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Abstract

In networked systems such as communication networks or power grids, graph separation from
node failures can damage the overall operation severely. One of the most important goals
of network attackers is thus to separate nodes so that the sizes of connected components
become small. In this work, we consider the problem of finding a minimum α-separator, that
partitions the graph into connected components of sizes at most αn, where n is the number
of nodes. To solve the α-separator problem, we develop a random walk algorithm based
on Metropolis chain. We characterize the conditions for the first passage time (to find an
optimal solution) of our algorithm. We also find an optimal cooling schedule, under which
the random walk converges to an optimal solution almost surely. Furthermore, we generalize
our algorithm to non-uniform node weights. We show through extensive simulations that
the first passage time is less than O(n3), thereby validating our analysis. The solution found
by our algorithm allows us to identify the weakest points in the network that need to be
strengthened. Simulations in real topologies show that attacking a dense area is often not
an efficient solution for partitioning a network into small components.

Keywords: Graph separation problem, Node attack, Markov Chain Monte Carlo,
Metropolis algorithm, Hierarchical Markov chain

1. Introduction

Today’s critical infrastructures are organized in the form of a network such as the com-
munication network, the smart electrical power grid or the water distribution system. In
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these networks, small node failures can have a significant impact on connectivity and lead to
graph separation [2, 3], where components become more reliable as their sizes increase. For
example, in a power grid, there should be a sufficient amount of power generation to serve
the power loads while not every bus (frequently represented as nodes in the graph modeling
power grid) can have a generator. Protecting minimum separating nodes can keep the sizes
of components higher than a given threshold, thereby increasing the chance of load being
served. Thus, identifying the weak parts in practical networks is a major concern in general.
Graph separation can also incur further cascading failures, because the amount of resource
in the remaining components (e.g., the amount of generated power) becomes so reduced that
the remaining components are overloaded and subsequently failed [4]. Thus, one of the most
important goals of network attackers is to separate nodes such that the sizes of connected
components become small. However, attackers have resource constraints as well, and they
would like to inflict the greatest harm with limited cost. A defender wants to identify these
weakest points in advance. In this work, we consider the problem of finding a minimum
α-separator that partitions the graph into connected components of sizes smaller than αn,
where n is the number of nodes in the graph. Finding a minimum α-separator is proven to
be NP-hard for a general topology for α ≥ 2

3
[5]. For topologies such as trees and cycles,

the authors in [6] have developed polynomial-time algorithms, yet they require knowledge
of the type of the graph topology in advance.

To tackle the minimum α-separator problem without prior knowledge of the graph topol-
ogy, we apply a Markov Chain Monte Carlo (MCMC) method. The basic idea is to solve this
combinatorial optimization problem by constructing a random walk over a Markov chain,
which traverses through feasible solutions, where the transitions lead the system to move to
states with desired objectives (smaller α-separator in our case). In other words, the station-
ary distribution is higher for states with better objective values (i.e., closer to the minimum).
The Markov Chain Monte Carlo method has been applied in many NP-hard problems in
various applications [7, 8, 9, 10, 11]. In our random walk algorithm, we additionally design
a simple data structure to quickly identify the sizes of the components that vary under the
random walk in each step. This allows us to further reduce the computational complexity
in each step.

We then analytically characterize how long it takes to obtain the optimal solution by our
algorithm. The standard metric often used in the literature is the mixing time, the conver-
gence time until the Markov chain is close to its stationary distribution, and there are several
existing works showing the polynomial convergence of the chain. For the independent set
problem, [12, 13, 14] used a coupling technique to show polynomial convergence. However,
conditions for guaranteeing polynomial convergence are limited. For example, in [12], the
maximum node degree of a graph should be less than or equal to five, for polynomial con-
vergence. Hence, in this paper we present an approximate analysis on the first passage time,
using a hierarchical structure of the underlying Markov chain. We then provide sufficient
conditions for the expected first passage time to be polynomial. As an example, we com-
pute the expected first passage time in star-like topologies, which is O(n2), where n is the
number of nodes. The conditions also include simple topologies that the sizes of minimum
α-separators do not scale with the network size, e.g., line, circle, and balanced tree.
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To evaluate the performance and support our analytical results, we run our random walk
algorithm over various topologies including real topologies from US fiber networks of 20 In-
ternet providers [15] and Italian power grid and Internet networks [16, 17]. In all topologies,
our random walk algorithm converges to a solution within O(n3) steps, for a network with n
nodes. We also compare our random walk algorithm with other heuristic algorithms includ-
ing highest-degree-first and greedy algorithms, and illustrate the performance improvements
we obtain. We underscore that the solution from our algorithm allows us to characterize
the weakest points in the network that need to be strengthened. In real topologies, we find
that attacking a dense area may not be an efficient way to partition a network graph which
can lead to large cascading effects. Finally, we discuss some future directions to apply our
general results to defense problems and practical networks such as power grids and water dis-
tribution systems in consideration of physical dynamics. Even though our graphical model
is simple to model physical dynamics in practical systems, our work can infer initial weak
points in these complex systems. As a future work, we will work on developing an algorithm
to find weak points in networks with complex physical dynamics (e.g., correlated failures).

2. Related work

We classify previous work into several categories and summarize them as follows.
Network Vulnerability and Reliability: In the network science literature, a famous
paper by Paolo et al. [18] analyzed the size of the largest component after node removals
and studied the ability to resist failures depending on the type of attacks (i.e., random or
targeted node attacks) and the type of networks (e.g., Erdos-Renyi random graph and the
Barabasi-Albert scale-free power-law network). They showed that the power-law graph that
appears commonly in practice3 is resilient to random attacks, but is vulnerable to targeted
attacks. Balthrop et al. [21] studied the spread of viruses in different types of networks.

There have been several studies to provide a quantitative assessment of how failures affect
the network structure. In [22], authors proposed a new measure, pairwise connectivity, to
assess the vulnerability of networks. They showed that computing the pairwise connectivity
is NP-hard, and proposed pseudo-approximation algorithms to obtain the pairwise connec-
tivity. Zhang et al. [23] proposed a reliability metric that describes the average reliability
between every pair of nodes in a network. They formulated and solved the critical compo-
nent detection problem to identify the critical components that affect the reliability metric.
In [24], Kabadurmus et al. proposed a new metric that combines network reliability with
network resilience is presented to measure reliability/survivability effectively for capacitated
networks. Authors in [25] studied a measure of the resilience of these structures based on
community similarity before and after disruption and applied the approach to an electric
power network. In [26], Li et al. compared connectivity reliability (CR) and topological con-
trollability (TC) metrics, and developped a controllability index and a controllability-based
node importance metric. In [27], authors presented a new methodology for quantifying the

3Several papers such as [19, 20] showed that many real-life networks follow the power-law degree distri-
bution.
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reliability of complex systems, using techniques from network graph theory, and showed that
many real-world systems are vulnerable to the spatially coherent hazard. Authors in [28]
applied the universal generating function technique (UGFT) to determine the network relia-
bility of the mobile ad-hoc networks, which is defined as the probability that the transformed
message from the source can be passed successfully without any delay. Ferrario et al. [29]
proposed a multi-state hierarchical graph to evaluate the robustness of interdependent crit-
ical infrastructures using Monte Carlo simulations. Zhang et al. [30] proposed k-reliability
for estimation of potential cascading failures, which is defined as the probability that at
least k surviving nodes span an operating component, as the operation probability of the
system and reflects the connectivity of nodes in networks. In this work, we focus on the size
of the largest component as the reliability metric, and try to find the most critical nodes in
a network.
Deterministic approaches and inapproximability of the α-separator problem: Mo-
hamed et al. [6] developed polynomial-time algorithms for special topologies such as trees and
cycles. Shen et al. [31] also developed polynomial-time dynamic programming algorithms on
tree structures and series-parallel graphs. However, there is little known for general topolo-
gies as far as we know. They also developed a simple greedy algorithm, whose approximation
ratio is αn + 1. Proposition 7.3 in [6] also showed the maximum α-coseparator4 problem
cannot be approximated in polynomial time within a factor of

(
1
α

)1−ε for any constant ε > 0.
Wachs et al. [32] developed a heuristic algorithm and studied the node separators for various
α in the Internet Autonomous Systems.
Related problems of α-separator problem: If α = 1/n, the α-separator problem be-
comes the minimum vertex cover problem. The case α = 2/n is equivalent to the minimum
dissociation set problem, where the dissociation set is a subset of vertices, whose induced
subgraph has the maximum degree of 1. Thus, the α-separator problem is a generalized
version of these problems. Both problems are NP-hard [33]. We note that the complement
of a minimum vertex cover is a maximum independent set, and the maximum independent
set problem is studied in several papers using the MCMC approach [12, 13, 14]. There are
several NP-hard graph separating problems with different formulations (e.g., cutting edges
or removing nodes) including [34, 35].
Markov Chain Monte Carlo method in reliability engineering: The Markov Chain
Monte Carlo (MCMC) method has been extensively applied to many difficult and NP-
hard problems in reliability engineering. In [36], authors considered networks that consist of
system components operating in a randomly changing environment, and provided a Bayesian
network model to assess the network reliability. They demonstrated the efficiency of their
proposed MCMC method under this model in the reliability prediction. Similarly, Authors
in [37] adopted a Bayesian network model for the network failure identification problem in
consideration of the fact that many important network systems such as power grids and water
distribution systems exhibit nonlinear dynamics with uncertainty. Zuev et al.[38] adopted
the MCMC method to compute the network failure probability. Beck et al. [39] proposed an

4An α-coseparator is the complement of an α-separator.
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adaptive MCMC simulation approach to evaluate the integral of posterior probabilities in a
full Bayesian probabilistic framework for robust system identification, where the integration
is difficult because the dimension of the parameter space is usually too large for direct
numerical integration. Authors in [40, 41] used MCMC to solve reliability estimation and
residual life estimation problems.

3. System Model

We consider a simple graph G = (V,E) with |V | = n. We denote N (v) as a set of
neighbors of a node v ∈ V . We assume that the attack cost is homogeneous across nodes.
Our results can be readily extended to the case of heterogeneous attack costs, which will be
discussed later. An α-separator W for 1/n ≤ α < 1 is defined as a subset of nodes such that
the sizes of all components in the graph G \W is smaller than or equal to αn.5 We call this
an α-separating condition. G\W = (V \W,E(V \W )) is obtained after removing the nodes
in W and all their incident edges, where E(V \W ) = {(i, j) ∈ E|i ∈ V \W, j ∈ V \W}.

The α-separator problem for 1/n ≤ α < 1 is to find a minimum α-separator6 as follows:

min
W⊆V

|W | subject to f(G \W ) ≤ αn, (1)

where f(G) is the size of the largest connected component in G. We denote m = bαnc.
In Proposition 7.3 of [6], the authors show that there is a polynomial reduction from

the minimum vertex cover problem to the α-separator problem. Therefore, the α-separator
problem is NP-hard.

We define H as the set of α-separators. In the next section, we develop a random walk
algorithm over H such that the random walk is more likely to jump towards better solutions
(i.e., α-separator with a smaller size). Then, we will analyze the properties of this random
walk algorithm.

4. Random walk algorithm

We develop a random walk algorithm over a Metropolis chain for the α-separator prob-
lem. Our random walk algorithm takes one of three actions in each step: (1) remove v from
the attack setW , (2) add a vertex v inW , and (3) stay at the current state. To compute the
sizes of connected components after each action in an efficient way, we apply a simple data
structure and an update mechanism, which will be explained shortly. The formal algorithm
description is as follows:

A random walk algorithm for the α-separator problem

5From the attacker’s point of view, the value of α is determined by the topology and physical properties
of the network. For instance, with the same topology, power grid and water distribution networks may have
different thresholds for the size of the connected component which trigger cascading failures.

6The minimum α-separators may not be unique.

5



1 

Hk	


Hk+1	


Hk-1	


1/2	

ρ/2	


Hn	
…
	


…
	


Hmin	


Hk
LO	


…
	


…
	


p-(k)	


p+(k)	
 ρ	
  (<1)	


Figure 1: Illustration of a hierarchical Markov chain of α-separators. Each circle indicates a state (i.e.,
α-separator) and two neighboring states are connected by a line, if they can be transitioned to another state
in one step with vertex addition (i.e., towards higher hierarchy) or removal (i.e., towards lower hierarchy).
Note that vertex addition is accepted with probability ρ and vertex removal is accepted only if the attack
set after vertex removal W \ {v} satisfies the α-separating condition (i.e., the attack set is an α-separator.).

1: W = V ; Wmin = W .

2: head(v) = v,∀v ∈ V ; cluster(v) = {v},∀v ∈ V .

3: for step = 1 to numStep

4: Pick a vertex v ∈ V uniformly at random.

5: If v ∈ W ,

6: newClusterSize = 1 +
∑

i∈∪j∈N (v)\W head(j) |cluster(i)|.

7: if newClusterSize ≤ αn,

8: W = W \ {v}; if |W | < |Wmin|, Wmin = W .

9: cluster(v) = ∪i∈∪j∈N (v)\W head(j)cluster(i) ∪ {v}.

10: for i ∈ cluster(v),

11: head(i) = v.

12: end for

13: end if

14: else if v /∈ W , with probability ρ,

15: W = W ∪ {v}.
6



16: head(i) = i for i ∈ N (v) \W .

17: for i ∈ N (v) \W ,

18: if head(i) = i,

19: cluster(i)← graphTraverse(i, G \W )

20: head(j) = i, ∀j ∈ cluster(i)

21: end if

22: end for

23: end if

24: end for

Our random walk algorithm runs over an underlying Markov chain (also called a Metropo-
lis chain specifically), as illustrated in Fig. 1 (we will explain the hierarchy later). Each
α-separator is a state of the Markov chain. The stationary distribution derived from the
random walk algorithm that we designed is as follows [42].

π(W ) =
ρ|W |

Z
, (2)

where Z is a normalization constant. This can be easily checked from balance equations. The
parameter ρ quantifies the tradeoff between the quality of the solution and the convergence
speed to the steady state. For ρ < 1, α-separators with a smaller size have higher stationary
distribution. As ρ becomes smaller, the random walk favors states with smaller sizes and
the stationary distribution gets higher for optimal solutions (i.e., minimum α-separators).
However, a very small value of ρ may lead to prohibitively long convergence time. An
important question in a random walk algorithm over a Markov chain is how long it takes to
obtain the optimal solution, e.g., the first passage time to the optimal states. We conduct the
first passage time analysis in the next section. Here, we first describe the main procedures
of the random walk algorithm, and explain the data structure for efficient computation of
component sizes.

The random walk algorithm works as follows. We illustrate the transitions of our random
walk algorithm in Fig. 2. Initially, the attack set W is set to be the set of all vertices, V
(line 1). Wmin tracks the smallest α-separator that has been found. Trivially, W = V is
an α-separator for any α. At each step, we first pick a vertex v randomly (line 4). There
are two cases: (i) v ∈ W and (ii) v /∈ W . For the first case, our algorithm aims to remove
v from the attack set W . The α-separating condition is checked in lines 6-7, which will be
explained shortly. If W \ {v} is an α-separator, this jump to the lower hierarchy (W to
W \{v}) is accepted. For the second case, our algorithm aims to add v inW . SinceW ∪{v}
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Figure 2: The transitions in the random walk algorithm.
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Figure 3: An example of vertex removal and addition to W and updates of heads and clusters.

is always an α-separator if W is an α-separator, we do not need to check the α-separating
condition. We accept this jump with probability ρ for ρ < 1. This backward jump towards
a higher state may slow down the random walk to optimal solutions, but it is necessary to
escape local optima. This random walk algorithm leads the stationary distribution of states
given in Eq. (2).

An integral step to realize our random walk algorithm is to implement a sub-module that
computes the size of the largest connected component, after adding or removing a vertex
from the attack set, W . This requires knowledge of the sizes of all connected components.
To do this efficiently, we construct a simple data structure for each vertex and connected
component, as illustrated in Fig. 3. In our data structure, each vertex v keeps track of a
head vertex head(v), which is the head vertex of the connected component that the node v
belongs to. There is only one head vertex in each connected component. The head vertex h
of each connected component records all the associated vertices in cluster(h), which is the
set of nodes in the head vertex h’s connected component.

Updating this data structure after removing or adding a vertex v fromW is as follows (see
Fig. 3). If v ∈ W , we first compute the size of the connected component that v is associated
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with. Since this component is the only one that changes its size, if the size of this component
is less than or equal to αn, the vertex addition of v is acceptable. When the new connected
component satisfies the condition, a vertex v is removed fromW . The vertex v is assigned as
a head vertex of this component and the set of associated vertices (i.e., cluster) is updated
accordingly. If v /∈ W , the vertex v is added to W with probability ρ. After v is included
in W , the connected component that v was associated with can be divided into multiple
components. To track this, we need to traverse from each neighboring vertex of v, until all
the neighboring vertices are visited (lines 16-22). The procedure, graphTraverse(i, G \W ),
traverses the graph G \W starting from node i and returns the connected component (i.e.,
cluster) of node i. Note that if some neighboring nodes are connected to the node i (e.g.,
nodes 2 and 1 in Fig. 3 (b)), the head node of these nodes will be updated as i in line
20. It can be implemented as either breadth-first search or depth-first search, where the
complexity of them is O(|V | + |E|), where |V | is the number of vertices and |E| is the
number of edges in G \W . Note that the number of graph traversals is at most the number
of neighboring nodes, which is O(n). The complexity in vertex removal from W is O(|V |)
and complexity in vertex addition to W is O(|V | + |E|). Therefore, the overall complexity
is O(|V |2 + |V ||E|)×numStep, or O(n3)×numStep, where numStep is the number of steps
to run.

In our random walk algorithm, “numStep” should be chosen appropriately to ensure that
a minimum α-separator will be achieved. However, in MCMC approaches, it is hard to tell
when the chain converges to equilibrium in general. One can use diagnostic tests [43] such as
the Geweke diagnostic [44] to detect the convergence of a Markov chain. Still, convergence
to equilibrium does not guarantee that an optimal solution is found (i.e., visited). Hence,
in the next section we study how many steps our random walk algorithm takes to find an
optimal solution, where numStep will be set accordingly with some margin.

4.1. Generalization to non-uniform node weights
In many practical networks, nodes generally have different weights or importance. Then,

the size or proportion of a component is a weighted sum of its nodes’ weights, and the
problem is to find a minimum weighted separator that partitions the graph into components
of sizes smaller than or equal to α fraction of the total sum weights. Accordingly, their
attack costs can be also dependent on node weights possibly because of the different levels
of protection. For simplicity, we use the same weight for a node’s size and attack cost. To
account for non-uniform node weights, one could directly apply our algorithm by changing
the acceptance probability with the weighted sum cost objective. However, our analytical
results in Section 5 are not applicable in the case of non-uniform node weights. The formal
algorithm description for non-uniform node weights is as follows, where the node weight of
node v is denoted as ω(v):

A random walk algorithm for non-uniform node weights

1: W = V ; Wmin = W .
9



2: head(v) = v,∀v ∈ V ; cluster(v) = {v},∀v ∈ V .

3: for step = 1 to numStep

4: Pick a vertex v ∈ V uniformly at random.

5: If v ∈ W ,

6: newClusterSize = ω(v) +
∑

i∈∪j∈N (v)\W head(j)
∑

k∈cluster(i) ω(k).

7: if newClusterSize ≤ α
∑

i∈V ω(i),

8: W = W \ {v}; if
∑

i∈W ω(i) <
∑

i∈Wmin
ω(i), Wmin = W .

9: cluster(v) = ∪i∈∪j∈N (v)\W head(j)cluster(i) ∪ {v}.

10: for i ∈ cluster(v),

11: head(i) = v.

12: end for

13: end if

14: else if v /∈ W , with probability ρω(v),

15: W = W ∪ {v}.

16: head(i) = i for i ∈ N (v) \W .

17: for i ∈ N (v) \W ,

18: if head(i) = i,

19: cluster(i)← graphTraverse(i, G \W )

20: head(j) = i, ∀j ∈ cluster(i)

21: end if

22: end for

23: end if

24: end for

10



An alternative way is to transform the network graph by duplicating nodes such that the
number of copies of a node is equal to its weight (assuming integer weights). The neighboring
nodes of a duplicated node is the same as the original node including all neighbors’ dupli-
cated nodes. Our random walk algorithm for uniform node weights can be applied to this
transformed network, and it will find a solution to the weighted α-separator problem. This
approach may suffer from increased computational complexity as the number of duplicated
nodes can be large. Unlike the weighted version of random walk algorithm, our analysis
using the hierarchical Markov chain model is valid for this transformation approach. We
will run and compare both algorithms in Section 6.

4.2. Cooling Schedule: Convergence to Optimal States
So far, we have used a fixed parameter ρ that tradeoffs the convergence speed and the

quality of the solution, for the analysis. This parameter is related to the “temperature” T
in simulated annealing, where ρ = e−

1
T . When ρ becomes high or the temperature is high,

the random walk is likely to escape local optimum points, but the stationary distribution at
global optimum points becomes small, and vice versa. The simulated annealing is intended
to choose the temperature parameter T (and correspondingly ρ) as a time-varying function
(referred to as cooling schedule) so as to ensure the convergence of the state to the optimal
points in a suitable sense. In this section, we discuss how to choose the schedule ρ(t) so as to
ensure the convergence of the state to the optimal points. We abuse the notation to define
ρ(t) as the control parameter at step t. In the following theorem in [45], the optimality of the
inverse logarithmic schedule is guaranteed under some conditions. We will find a sufficient
condition to apply this theorem to our minimum α-separator problem.

Theorem 1 (Optimality of the cooling schedule [45]) Consider the inverse logarith-
mic cooling schedule defined as

ρ(t) = t−
1
d , t ≥ 1, (3)

where d is the depth of the problem, which is the least number such that for anyW ∈ H, there
exists a path W0 = W,W1,W2, · · · ,Wp = Wmin ∈ Hmin such that maxm≤p{|Wm| − |W |} ≤ d.
Then, the chain converges almost surely in the Cesaro sense to the set of global minima, i.e.,

lim
τ→∞

1

τ

τ∑
t=1

1{Wt∈Hmin} = 1 almost surely, (4)

where 1{·} is the indicator function and Wt is the state at step t.

In our α-separator problem, d = n−min suffices for the theorem to hold, where min is the
size of a minimum α-separator, because the size of an α-separator is always less than or equal
to the number of vertices. We note that this cooling schedule guarantees to find optimal
solutions in theory, but the convergence speed can be often extremely slow in practice. In
Section 6, we will show that a cooling schedule with d smaller than n −min, is enough for
the underlying Markov chain to converge in cubic steps of the number of nodes, n.
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5. First passage time analysis

In this section, we analytically characterize how long it takes to obtain the optimal
solution, e.g., first passage time to an optimal state, based on a hierarchical Markov chain
under uniform node weights and a fixed cooling parameter ρ. There are several existing
works such as coupling techniques to the polynomial convergence of Markov Chain Monte
Carlo methods [12, 13, 14]. In most problems that use coupling techniques, the transitions of
a node only depend on neighboring nodes, such that they can show the speed of convergence.
However, in the minimum α-separator problem, the sizes of components do not depend only
on neighboring nodes, and thus we are unable to use these existing techniques. To that
end, we conduct an approximate analysis on first passage time that can be applied to many
general topologies.

For the approximate first passage time analysis, we introduce a Hierarchical Markov
Chain (HMC), which groups states with the same sizes of alpha-separators into the same
hierarchy. We recall that H is the state space of all α-separators. We define Hk as the k-th
hierarchy in H, which is the set of states in H with k vertices, and H = Hn∪Hn−1∪ ...∪Hmin

where min is the size of a minimum α-separator. At each step of our algorithm, the hierarchy
can be changed by at most one. Over this hierarchical Markov chain, we first find an
approximate recursion formula for the first passage times of hierarchies. This recursion
formula will be used to derive a sufficient condition for polynomial first passage time. Later,
we will also analyze when the sufficient condition is satisfied.

Let Xt be the state at time t. The first passage time from a state in the k-th hierarchy
Hk is defined as τk = min{t > 0|X0 ∈ Hk, Xt ∈ Hmin}. Trivially, τmin = 0. The expected
first passage time is denoted as Lk = E[τk]. For the expected first passage time, we have the
following approximated recursion formula for k > min:

Lk = p+(k)Lk+1 + p−(k)Lk−1 + (1− p+(k)− p−(k))Lk + 1, (5)

where p+(k) = ρ · n−k
n

, and p−(k) = k
n
· |Hk−1|·(n−k+1)

|Hk|·k
. The value p+(k) is the probability

that there is a transition from k-th hierarchy to (k + 1)-th hierarchy, and p−(k) is the
probability that there is a transition from k-th hierarchy to (k − 1)-th hierarchy, assuming
that every state in the same hierarchy has the same transition probability to the upper/lower
hierarchy. For other cases (with probability 1 − p+(k) − p−(k)), the random walk stays at
k-th hierarchy. Note that vertex addition is proposed with probability n−k

n
(i.e., P[v /∈ W ]),

W ∪ {v} is always an α-separator, and it is accepted with probability ρ. Vertex removal
is proposed with probability k

n
(i.e., P[v ∈ W ]), and the probability that W \ {v} is an

α-separator is |Hk−1|·(n−k+1)

|Hk|·k
which is the number of possible transitions from k-th hierarchy

to (k−1)-th hierarchy (i.e., |Hk−1| ·(n−k+1)) over the number of proposed vertex removals
(|Hk| · k). For the number of possible transitions, note that it is the same as the transitions
from (k − 1)-th hierarchy to k-th hierarchy. By arranging the terms in Eq. (5), we have

Lk − Lk−1 =
p+(k)

p−(k)
(Lk+1 − Lk) +

1

p−(k)
, (6)
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where p+(k)
p−(k)

= ρ(n−k)|Hk|
(n−k+1)|Hk−1|

and 1
p−(k)

= n|Hk|
(n−k+1)|Hk−1|

.
We note that this is an approximation, since states in the same hierarchy can have

different transition probabilities. The recursion formula is accurate when the states in a
hierarchy are homogeneous in terms of transition probabilities (upwards and downwards).
A star-like topology is an example instance where the homogeneous assumption is clearly
true.7

Using the recursion formula, we find the following sufficient conditions under which the
approximate first passage time is polynomial.

Proposition 1 The approximate first passage time from Eq. (6) is polynomial if (i) |Hk|/|Hk−1|
is polynomially bounded, and (ii) ρ−1 is polynomially bounded and ρ−1 ≥ |Hk|/|Hk−1|.

Proof When k = n, Ln − Ln−1 = n|Hn|
(n−k+1)|Hn−1| which is polynomial from |Hn| = 1 and

|Hn−1| ≤ n. As both ρ(n−k)|Hk|
(n−k+1)|Hk−1|

and n|Hk|
(n−k+1)|Hk−1|

in Eq. (6) become polynomial from
the conditions, we can iteratively conclude that Lk − Lk−1 are polynomial from k = n to
k = min +1. By summating all Lk − Lk−1 from k = n to k = min +1, we can conclude that
Ln is polynomial.

We then investigate when the first condition is satisfied (i.e., |Hk|/|Hk−1| is polynomially
bounded) in Proposition 2. The second condition can be easily satisfied by setting ρ to a
sufficiently small value.

Proposition 2 Let w∗T (n) be the size of a minimum α-separator for a graph topology T
of n nodes. Then, |Hk|/|Hk−1| = O(nw

∗
T (n)+1) for k ≥ w∗T (n) + 1. Therefore, if w∗T (n) is

independent of n, or constant, |Hk|/|Hk−1| is polynomially bounded.

Proof For simplicity, let w∗ = w∗T (n) in this proof. For a minimum α-separator of size w∗,
an attack set W that contains these nodes is definitely an α-separator. In the (k − 1)-th
hierarchy, the number of such α-separators is

(
n−w∗
k−1−w∗

)
. Therefore, the size of |Hk−1| is lower

bounded as

|Hk−1| ≥
(

n− w∗

k − 1− w∗

)
.

Let H̄k−1 be the set of W ⊆ V with size k − 1, which is not an α-separator. Then,

|H̄k−1| =
(

n

k − 1

)
− |Hk−1| =

(
n

k − 1

)
−
(

n− w∗

k − 1− w∗

)
.

7We define a star-like topology as the graph with star nodes that are connected to all nodes and all
other nodes are only connected to star nodes. When there is only one star node, we have the standard star
topology.
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Now, we find an upper bound of |Hk| using Hk−1 and H̄k−1. For a subset or state W
in Hk, there are only two cases: W edge that has an edge to a state in Hk−1 (by removing a
node), and W noEdge that has no edge to any state in Hk−1. For the first case, the maximum
possible number is (n− k + 1)|Hk−1|, since each state W ′ in Hk−1 can be transitioned to at
most n−k+ 1 states in Hk (by adding a node from V \W ′). For the second case, each state
W noEdge in Hk can be obtained by adding one node from a state W ′ in H̄k−1. Therefore, the
maximum possible number of such W noEdge in Hk is (n− k+ 1)|H̄k−1|. By summating these
two cases, we have the following inequality, which concludes the proof:

|Hk|
|Hk−1|

≤ (n− k + 1) +

((
n
k−1

)
−
(
n−w∗
k−1−w∗

))
(n− k + 1)(

n−w∗
k−1−w∗

)
=

(
n
k−1

)(
n−w∗
k−1−w∗

)(n− k + 1) = O(nw
∗+1).

We note that in several simple topologies, the size of a minimum α-separator does not
scale with the graph size, n. For a balanced tree topology such as a complete k-ary tree,
the size of a minimum α-separator does not scale with the graph size since the portion of
all leaf nodes of a node in depth (depth= 1 for the root node) is bounded by 1

kdepth . Also,
in line, circle, and star-like topologies, it is easy to check that the size of a minimum α-
separator does not scale with the graph size. We note that Mohamed et al. [6] developed
deterministic polynomial-time algorithms for trees and cycles, which exploit the special
structure of graphs. While their algorithms require knowledge of the type of the topology,
our random walk algorithm does not need any prior information about the graph topology.

5.1. First passage time in a star topology
As an example, we compute the expected first passage time in a star topology using our

recursion formula.

Proposition 3 For a star topology, the expected first passage time when ρ = O( 1
n
) is

Ln = O(n2). (7)

Proof Let ρ = c
n
for a constant c. In a star topology, min |W | = 1 and L1 = 0. The

first passage time from hierarchy n to 1 is divided into two parts: (i) Ln − Ln−m−1 (from
hierarchy n to n − m − 1) and (ii) Ln−m−1 − L1 (from hierarchy n − m − 1 to 1) where
m = bαnc.
(i) Ln − Ln−m−1 = O(n2):

Let H1
k and H0

k be the set of states that the star node is included (1) and not included
(0) in the attack set. Then, Hk = H1

k ∪ H0
k . L1

k and L0
k are the average first passage time

14



from H1
k and H0

k , respectively. In k-th hierarchy for n−m+ 1 ≤ k ≤ n, the following holds
from the transition probability:

L1
k =

ρ(n− k)

n
L1
k+1 +

k − 1

n
L1
k−1 +

1

n
L0
k−1 +

(
1− ρ(n− k)

n
− k

n

)
L1
k + 1.

By arranging the terms,

L1
k − L1

k−1 =
ρ(n− k)

k − 1
(L1

k+1 − L1
k) +

1

k − 1
(L0

k−1 − L1
k) +

n

k − 1
.

When k = n −m, the transition to the lower hierarchy is not accepted if the star node is
chosen to be removed from the attack set. Thus,

L1
n−m − Ln−m−1 =

ρ ·m
n−m− 1

(L1
n−m+1 − L1

n−m) +
n

n−m− 1
.

Now, we find an upper bound for L0
k. We note that L1

k ≤ L1
k+1 since the states in H1

k

have one less number of nodes to remove than states in H1
k+1. Consider the path from a

state in H0
k to H1. This path should have a transition from H0

j to H1
j+1 for j such that

n−m + 1 ≤ j ≤ n− 1, which adds the star node to the attack set. Since L1
j+1 ≤ L1

n = Ln
(from L0

n = ∅) and it takes n
ρ
steps on average to choose the star node and add it,

L0
k ≤ Ln +

n

ρ
, for n−m ≤ k ≤ n− 1. (8)

By applying the above inequality to Eq. (8),

L1
k − L1

k−1 ≤
ρ(n− k)

k − 1
(L1

k+1 − L1
k) +

1

k − 1
(Ln − L1

k) +
n

k − 1

(
1 +

s

ρ

)
.

By summating all equations from k = n to k = n−m, we can conclude that Ln−Ln−m−1 =
O(n2).
(ii) Ln−m−1 − L1 = O(n log(n)):

For the hierarchy below n−m− 1, the star node should be included in the α-separator.
Then, from the recursion formula in Eq. (6),

Lk+1 − Lk =
ρ(n− k − 1)

k
(Lk+2 − Lk+1) +

n

k
, (9)

for 1 ≤ k ≤ n−m− 2. Since the transition probabilities of states in the same hierarchy are
identical, this recursion formula is exact for a star-like topology. From Eq. (9), for the 1-st
hierarchy,

L2 − L1 =
n

1
+
c(n− 2)

n
(L3 − L2) ≤

n

1
+
cn

2
+
c

2
(L4 − L3) ≤ n

∞∑
i=1

ci−1

i!
≤ n · e

c − 1

c
. (10)

Similarly,

Lk+1 − Lk ≤
n

k
· e

c − 1

c
, (11)

for 2 ≤ k ≤ n −m − 2. By summing up for all hierarchies and using
∑n

i=1
1
i
≤ log(n) + 1,

we can conclude that Ln−m−1 − L1 = O(n log(n)).
15



(a) US fiber networks. (b) Italian power grid. (c) Italian Internet
networks.

Figure 4: Minimum α-separators in real topologies (marked as ‘x’) obtained from our random walk algorithm
for α = 0.25. The dotted lines indicate the links that are attached to the minimum α-separators. (a)
min |W | = 11, (b) min |W | = 8, and (c) min |W | = 4.

6. Simulation results

In this section, we run our random walk algorithm and other heuristic algorithms over
diverse topologies, including real topologies from US fiber networks [15] and Italian power
grid [16, 17]. We compute the average first passage time to a minimum α-separator, and
validate our analytical results. We also compare our random walk algorithm with other
heuristic algorithms: highest-degree-first and greedy algorithms from the perspective of the
largest component for a given budget (i.e., the same number of attacked nodes), and show
that our random walk algorithm performs better than these algorithms.

6.1. Baseline algorithms
We compare our random walk algorithm with exhaustive search up to some number of

vertices and two simple heuristic algorithms: highest-degree-first and greedy. The attack
set is initialized to an empty set (i.e., W = ∅) for both algorithms.
Highest-degree-first: Attack vertices are chosen in the order of their node degree, i.e.,
the number of neighboring vertices. If several vertices have the same degree, one of them is
chosen randomly to break the tie.
Greedy: In each iteration, for each candidate vertex that is not in W , it computes the
size of the largest connected component after adding the vertex. Then, the vertex with the
largest marginal decrease is chosen. If multiple vertices have the same marginal decrease,
one of them is chosen randomly.

6.2. Graph topologies
We test the algorithms over various real and generated topologies. For real topologies,

we use US fiber networks of 20 Internet providers [15] and Italian power grid and Internet
network [16, 17], as depicted in Fig. 4. The US fiber networks have 273 nodes and 542 edges.
The Italian power grid has 310 nodes (100 junctions, 113 generator units and 97 loads) and
347 edges. Italian Internet networks, dedicated to linking Italian universities and research
institutions, have 39 nodes and 50 edges. We also test our algorithm over a large-scale
power grid in the Western US with 4941 nodes and 6594 edges [46, 47]. We find that US
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Figure 5: Degree distributions of real topologies. The x-axes of (a), (b), and (d) are in linear scale, and the
x-axis of (c) is in log scale.

fiber networks, Italian power grid, and Western US power grid follow exponential degree
distributions and Italian Internet networks follow a power-law degree distribution, as shown
in Fig. 5.

We also test star, binary tree, line and circle topologies, as well as randomly generated
topologies: Erdos-Renyi graph [48], random graphs from the configuration model [49, 50].
In the configuration model, each node is first assigned a degree, drawn from a degree distri-
bution. Then, a random graph is constructed by choosing a uniformly random matching on
the degree “stubs” (half-edges). For the degree distributions, we use power-law and exponen-
tial distributions with the parameters obtained from real topologies (power-law distribution
from the Italian Internet graph and exponential distribution from US fiber networks).

6.3. Minimum α-separators on real topologies
We run our random walk algorithm on real topologies for α = 0.25, which is used

throughout this section. The parameter ρ is set to be 4/n. The sizes of the minimum α-
separators in US fiber networks and Italian power grid are 11 nodes and 8 nodes, respectively.
By averaging 100 simulations, we find that the average first passage times are 3.16 × 105

(= n2.26) and 3.1× 105 (= n2.2) steps. We depict the minimum α-separators obtained from
our random walk algorithm for α = 0.25 in Fig. 4. In US fiber networks, dense areas are
in the east and west coasts, which can be shortsightedly regarded as primary targets of an
attacker. However, the minimum α-separator is not concentrated in the dense area, but in
the middle of the large components. Similarly, the α-separator in the Italian power grid cuts
large balanced components. Therefore, this result shows that in real networks hub nodes
are not necessarily a good target, and other non-hub nodes may be critical and should be
fortified.

6.4. First passage time on various topologies
We run our random walk algorithm over various topologies with α = 0.25, and compute

the average first passage time to a minimum α-separator. We summarize the results in
Table 1. In all test cases, our random walk algorithm converges to a minimum separator
within n3 steps, where the average first passage time depends on the graph structure. To
further explore how the average first passage time increases with the graph size, we run our
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Table 1: Average first passage times of our random walk algorithm and the sizes of the minimum α-separators
for α = 0.25.

Topology n (# of nodes) Avg. degree min |W | Ln

Star 273 2(n−1)
n

=1.99 1 n1.72

Binary tree 273 2(n−1)
n

=1.99 2 n1.97

Line 273 2(n−1)
n

=1.99 3 n2.7

Circle 273 2 4 n2.34

Erdos-Renyi 273 2 12 n2.47

Configuration 273 2.24 14 n2.41

(exponential)†

Configuration 39 2.56 4 n1.84

(power-law)]

Real (US fiber) 273 3.97 11 n2.26

Real (Italian power) 310 2.24 8 n2.2

Real (Italian Internet) 39 2.56 4 n2.07

Real (West US power) 4941 2.67 18 n2.24

†: The exponent is λ = 2.24. This parameter is chosen to have the same average degree as
the US fiber network.
]: The exponent is β = 2.01, where the probability density function p(x) ∼ x−β. This
parameter is chosen to have the same average degree as the Italian Internet graph.
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Figure 6: Average first passage times for different graph sizes, n, in generated topologies, and their fittings
to a function f(n) = a× nb that minimizes the sum of square errors.

random walk algorithm by scaling the networks up to 512 nodes for the simple topologies
and randomly generated topologies, and summarize the results in Fig. 6. The best fittings
to a function f(n) = a× nb with the smallest sum of square errors show that the exponents
of all tested topologies are less than 3, implying that the average first passage time is O(n3).
We find that on average, the first passage time is smallest in the star topology. In randomly
generated topologies, we find that it takes a shorter time to find a minimum α-separator in
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Figure 7: Average first passage time to k-th hierarchy (Ln − Lk) in simulation and from analytical results,
in Italian Internet networks. We recall that when k = min |W |, Lk = 0. Thus, the leftmost point indicates
the average first passage time to a minimum α-separator.

the power-law graph than other graphs. There are a small number of hub nodes with high
node degree in the power-law graph, which is similar to the star node in the star topology.
These hub nodes are likely to be included in the small α-separator, under which our random
walk algorithm can move faster to the better states without removing these nodes. This is
because removing a hub node from an attack set W will be likely to break the α-separating
condition.

We also numerically validate approximate first passage time in Eq. (6). We first estimate
|Hk| by testing the α-separating condition for random subsets with size k. By multiplying
this probability with the number of possible combinations (i.e.,

(
n
k

)
), we obtain an estimate

of |Hk|. We then compute Lk from the recursion formula. In Fig. 7, we depict the average
first passage time from simulation and our approximate first passage time, for the Italian
Internet networks. As one can see, our analysis approximates the actual first passage time
fairly closely. This has also been observed in other simulations we have run, which we omit
for brevity. Thus, it is reasonable to use our approximation to estimate the expected first
passage time from the ratios of the hierarchies. The average steps to move to the lower
hierarchy typically takes much longer as the hierarchy approaches the minimum hierarchy,
since the probability that α-separating conditions are satisfied in each hierarchy decreases
as the hierarchy gets lower.

6.5. Comparison with other algorithms
We first explain the complexity of other compared algorithms - highest-degree-first,

greedy, and exhaustive search. The highest-degree-first algorithm sorts the vertices by their
degree at first. This only takes O(n log(n)) computations. To obtain the sizes of the com-
ponents, it runs a graph traverse algorithm at most n times. Thus, the complexity is O(n3).
The greedy algorithm needs to sort the vertices in each iteration, which takes O(n2 log(n))
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Figure 8: Sizes of the largest components for a given budget (i.e., size of the attack set) in various algorithms.

computations, but the complexity is still O(n3) from the graph traverses. For the exhaus-
tive search, it also requires computing the sizes of components for each subset, which takes
O(n3) computations. The number of subsets with m nodes is O(nm). Finding a minimum
takes O(nm) computations. Thus, the exhaustive search for subsets with m nodes takes
O(nm+3) computations. In conclusion, the highest-degree-first and greedy algorithms take
much shorter computation time than our random walk algorithm (with O(n3) iterations),
but we will show that their performance is much worse than our random walk algorithm.
The exhaustive search is optimal, but takes a very long time unless m is small.

In Fig. 8, we compare the sizes of the largest components obtained from our random walk
algorithm and other algorithms, in real topologies. For our random walk algorithm, we vary
α from 0.1 to 0.95. The sizes of the largest components of our random walk algorithm are
much smaller than those from other heuristic algorithms, highest-degree-first and greedy,
for the same number of nodes in the attack set. Also, the solution of our random walk
algorithm is the same as exhaustive search up to 3 attack nodes. Note that the complexity
of exhaustive search grows exponentially, and we only run exhaustive search up to 3 nodes.
Even the number of subsets with size 4 in the US fiber networks is

(
273
4

)
= 2.3× 108, which

takes extremely long to enumerate all of them and check the α-separating conditions.

6.6. Non-uniform node attack costs
As we discussed in Section 4.1, there are two ways to generalize our framework to non-

uniform node weights: (A) use our modified algorithm with the sum objective of node weights
(“random walk for non-uniform weights”), or (B) virtually duplicate nodes according to their
weights (“duplication”). To compare these two approaches, we use the Italian power grid
network with N = 310 (100 junctions, 113 generator units and 97 loads) [16]. To consider
non-uniform weights, we choose the node weights to be proportional to the amount of the
generated power (from generator units), or the amount of the consumed power (from loads).
We assume a unit node weight for the junctions. The distribution of the node weights or
the amount of power generated or consumed is depicted in Fig. 9. We round the amount
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Figure 10: The sum node weights of the minimum α-separator in our modified random walk algorithm and
duplication over the Italian power grid network.

of power to the nearest integer, for the duplication method. The sum node weights of the
current α-separator over the time steps are depicted in Fig. 10. The modified random walk
algorithm is much faster than the duplication method in finding a minimum weighted α-
separator. The reason is that the duplication method takes multiple steps to remove or add
a weighted node (with a node weight higher than 1) in the original graph. In other words,
all duplicated nodes of the weighted node should be chosen from the random node selection
to remove or add the weighted node. Also, high weight nodes are harder to be added to
the attack set once they are removed, since it is more unlikely to choose all the duplicated
nodes of a high weight node. These factors greatly slow down the random walk.
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ρ(t) = t−

1
2.5 , and their fittings to a function f(n) = a × nb that minimizes the sum of square errors, in

various topologies.

6.7. Inverse logarithmic cooling schedule
As in Section 4.2, the inverse logarithmic cooling schedule with an appropriate depth

parameter guarantees the optimality almost surely. In practice however, the convergence
speed can be extremely slow. Thus, we set d = 2.5 under which the chain converges in
polynomial steps, as depicted in Fig. 11. The first passage times in all topologies are similar
to the case when we used fixed parameter ρ. But we note that the stationary distribution
for the optimal states in the inverse logarithmic cooling schedule is higher than the fixed
case after sufficiently long steps, because ρ(t) = t−

1
d keeps decreasing over time.

7. Conclusion

In this paper, we developed a random walk algorithm based on a Metropolis chain to
solve the minimum α-separator problem. We analyzed the first passage time of our random
walk algorithm and investigated the conditions for polynomial first passage time, under the
homogeneous assumption for states in the same hierarchy. The conditions include simple
topologies where the sizes of minimum α-separators do not scale with the network size, e.g.,
star, line, circle, and balanced tree. Specifically, we showed that the first passage time in a
star topology is O(n2), where n is the number of nodes. We note that unlike the existing
polynomial time algorithm in [6] for trees, cycles, and stars, which requires knowledge of
the topology type in advance, our random walk algorithm does not require knowledge of
the topology type. Through simulations over real topologies and generated topologies, we
showed that the first passage time is less than n3 and validated our analysis for first passage
time. We then show that our random walk algorithm performs better than highest-degree-
first and greedy heuristic algorithms. In real topologies, we found that attacking a dense area
is not always an efficient solution to partition a network graph in order to trigger cascading
failures.

In this work, we primarily focused on identifying the weakest part of the network whose
removal can potentially lead to disastrous network failures. There are still several problems
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in this context that can be an interesting future direction. For example, one can study the
network structure which is more resilient to deliberate separation attacks, i.e., networks with
greater sizes of separators. Furthermore, our model in this work does not account for physical
interactions in real-world networked systems. Hence, it will be interesting to incorporate
physical dynamics, such as power flows in power grids, into our model and formulate the
separator problem in the new model. Here, the value of a network is not simply the number
of active nodes in the largest component anymore, but a function of active elements, which
captures the physical dynamics among them. This problem will be able to reveal the impact
of failures on network structure more precisely.
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