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Abstract— In recent years, there has been a growing interest
in equipping base-stations with renewable resources and batter-
ies, with an aim to reduce the energy-related operational cost
for cellular networks. To fully leverage the cost-saving potential
of such base-stations, the design of joint resource-allocation
and energy-control algorithms that take both the traffic-level
dynamics and energy-level dynamics into account is called for.
In this work, we propose a joint user-association and energy-
control algorithm, where the induced operational cost can be
made arbitrarily close to optimality at the expense of increased
battery capacity in each base-station. The key to this algorithm
is that it tries to match the traffic-profile with the energy-
profile of the network, which leads to an efficient utilization of
the renewable resources across the network. Simulation results
show that a significant reduction in energy cost can be achieved
by using our algorithm, even at a relatively small battery
capacity.

I. INTRODUCTION

The energy-related operational expenditure for cellular
networks has increased dramatically over the past few years,
driven by the proliferation of wireless devices and the ever-
growing traffic demand. Meanwhile, there is a growing
interest in equipping base-stations with renewable energy
sources and energy storage devices, leading to the concept
of “green base-station”. In order to exploit the maximum
energy-saving potential of such base-stations, it is vital to
design joint energy control and wireless resource allocation
algorithms that provide an efficient network-wide use of
renewable energy and at the same time guarantee high-rate
reliable wireless data communication.

However, in the evolution towards green cellular networks,
new challenges emerge. The core challenge is that it is not
clear how the control plane of wireless network should inter-
act with energy-related decisions, when traditional wireless
network dynamics such as the traffic arrival processes and
channel variations are entangled with energy dynamics such
as time-varying energy prices, the evolution of battery levels,
and stochastic renewable energy arrivals. In current wireless
systems, wireless operations such as transmission-power
allocation, antenna allocation, frequency allocation, user-
base-station association, and uplink/downlink scheduling are
all designed with the goal of achieving desirable through-
put/delay performance. To ensure efficient energy consump-
tion and achieve significant cost reduction in purchasing
electricity, it is crucial to revisit and redesign network control
algorithms that take both user-demand and energy-profile of
the network into consideration.

There have been many works that focus on energy harvest-
ing in wireless sensor networks, e.g., [1]–[3]. Since sensor
networks usually have a limited life-time and do not induce

any energy related operational cost once deployed, the main
goal in these works is to develop joint resource allocation and
energy control schemes to prolong sensor life and ensure effi-
cient use of the renewable energy under a limited battery size,
while fulfilling the QoS constraints. [4]–[6] have focused on
designing resource allocation algorithms in cellular networks
to reduce the base-station energy consumption. However,
they do not consider the use of base-station batteries and
renewable resources (i.e., no energy dynamics in the system),
and the energy reduction is achieved mainly by exploiting
the delay-energy tradeoff. [7] is the closest to our work as
it considers the cost minimization problem under stochastic
renewable resources, dynamic energy demands, and time-
varying energy prices. However, it focuses only on a single
battery system.

In this work, we consider a multi-cell network, as depicted
in Figure 1, where each base-station in the network has a
battery and can potentially harvest energy from renewable
resources such as wind or solar. Also, we assume that all
the base-stations are connected to the power grid with time-
varying energy prices. Each user in the network has the
flexibility of associating with one of many base-stations.
We focus on the problem of how to dynamically control
the battery levels at each base-station and dynamically form
associations between users and base-stations taking into
account energy harvesting and user traffic dynamics. The
objective is to reduce the operational cost of the network,
which in turn can translate to a lower-cost for end-customers
and a reduced carbon emission footprint of the cellular
infrastructure.

The control algorithm proposed in this work naturally de-
composes into a user-association component and an energy-
control component, and is shown to achieve asymptotically
optimal performance as the increase the battery capacity. The
user-association components requires solving a minimum-
weighted maximum-matching problem, which aims to align
the traffic profile with the energy profile in the network. Once
the user-association decision is made, the battery energy-
control component runs in a distributed fashion, where each
base-station independently decides how much energy is dis-
charged from/charged to the battery. Simulations with real-
life energy price data have shown that a significant amount
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Fig. 1: An example multi-cell network. User i and base-
station j is connected with a dashed line (or solid line) if
R(j, i) > 0. The set of solid lines represents a specific choice
of base-station-user association.

of cost reduction can be achieved, compared with the fixed
base-station-user association scheme, even at a relatively low
battery capacity.

Our paper is organized as follows: In Section II, we discuss
our network model and energy model. In Section III, we
formulate an operational cost minimization problem. Our
joint user-association energy-control algorithm is proposed
and analyzed in Section IV. Detailed simulation results are
presented in Section V. Finally, we conclude our paper in
Section VI.

II. SYSTEM MODEL

A. Network Model

We consider a cellular network with J base-stations and
I users, as illustrated in Figure 1, and focus on the problem
of downlink dynamic user association. We assume a time
slotted system, with each slot representing a time-interval
during which the base-station-user association has to be
fixed. We also assume that within each time-slot different
users are assigned with orthogonal resource blocks, which
means that there is no inter-cell interference. For each base-
station-user pair (j, i), we denote R(j, i) as the amount of
data that can be transmitted from base-station j to user i in a
single resource block. In practice, R(j, i) takes on a discrete
set of values, with each value corresponding to a specific
coding and modulation scheme (MCS). Since the best MCS
for each link is determined mainly by the distance related
pathloss, which usually changes at a much slower time scale
compared with the operation of cellular systems, we assume
that R(j, i) is a fixed value across different time-slots and
different resource blocks. Also, we set R(j, i) = 0 if no
direct data-link can be established between the two.

For each user i, we denote wi(t) as the amount of
downlink data that needs to be transmitted to it within the
tth association interval. Then, if user i is associated with
base-station j in time-slot t and R(j, i) > 0, base-station
j needs to allocate wi(t)/R(j, i) resource blocks to user i
in that time-slot. For each base-station, we assume that a
fixed amount of energy, denoted as E, has to be spent on
each resource block it uses, where the energy is drawn from
either the power grid, or the battery associated with it. In

other words, base-station j needs to spend Ewi(t)/R(j, i)
amount of energy to serve user i in time-slot t. For notational
convenience, we construct a J by I matrix H with

Hji =

{
E/R(j, i) if R(j, i) > 0,
∞ otherwise,

where Hji has the metric of energy per bit and can be
interpreted as the amount of energy that base-station j needs
to consume in order to transmit a single unit data to user i.

B. Energy Model

The model of the base-station is illustrated in Figure 2.
There exists a battery in each base-station with maximum
capacity Bmax. We let λj(t) denote the energy harvested from
the renewable resources in the jth base-station during the tth

user-association interval. We assume that the energy price
in the power grid may change in different time-slots, but
remains the same across all base-stations, which we denote
as P (t). This is a reasonable assumption, if the base-stations
access the same energy provider for their energy needs. For
each base-station j in time-slot t, we denote the amount of
energy that needs to be consumed as qj(t), and the amount of
energy it purchases from the grid as gj(t). Then, if gj(t) <
qj(t), we need to discharge qj(t)− gj(t) amount of energy
from the battery, while if gj(t) > qj(t), the battery will be
charged with gj(t)− pj(t) amount of energy. Let us denote
the battery level in base station j at the beginning of time-
slot t as Bj(t) and denote bj(t) , qj(t) − gj(t), then the
battery dynamics can be expressed as

Bj(t+ 1) = min {Bj(t)− bj(t) + λj(t), Bmax} .
Here we call bj(t) the energy control decision1 of base-
station j at time-slot t. Since the energy drawn from the
battery cannot be more than the battery level, and gj(t) needs
to be positive, we must have,

bj(t) ≤ Bj(t), and bj(t) ≤ qj(t). (1)

Also, due to the finite rate of charging the battery, we assume
that at any time-slot, the charged energy from the power grid
to the battery cannot be greater than bmax, i.e., bj(t) > −bmax
for any base-station j and time-slot t.

In order to aid our theoretical analysis, we introduce the
notation of emptiness of battery, defined as

Ej(t) , Bmax −Bj(t), (2)

whose evolution mirrors that of Bj(t) and can be expressed
as

Ej(t+ 1) = max{Ej(t) + bj(t)− λj(t), 0}.

C. Modeling of User-Association

We represent the base-station-user association at any asso-
ciation slot t as a J by I binary matrix A(t), with its (j, i)th

1For a given qj(t), gj(t) and bj(t) are complementary: once bj(t) is
determined, gj(t) = qj(t)− bj(t).
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Fig. 2: Base-station energy model (at base-station j). A
negative bj(t) indicates that |bj(t)| amount of energy is
charged to the battery in base-station j at time-slot t, which
happens when the purchased energy gj(t) is greater than the
consumed energy qj(t).

entry defined as

Aji(t) =

{
1 if user i is associated with base-station j,
0 otherwise,

and for any time-slot t, the association matrix A is subject
to the following three feasibility constraints:∑J

j=1Aji = 1 for any 1 ≤ i ≤ I,∑I
i=1Aji ≤ m for any 1 ≤ j ≤ J,

Aji = 0 if R(j, i) = 0 for any 1 ≤ i ≤ I, 1 ≤ j ≤ J.
The first and the last constraint together implies that each
user must be associated with one base-station among those
who can establish a direct data-link to the user. The second
constraint says that each base-station cannot associate with
more than m users. The motivation for setting up the second
constraint is to (i) favor the balancing of traffic load in the
back-bone, and (ii) avoid the extreme case where too much
energy needs to be spent in any base-station at any time-
slot. We denote the set of binary matrices that conform to
the above three constraints as A, and assume that it is non-
empty. In other words, each matrix in A corresponds to a
feasible user-association.

By combining the definition of A(t) with the discussions
in the previous two subsections, we know that qj(t), the
amount of energy that needs to be consumed at base-station
j at time-slot t, can be expressed as2

qj(t) =
∑

i:Aji(t)=1

Aji(t)Hjiwi(t) =

I∑
i=1

Aji(t)Hjiwi(t).

Since Aji(t) must be one of the feasible user-association in
A and A is assumed to be non-empty, we know that qj(t)
is always a finite value. Then, for a given the energy control
decision bj(t), we know that the cost of purchasing energy
from the power grid in base-station j at time-slot t is

P (t)gj(t) = P (t) (qj(t)− bj(t))

= P (t)

( I∑
i=1

Aji(t)Hjiwi(t)− bj(t)
)
. (3)

In our analysis, we assume that all the processes in the
system are ergodic with bounded values. Denote Pmax, wmax,
and λmax as the maximum value for the energy price, the per-
slot traffic demand, and the per-slot renewable energy arrival,
respectively. Also define Hmax , max(j,i):Hji<∞Hji.

III. PROBLEM FORMULATION

From Equation (3) we know that the cost of buying
energy from the grid in any base-station at any time-slot is
jointly determined by both the user-association decision at
the network, and the energy-control decision at each base-
station. Specifically, the user-association decision determines
the amount of energy that needs to be consumed in each
base-station, while the energy-control decision controls how
much energy should be drawn from/charged to the battery,
which in turn dictates the amount of energy that needs to be
purchased.

The operational cost of the network is the sum of the cost
of purchasing energy from the grid for all base-stations. Our
main objective, which is captured in the optimization prob-
lem below, is to minimize the long-term average operational
cost of the network.

(Problem P1)

min
A,b

lim
T→∞

1

T

T−1∑
t=0

J∑
j=1

E

[
P (t)

( I∑
i=1

Aji(t)Hjiwi(t)− bj(t)
)]

s.t. For any base-station j and time-slot t,
A(t) ∈ A, Bj(0) = Bmax

bj(t) ≥ −bmax (4)

bj(t) ≤
∑I

i=1Aji(t)Hjiwi(t) (5)
bj(t) ≤ Bj(t) (6)
Bj(t+ 1) = min {Bj(t)− bj(t) + λj(t), Bmax} (7)

The constraint in Equation (4) limits the maximum charge
rate of the battery in each base-station. Equations (5) and (6)
are in accord with Equation (1), reflecting the physical limits
that the energy drawn from the battery cannot be greater
than the battery level, and that the energy should not be
drawn beyond what is needed. The last constraint describes
the battery evolution, and the first constraint says that each
battery starts with being fully charged. The expectation for
time-slot t is taken over all potential randomness of the
energy prices, traffic arrivals, renewable arrivals, and control
actions from time-slot 0 to time-slot t.

The optimal solution for Problem P1 is a function of Bmax,
which we denote as S∗1 (Bmax). Intuitively speaking, a larger
battery capacity can benefit the system in two ways and thus
should be able to give a better optimal solution: (i) A larger
battery can take better advantage of the fluctuation in the

2In the second equality, we follow the convention that ∞ · 0 = 0.



energy price, in the sense that base-stations could stock more
energy when the energy price is relatively low. (ii) Increased
battery capacity would reduce the chance of battery overflow
when there is a large injection of renewable energy.

It is also worth noting that due to the evolution of battery
levels in different base-stations, an efficient user-association
and energy-control policy should weigh in, among other
things, the factor of the status of the batteries, rather than
simply building its decision based on the instantaneous traffic
load, or the amount of obtained renewable energy within
a single time-slot. Moreover, the battery level should be
controlled in a fashion that both zero-battery state and full-
battery state are avoided: in zero-battery state the base-station
has to buy from the grid to serve the users, even if the energy
price is high; a full-battery state prevents the base-station
from storing renewable resources, resulting in a waste of
renewable energy.

Compared with a fixed base-station-user association
scheme, the potential benefits of an efficient dynamic user-
association policy are twofold: (i) It would help balance the
traffic load pattern with the energy profile in the network.
More specifically, by guiding more traffic towards base-
stations with larger battery levels, the full-battery and zero-
battery states can both be better mitigated, and thus a more
efficient use of renewable resources can be achieved. This
benefit would be more pronounced when the network has
heterogeneous renewable arrival rates and user traffic rates.
(ii) It could exploit the multi-user diversity in terms of
user traffic demand. When a base-station has many users
in its close proximity but is only able to serve a fraction of
them due to either energy constraints or back-haul data-rate
constraint, the dynamic user-association algorithm should
prioritize the association of users with large traffic demand,
while leaving the users with low traffic demand to be
associated with other base-stations, striking for an overall
lower energy-expenditure per unit-data-traffic in the network.

Now, let us return our focus to Problem P1. Based on
the definition of the level of battery emptiness Ej(t) in
Equation (2), the last two constraints (Equations (6) and (7))
are equivalent to and can be substituted with the following
two equations

Ej(t) ≤ Bmax (8)
Ej(t+ 1) = max{Ej(t) + bj(t)− λj(t), 0}, (9)

with the initial states Ej(0) = 0 for any base-station j. Then,
by contradiction, we can show that the above two equations
implies

lim sup
T→∞

1

T

T−1∑
t=0

bj(t) ≤ λ̄j , (10)

where λ̄j is the arrival rate of the renewable energy in base-
station j: assume to the contrary that there exists a positive
number α with lim supT→∞

1
T

∑T−1
t=0 bj(t) − λ̄j > α, then

E(t) will diverge to infinity as t increases, which contradicts
with Equation (8).

Next, we switch the last two constraints in Problem P1

with Equation (10) and (9), and obtain a new optimization
problem as shown below.

(Problem P2)

min
A,b

lim
T→∞

1

T

T−1∑
t=0

J∑
j=1

E

[
P (t)

( I∑
i=1

Aji(t)Hjiwi(t)− bj(t)
)]

s.t. For any base-station j and time-slot t,
A(t) ∈ A, Ej(0) = 0

bj(t) ≥ −bmax

bj(t) ≤
∑I

i=1Aji(t)Hjiwi(t)

lim sup
T→∞

1

T

T−1∑
t=0

bj(t) ≤ λ̄j (11)

Ej(t+ 1) = max{Ej(t) + bj(t)− λj(t), 0}

Since the last two constraints in Problem P1 are equivalent
to the combination of Equation (8) and (9), which together
imply Equation (10), we know that Problem P2 is a relaxed
version of Problem P1. In fact, the last two constraints in
Problem P2 only enforce that the evolution of Ej(t) being
rate-stable [8] for any base-station j. In other words, in
Problem P2, it is feasible for the process {Ej(t)}t to be
unbounded as long as Equation (10) is satisfied3. However,
in Problem P1, Ej(t) has to be upper bounded by Bmax, as
is indicated in Equation (8).

Let us denote the optimal solution to Problem P2 as S∗2 .
Given that Problem P2 is a relaxed version of Problem P1 and
is no longer a function of Bmax, we know that the solution
to Problem P2 should be no worse, if not better, than that of
Problem P1. More precisely,

S∗2 ≤ S∗1 (Bmax), for any finite value of Bmax.

Interestingly, we find a dynamic user-association and
energy-control algorithm under the constraint of Problem P1
whose average operational cost can get arbitrarily close to S∗2
as the increase of battery capacity Bmax, which we present
in the next Section.

IV. JOINT USER ASSOCIATION AND ENERGY CONTROL

Let us introduce a free parameter K > 0, which is linked
with the battery capacity through the equation below

Bmax = KPmax +mHmaxwmax,

where the definition of Pmax, wmax, and Hmax can be found at
the end of Section II. Our dynamic joint user-association and
energy-control algorithm that conforms to the constraints in
Problem P1 naturally breaks into two components as shown
below.

User Association Component: Solve the following op-
timization problem, and assign user i to base-station j if

3In Problem P2, Ej(t) can no longer be interpreted as the physical meaning
of the emptiness of battery, as it is not necessarily bounded.



Aji = 1. We will describe how to solve this problem in
Section IV-B.

(Problem P3)

arg min
A(t)

I∑
i=1

J∑
j=1

Aji(t)Hji min(Bmax −Bj(t),KP (t))wi(t)

s.t.

∑J
j=1Aji(t) = 1,∀i∑I
i=1Aji(t) ≤ m, ∀j

Aji(t) ∈ {0, 1},∀i, j
Aji(t) = 0 if R(j, i) = 0,∀i, j

A(t) ∈ A

Energy Control Component: the battery at each base-
station is either charged at the maximum rate, or discharged
at the exact amount that the base-station needs to consume,
depending on both the current battery level and the instan-
taneous energy price:

b∗j (t) =

{ −bmax if Bj(t) ≤ Bmax −KP (t)∑I
i=1Aji(t)Hjiwi(t) if Bj(t) > Bmax −KP (t)

In the energy control scheme, whether the battery is
charged or discharged depends on whether Bj(t)+KP (t) is
below or above a fixed threshold Bmax: when the threshold
is exceeded, indicating that either the battery is near full,
or the energy price is relatively high, the battery will be
discharged; On the other hand, when either the battery is
low, or the energy price is relatively low, the scheme will
choose to purchase energy from the grid to both serve the
current task, and charge the battery at the maximum charge
rate. Here K is a parameter that tunes the relative importance
of the battery status and the energy price. As we increase
K, the energy control decision weighs more on the energy
price than the battery status, leading to a potentially larger
cost reduction, as the battery will be charged only when the
price is relatively low. The price to pay, however, is a linear
increase in the battery capacity Bmax. Indeed, as we will
show in the performance analysis, K plays a key role in the
trade-off between optimality and battery capacity.

The optimization problem in the user-association com-
ponent essentially tries to align the traffic profile with the
energy profile in the network. From the objective function
in Problem P3, we can observe that each base-station-user
pair (j, i) is associated with a product-form metric as shown
below

min(Bmax −Bj(t),KP (t))︸ ︷︷ ︸
energy factor

×Hjiwi(t)︸ ︷︷ ︸
traffic factor

,

with the first term capturing the emptiness of the battery
capped by K times the energy price, and the second term
representing the amount of energy that needs to be consumed
by this association. For a certain base-station-user pair, the
metric is low only when the battery-level at the base-station
is high and the energy request from the user is low. Then,
it is evident that the network can be more energy efficient
if the sum of the associated links’ metrics is low. Indeed,
the simulation results in Section V show that the dynamic

user-association component is very crucial in guaranteeing
an efficient use of the renewable energy.

A. Performance Analysis

We define a constant C to be

C , J min{bmax,mHmaxwmax}2 + Jλ2max.

The theorem below shows that our proposed policy can
achieve a cost that is arbitrarily close to the optimal average
cost by increasing the battery capacity Bmax, with the gap to
optimality shrinks in the order of O(1/Bmax).

Theorem 1: The joint user-association and energy con-
trol algorithm with battery capacity Bmax = KPmax +
mHmaxwmax achieves

lim sup
T→∞

1

T

T−1∑
t=0

E
[
P (t)

J∑
j=1

( I∑
i=1

Aji(t)Hjiwi(t)− bj(t)
)]

≤ S∗2 + C/K, (12)
Idea of proof: First, we use the stochastic Lyapunov

techniques to obtain a near-optimal algorithm for Problem P2
(which, as we discussed in the previous section, is a relax
version of Problem P1). Then, Interestingly, we find that
the near-optimal algorithm satisfies the constraints for Prob-
lem P1 under the a certain battery capacity.

Proof:
Let us define the Lyapunov function as L(t) =

1
2

∑J
j=1 Ej(t)2, and the one-step conditional Lyapunov drift

∆L(t) as ∆L(t) = E
[
L(t+ 1)− L(t)

∣∣~E(t)
]
, where ~E(t) =

[E1(t), E2(t), . . . , EJ(t)], and the expectation is taken over
all randomness in traffic arrival, energy arrival, power price,
and control action at time-slot t.

Before proving the theorem, we need the following three
supporting lemmas. The proof of Lemma 1 is very similar
to the proof of Theorem 1 in [9] and is thus omitted for
brevity. To prove Lemma 2, we only need to sum over the
inequality (13) from t = 0 to t = T − 1, divide both side by
T , and then let T approach infinity. Lemma 3 follows simply
by squaring the evolution equation of Ej(t) in Equation (9)
and taking expectations.

Lemma 1: S∗2 can be achieved using a stationary policy
that conforms to the feasibility condition in Problem P2. By
stationary, we mean that the decision of the policy at any
time-slot is not a function of Ej(t) for any j and t. More
precisely, there exists a policy that achieves, for any ~E(t),

E
[
(bj(t)− λj(t))

∣∣~E(t)
]

= 0,

E
[
P (t)

∑J
j=1

(∑I
i=1Aji(t)Hjiwi(t)− bj(t)

) ∣∣~E(t)
]

= S∗2 .

Lemma 2: A policy satisfies Equation (12) if

∆L(t) +KE
[
P (t)

J∑
j=1

( I∑
i=1

Aji(t)Hjiwi(t)− bj(t)
)∣∣∣~E(t)

]
≤ C +KS∗2 (13)

Lemma 3:

∆L(t) ≤ C + E
[∑J

j=1 Ej(t)(bj(t)− λj(t))
∣∣~E(t)

]
. (14)



After adding the same term on both sides of Equation (14),
we obtain,

∆L(t) +KE
[
P (t)

J∑
j=1

( I∑
i=1

Aji(t)Hjiwi(t)− bj(t)
)∣∣∣~E(t)

]
≤C + E

[∑J
j=1 Ej(t)(bj(t)− λj(t))

∣∣~E(t)
]

+KE
[
P (t)

J∑
j=1

( I∑
i=1

Aji(t)Hjiwi(t)− bj(t)
)∣∣∣~E(t)

]
.

(15)

By substitiuting the result of Lemma 1 into Equation (15),
we know that there exists a stationary scheme under the
constraints of Problem P2 that achieves Equation (13). Then,
if we design a policy that minimize the right hand side of
Equation (15) for any values of ~E(t) while conforming to the
constraint in Problem P2, it must also satisfy Equation (13).
According to Lemma 2, such a scheme, which we formally
describe below, achieves the performance described in Equa-
tion (12).

arg min
A,b

[∑J
j=1 Ej(t)(bj(t)− λj(t))

+KP (t)
∑J

j=1

(∑I
i=1Aji(t)Hjiwi(t)− bj(t)

)]
=arg min

A,b

[∑J
j=1(Ej(t)−KP (t))bj(t)

+KP (t)
∑J

j=1

∑I
i=1Aji(t)Hjiwi(t)

]
subject to the constraints in Problem P2.

It is easy to show that this minimization problem leads to
the following solution

A∗(t) = arg min
A(t)∈A

I∑
i=1

J∑
j=1

Aji(t)Hji min(Ej(t),KP (t))wi(t),

b∗j (t) =

{ −bmax if Ej(t) ≥ KP (t)∑I
i=1A

∗
ji(t)Hjiwi(t) if Ej(t) < KP (t)

.

(16)

It should be noted that the above control policy is designed
for Problem P2. However, quite interestingly, it is not hard to
see that under this control policy, Ej(t) is upper bounded by
KPmax +mHmaxwmax for any base-station j and time-slot t.
In other words, if we set Bmax to be KPmax +mHmaxwmax,
Equation (8) is restored, and thus the above control policy
conforms to the constraints in Problem P1. Finally, we can
obtain our joint user-association and energy-control policy
by switching Ej(t) back to Bj(t) = KPmax +mHmaxwmax−
Ej(t).

B. Revisiting the User Association Algorithm

We now focus on how to solve the optimization prob-
lem P3 for any time-slot t. Let us represent the multi-
cell network as a bipartite graph G = (J , I,L), where
J = {1, 2, . . . , J} and I = {1, 2, . . . , I} denote the set
of base-stations and the set of users, respectively. The edge
set L is the set of base-station-user pairs for which a direct

data-link can be established. More precisely,

L = {(j, i) ∈ J × I|R(j, i) 6= 0 (i.e., Hji ≤ ∞)}.
Let us define W as a mapping from L to R with

W (j, i) = Hji min(Bmax −Bj(t),KP (t))wi(t), (17)

and introduce an optimization problem below.

(Problem P4)
arg min
M⊆L

∑
(j,i)∈MW (j, i)

s.t. For any i ∈ I, |{j ∈ J |(j, i) ∈M}| = 1 (18)
For any j ∈ J , |{i ∈ I|(j, i) ∈M}| ≤ m (19)

By comparing the feasibility constraints of Problem P3 and
P4, we know that for any feasibleM in Problem P4 (M that
conforms to Equation (18) and (19)), we can construct a J by
I binary matrix A by setting Aji to be 1 only if (j, i) ∈M,
and very easily show that it is feasible in Problem P3, i.e.,
we must have A ∈ A. Given that A is assumed to be non-
empty, we know that Problem P4 is feasible. Moreover, by
the definition of W in Equation (17), for any M∗ that is
one of the solution(s) for Problem P4, the corresponding A∗

must be one of the solution(s) for Problem P3. Hence, we
only need to focus on the solving of Problem P4.

The constraints in Equations (18) and (19) indicate that
each user i needs to incident to exactly one edge in M, and
each station j cannot incident to more than m edges in M.
When m = 1, these constraints implies that any feasible M
is a maximum matching in the partite graph G, and thus the
problem becomes a minimum-weighted maximum matching
problem, where W (j, i) represents the weight of edge (j, i).
In the general case when m > 1, we can still convert
Problem P4 to a minimum-weighted maximum matching
problem by extending each base-station j in J into a set
of m identical virtual base-stations {j(1), j(2), . . . , j(m)}
where j(v) has the same connectivity to I as j does and
W (j(v), i) = W (j, i) for any 1 ≤ v ≤ m. Since Problem P3,
being equivalent to P4, can be converted into a minimum-
weighted maximum-matching problem, it can be solved in
O(|mJ |3) complexity using the Hungarian algorithm.

V. NUMERICAL EXAMPLE

A. Simulation Setup

We conduct our simulation on a network topology as
shown in Figure 3, with 10 base-stations and 26 users. Each
time-slot is set to be 30 seconds, i.e., the user-association
and energy-control decision are updated every 30 seconds.
The traffic demand wi(t) is uniformly distributed from 3 to
15 Mbit/time-slot for any user i, and the renewable arrival
λj(t) is uniformly distributed from 0 to 5 Wh/time-slot. For
any base-station j and user i, the amount of data that can be
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Fig. 3: Topology of the simulation scenario

TABLE I: Simulation Parameter Settings

Parameters Value5

a time-slot 30 seconds
energy price (8.1 ∼ 331.83)× 10−4 cents/Wh

wi(t) 3 ∼ 15 Mbit/time-slot
E 1/60 Wh/resource-block

SNR6 141 dB
bmax 10 Wh/time-slot
λj(t) 0 ∼ 5 Wh/time-slot
Rmax 200 Kbit/resource-block
Rmin 6.67 Kbit/resource-block
m 3 for each base-station

transmitted per resource block is calculated as4

Rji =


Rmax if 100 log (1 + SNRd−4ji ) > Rmax,

0 if 100 log (1 + SNRd−4ji ) < Rmin,

100 log (1 + SNRd−4ji ) Kbit/resource-block o/w.

where dji is the physical distance between base-station j and
user i, and the values for Rmin, Rmax and SNR can be found
in Table I. We carry out our simulation with the 5-minute
market energy price data obtained at [10] for the period of
11/3/2014 to 11/20/2014 (450 hours), where we interpolate
the 5-minute energy prices to obtain the 30-second energy
prices. The values for the system parameters are summarized
in Table I. Figure 4 shows the energy price fluctuation.

B. Algorithms

We study the performance of three different schemes.
(1) Fixed Association: In this scheme, we choose a feasible

user-association A ∈ A with the smallest
∑

i,j AjiHji and
fix this user-association across the entire simulation. Only
the energy-control component is activated.

(2) Dynamic Association: Both the user-association com-
ponent and the energy-control component are activated.

(3) Dynamic Association without traffic information: From
Problem P3, we know that to obtain the user-association
decision at the start of a certain time-slot, we need to know
in advance the amount of traffic arrivals for all the users
within that time-slot, which can be hard to predict when
the association interval is long. Thus, here we apply a sub-
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Fig. 4: Real-time Energy Price (11/3/2014-11/5/2014 in [10])

optimal version of the user-association algorithm, where the
user-association decision is made assuming that each user
has the same amount of traffic demand for the upcoming
association interval.

For the baseline scheme, we apply the fixed user-
association scheme without energy control, in which case the
battery is only charged by renewable resources and energy
is purchased from the grid only when the battery is empty.

C. Performance Evaluation and Analysis
Figure 5a shows the percentage reduction in the energy-

induced operational cost for the three schemes compared
with the baseline, as a function of the battery capacity. At the
battery capacity of 32 KWh7, the Fixed Association scheme
achieves a 23% reduction in cost, which demonstrates the
effectiveness of the energy-control algorithm. After we ac-
tivate the dynamic user-association component on top of
the energy-control component, the cost reduction increases
dramatically from 23% to 81%. Interestingly, even in the
case when the traffic demand information is unknown, the
dynamic user-association algorithm can still improve the cost
reduction from 23% to 63%, cutting the operational cost by
more than half. Further, from the figure we can see that the
percentage reduction in cost is close to saturation when the
battery is around 32 KWh, and that the improvement is quite
significant even at a relatively small battery capacity.

The cost efficiency of the system can be captured by the
metric of cost per bit. To understand better about where the
cost-reduction in these different schemes comes from, it is
helpful to break down the metric into two parts

cost/bit = (cost/grid-energy)× (grid-energy/bit),

where the first term on the right-hand-side represents the
average cost of purchasing energy from the grid, and the sec-
ond term represents the average amount of energy purchased
from grid for every unit of data-transmission. The reduction
in operational cost is a combined effect of the reductions in
both terms.

Let us focus on the first term. Since the energy price
fluctuates over time, the cost per grid-energy is directly

4This expression of Rji implies that the base-station transmission power is
set to be a fixed value for different users, an assumption that is in general
not required in our model and analysis.

5Wh is a unit of energy equivalent to 1W of power expended for one hour.
6This is the normalized SNR when a user is 1-meter away from the
associated base-station.

7The battery capacity in current green base-stations is around 10-32KWh
[11].



determined by the average price at which the energy is
purchased, which is in turn dictated by the energy control
component. In our energy control algorithm, at any time-
slot in any base-station, whether energy is purchased or not
depends jointly on the current battery level and the current
energy price. According to our discussion in Section IV,
as we increase the battery capacity (i.e., increase K), the
energy price will eventually become the dominating factor,
meaning that the energy will be purchased only at the time
when energy price is relatively low, which explains the 23%
cost-reduction in the Fixed Association scheme.

While the reduction in the first term brings down the cost
by exploiting the varying energy prices, it is the reduction
in the second term, grid-energy per bit, that determines
how much carbon emission footprint is actually reduced. A
smaller grid-energy per bit implies a more efficient use of
the renewable energy in the network, which can be seen from
the equation below

grid-energy/bit = (energy/bit)− (renewable-energy/bit).

In order to see how much cost-reduction is attributed to
the reduction in grid-energy/bit for the dynamic association
algorithms, we plot, in Figure 5b, the average energy pur-
chased from the grid as a function of battery capacity. From
Figure 5b we can see that the gap between the average
purchased energy in the dynamic association scheme and that
in the fixed association scheme matches with the gap between
the cost-reductions for the two in Figure 5a. This is an
evident that the proposed dynamic user-association algorithm
indeed favors the alignment of the traffic-profile with the
energy-profile in the network and results in an efficient
use of renewable resources, which eventually translate to a
significant reduction in the energy-related operational cost.

VI. CONCLUSION

In this work, we look at cellular networks with green
base-stations – the base-station that has renewable resources
and energy storage device – with an objective to design
joint energy/user-association control algorithms that mini-
mize the energy-related operational cost of the systems. The
proposed algorithm is proven to be able to achieve a cost
arbitrarily close to the optimal cost by increasing the battery
capacity. Through simulations we show that our energy-
aware user-association algorithm, together with our battery
control algorithm, significantly improves the utilization of
the renewable resources and results in a dramatic reduction
in the operational cost.
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