of

each slot, algorithm φτstr
(
r, N,M,K

)
carefully makes one

of two choices: 1) transmit data packets to no more than
M users and receive ARQ-type feedback from them, or 2)
broadcast a short dummy packet to more than M users, and
learn their channel states from their ARQ-type feedback.
Note that, the dummy packet is known to the users and
contains no new information and hence does not bring
throughput gains if it is broadcasted. However, the scheduler
still receive ARQ feedback from the candidates, and hence
obtain CSI update from possibly more than M users. The
parameter K controls how aggressively the dummy packets
are broadcasted. Algorithm φτstr

(
r, N,M,K

)
is proposed in

the right-hand column.

Remarks:
(1) Steps 1-2 of algorithm φτstr

(
r, N,M,K

)
is exactly algo-

rithm φτrel
(
r, N,K

)
, where the scheduled users in algorithm

φτrel
(
r, N,K

)
becomes the candidates in φτstr

(
r, N,M,K

)
.

(2) Step 3 ensures that the stringent interference constraint
is met so that data packets are transmitted to no more than
M users. If the number of candidates exceeds M , a dummy
packet is broadcasted for the scheduler to learn the channel
states of the candidates and no throughput is accrued.

Algorithm φτstr
(
r, N,M,K

)
under stringent constraint

1: Initialization phase: The parameters ωτ and ρτ are
calculated by algorithm Gτ (r, N,K).

2: At slot t, candidate selection: user i is called a
‘candidate’, represented by θi[t]=1, if the r-weighted
index value W r

i (πi[t])>ωτ , and is not a candidate, i.e.,
θi[t]=0, if W r

i (πi[t]) < ωτ . If W r
i (πi[t]) = ωτ , user i

becomes a ‘candidate’ with probability ρτ .
3: At slot t, transmission: If the total number of can-

didates is under M , i.e.,
∑N
i=1 θi[t] ≤ M , then all

the candidates are scheduled for data transmission, i.e.,

a
φτstr

(
r,N,M,K

)
i [t] = θi[t] for all i. If there are more than

M candidates, then a
φτstr

(
r,N,M,K

)
i [t] = 0 for all i, and

dummy packet is broadcasted.
4: At slot t, feedback: At the end of each slot, if data

packets are transmitted, the scheduled users send ARQ
feedback to the BS; if the dummy packet is broadcasted,
the candidates send ARQ feedback to the BS. The belief
values are updated based on the feedback.

(3) Because of step 4, the scheduler receives channel state
feedback from all the candidates, although data packets
may not be transmitted. By taking this approach, the chan-
nel memory evolution in the relaxed constrained algorithm
φτrel

(
r, N,K

)
is maintained in the stringent constrained

algorithm φτstr
(
r, N,M,K

)
, which facilities much more

trackable performance analysis.
(4) In step 4, only the candidates (instead of all users) send
feedback to the BS if dummy packet is broadcasted. By
allowing only the candidates to feedback1, the algorithm
not only helps maintain the tractability of channel memory
evolution, it also fits with the realistic scenario where it is
costly (in terms of time, power, bandwidth, etc.) to obtain
feedback from a large number of users.

We henceforth let V τstr
(
r, N,M,K

)
be the weighted sum-

throughput under policy φτstr
(
r, N,M,K

)
, i.e.,

V τstr
(
r, N,M,K

)
= lim inf

T→∞

1

T
E
[ T−1∑
t=0

N∑
i=1

ri·πi[t]·a
φτstr

(
r,N,M,K

)
i [t]

]
. (5)

B. Performance of the algorithm under stringent constraint

From the algorithm and Remark (1) thereafter, in each slot,
if the number of scheduled users exceeds M under algorithm
φτrel

(
r, N,K

)
for the relaxed problem, the number of can-

didates under algorithm φτstr
(
r, N,M,K

)
exceeds M and a

dummy packet is broadcasted, otherwise all candidates are
scheduled for data transmission. Hence in the regime when
K is close to M , the larger the K, the more aggressively
are dummy packets broadcasted, which bring more updated
system-level channel state information, but with a tradeoff
that no throughput is obtained in these broadcasting slots. On

1This can be achieved by marking the corresponding bits in the dummy
packet.



the other hand, in the regime when K is away from M , the
smaller the K, on average there are less candidates and hence
scheduled users, which also brings down the throughput.

The next lemma bounds the difference between the
throughput performance V τstr

(
r, N,M,K

)
of algorithm

φτstr
(
r, N,M,K

)
for the stringent constrained problem, and

the throughput V τrel
(
r, N,M

)
of φτrel

(
r, N,M

)
for the prob-

lem under relaxed constraint. Recall that V τrel
(
r, N,M

)
and

V τstr
(
r, N,M,K

)
were defined in (4) and (5), and δ was

defined in the introduction so that pi01>δ and pi10>δ for all
i.

Lemma 1: The following bounds hold for the values of
V τstr(r, N,M,K) and V τrel

(
r, N,M

)
,

µ(M,K) ≤ V τstr(r, N,M,K)

V τrel
(
r, N,M

) ≤ 1, (6)

where

µ(M,K)=
[
1− exp(− (M−K)2

3K
)
]
·
[
1− M−K

δ(K−1)

]+
, (7)

and [·]+ represents max{0, ·}.
Proof Outline: In the proof, we first bound the steady
state probability that dummy packets are transmitted us-
ing Large Deviation techniques, from which we obtain the
first multiplicand in (7). We next bound the effect of K
in the throughput different between V τstr(r, N,M,K) and
V τrel

(
r, N,M

)
, which brings us the second multiplicand in

(7). Details of the proof can be found in [23]. �

The previous lemma is important to derive the asymptotic
throughput performance of the stringent constrained policy,
captured in the next proposition. The proposition shows that
as both N and M become large, if the parameter K is kept an
appropriate distance g(N,M) from M , then the throughput
performance of policy φτstr

(
r, N,M,K

)
becomes asymptot-

ically close to φτrel
(
r, N,M

)
of the relaxed policy.

Proposition 1: Suppose K = M − g(M) when M users
can be simultaneously scheduled, where g(M) ≥ 0 is a
function of M .
If function g(M) satisfies limM→∞ g(M)/M=0 with
limM→∞ g2(M)/M = ∞, the throughput performance of
policy φτstr

(
r, N,M,M − g(M)

)
is asymptotically close to

that of φτrel
(
r, N,M

)
, i.e.,

lim
M→∞

V τstr
(
r, N,M,M−g(M)

)
V τrel

(
r, N,M

) = 1. (8)

Proof Outline: The proposition is proven by substituting
K=M−g(M) to (6)-(7). For details, please refer to [23]. �
Remark: Proposition 1 states that, if the distance between
K and M grows at an order larger than O(

√
M) but

lower than O(M), the performance of the proposed algo-
rithm φτstr(r, N,M,M − g(N)) is asymptotically close to
φτrel(r, N,M), which is optimal for the relaxed problem.
This is an interesting finding, as it quantities the trade-off
between scheduling data packets and broadcasting of dummy
packets. When K is less than O(

√
M) to M , excessive

training leaves insufficient slots for data transmission. If K is
more than O(M) from M , the scheduler is over-conservative

t

q[0]

...... ......

q[T] q[2T]

( [0], , , )
str
q N M K

τφ ( [ ], , , )
str
qT N M K

τφ

Fig. 3: Illustration of algorithm Frameτ(T,N,M,K).

on data transmission, which in turn reduces the throughput.

V. QUEUE-BASED JOINT SCHEDULING AND
BROADCASTING POLICY OVER TIME FRAMES

Note that, in the two last sections, we considered weighted
sum-throughput. In this section, we consider the system
model with data queues where queue stability is taking into
account. Next, we propose a joint scheduling and broadcast-
ing algorithm based on the algorithm V τstr(r, N,M,K) in
the last section. The policy is implemented over separate
time-frames and has low-complexity.

We divide the time slots {0, 1, 2, · · · } into separate time
frames of length T , i.e., the k-th frame, k ∈ {0, 1, 2, · · · },
includes time slots kT, · · ·, (k + 1)T−1. The scheduling
decisions in the k-th frame are made based on the queue
length information q[kT ] at the beginning of that frame.
During the k-th frame, the policy φτstr(q[kT ], N,M,K),
developed in the last section, is implemented. This algorithm
is illustrated in Fig. 3. Formally, with N users in the network
and under stringent M constraint, the T -frame queue-based
policy Frameτ (T,N,M,K) is introduced next.

Algorithm Frameτ(T,N,M,K):T -Frame Queue-based Pol-
icy

1: The time slots are divided into frames of length T . Slot
t is in the k-th frame if kT ≤ t < (k + 1)T , k ∈
{0, 1, · · · }.

2: At the beginning of the k-th frame: At the beginning
of slot kT , implement the algorithm Gτ (q[kT ], N,K)
that outputs ωτ and ρτ for the frame.

3: At slot t, candidate selection: Each user i be-
comes a candidate if the q[kT ]-weighted index
value W

q[kT ]
i (πi[t])>ωτ , and is not a candidate if

W
q[kT ]
i (πi[t])<ωτ . If W

q[kT ]
i (πi[t])=ωτ , user i be-

comes a ‘candidate’ with probability ρτ .
4: At slot t, transmission: If there are no more than M

total candidates, then all the candidates are scheduled for
data transmission. If there are more than M candidates,
then a dummy packet is broadcasted.

5: At slot t, feedback: At the end of each slot, if data
packets are transmitted, the scheduled users send ARQ
feedback to the BS; if the dummy packet is broadcasted,
the candidates send ARQ feedback to the BS. The belief
values are updated correspondingly.

The next proposition establishes that the throughput region
ΛN,M
rel , which is achieved by the optimal policy under

a relaxed constraint on the long-term average number of
transmissions, can be asymptotically achieved in the stringent
constrained scenario by the frame-based algorithm, in the
regime of a large number of users. In the proposition, 1



is an all 1 vector, and g(N,M), µ(N,M,K) are given in
Proposition 1.

Proposition 2: We let l(M,K) = 1 − µ(M,K). If
τ≥τ0 :=

⌈
4 max

{
1

− log(2δ) ,
1

log2(2δ)

}⌉
, we have

(i) if K>M/2, for all arrival rate λ with λ +
(
f(τ) +

2l(M,M − g(M))
)
1 ∈ ΛN,M

rel , there exists T0 such that,
if T > T0, all queues are stable under the T -frame queue-
based policy Frameτ (T,N,M,M − g(M)). The function
f(τ) satisfies limτ→∞ f(τ) = 0.
(ii) if limM→∞

g(M)
M = 0 and limM→∞

g2(M)
M = ∞, then

the function l(M,M − g(M)) satisfies

lim
N→∞

l(M,M − g(M)) = 0. (9)
Proof Outline: We prove the proposition using a Large-
Deviation-based Lyapunov technique over time frames.
Specifically, we combine the Large Deviation result in
Lemma 1 with uniform convergence of the finite horizon
throughput to the infinite horizon throughput performance.
We then prove that the average Lyapunov drift of the queue
lengths in each time frames is negative, which leads to the
stability of the queues. Details are included in [23]. �

Remark:
(1) Note that, in Proposition 2, the parameter K is kept
a distance g(M) from M . This mechanism is optimally
controls the trade-off between transmitting data packets
and broadcasting dummy packets so that we can apply
Proposition 1 to guarantee the supportable stability region
is asymptotic close to the relaxed constrained region ΛN,Mrel ,
if g(M) scales up at an appropriate rate.
(2) In the proposed algorithm, a user is selected based on
its q[kT ]-weighted Whittle’s index value in step 3. Since the
Whittle’s index value measures the importance of scheduling
a user under the time-correlated channel, this multiplication
captures the importance of scheduling a user under both
queue evolution and the time correlation.
(3) In each frame of algorithm Frameτ (T,N,M,M −
g(N,M)), implementation of Gτ (q[kT ], N,M,M −
g(N,M)) in step 2 has computational complexity
O((2τ + 1)N log(2τ + 1)N) [7], while implementing
step 3 over the frame has complexity O(TN). Hence the
per-frame complexity is O((2τ +1)N log(2τ +1)N +TN).
As the frame length T scales up, the per-slot complexity
decreases toward O

(
N
)
.

VI. CONCLUSION

In this work, we study downlink scheduling algorithm
design over Markovian ON/OFF channels, where the sched-
uler does not possess accurate instantaneous channel state
information. The scheduler instead exploits the Markovian
channel memory and channel state feedback from users to
make scheduling decisions. We proposed a low-complexity
frame-based algorithm in downlink queuing networks with
stringent constraint on the number of simultaneously sched-
uled users. The proposed algorithm dynamically determines
whether to schedule data transmission or broadcast a dummy
packet in a slot. By carefully choosing its parameter, the

proposed algorithm stably supports arrival rates in a region
asymptotically close to that under a relaxed constraint, when
the number of users is large. Our on-going work involves
designing scheduler for the scenario with both stringent and
average constraints, as well as designing throughput optimal
scheduler under stringent constraint for finite number of
users.
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