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Abstract—We consider a single-user secure data communi-
cation system. Data packets arriving at the transmitter are
enqueued at a data queue to be transmitted to the receiver
over a block fading channel, securely from an eavesdropper that
listens to the transmitter over another independent block fading
channel. Part of the data is secured by the available secrecy
rate while the other part is encrypted by the key bits, enqueued
at both the transmitter and the receiver. We first address two
separate problems in this paper: (1) with an average power
constraint, given any sample path of arrivals, how to admit
the arrivals and allocate power such that the long term average
secrecy rate is maximized and the maximum admission rate is
achieved while the data queue is kept stable; (2) with infinite
queue backlog, given any sample path of secrecy rate, how to
control the data transmission rate and key generation such that
a smooth transmission rate and then a small queueing delay are
achieved. We propose a power controller, transmission controller
and an admission controller based on simple index policies that
do not rely on any prior statistical information on the data arrival
process and channel conditions. We show that our controllers
have a provably efficient performance and solve the above two
problems simultaneously. Furthermore, for any given secrecy rate
sample path and correspondingly admissible arrival, we provide
a rate allocation policy which is sample-path queueing-delay
optimal.

I. INTRODUCTION

Motivated by the seminal paper by [1], there has been
a large number of investigations (e.g., [2]–[8]) on wireless
information theoretic secrecy. These studies have significantly
enhanced our understanding of the basic limits and principles
of the design and the analysis of secure wireless communica-
tion systems. Despite the significant progress in information
theoretic secrecy, most of the work has focused on physical
layer techniques. The application of wireless information
theoretic secrecy remains mainly unresolved as it relates to
the design of wireless networks and its impact on network
control and protocol development. Indeed, our understanding
of the interplay between the secrecy requirements and the crit-
ical functionalities of wireless networks, such as scheduling,
routing, and congestion control remains very limited.

To that end, there have been some recent efforts to utilize the
insights drawn from the aforementioned investigations on in-
formation theoretic secrecy to build secure wireless networks.
In [9]–[13] the fundamental capacity and connectivity scaling
laws of wireless networks with secrecy have been addressed.
In [14], [15], single hop uplink scenario has been considered

in which nodes enqueue arriving private and open data packets
to be transmitted to a base station over block fading channels.
A node is scheduled to transmit information privately from
the other nodes and rate is controlled carefully to maximize
an overall utility. The solution provided follows up on the
stochastic network optimization framework (e.g., as treated
in [16]–[20]) and generalizes the uplink scenario to incorporate
secrecy as a quality of service requirement.

In a separate direction [21] proposed the idea of the use of a
key queue in a single user system. There, a key queue is kept
at the transmitter and the receiver, separately from the data
queues. Instead of using the entire instantaneous secrecy rate
for information transmission at all times, some of it is utilized
to transmit key bits, generated randomly at the transmitter.
These stored key bits are used later to secure information bits
in such a way that, even when the instantaneous secrecy rate
is 0, information bits can still be transmitted to the destination
securely from the eavesdropper. Hence, the idea of key sharing
allows one to “bank” secrecy rates at certain times to be
utilized at other times. It is shown in [22] that, using this
idea, a long-term constant secrecy rate, identical to the secrecy
capacity (expected instantaneous secrecy rate) of the channel
is achievable.

In this paper, we address the single user setting in the
presence of arrival of data packets being enqueued at a data
queue to be transmitted to the receiver over a block fading
channel, securely from an eavesdropper that listens to the
transmitter over another independent block fading channel. We
consider two separate problems. In the first one, the objective
is to maximize a long-term average utility, which is a function
of the number of secure packets transmitted in each time
slot. In the second problem, the objective is to maximize
the long term admitted data rate under an average power
constraint, while keeping data queue stable. In both problems,
it is desirable to securely send as much data as possible at
all times. Thus, one would be inclined to exploit the entire
secrecy rate for data transmission in each time slot in a greedy
fashion, we show that this approach leads to a performance
loss. Instead, the use of a key queue leads to a “smoother”
secrecy rate, which in turn maximizes a concave utility, since
it is negatively affected by the second order factors caused by
the variability of the service.

We propose a cross-layer solution, composed of three con-
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Fig. 1. System model

trollers, working at different layers. The transmission con-
troller chooses the key generation (and transmission) rate along
with the secure data transmission rate in each time slot. The
admission controller chooses the amount of data admitted by
the transmitter to be enqueued in the data queue such that
the admission rate approaches the maximum secrecy rate. The
power controller allocates the power such that the secrecy rate
is maximized under the average power constraint. All three
components are based on simple index policies that do not rely
on any prior statistical information on the data arrival process.
We show that our controller achieves a utility, arbitrarily
close to the optimal utility. Also, we illustrate via simulations
that the use of key queue reduces the queuing delay for the
data packets, while serving packets that are admitted at the
maximum admissible rate. For any given secrecy sample path
and correspondingly admissible arrival, we also provide a rate
control policy which is sample path queueing delay optimal.

II. SYSTEM MODEL

We consider a single-user system illustrated in Fig. 1, in
which the transmitter enqueues data packets that wait to be
transmitted to the receiver over the main channel at a variable
power, securely from an eavesdropper, overhearing the trans-
mission over a separate channel. Time is slotted, and the time-
varying channel state of the main and the eavesdropper channel
follow general processes ~hm = {hm(0), hm(1), . . . , hm(T −
1), . . .} and ~he = {he(0), he(1), . . . , he(T − 1), . . .}, respec-
tively. In this paper, we assume perfect knowledge of these
channel states at the transmitter. With the transmission power
vector ~P = {P (0), P (1), . . . , P (T−1), . . .}, the instantaneous
rate of the receiver and eavesdropper at slot t are Rm(t) =
log

(
1 + P (t)hm(t)

)
and Re(t) = log

(
1 + P (t)he(t)

)
, re-

spectively. We also assume the time slots are long enough and
as shown in [1], the achievable instantaneous secrecy rate at a
given slot t is identical to Rs(t) =

(
Rm(t)−Re(t)

)+
, ∀t ≥ 0,

where (·)+ = max[·, 0]. In a given time slot, this rate is fully
utilized: part of it is used to secure data from the data queue
and the remaining part is used to transmit randomly generated
key bits to be stored at the both key queues at the transmitter
and the receiver. The size of the data and the key buffers are
infinite.

As shown in Fig. 1, the amount of secure data transmitted
at a time t is µ(t). A part (µk(t) bits) of this data is secured

using µk(t) key bits by a simple bit-by-bit XOR operation.
The remaining µ(t)−µk(t) bits is secured using the available
secrecy rate Rs(t). Since the secrecy rate is fully utilized, the
portion of the secrecy rate, not used to secure data is used
to generate Rk(t) key bits. The data arrivals to the system
is represented by the arrival process {A(t)}. The data queue
state is denoted by qd(t).

The Lindley equation that models the state evolution of the
key queue is:

qk(t + 1) = qk(t) + Rk(t)− µk(t).

The following lemma in [23] provides an equivalent model
with the constraints that specify the relationships between the
parameters.

Lemma 1: The key queue qk can be modeled with the
state evolution equation qk(t + 1) = qk(t) + Rs(t) − µ(t)
with the constraints 0 ≤ µ(t) ≤ min[qk(t) + Rs(t), Rm(t)],
0 ≤ µk(t) ≤ min[µ(t), Re(t)], and

(
µ(t)− µk(t)

)
+ Rk(t) =

Rs(t).

III. PROBLEM FORMULATION

We aim to design an efficient algorithm to control the power
and rate allocation such that the throughput of the system is
maximized with small queueing delay, under an average power
constraint. To achieve this, we first consider two separate
problems.

In our first problem, we assume an infinitely backlogged
data queue, i.e., qd(0) = ∞. The objective is to maximize
the long-term average utility, which is a function of the
transmission rate given any sample path of secrecy rate. Our
control parameters are the amount of used key bits µk(t), the
amount of served data bits µ(t), and the amount of generated
key bits Rk(t). In particular, we have:

(A) max
~µ,~µk, ~Rk

lim inf
T→∞

1
T

T−1∑
t=0

U
(
µ(t)

)

s.t. qk(t + 1) = qk(t) + Rs(t)− µ(t), (1)

0 ≤ µ(t) ≤ min
[
qk(t) + Rs(t), Rm(t)

]
, (2)

0 ≤ µk(t) ≤ min
[
µ(t), Re(t)

]
, (3)(

µ(t)− µk(t)
)

+ Rk(t) = Rs(t), (4)

where the utility function U(·) is assumed to be monotonically
increasing, reversible and differentiable on the half real line
<+

⋃{0}. Note that if there were no key queue, then we would
have qk(t) = 0, µ(t) = Rs(t), µk(t) = 0, Rk(t) = 0, ∀t ≥
0. Also note that, the maximum achievable average secrecy
rate is upper bounded by the average secrecy capacity R̄s =
lim infT→∞ 1

T

∑T−1
t=0 Rs(t).

In our second problem, we assume a general data arrival
process, {A(t)} at the input of the data queue. At time t,
only a portion R(t) of all arrivals are admitted into the data
queue in order to keep the data queue stable. All the admitted
packets are required to be served by the system eventually. In
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the second problem, our objective is maximize the long-term
average admitted data rate under an average power constraint.

(B) max
~R,~µ,~µk, ~Rk, ~P

lim inf
T→∞

1
T

T−1∑
t=0

R(t)

s.t. qd(t + 1) =
(
qd(t)− µ(t)

)+ + R(t), (5)
qk(t + 1) = qk(t) + Rs(t)− µ(t), (6)
0 ≤ R(t) ≤ A(t), (7)

0 ≤ µ(t) ≤ min
[
qk(t) + Rs(t), Rm(t)

]
, (8)

lim sup
T→∞

1
T

T−1∑
t=0

qd(t) < ∞, (9)

0 ≤ µk(t) ≤ min
[
µ(t), Re(t)

]
, (10)(

µ(t)− µk(t)
)

+ Rk(t) = Rs(t), (11)

Rs(t) =
(
Rm(t)−Re(t)

)+
, (12)

Rm(t) = log
(
1 + P (t)hm(t)

)
, (13)

Re(t) = log
(
1 + P (t)he(t)

)
, (14)

lim sup
T→∞

1
T

T−1∑
t=0

P (t) ≤ Pavg, (15)

0 ≤ P (t) ≤ Ppeak. (16)

Note that, the maximum achievable average secrecy rate,
which happens to be the objective function here, is upper
bounded by the average secrecy capacity R̄s. By controlling
the power allocation, we can first maximize the long term
average secrecy rate. Then, by using an independent admission
controller, we maximize the average admission rate that is
bounded by the maximum secrecy rate. Further, as we shall
show, R̄s can be achieved even without a key queue. However,
we will also illustrate that our solutions that involve the use
of the key queue lead to smaller queueing delays, compared
to the one without the key queue.

In these three problems, constraint (5) describes the data
queue evolution, and constraints (1) and (6) describe the key
queue evolution. Constraint (7) bounds the actual amount
of sensed data R(t) by the available amount of data A(t)
at time t. Constraints (2) and (8) state that the amount of
transmitted data is bounded by both the main channel rate and
the amount of keys available. Constraint (9) guarantees data
queue stability. Constraints (3) and (10) state that the amount
of key bits used to secure data is bounded by the eavesdropper
channel rate and does not exceed the amount of transmitted
data. Constraints (4) and (11) mean that the secure capacity is
fully utilized by the transmission of secure data and key bits.
Constraints (12), (13) and (14) are definitions of instantaneous
secrecy rate Rs(t), rate of receiver Rm(t) and eavesdropper
Re(t). Constraint (15) is the average power constraint and
constraint (16) is the peak power constraint.

Virtual Queues: In order to have a fair rate allocation, we
do not want the key queue to be drained frequently, which
would lead to outages whenever Rs(t) = 0. We define q̃k

as the virtual key queue and try to avoid key outage by
making the virtual key queue stable (similar ideas of utilizing

virtual queue are used in [20], [24]. The virtual queue evolves
according to the following equation:

q̃k(t + 1) =
(
(q̃k(t)− ε)+ + µ(t)−Rs(t) + 1o(t)

)+
, (17)

where ε > 0 can be chosen arbitrarily, and

1o(t) = 1key queue hits zero state from higher states in slot t

=
{

0 if µ(t) = 0 or µ(t) < qk(t) + Rs(t)
1 otherwise (18)

is the indicator that the key queue is drained in slot t. Without
loss of generality, the initial state q̃k(0) can be set to be zero.

Similarly, we define the following virtual power queue to
avoid the average power constraint being violated:

q̃p(t + 1) =
(
q̃p(t)− Pavg

)+ + P (t). (19)

IV. CONTROL ALGORITHM AND PERFORMANCE ANALYSIS

In this section, we provide a simple control algorithm,
analyze its performance, and show that its provably optimal
for all three problems described in the previous section.

A. Algorithm

Our algorithm for Problem (A) involves only a transmission
rate controller. The transmission controller attempts to provide
a smooth service by the help of the key bits.
Transmission Control (TC): We define V ∈ <+ to be the
control parameter of our algorithm. In slot t, the controller
solves the following optimization problem and transmits with
the calculated rate:

max
µ(t)∈Π(t)

V

2
U

(
µ(t)

)− q̃k(t)µ(t), (20)

where Π(t) = {µ(t) : 0 ≤ µ(t) ≤ min[qk(t)+Rs(t), Rm(t)]}
is a compact and nonempty set. Furthermore, key generation
and usage rates (Rk(t), µk(t)) are chosen as follows: If
µ(t) > Rs(t), then Rk(t) = 0 and µk(t) = µ(t) − Rs(t);
if µ(t) ≤ Rs(t), then µk(t) = 0 and Rk(t) = Rs(t) − µ(t).
This ensures that constraint

(
µ(t) − µk(t)

)
+ Rk(t) = Rs(t)

is satisfied. It is not surprising that µk(t)Rk(t) = 0, since any
solution with µk(t) > 0 and Rk(t) > 0, can be equivalently
replicated by using the secrecy rate to transmit data rather
than generating and using key bits at the same time. Note that
Rs(t) =

(
Rm(t)−Re(t)

)+ ≥ Rm(t)−Re(t), then for µ(t) >
Rs(t), we have µk(t) = µ(t) − Rs(t) ≤ Rm(t) − Rs(t) ≤
Re(t). This leads to constraint 0 ≤ µk(t) ≤ min[µ(t), Re(t)]
being satisfied.

The set, Π(t) of possible data transmission guarantees
constraint (2) on µ(t) in Problem (A). If U(·) is concave, the
objective function is a concave function of µ(t). Consequently,
TC solves a simple convex optimization problem in each
time slot. The positive term V

2 U(µ(t)) can be viewed as a
utility obtained from the transmission rate µ(t) and the term
q̃k(t)µ(t) can be viewed as its associated cost. When the
virtual key queue q̃k(t) is small, TC tries to allocate a high
amount of transmitted data to increase the utility; and when
q̃k(t) is large, TC allocates a small amount of transmitted data
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to reduce cost. This pushes the served data rate to be smoother
over time. It is also notable that (20) involves only µ(t). The
key generation and usage rates are not part of this optimization,
and are chosen subsequently.

In Problem (B), we need to control the transmission power,
admission and transmission rate such that the admitted rate
is maximized while keeping the data queue stable under an
average power constraint. In our algorithm, there are three
components: a admission control component, a transmission
control component, and a power control component. The
transmission control component is the identical to the one
described above for Problem (A), and the admission control
and power control component are as follows:
Admission Control (AC): In slot t, the controller solves
the following optimization problem and admit the calculated
amount of data arrivals:

max
0≤R(t)≤A(t)

V

2
U

(
R(t)

)− qd(t)R(t). (21)

Power Control (PC): In slot t, the controller solves the
following optimization problem and allocates the calculated
amount of power:

max
0≤P (t)≤Ppeak

V

2

(
log

(
1 + P (t)hm(t)
1 + P (t)he(t)

))+

− q̃p(t)P (t).

(22)

Note that, when hm(t) < he(t), i.e., the power gain of
the eavesdropper is larger, P (t) = 0 is the solution of
Equation (22). On the other hand, when hm(t) ≥ he(t), we
have

(
log

(
1 + P (t)hm(t)
1 + P (t)he(t)

))+

= log
(

1 + P (t)hm(t)
1 + P (t)he(t)

)

= log


hm(t)

he(t)
−

hm(t)
he(t) − 1

1 + P (t)he(t)


 , (23)

which is concave in P (t). Thus, Equation (22) is a concave
maximization problem under this situation.

Note that TC, AC and PC are all index policies, i.e.,
the solutions are memoryless and they depend only on the
instantaneous values of the system variables.

B. Performance Analysis

Recall that A(t) is the original data arrival and R(t) is the
amount of data admitted to the data queue. The natural ques-
tion one would ask here is, whether our admission controller
rejects too many packets in the first place to synthetically keep
the data queue stable. In the following theorem, we show that
this is not the case. Indeed, the admission rate associated with
AC and TC can be made closer to the optimum by increasing
the control parameter V . We use the notation y = O(x) to
represent y going to 0 as x goes to 0.

Theorem 1: If
1) U(·) is strictly concave on <+

⋃{0}, and its slope at 0
satisfies1 0 ≤ β = U ′(0) < ∞,

1For instance, U(1 + R) = log(1 + R).

2) 0 ≤ lim supT→∞
1
T

∑T−1
t=0 A2(t) < ∞,

then TC achieves:

lim inf
T→∞

1
T

T−1∑
t=0

U(µ(t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

U(µ∗(t))−O(
1
V

),

(24)

PC achieves:

lim inf
T→∞

1
T

T−1∑
t=0

Rs

(
P (t)

) ≥ lim inf
T→∞

1
T

T−1∑
t=0

Rs

(
P ∗(t)

)−O(
1
V

),

(25)

lim sup
T→∞

1
T

T−1∑
t=0

P (t) ≤Pavg, (26)

and AC achieves:

qd(t) ≤ β
V

2
, ∀ t ≥ 0 (27)

lim inf
T→∞

1
T

T−1∑
t=0

U(R(t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

U(R∗(t))−O(
1
V

),

(28)

lim inf
T→∞

1
T

T−1∑
t=0

R(t) → lim inf
T→∞

1
T

T−1∑
t=0

R∗(t) as V →∞,

(29)

where ~µ∗ = {µ∗(0), µ∗(1), . . . , µ∗(T − 1), . . .}, and ~R∗ =
{R∗(0), R∗(1), . . . , R∗(T − 1), . . .} are the optimal solutions
to Problem (A) and (B), respectively.

The proof of Theorem 1 can be found in Appendix A.
Equation (27) shows that the data queue qd is stable and
Equation (26) shows that the average power is bounded. In
Equation (24) and Equation (25), the gap between the average
transmission rate and secrecy rate with our algorithm and the
optimal average transmission rate and secrecy rate can be made
arbitrarily small by choosing parameter V large. Similarly, by
Equation (29), the admission rate can be close to optimum with
large V , and the optimal admission rate is actually bounded by
the optimal secrecy rate. As a tradeoff, the data queue length
increases as V increases. Note that the how to control the
transmission rate does not really influence the optimality of
the solution for Problem (B). From Equation (28), we observe
that, if we plug the rates allocated by our algorithm in the
utility function, it still remains close to the utility achieved by
the optimal solution of Problem (B). This implies that, AC and
TC allocate rates smoothly over time, as opposed to the case
without a key queue. Based on this observation, combined with
Equation (24), we expect the queueing delay to be smaller with
a key queue. We will verify this in the following numerical
example.

C. Sample-path Optimal Policy for Time-Averaged Queue Size

Given any general time varying rate process
~Rm = {Rm(0), Rm(1), . . . , Rm(T − 1), . . .} and
~Re = {Re(0), Re(1), . . . , Re(T − 1), . . .} for the main
and the eavesdropper channel respectively, an arrival sample
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path ~A = {A(0), A(1), . . . , A(T − 1), . . .} is admissible
if there exists a transmission and key management policy
such that the resulting time-averaged queue length is finite,
i.e., lim supT→∞

1
T

∑T−1
t=0 qd(t) < ∞. In this section, we

study on the delay performance of our system. We limit our
attention to only admissible arrival processes and assume no
admission control, i.e., all arrivals are admitted to the system.
Furthermore, we assume constant transmission power. Next,
we specify the work-conserving policy, µ, for transmission
control and show that it achieves the minimum time-averaged
queue length lim supT→∞

1
T

∑T−1
t=0 qd(t), for any sample

path for the channel rates ~Rm, ~Re, and any associated
admissible arrival process, ~A. Hence, the work conserving
policy is the sample-path optimal policy for the average
queue size.

Work conserving policy serves the data queue at rate µ(t),
generates keys at rate Rk(t) and utilizes keys at rate µk(t) at
time t, where

µ(t) = min{qd(t) + A(t), qk(t) + Rs(t), Rm(t)},
µk(t) =

{
0, if µ(t) ≤ Rs(t)
µ(t)−Rs(t), otherwise

Rk(t) =
{

0, if µ(t) > Rs(t)
Rs(t)− µ(t), otherwise (30)

This policy satisfies all the constraints of the equivalent
model characterized in Lemma 1. The work conserving policy
allocates as high a service rate to the data queue as the channel
rates and the amount of key bits available allows. If the data
queue is empty, the available secrecy rate is not wasted and
key bits are generated and stored in the key queue.

Theorem 2: The work conserving policy, µ, is sample-path
optimal for the time-averaged queue size.
Proof: The proof is provided in Appendix B.

V. NUMERICAL EXAMPLE

In this section we simulate our algorithms and numerically
compare them with the optimal performance. In the simulation,
the number of time slots is T = 106. We use the utility
function U(x) = log2(1+x) ∀x ≥ 0. The main channel gain is
uniformly distributed over [0, 45] and the eavesdropper channel
gain is uniformly distributed over [0, 5]. We use rate power
function Rm = 10∗ log(1+gmP ) and Re = 10∗ log(1+geP )
for each slot. The average power upper bound is 1 and the
peak power is 2. We also set the virtual key queue parameter
ε = 0.01. As shown in Figure 2 (a), the power controller
achieves the optimal average secrecy rate R̄s = 28.3 as
increasing V .

We first use an arrival process A(t), t ≥ 0, that is composed
of independent Poisson random variables with mean 30 each
slot. In this example, Ā > R̄s. We run the simulation for
different values of the control coefficient V and compare the
results with the optimal value2. Figure 2(b) shows that, as V
increases, the average admission rate (both with and without a

2Note that the optimal value for Problem (A) is upper bounded by U(R̄s)
and for Problem (B) is min[Ā, R̄s].

key queue) also increases to the optimum, which is consistent
with Equation (29). In Figure 2 (c), one can observe that, as
V increases, the average utility of the transmission rate with
a key queue approaches the optimal value, which is consistent
with Equation (24). For the case without a key queue, the
average utility is smaller but not much in the Poisson arrival
scenario. As a result, the delay performance with a key queue
is also only a little better as we can see in Figure 2(d) for
Poisson arrivals.
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Fig. 2. Performance Evaluation of PC, AC, and TC with respect to
the solutions of Problem (A) and (B) under Poisson Arrivals: (a) Control
Parameter V vs. Average Secrecy Rate; (b) Control Parameter V vs. Average
Admission Rate; (c) Control Parameter V vs. Average Utility of Transmission
Rate; (d) Throughput vs. Delay Curve

Figure 3 illustrates the same scenario, with a more bursty ar-
rival process. This time, A(t) = 0 w.p. 1

2 and A(t) = 50 w.p. 1
2

independently for each time slot. Consequently, Ā = 25 < R̄s.
Similar observations to the previous case can be made with this
arrival process, but the delay performance with a key queue
is now much better than that without a key queue, for bursty
arrivals. Furthermore, in this case, the arrivals are admissible,
we also plotted the optimal delay curve in Figure 3 (c) and
(d) given the output secrecy sample of the power controller.

VI. CONCLUSION

In this paper, we considered a single-user secure data com-
munication system and addressed two separate problems, in
order to achieve optimal secrecy rate and admitted arrival rate,
and small queueing delay, under an average power constraint.
We proposed a transmission controller, a power controller and
an admission controller based on simple index policies that do
not rely on any prior statistical information on the data arrival
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Fig. 3. Performance Evaluation of TC and AC for Problem (A) and (B)
under Variable Arrivals

process. We showed that our controller pair has a provably
efficient performance. Also, we illustrated via simulations
that the use of a key queue reduces the queuing delay for
the data packets, while serving packets that are admitted at
the maximum admissible rate. This is due to the fact that,
the transmission controller is designed to choose the rate of
served packets as uniformly over time as possible. Finally,
for admissible arrival processes, we showed that the work
conserving policy is sample-path optimal for time-averaged
queue size.
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APPENDIX A
PROOF OF THEOREM 1

Proof of Equation (27): Equation (27) directly follows from
the following lemma:

Lemma 2: Under algorithm AC, TC and PC, we have

qd(t) ≤ βV

2
, q̃k(t) ≤ βV

2
, q̃p(t) ≤ V

2
.

Proof: Since U(·) is concave on <+
⋃{0}, we have

U(µ(t)) ≤ U(0)+βµ(t), ∀t ≥ 0, where 0 ≤ β = U ′(0) < ∞.
Then, V

2 U(µ(t))− q̃k(t)µ(t) ≤ V
2 U(0) + βV

2 µ(t)− q̃k(t)µ(t)
where µ(t) is the solution of TC.

If βV
2 µ(t) − q̃k(t)µ(t) < 0, then we get V

2 U(µ(t)) −
q̃k(t)µ(t) < V

2 U(0). However, TC chooses µ(t) that max-
imizes V

2 U(µ(t)) − q̃k(t)µ(t) which means V
2 U(µ(t)) −

q̃k(t)µ(t) ≥ V
2 U(0) since 0 ∈ Π(t). Then, we must have

βV
2 µ(t)− q̃k(t)µ(t) ≥ 0, i.e.,

q̃k(t)µ(t) ≤ βV

2
µ(t). (31)

We now prove the result by induction. Without loss of gen-
erality, let q̃k(0) ≤ βV

2 . Suppose for all t ≥ 1, q̃k(t−1) ≤ βV
2
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holds. In slot t, if µ(t) = 0, then q̃k(t) ≤ q̃k(t− 1) ≤ βV
2 by

Equation (17). Otherwise, µ(t) 6= 0, and by Equation (31), we
have q̃k(t) ≤ βV

2 .
qd(t) ≤ βV

2 can be obtained using the same argument.
Since

(
log

(
1 + P (t)hm(t)
1 + P (t)he(t)

))+

=

(
log

(
1 +

P (t)
(
hm(t)− he(t)

)

1 + P (t)he(t)

))+

≤
(

log

(
1 +

P (t)
∣∣hm(t)− he(t)

∣∣
1 + P (t)he(t)

))+

= log

(
1 +

P (t)
∣∣hm(t)− he(t)

∣∣
1 + P (t)he(t)

)

≤P (t)
∣∣hm(t)− he(t)

∣∣
1 + P (t)he(t)

, ∀t ≥ 0.

Similarly, we have q̃p(t) ≤ hm(t) ≤ hM < ∞, where hM =
maxt≥0 hm(t).
Proof of Equation (24): We define the Lyapunov function
L(q̃k(t)) = (q̃k(t))2, and ∆(q̃k(t)) = L(q̃k(t+1))−L(q̃k(t)).
From Equation (17), we have

(
q̃k(t + 1)

)2 ≤(
q̃k(t)− ε

)2 +
(
µ(t)−Rs(t) + 1o(t)

)2+

2
(
q̃(t)− ε

)+(
µ(t)−Rs(t) + 1o(t)

)

≤(
q̃k(t)

)2 + ε2 +
(
1 + Rmax

)2 + 2εRmax+
2q̃k(t)1o(t) + 2q̃k(t)µ(t)− 2q̃k(t)Rs(t),

then

∆ =∆(q̃k(t))

≤V U(µ(t))− V U(µ(t)) + ε2 +
(
1 + Rmax

)2 + 2εRmax

+ 2q̃k(t)1o(t) + 2q̃k(t)µ(t)− 2q̃k(t)Rs(t)

≤V U(µ(t)) + ε2 +
(
1 + Rmax

)2 + 2εRmax + βV 1o(t)

− 2
[
V

2
U(µ(t))− q̃k(t)µ(t)

]
− 2q̃k(t)Rs(t).

It is apparent that TC is trying to maximize the value of
the term

[
V
2 U(µ(t))− q̃k(t)µ(t)

]
. Since the optimal solution

for Problem (A) may not be unique, we let U∗ be the optimal
solution set and µ∗ ∈ U∗ be any optimal solution, for Problem
(A) given any sample path. Since the constraint set Π(t) is
queue dynamic related, it is possible that µ∗(t) /∈ Π(t).

Lemma 3: In slot t, if by solving TC, we get[
V
2 U(µ(t))− q̃k(t)µ(t)

]
<

[
V
2 U(µ∗(t))− q̃k(t)µ∗(t)

]
,

then µ(t) < µ∗(t) and 1o(t′) = 1 for some t′ ≤ t and
t− t′ < ∞.
Proof: The proof is given in [23] as well.

Let N = max{n : for any t ≥ 0, Rs(τ) = 0, ∀τ ∈
[t, t + n]}. By using Lemma 3 and µ(t), µ∗(t) ≤ Rm(t) ≤

Rmax, ∀t ≥ 0, we have N < ∞ and

∆ ≤V U(µ(t))− V U(µ∗(t)) + ε2 +
(
1 + Rmax

)2 + 2εRmax

+ 2q̃k(t)
[
µ∗(t)−Rs(t)

]
+ V (β + NU(Rmax))1o(t).

(32)

Lemma 4:

1
V

lim sup
T→∞

1
T

T−1∑
t=0

q̃k(t)[µ∗(t)−Rs(t)] ≤O(
1
V

),

1
V

lim sup
T→∞

1
T

T−1∑
t=0

q̃p(t)[P ∗(t)− Pavg] ≤O(
1
V

).

Proof: The proof is similar as in [23].
Lemma 5: If q̃k(t) ≤ βV

2 , then qk(t) < ∞.
Proof: The proof is given in [23] as well.

Lemma 6: If both the key queue qk(t) and virtual key queue
q̃k(t) are strongly stable, i.e.,

lim sup
T→∞

1
T

T−1∑
t=0

(
qk(t) + q̃k(t)

)
< ∞,

then lim supT→∞
1
T

∑T−1
t=0 1o(t) ≤ ε.

If the virtual power queue q̃p(t) is strongly stable, then
lim supT→∞

1
T

∑T−1
t=0 P (t) ≤ Pavg.

Proof: The proof is similar as in [23].
By summing from 0 to T − 1, dividing by T and V , taking

lim infT→∞ over Equation (32), combined with Lemma 2,
Lemma 5, Lemma 6, and Lemma 4, we get

lim inf
T→∞

1
T

T−1∑
t=0

U(µ(t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

U(µ∗(t))−O(
1
V

)

− ε(NU(Rmax) + β).

By letting ε → 0, we obtain Equation (24).
Proof of Equation (26): Equation (26) follows from Lemma 2
and Lemma 6.
Proof of Equation (25): We define L(q̃p(t)) = (q̃p(t))2, and
∆(q̃p(t)) = L(q̃p(t+1))−L(q̃p(t)). Both P (t) and P ∗(t) are
within [0, Ppeak], by Equation (19), we have

∆ =∆(q̃p(t))

≤V Rs(t)− 2

[
V

2

(
log

(
1 + P (t)hm(t)
1 + P (t)he(t)

))+

− q̃p(t)P (t)

]

− 2q̃p(t)Pavg + P 2
avg + P 2

peak

≤V Rs

(
P (t)

)− V Rs

(
P ∗(t)

)
+ 2q̃p(t)P ∗(t)− 2q̃p(t)Pavg

+ P 2
avg + P 2

peak.

By summing from 0 to T − 1, dividing by T and V , taking
lim infT→∞ over both sides, combined with Lemma 4, we get

lim inf
T→∞

1
T

T−1∑
t=0

Rs(P (t)) ≥ lim inf
T→∞

1
T

T−1∑
t=0

Rs(P ∗(t))−O(
1
V

).

Proof of Equation (28) and Equation (29): The proof is
given in [23] as well.
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APPENDIX B
PROOF OF THEOREM 2

It is sufficient to show that ∀t ≥ 0, the policy gives
the smallest queue length among all policies, i.e., qµ

d (t) ≤
qγ
d (t), ∀t ≥ 0 for any policy γ, where qµ

d and qγ
d are the

data queue sizes under policy µ and γ, respectively. We
show this by induction. Initially, the data queue is empty, i.e.,
qd(0) = qk(0) = 0.
I) Clearly, qµ

d (1) ≤ qγ
d (1) is true regardless of the channel

rates and the number of arrivals at time t = 1.
II) Suppose qµ

d (T ) ≤ qγ
d (T ) for T ≥ 1. Under policy µ, the

queue evolution follows:

qµ
d (t + 1) = qµ

d (t)− µ(t) + A(t),
qµ
k (t + 1) = qµ

k (t)− µ(t) + Rs(t),

and for policy γ, the queue evolution follows:

qγ
d (t + 1) =

(
qγ
d (t)− γ(t)

)+

+ A(t),

qγ
k (t + 1) = qγ

k (t)− γ(t) + Rs(t).

Thus, we have

qµ
d (T ) =

T−1∑
t=0

A(t)−
T−1∑
t=0

µ(t),

qµ
k (T ) =

T−1∑
t=0

Rs(t)−
T−1∑
t=0

µ(t),

qγ
d (T ) ≥

T−1∑
t=0

A(t)−
T−1∑
t=0

γ(t),

qγ
k (T ) =

T−1∑
t=0

Rs(t)−
T−1∑
t=0

γ(t),

which implies

qµ
k (T ) + Rs(T ) =

T∑
t=0

Rs(t)−
T∑

t=0

A(t) + qµ
d (T ) + A(T ),

(33)

qγ
k (T ) + Rs(T ) ≤

T∑
t=0

Rs(t)−
T∑

t=0

A(t) + qγ
d (T ) + A(T ).

(34)

(i) If
∑T

t=0 Rs(t) ≤
∑T

t=0 A(t), then

µ(T ) = min{qµ
k (T ) + Rs(T ), Rm(T )},

γ(T ) ≤min{qγ
k (T ) + Rs(T ), Rm(T )},

and we also have

qµ
d (T + 1) =qµ

d (T )− µ(T ) + A(T ),
qγ
d (T + 1) ≥qγ

d (T )− γ(T ) + A(T ),

then combine with Equation (33) and (34), we have

qµ
d (T + 1)− qγ

d (T + 1)
≤qµ

d (T )− qγ
d (T ) + γ(T )− µ(T ) (35)

≤qµ
k (T )− qγ

k (T ) + γ(T )− µ(T ), (36)

(i.1) when qγ
k (T ) + Rs(T ) ≤ Rm(T ) and qµ

k (T ) + Rs(T ) ≤
Rm(T ), then continue from Equation (36), we have

qµ
d (T + 1)− qγ

d (T + 1)
≤qµ

k (T )− qγ
k (T ) + qγ

k (T ) + Rs(T )− µ(T )
=qµ

k (T )− qγ
k (T ) + qγ

k (T )− qµ
k (T ) = 0.

(i.2) when qγ
k (T ) + Rs(T ) ≤ Rm(T ) and qµ

k (T ) + Rs(T ) >
Rm(T ), then continue from Equation (35), we have

qµ
d (T + 1)− qγ

d (T + 1)
≤qµ

d (T )− qγ
d (T ) + qγ

k (T ) + Rs(T )− µ(T )
=qµ

d (T )− qγ
d (T ) + qγ

k (T ) + Rs(T )−Rm(T )
≤qµ

d (T )− qγ
d (T ) ≤ 0,

by the hypothesis.
(i.3) when qγ

k (T ) + Rs(T ) > Rm(T ) and qµ
k (T ) + Rs(T ) ≤

Rm(T ), then continue from Equation (36), we have

qµ
d (T + 1)− qγ

d (T + 1)
≤qµ

k (T )− qγ
k (T ) + Rm(T )− µ(T )

<qµ
k (T )− qγ

k (T ) + qγ
k (T ) + Rs(T )− µ(T )

=qµ
k (T )− qγ

k (T ) + qγ
k (T ) + Rs(T )− qµ

k (T )−Rs(T )
=0.

(i.4) when qγ
k (T ) + Rs(T ) > Rm(T ) and qµ

k (T ) + Rs(T ) >
Rm(T ), then continue from Equation (35), we have

qµ
d (T + 1)− qγ

d (T + 1)
≤qµ

d (T )− qγ
d (T ) + Rm(T )− µ(T )

=qµ
d (T )− qγ

d (T ) + Rm(T )−Rm(T ) ≤ 0.

Thus, qµ
d (T + 1) ≤ qγ

d (T + 1) if
∑T

t=0 Rs(t) ≤
∑T

t=0 A(t).
(ii) If

∑T
t=0 Rs(t) >

∑T
t=0 A(t), then

µ(T ) = min{qµ
d (T ) + A(T ), Rm(T )},

γ(T ) ≤min{qγ
k (T ) + Rs(T ), Rm(T )},

(ii.1) when qµ
d (T )+A(T ) ≤ Rm(T ), we have µ(T ) = qµ

d (T )+
A(T ), and qµ

d (T + 1) = 0 ≤ qγ
d (T + 1).

(ii.2) when qµ
d (T ) + A(T ) > Rm(T ), then

qµ
d (T + 1)− qγ

d (T + 1)
≤qµ

d (T )− qγ
d (T ) + γ(T )−Rm(T )

≤0 + Rm(T )−Rm(T ) = 0.

Thus, qµ
d (T +1) ≤ qγ

d (T +1) if
∑T

t=0 Rs(t) >
∑T

t=0 A(t) as
well.


