
Performance Analysis of Work-Conserving Schedulers for Minimizing Total
Flow-Time with Phase Precedence

Yousi Zheng1, Prasun Sinha2, Ness B. Shroff1,2
1Department of Electrical and Computer Engineering, 2Department of Computer Science and Engineering

The Ohio State University, Columbus, OH 43210

Abstract— We consider the problem of minimizing the total
flow-time of multiple jobs in a pool of multiple homogeneous
machines, where the jobs arrive over time and have to be
served with phase precedence. This is a common occurrence
in job scheduling for the increasingly popular data center
oriented systems, where jobs need to be processed through
Map and Reduce procedures before leaving the system. For
this problem, one can construct an arrival pattern such that no
scheduler can achieve a constant competitive ratio. However,
what we find is that by using a slightly weaker performance
metric, which we call the efficiency ratio, we can provide
bounds on the performance. We say that a scheduler achieves
an efficiency ratio of γ when the flow-time incurred by that
scheduler divided by the minimum flow-time achieved over all
possible schedulers is less than or equal to γ almost surely,
when the time slots or job arrivals go to infinity. Under some
weak assumptions, we show a surprising property that all work-
conserving schedulers for the flow-time problem with phase
precedence have a constant efficiency ratio in both preemptive
and non-preemptive scenarios. We provide numerical results to
support our analysis.

I. INTRODUCTION

In many widely used systems, the workload of arriving
jobs can be divided into several phases. Some phases need
to finish before other phases can be started. One common
example of such a system is the MapReduce framework,
which is designed to process massive amounts of data in a
cluster of machines [1]. It is widely used for applications
such as search indexing, distributed searching, web statistics
generation, and data mining. MapReduce has two elemental
phases: Map and Reduce. A critical consideration for the
design of the scheduler is the precedence between the Map
and Reduce tasks. For each job, the Map tasks need to be
finished before starting any of its Reduce tasks [1], [2].

To minimize the total flow-time, it is well known that the
Shortest-Remaining-Processing-Time (SRPT) scheduler is
optimal in one machine case [3] or in multiple machines with
work preserving malleable tasks[4]. The related scenarios are
studied: scheduling malleable tasks [5], scheduling chain-
structured tasks [6], and scheduling with release time con-
straint [7]. However, they focus on the complexity analysis,
and they cannot be directly applied to the multi-phase setting.
For the MapReduce framework, some scheduling solutions
have also been proposed [8], [9], [10], [11], [2], but analytical

We gratefully acknowledge Dr. Zizhan Zheng for his helpful suggestions.
The work has been partially supported through a grant from the Army
Research Office MURI award W911NF-08-1-0238.

bounds on performance have been derived only in some of
these works [10], [11], [2]. However, rather than focusing
directly on the flow-time, for deriving performance bounds,
[10], [11] have considered a slightly different problem of
minimizing total completion time and [2] has assumed speed-
up of the machines.

In this paper, we directly analyze the performance of total
delay (flow-time) in the system. In an attempt to minimize
this, we introduce a new metric to analyze the performance
of schedulers called efficiency ratio. Based on this new
metric, we analyze and design schedulers that can provide
performance guarantees.

The contributions of this paper are as follows:

• To directly analyze the total delay in the system, we
propose a new metric to measure the performance of
schedulers, which we call the efficiency ratio. (Sec-
tion II)

• For bounded workload of Phase 2, we then show a
surprising property that for the flow-time problem any
work-conserving scheduler has a constant efficiency
ratio in the preemptive as well as in the non-preemptive
scenario (precise definitions provided in Section II).
(Sections III and IV)

• We relax the assumption of Phase 2 from bounded
workload to light-tailed distributed workload, and get
the same properties in both preemptive and non-
preemptive scenarios. (Section V)

• For the typical work-conserving schedulers, we show
that the convergence of efficiency ratios through simu-
lations. (Section VI)

II. SYSTEM MODEL AND EFFICIENCY RATIO

A. System Model

Consider a pool of N machines. There are n jobs arriving
into the system, and each machine can only process one
job at a time. Time is slotted and each machine can run
one unit of workload in each time slot. We assume that the
distribution of job arrivals in each time slot is i.i.d., and the
arrival rate is λ. Each job i contains multiple tasks, which
can be classified into two phases: Phase 1 and Phase 2. Its
tasks of Phase 1 need to be finished before starting any of
its tasks of Phase 2. For each job i, Phase 1 brings Mi units
of workload and Phase 2 brings Ri units of workload. Each

task of Phase 1 has 1 unit of workload2, however, each task
of Phase 2 can have multiple units of workload. Assume that
{Mi} are i.i.d. with expectation M , and {Ri} are i.i.d. with
expectation R. We assume that the traffic intensity ρ < 1,
i.e., λ < N

M+R
. Assume the moment generating function of

workload of arriving jobs in a time slot has finite value in
some neighborhood of 0. In time slot t for job i, m i,t and
ri,t machines are scheduled for the tasks of Phase 1 and
2, respectively. We assume that job i contains Ki tasks of
Phase 2, and the workload of the Phase 2 task k of job i

is R
(k)
i . Thus, for any job i,

Ki∑
k=1

R
(k)
i = Ri. In time slot

t for job i, r
(k)
i,t machines are scheduled for the task k of

Phase 2. As each task of Phase 2 may consist of multiple
units of workload, it can be processed in either preemptive
or non-preemptive fashion based on the type of scheduler.

Definition 1: A scheduler is called preemptive if the tasks
of Phase 2 belonging to the same job can run in parallel on
multiple machines, can be interrupted by any other task, and
can be rescheduled to different machines in different time
slots.

A scheduler is called non-preemptive if each task of
Phase 2 can only be scheduled on one machine and, once
started, it must keep running without any interruption.

The flow-time Fi of job i is equal to f
(r)
i − ai + 1, where

f
(r)
i is the finish time of the reduce tasks and ai is the arrival

time of job i. The objective of the scheduler is to determine
the assignment of jobs in each time slot, such that the cost of
delaying the jobs or equivalently the flow-time is minimized.

For the preemptive scenario, the problem definition is as
follows:

min
mi,t,ri,t

n∑
i=1

(
f

(r)
i − ai + 1

)
s.t.

n∑
i=1

(mi,t + ri,t) ≤ N, ri,t ≥ 0, mi,t ≥ 0, ∀t,

f
(m)
i∑

t=ai

mi,t = Mi,

f
(r)
i∑

t=f
(m)
i +1

ri,t = Ri, ∀i ∈ {1, ..., n}.

(1)

In the non-preemptive scenario, the tasks of Phase 2
cannot be interrupted by other jobs. Once a task of Phase
2 begins execution on a machine, it has to keep running on
that machine without interruption until all its workload is
finished. Also, the optimization problem in this scenario is
similar to Eq. (1), with additional constraints representing
the non-preemptive nature, as shown below:

2For example, in the MapReduce framework as the Map tasks are
independent and have small workload [9], such an assumption is valid.

min
mi,t,r

(k)
i,t

n∑
i=1

(
f

(r)
i − ai + 1

)
s.t.

n∑
i=1

(mi,t +
Ki∑
k=1

r
(k)
i,t) ≤ N, ∀t,

f
(m)
i∑

t=ai

mi,t = Mi, mi,t ≥ 0, ∀i ∈ {1, ..., n},

f
(r)
i∑

t=f
(m)
i +1

r
(k)
i,t = R

(k)
i , ∀i ∈ {1, ..., n}, ∀k ∈ {1, ..., Ki},

r
(k)
i,t = 0 or 1, r

(k)
i,t = 1 if 0 <

t−1∑
s=0

r
(k)
i,s < R

(k)
i .

The proof of the following theorem is in the technical
report [12].

Theorem 1: The scheduling problem (both preemptive
and non-preemptive) is NP-complete in the strong sense.

B. Efficiency Ratio

The competitive ratio is often used as a measure of
performance in a wide variety of scheduling problems. For
our problem, the scheduling algorithm S has a competitive
ratio of c, if for any total time T , any number of arrivals n in
the time T , any arrival time ai of each job i, any workload
Mi and Ri of the Phase 1 and 2 tasks with respect to each
arrival job i, the total flow-time F S(T, n, {ai, Mi, Ri; i =
1...n}) of scheduling algorithm S satisfies the following:

FS(T, n, {ai, Mi, Ri; i = 1...n})
F ∗(T, n, {ai, Mi, Ri; i = 1...n}) ≤ c,

where

F ∗(T, n, {ai, Mi, Ri; i = 1...n})
=min

S
FS(T, n, {ai, Mi, Ri; i = 1...n}),

is the minimum flow-time of an optimal off-line algorithm.
For our problem, we can construct an arrival pattern such

that no scheduler can achieve a constant competitive ratio c.
The quick example is given in technical report [12]. We now
introduce a slightly weaker notion of performance, called the
efficiency ratio.

Definition 2: We say that the scheduling algorithm
S has an efficiency ratio γ, if the total flow-time
FS(T, n, {ai, Mi, Ri; i = 1...n}) of scheduling algorithm
S satisfies the following:

lim
T→∞

FS(T, n, {ai, Mi, Ri; i = 1...n})
F ∗(T, n, {ai, Mi, Ri; i = 1...n}) ≤ γ, w.p.1

Later, we will show that for the quick example, a constant
efficiency ratio γ can still exist (e.g., the non-preemptive
scenario with light-tailed distributed Reduce workload in
Section IV).

Fig. 1. A example schedule of a work-conserving scheduler

III. WORK-CONSERVING SCHEDULER IN THE

PREEMPTIVE SCENARIO

In this section, we analyze the performance of work-
conserving scheduler in the preemptive scenario. In this
section, we study the case in which the workload of Phase
2 of each job is bounded by a constant, i.e., there exists a
constant Rmax, s.t., Ri ≤ Rmax, ∀i.

Consider the total scheduled number of machines over all
the time slots. If all the N machines are scheduled in a time
slot, we call this time slot a “complete” time slot; otherwise,
we call this time slot a “incomplete” time slot. We define
the jth “interval” to be the interval between the (j − 1)st

incomplete time slot and the j th incomplete time slot. (We
define the first interval as the interval from the first time slot
to the first incomplete time slot.) Thus, the last time slot of
each interval is the only incomplete time slot in the interval.
Let Kj be the length of the j th interval, as shown in Fig. 1.

Firstly, we show that different moments of the length K j

of interval j is bounded by different constants, as shown in
Lemma 1.

Lemma 1: If the scheduler is work-conserving, then for
any given number H , there exists a constant BH , such that
E[KH

j] < BH , ∀j.
Proof: Since Kj is a positive random variable, then

E[KH
j] ≤ 1 if H ≤ 0. Thus, we only focus on the case that

H > 0.
In the jth interval, consider the tth time slot in this

interval. Assume that the total workload (including Map and
Reduce tasks) of the arrivals in the tth time slot of this
interval is Wj,t. Also assume that the unavailable workload
of Phase 2 at the end of the tth time slot in this interval is
Rj,t, i.e., the workload of Phase 2 whose corresponding tasks
of Phase 1 are finished in the tth time slot in this interval
is Rj,t. The remaining workload of the Reduce function left
by the previous interval is Rj,0. Then, the distribution of Kj

will be as follows:

P (Kj = k) =P (Wj,1 + Rj,0 − Rj,1 ≥ N, ...
k−1∑
t=1

Wj,t + Rj,0 − Rj,k−1 ≥ (k − 1)N,

k∑
t=1

Wj,t + Rj,0 − Rj,k < kN).

(2)

For each job i, Ri ≤ Rmax. And in the last slot of the
previous interval, the maximum number of finished jobs of
Phase 1 is N − 1. Thus, Rj,0 ≤ (N − 1)Rmax. Now, let’s
consider the case of k > 1.

P (Kj = k) ≤ P

(
k−1∑
t=1

Wj,t + Rj,0 − Rj,k−1 ≥ (k − 1)N

)

≤ P

(
k−1∑
t=1

Wj,t + (N − 1)Rmax ≥ (k − 1)N

)

= P

(k−1∑
t=1

Wj,t

k − 1
≥ N − (N − 1)Rmax

k − 1

)
.

(3)

By the assumptions, the total (both Phase 1 and 2) arriving
workload Wj,t in each time slot is i.i.d., and the distribution
does not depend on the interval index j or the index of time
slot t in this interval. Then, for any interval j, we know that

P (Kj = k) ≤ P

(k−1∑
s=1

Ws

k − 1
≥ N − (N − 1)Rmax

k − 1

)
,

where {Ws} is a sequence of i.i.d. random variables with
the same distribution of Wj,t.

Since the traffic intensity ρ < 1, E[Ws] = λ(M+R) < N .

For any ε > 0, there exists a k0, such that for any k > k0,
(N−1)Rmax

k−1 ≤ ε. Then for any k > k0, we have

P (Kj = k) ≤ P

(k−1∑
s=1

Ws

k − 1
≥ N − ε

)
,

We take ε < N − E[Ws] and corresponding k0. For any
k > k0 = 1 + � (N−1)Rmax

ε �, by Cramer-Chernoff Theorem
[13], we can achieve that

P

(k−1∑
s=1

Ws

k − 1
≥ N − ε

)
≤ e−kl(N−ε),

where the rate function l(a) is shown as below:

l(a) = sup
θ≥0

(
θa − log(E[eθWs])

)
. (4)

Since the moment generating function of workload in a
time slot has finite value in some neighborhood around 0,

for any 0 < ε < N − λ(M + R), l(N − ε) > 0. Thus,

E[KH
j] =

∞∑
k=0

kHP (Kj = k)

=
k0∑

k=0

kHP (Kj = k) +
∞∑

k=k0+1

kHP (Kj = k)

≤kH
0 +

∞∑
k=2

kHe−kl(N−ε)

=
(

1 + � (N − 1)Rmax

ε
�
)H

+
∞∑

k=2

kHe−kl(N−ε).

Since l(N − ε) > 0,
∞∑

k=2

kHe−kl(N−ε) is bounded.

Thus, given H , E[KH
j] is bounded by a constant BH , for

any j, where BH is given as below.

BH � min
ε∈(0,N−λ(M+R))

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 + � (N − 1)Rmax

ε
�
)H

+
∞∑

k=2

kHe−kl(N−ε)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (5)

Now, we directly obtain the expression for first and second
moments of Kj .

Corollary 1: E[Kj] is bounded by a constant B1, E[K2
j]

is bounded by a constant B2, for any j. The expressions of
B1 and B2 are shown as below, where the rate function l(a)
is defined in Eq. (4).

B1 = min
ε∈(0,N−λ(M+R))

⎧⎪⎪⎨⎪⎪⎩
1 + � (N − 1)Rmax

ε
�

+
2el(N−ε) − 1

el(N−ε)(el(N−ε) − 1)2

⎫⎪⎪⎬⎪⎪⎭ ,

B2 = min
ε∈(0,N−λ(M+R))

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

1 + � (N − 1)Rmax

ε
�
)2

+
4e2l(N−ε) − 3el(N−ε) + 1

el(N−ε)(el(N−ε) − 1)3

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Proof: By substituting H = 2 and H = 1 in Eq. (5),
we directly achieve the corollary.

We add some dummy workload of Phase 2 in the be-
ginning time slot of each interval, such that the remaining
workload of the previous interval is equal to (N − 1)Rmax.
The added workload are only scheduled when no real job
can be scheduled. Then, in the new artificial system, the
total flow-time of the real jobs doesn’t change. However, the
total number of intervals may decrease, because the added
workload may merge some adjacent intervals.

Corollary 2: In the artificial system, the length of new
intervals {K̃j, j = 1, 2, ...} also satisfies the same results of
Lemma 1 and Corollary 1.

Proof: The proof is similar to the proofs of Lemma 1
and Corollary 1.

Remark 1: In the artificial system constructed in Corol-
lary 2, the length of each interval has no effect on the length
of other intervals, and it is only dependent on the job arrivals

and the workload of each job in this interval. Based on
our assumptions, the job arrivals in each time slot are i.i.d..
Also, the workload of jobs are also i.i.d.. Thus, the random
variables {K̃j, j = 1, 2, ...} are i.i.d.

Theorem 2: For any work-conserving scheduling
policy, the efficiency ratio is not greater than

B2+B2
1

max{2,
1−p0

λ , ρ
λ}max{1, 1

N(1−ρ)} w.p.1, when n goes to

infinity. B1 and B2 can be achieved by Corollary 1, and p0

is the probability that no job arrives in a time slot.

Proof: Consider the artificial system constructed in
Corollary 2. Since we have more dummy workload of Phase
2 in the artificial system, the total flow-time F̃ of the artificial
system is not less than the total flow-time F of the work-
conserving scheduling policy.

Note that, in each interval, all the job arrivals in this
interval must finish Phase 1 in this interval, and all their
workload of Phase 2 will finish before the end of the next
interval. In other words, for all the arrivals in the j th interval,
Phase 1 is finished in Kj time slots, and Phase 2 is finished
in Kj +Kj+1 time slots, as shown in Fig. 1. This is also true
for the artificial system with dummy workload of Phase 2,
i.e., all the arrivals in the j th interval of the artificial system
can be finished in K̃j + ˜Kj+1 time slots.

Let Aj be the number of arrivals in the j th interval. The
total flow-time Fj of the work-conserving scheduler for all
the arrivals in the jth interval is not greater than Aj(Kj +
Kj+1). Similarly, the total flow-time F̃j for all the arrivals
in the jth interval of the artificial system is not greater than
Ãj(K̃j + ˜Kj+1), where Ãj is the number of arrivals in the
jth interval of the artificial system.

Let F be the total flow-time of any work-conserving
scheduler, and F ∗ be the minimized total flow-time. Assume
that there are a total of m intervals for the n arrivals.
Correspondingly, there are a total of m̃ intervals in the
artificial system. Also, based on the construction of the

artificial system, m ≥ m̃ and F = F̃ =
em∑

j=1

F̃j . T �
m∑

j=1

Kj

is equal to the finishing time of all the n jobs. For any
scheduler, the total flow-time is at least T̂ , which is the
number of time slots in which the number of scheduled
machines is at least 1. Thus, the total flow-time F ∗

j of the
optimal scheduler should be at least T̂ .

For any scheduling policy, each job needs at least 1 time
slot to schedule its tasks of Phase 1 and 1 time slot to
schedule its tasks of Phase 2. Thus, the lower bound of
the each job’s flow-time is 2, assuming that the Map and
Reduce workload of any job is at least 1 unit each. Thus, for
the optimal scheduling method, its total flow-time F ∗

j should
not be less than 2Aj .

Since E(Mi + Ri) > 0, ρ < 1, then lim
n→∞m = ∞ and

lim
n→∞ m̃ = ∞.

lim
n→∞

F

F ∗ = lim
n→∞

F̃

F ∗ ≤ lim
em→∞

1
T̂

em∑
j=1

Ãj(K̃j + ˜Kj+1)

≤
lim

em→∞
1
em

em∑
j=1

ÃjK̃j + lim
em→∞

1
em

em∑
j=1

Ãj
˜Kj+1

lim
m→∞ T̂ /m

.

Since {K̃j, j = 1, 2, ...} are i.i.d. distributed random
variables, then {ÃjK̃j, j = 1, 2, ...} are also i.i.d. Based
on Strong Law of Large Number (SLLN), we can achieve
that

lim
em→∞

1
m̃

em∑
j=1

ÃjK̃j
w.p.1

==== E
[
ÃjK̃j

]
. (6)

For {Ãj
˜Kj+1, j = 1, 2, ...}, they are identically distributed,

but not independent. However, all the odd term are indepen-
dent, and all the even term are independent. Based on SLLN,
we can achieve that

lim
em→∞

1
m̃

em∑
j=1

Ãj
˜Kj+1

w.p.1
==== E[Ãj

˜Kj+1]. (7)

Based on Eqs. 6 and 7, we can achieve that

lim
em→∞

1
m̃

em∑
j=1

ÃjK̃j +
1
m̃

em∑
j=1

Ãj
˜Kj+1

w.p.1
==== E[ÃjK̃j] + E[Ãj

˜Kj+1]

= E[E[ÃjK̃j |K̃j]] + E[Ãj]E[˜Kj+1]

= E[K̃jE[Ãj |K̃j]] + E[E[Ãj |K̃j]]E[˜Kj+1]

= λ(E[K̃j

2
] + E[K̃j]2).

For these n jobs, there are m incomplete time slots before the
time T . For each incomplete time slot, there are at most N−1

machines are assigned. Then, N
m∑

j=1

(Kj −1)+(N −1)m ≥∑
s∈{Arrivals before T} Ws. Thus,

(
N −

∑
s∈{Arrivals before T}

Ws

T

) m∑
j=1

Kj

m
≥ 1. (8)

Since the workload Ws of each job is i.i.d., by SLLN,

we have
(
N − λ(M + R)

)
lim

m→∞

mP
j=1

Kj

m ≥ 1 w.p.1, i.e.,

lim
m→∞

mP
j=1

Kj

m ≥ 1
N(1−ρ) w.p.1. Thus,

lim
m→∞

T

m
= lim

m→∞

m∑
j=1

Kj

m
≥ max

{
1,

1
N(1 − ρ)

}
w.p.1.

For any work-conserving scheduler, T̂ is not less than the
total number of time slots with at least 1 arrival, we have

lim
m→∞

T̂

m
≥ (1 − p0) lim

m→∞
T

m
w. p. 1.

At the same time, for each time slot in which the number
of scheduled machines is greater than 0, there are at most
N machines are scheduled. Then, we can get N T̂ ≥
n∑

i=1

(Mi + Ri). Then, lim
m→∞

T̂
m ≥ λ(M+R)

N lim
m→∞

T
m w.p.1. =

ρ lim
m→∞

T
m . Thus,

lim
n→∞

F

F ∗ ≤ λ(E[K̃j

2
] + E[K̃j]2)

max{ρ, 1 − p0}max
{

1, 1
N(1−ρ)

} w.p.1.

≤ λ(B2 + B2
1)

max{ρ, 1 − p0}max
{
1, 1

N(1−ρ)

} w.p.1.

(9)

Similarly,

lim
n→∞

F

F ∗ = lim
n→∞

(m∑
j=1

Fj

/ m∑
j=1

F ∗
j

)

≤
lim

em→∞

em∑
j=1

Ãj(K̃j + ˜Kj+1)

lim
m→∞

m∑
j=1

2Aj

≤
lim

em→∞
1
em

em∑
j=1

Ãj(K̃j + ˜Kj+1)

lim
m→∞

1
m

m∑
j=1

2Aj

With Strong Law of Large Number (SLLN), we can get

lim
m→∞

m∑
j=1

Aj

m
= lim

m→∞(
m∑

j=1

Aj/

m∑
j=1

Kj) lim
m→∞(

1
m

m∑
j=1

Kj)

=λ lim
m→∞(

1
m

m∑
j=1

Kj) w. p. 1. ≥ λmax
{

1,
1

N(1 − ρ)

}
Thus,

lim
n→∞

F

F ∗ ≤ λ(B2 + B2
1)

2λmax
{

1, 1
N(1−ρ)

} w.p.1. (10)

Based on the Eqs. 9 and 10, we can achieve that the
efficiency ratio of any work-conserving scheduling policy is

B2+B2
1

max{2,
1−p0

λ , ρ
λ}max{1, 1

N(1−ρ)} .

IV. WORK-CONSERVING SCHEDULER IN THE

NON-PREEMPTIVE SCENARIO

The definitions of B1, B2, p0, F , F̃ , F ∗, Fj , F̃j , Kj , K̃j ,
Aj , Ãj , Wj,t, and Rj,t in this section are same as Section III.

Lemma 2: Lemma 1, Corollary 1, Corollary 2 in Sec-
tion III are also valid in the non-preemptive scenario.

Proof: Different from preemptive scenario in Sec-
tion III, the constitution of Rj,t are different, because it
contains two parts. First, it contains the unavailable workload
of Phase 2 which are just released by Phase 1 which are
finished in the last time slot of each interval. Second, it also

Fig. 2. The arrivals in the jth interval finish Phase 1 functions in Kj time
slots and Phase 2 in Kj + Kj+1 + Rmax − 1 time slots

contains the workload of Phase 2 which cannot be processed
in this time slot, even if there are idle machines, because the
tasks of Phase 2 are non-preemptive.

However, we can also achieve that the remaining workload
of Phase 2 from previous interval satisfies Rj,0 ≤ (N −
1)Rmax, because the total number of remaining unfinished
tasks of Phase 2 and new available tasks of Phase 2 in this
time slot is less than N . All the following steps are same.

Theorem 3: In the non-preemptive scenario, any work-
conserving scheduling policy has an efficiency ratio of

B2+B2
1+B1(R−1)

max{2,
1−p0

λ , ρ
λ}max{1, 1

N(1−ρ)} .

Proof: In the non-preemptive scenario, in each interval,
all the workload of Phase 1 of job arrivals in this interval is
also finished in this interval, and all their tasks of Phase 2
will be started before the end of the next interval. In other
words, for the job i in the j th interval, the tasks of Phase 1
are finished in Kj time slots, and the tasks of Phase 2 are
finished in Kj +Kj+1+Ri−1 time slots, as shown in Fig. 2.
And this is also true for the artificial system with dummy
workload of Phase 2, i.e., all the arrivals in the j th interval
of the artificial system can be finished in K̃j+ ˜Kj+1+Ri−1.
So, Fi in the jth interval is less than Aj(Kj+Kj+1+Ri−1).
Similarly, F̃i in the jth interval of the artificial system is less
than Ãj(K̃j + ˜Kj+1 +Ri − 1). Using the same technique as
in the proof of Theorem 2 we can show that,

lim
n→∞

F

F ∗ ≤ lim
m→∞

m∑
j=1

Ãj(K̃j + ˜Kj+1) +
n∑

i=1

(Ri − 1)

m∑
j=1

(Kj − Sj)

=
lim

m→∞
1
m

m∑
j=1

Ãj(K̃j + ˜Kj+1) + lim
m→∞

n
m lim

n→∞
1
n

n∑
i=1

(Ri − 1)

lim
m→∞

1
m

m∑
j=1

(Kj − Sj)

≤ λ[B2 + B2
1 + B1(R − 1)]

max {ρ, 1 − p0}max
{
1, 1

N(1−ρ)

} w.p.1,

(11)

and

lim
n→∞

F

F ∗ ≤ λ[B2 + B2
1 + B1(R − 1)]

2λmax
{

1, 1
N(1−ρ)

} w.p.1. (12)

Thus, based on the Eqs. 11 and 12, we obtain that
any work-conserving scheduler has the efficiency ratio of

B2+B2
1+B1(R−1)

max{2,
1−p0

λ , ρ
λ}max{1, 1

N(1−ρ)} .

V. LIGHT-TAILED DISTRIBUTED WORKLOAD OF PHASE 2

In this part, we assume the workload R of Phase 2 are
light-tailed distributed, i.e., ∃r0, such that

P (R ≥ r) ≤ α exp (−βr), ∀r ≥ r0,

where α, β > 0 are two constants. We use the same
definitions of Wj,t, Rj,t and Kj as Section III.

Lemma 3: If the scheduling algorithm is work-conserving,
then for any given number H , there exists a constant BH ,
such that E[KH

j] < BH , ∀j.
Proof: Similarly to Eqs. 2 and 3, we can achieve

P (Kj = k) ≤ P

(
k−1∑
t=1

Wj,t + Rj,0 ≥ (k − 1)N

)
.

Let R′ be the maximal remaining workload of jobs in the
previous interval, then

P (Kj = k) ≤ P

(
k−1∑
t=1

Wj,t + (N − 1)R′ ≥ (k − 1)N

)

=
∞∑

r=0

[
P

(
k−1∑
t=1

Wj,t + (N − 1)R′ ≥ (k − 1)N
∣∣∣R′ = r

)

P (R′ = r)

]

=
∞∑

r=0

⎡⎢⎢⎣P

⎛⎜⎜⎝
k−1∑
t=1

Wj,t

k − 1
≥ N − (N − 1)r

k − 1

⎞⎟⎟⎠P (R′ = r)

⎤⎥⎥⎦ .

(13)

Thus, we can achieve

E[KH
j] =

∞∑
k=0

kHP (Kj = k)

=
∞∑

k=0

{
kH

∞∑
r=0

[
P
(k−1∑

t=1
Wj,t

k − 1
≥ N − (N − 1)r

k − 1
)
P (R′ = r)

]}

=
∞∑

r=0

{
P (R′ = r)

∞∑
k=0

[
kHP

(k−1∑
t=1

Wj,t

k − 1
≥ N − (N − 1)r

k − 1
)]}

.

The next steps are similar to the proof of Lemma 1, we
skip the details and directly show the following result. For
any 0 < ε < N − λ(M + R), we know that l(N − ε) > 0.
Thus, we can achieve

E[KH
j]

≤
∞∑

r=0

{
P (R′ = r)

[(
1 + � (N − 1)r

ε
�)H +

∞∑
k=2

kHe−kl(N−ε)
]}

=
∞∑

k=2

kHe−kl(N−ε) +
∞∑

r=0

{
P (R′ = r)

(
1 + � (N − 1)r

ε
�)H}

≤
∞∑

k=2

kHe−kl(N−ε) +
∞∑

r=0

{
P (R′ ≥ r)

(
1 + � (N − 1)r

ε
�)H}

≤
∞∑

k=2

kHe−kl(N−ε) +
∞∑

r=0

{
P (R ≥ r)

(
1 + � (N − 1)r

ε
�)H}

≤
∞∑

k=2

kHe−kl(N−ε) +
r0−1∑
r=0

{(
1 + � (N − 1)r

ε
�)H}

+
∞∑

r=r0

{
αe−βr

(
1 + � (N − 1)r

ε
�)H}.

Thus, given H , E[KH
j] is bounded by a constant BH , for

any j, where BH is given as below.

BH � min
ε∈(0,N−λ(M+R))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
k=2

kHe−kl(N−ε)+

r0−1∑
r=0

(
1 + � (N − 1)r

ε
�
)H

+

∞∑
r=r0

αe−βr

(
1 + � (N − 1)r

ε
�
)H

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(14)

Corollary 3: E[Kj] is bounded by a constant B ′
1, E[K2

j]
is bounded by a constant B ′

2, for any j. The expressions of
B′

1 and B′
2 are shown as below, where the rate function l(a)

is defined in Eq. (4).

B′
1 = min

ε∈(0,N−λ(M+R))

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2r0 +
(N − 1)r0(r0 − 1)

2ε
+

2α

eβ − 1
+

α(N − 1)
4ε

csch2(
β

2
)

+ 2α +
2el(N−ε) − 1

el(N−ε)(el(N−ε) − 1)2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

B′
2 = min

ε∈(0,N−λ(M+R))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4r0 +
2(N − 1)r0(r0 − 1)

ε
+ 4α

+
(N − 1)2(r0 − 1)r0(2r0 − 1)

6ε2

+
α(N − 1)2

8ε2
sinh (β)csch4(

β

2
)

+
4α

eβ − 1
+

α(N − 1)
ε

csch2(
β

2
)

+
4e2l(N−ε) − 3el(N−ε) + 1

el(N−ε)(el(N−ε) − 1)3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Proof: By substituting H = 2 and H = 1 in Eq. (14),
we directly achieve the result by similar steps of Corollary 1.

Remark 2: Following the same proof steps, we can get the
same results as Theorem 2 and Theorem 3. The difference
is that we need use B ′

1 and B′
2 instead of B1 and B2. Also,

following the same steps, we can directly extend the results
to more than 2 phases.

VI. SIMULATION RESULTS

A. Simulation Setting

We evaluate the convergence of efficiency ratio for both
preemptive and non-preemptive scenarios. We consider a
data center with N = 100 machines, and choose Poisson
process with arrival rate λ = 2 jobs per time slot as the
job arrival process. We choose uniform distribution and
exponential distribution as examples of bounded workload
and light-tailed distributed workload, respectively. For short,
we use Exp(μ) to represent an exponential distribution with
mean μ, and use U [a, b] to represent a uniform distribution
on {a, a + 1, ..., b − 1, b}. We choose the total time slots to
be T = 800, and the number of tasks in each job is up to
10.

We choose 4 typical schedulers to evaluate the conver-
gence of efficiency ratio:

The SRPT scheduler: Jobs with smaller unfinished work-
load are always scheduled first. Since the exact SRPT
scheduler is not always feasible in the problem with phase
precedence, the SRPT scheduler here only schedules the
available part of the workload.

The FIFO scheduler: It is the default scheduler in many
systems, like Hadoop. All the jobs are scheduled in their
order of arrival.

The Fair scheduler: It is also a widely used scheduler. The
assignment of machines are scheduled to all the waiting jobs
in a fair manner. However, if some jobs need fewer machines
than others in each time slot, then the remaining machines
are scheduled to the other jobs, to avoid resource wastage
and to keep the scheduler work-conserving.

The LRPT scheduler: Jobs with larger unfinished work-
load are always scheduled first. Roughly speaking, the per-
formance of this scheduler represents in a sense how poorly
even some work-conserving schedulers can perform.

B. Convergence of Efficiency Ratio

In the simulations, the efficiency ratio of a scheduler is
obtained by the total flow-time of the scheduler over the
lower bound of the total flow-time in T time slots. Thus,
the real efficiency ratio should be smaller than the efficiency
ratio given in the simulations.

First, we evaluate the exponentially distributed workload.
We choose the workload distribution of Phase 1 for each
job as Exp(5) and the workload distribution of Phase 2
for each job as Exp(40). The convergence of efficiency
ratios of different schedulers are shown in Fig. 3. For
different workload, we choose workload distribution of Phase
1 as Exp(30) and the workload distribution of Phase 2 as

0 200 400 600 800
0

2

4

6

8

10

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 200 400 600 800
0

2

4

6

8

10

12

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 3. Convergence of Efficiency Ratios (Exponential Distribution, Large
Reduce)

0 200 400 600 800
0

5

10

15

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 200 400 600 800
0

5

10

15

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 4. Convergence of Efficiency Ratios (Exponential Distribution, Small
Reduce)

Exp(15). The efficiency ratios of schedulers are shown in
Fig. 4.

Then, we evaluate the uniformly distributed workload. We
choose the workload distribution of Phase 1 for each job as
U [1, 9] and the workload distribution of Phase 2 for each job
as U [10, 70]. The convergence of efficiency ratios of different
schedulers are shown in Fig. 5. To evaluate for a smaller
workload of Phase 2, we choose workload distribution of
Phase 1 as U [10, 50] and the workload distribution of Reduce
as U [10, 20]. The convergence of efficiency ratios of different
schedulers are shown in Fig. 6.

From Figs. 3-6, we observe that the efficiency ratios of
these typical work-conserving schedulers are small constants.

0 200 400 600 800
0

1

2

3

4

5

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 200 400 600 800
0

2

4

6

8

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 5. Convergence of Efficiency Ratios (Uniform Distribution, Large
Reduce)

0 200 400 600 800
0

1

2

3

4

5

6

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(a) Preemptive Scenario

0 200 400 600 800
0

1

2

3

4

5

6

Total Time (T)

E
ffi

ci
en

cy
 R

at
io

SRPT
Fair
FIFO
LRPT

(b) Non-Preemptive Scenario

Fig. 6. Convergence of Efficiency Ratios (Uniform Distribution, Small
Reduce)

VII. CONCLUSION

In this paper, we study the problem of minimizing the
total flow-time of a sequence of jobs with phase prece-
dence, where the jobs arrive over time and need to be
processed through Phase 1 and Phase 2 before leaving the
system. Since no on-line algorithm can achieve a constant
competitive ratio in some scenarios, we define a weaker
metric of performance called the efficiency ratio and propose
a corresponding technique to analyze on-line schedulers.
Under assumption of bounded workload of Phase 2, we then
show a surprising property that for the flow-time problem any
work-conserving scheduler has a constant efficiency ratio in
both preemptive and non-preemptive scenarios. Furthermore,
we relax the assumption to light-tailed distributed workload
of Phase 2. The simulation results show that the efficiency
ratios of typical work-conserving schedulers converge when
time goes to infinity, for both preemptive and non-preemptive
scenarios, and for both bounded and light-tailed distributed
workload of Phase 2. We believe that the efficiency ratio
metric and the proof technique presented here can be used
for modeling and analyzing a wide range of online solutions.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in Proc. of Sixth Symposium on Operating System
Design and Implementation, OSDI, December 2004, pp. 137–150.

[2] B. Moseley, A. Dasgupta, R. Kumar, and T. Sarlos, “On scheduling
in map-reduce and flow-shops,” in Proc. of the 23rd ACM symposium
on Parallelism in algorithms and architectures, SPAA, June 2011, pp.
289–298.

[3] K. R. Baker and D. Trietsch, Principles of Sequencing and Scheduling.
Hoboken, NJ, USA: John Wiley & Sons, 2009.

[4] edited by Joseph Y-T. Leung, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis. Boca Raton, FL, USA: Chapman
and Hall/CRC, 2004.

[5] M. Caramia and M. Drozdowski, “Scheduling malleable tasks for
mean flow time criterion,” Institute of Computing Science, Poznan
University of Technology, Tech. Rep., 2005. [Online]. Available:
http://www.cs.put.poznan.pl/mdrozdowski/rapIIn/RA008-05.pdf

[6] J. Du, J. Y.-T. Leung, and G. H. Young, “Scheduling chain-structured
tasks to minimizing makespan and mean flow time,” Information and
Computation, vol. 92, no. 2, pp. 219–236, June 1991.

[7] ——, “Minimizing mean flow time with release time constraint,”
Theoretical Computer Science, vol. 75, no. 3, pp. 347–355, October
1990.

[8] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job sechduling for multi-user mapreduce clusters,”
University of Califonia, Berkley, Tech. Rep., April 2009.

[9] J. Tan, X. Meng, and L. Zhang, “Performance analysis of coupling
scheduler for mapreduce/hadoop,” in Proc. of IEEE Infocom, March
2012.

[10] H. Chang, M. Kodialam, R. R. Kompella, T. V. Lakshman, M. Lee,
and S. Mukherjee, “Scheduling in mapreduce-like systems for fast
completion time,” in Proc. of IEEE Infocom, March 2011, pp. 3074–
3082.

[11] F. Chen, M. Kodialam, and T. Lakshman, “Joint scheduling of pro-
cessing and shuffle phases in mapreduce systems,” in Proc. of IEEE
Infocom, March 2012.

[12] Y. Zheng, P. Sinha, and N. Shroff, “Performance Analysis of
Work-Conserving Scheduler in Minimizing Flowtime Problem
with Two-Stages Precedence,” Ohio State University, Tech.
Rep., June 2012, http://www2.ece.ohio-state.edu/∼zhengy/TR3.pdf.
[Online]. Available: http://www2.ece.ohio-state.edu/∼zhengy/TR3.pdf

[13] A. Shwartz and A. Weiss, Large Deviations for Performance Analysis:
Queues, Communication and Computing. New York, NY, USA:
Chapman and Hall, 1995.

