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Abstract—In time-varying wireless networks, the states of
the communication channels are subject to random variations,
and hence need to be estimated for efficient rate adaptation
and scheduling. The estimation mechanism possesses inaccu-
racies that need to be tackled in a probabilistic framework.
In this work, we study scheduling with rate adaptation in
single-hop queueing networks under two levels of channel
uncertainty: when the channel estimates are inaccurate but
complete knowledge of the channel/estimator joint statistics is
available at the scheduler; and when the knowledge of the joint
statistics is incomplete. In the former case, we characterize
the network stability region and show that a maximum-weight
type scheduling policy is throughput-optimal. In the latter case,
we propose a joint channel statistics learning - scheduling
policy. With an associated trade-off in average packet delay
and convergence time, the proposed policy has a stability region
arbitrarily close to the stability region of the network under full
knowledge of channel/estimator joint statistics.

I. INTRODUCTION

Scheduling in wireless networks is a critical component of
resource allocation that aims to maximize the overall network
utility subject to link interference and queue stability con-
straints. Since the seminal paper by Tassiulas and Ephremides
([1]1), maximum-weight type algorithms have been intensely
studied (e.g., [2]-[8]) and found to be throughput-optimal
in various network settings. The majority of existing works
employing maximum-weight type schedulers are based on the
assumption that full knowledge of channel state information
(CSI) is available at the scheduler. In realistic scenarios,
however, due to random variations in the channel, full CSI is
rarely, if ever, available at the scheduler. The dynamics of the
scheduling problem with imperfect CSI is, therefore, vastly
different from the problem with full CSI in the following two
ways (1) a non-trivial amount of network resource, that could
otherwise be used for data transmission, is spent in learning
the channel; (2) the acquired information on the channel
is potentially inaccurate, essentially underscoring the need
for intelligent rate adaptation and user scheduling. Realistic
networks are thus characterized by a convolved interplay
between channel estimation, rate adaptation, and multiuser
scheduling mechanisms.
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These complicated dynamics are studied under various
network settings in recent works ([9]-[15]). In [9], the au-
thors study scheduling in single-hop wireless networks with
Markov-modeled binary ON-OFF channels. Here scheduling
decisions are made based on cost-free estimates of the
channel obtained once every few slots. The authors show
that a maximum-weight type scheduling policy, that takes
into account the probabilistic inaccuracy in the channel
estimates and the memory in the Markovian channel, is
throughput-optimal. In [10], the authors study decentralized
scheduling under partial CSI in multi-hop wireless networks
with Markov-modeled channels. Here, each user knows its
channel perfectly and has access to delayed CSI of other
users’ channels. The authors characterize the stability region
of the network and show that a maximum-weight type
threshold policy, implemented in a decentralized fashion at
each user, is throughput optimal. In [12], the authors study
scheduling under imperfect CSI in single-hop networks with
independent and identically distributed (i.i.d.) channels. They
consider a two-stage decision setup: in the first stage, the
scheduler decides whether to estimate the channel with a
corresponding energy cost; in the second stage, scheduling
with rate adaptation is performed based on the outcome of the
first stage. Under this setup, the authors propose a maximum-
weight type scheduling policy that minimizes the energy
consumption subject to queue stability.

While studying scheduling under imperfect CSI is a first
step in the right direction, these works assume that complete
knowledge of the channel/estimator joint statistics, which
is crucial for the success of opportunistic scheduling, is
readily available at the scheduler. This is another simplifying
assumption that need not always hold in reality. Taking
note of this, we study scheduling in single-hop networks
under imperfect CSI, and when the knowledge of the chan-
nel/estimator joint statistics is incomplete at the scheduler.
We propose a joint statistics learning-scheduling policy that
allocates a fraction of the time slots (the exploration slots)
to continuously learn the channel/estimator statistics, which
in turn is used for scheduling and rate adaptation during
data transmission slots. Note that our setup is similar to
the setup considered in [15]. Here the author considers a
two-stage decision setup. When applied to the scheduling
problem, this work can be interpreted as follows. One of K



estimators is chosen to estimate the channel in the first stage,
with unknown channel/estimator joint statistics. The second
stage decision is made to minimize a known function of the
estimate obtained in the first stage. Our problem is different
from this setup in that the channel/estimator joint statistics
is important to optimize the second stage decision in our
problem - i.e., scheduling with rate adaptation. This is not
the case in [15] where a known function of the estimate is
optimized and the channel/estimator joint statistics is helpful
only in the first stage that decides one of K estimators. Our
contribution is two-fold:

e When complete knowledge of the channel/estimator
joint statistics is available at the scheduler, we character-
ize the network stability region and show that a simple
maximum-weight type scheduling policy is throughput-
optimal. It is worth contrasting this result with those
in [9]-[12]. In these works, imperfection of CSI is
assumed to be caused by specific factors like delayed
channel feedback, infrequent channel measurement, etc,
whereas, in our model, since the channel/estimator joint
statistics is unconstrained, the CSI inaccuracy is cap-
tured in a more general probabilistic framework.

o Using the preceding system level results as a bench-
mark, we study scheduling under incomplete knowledge
of the channel/estimator joint statistics. We propose a
scheduling policy with an in-built statistics learning
mechanism and show that, with a corresponding trade-
off in the average packet delay before convergence, the
stability region of the proposed policy can be pushed
arbitrarily close to the network stability region under
full knowledge of channel/estimator statistics.

The paper is organized as follows. Section II formalizes
the system model. In Section III, we characterize the stability
region of the network and propose a throughput-optimal
scheduling policy. In Section IV, we study joint statistics
learning-scheduling and rate adaptation when the scheduler
has incomplete knowledge of channel/estimator statistics.
Concluding remarks are provided in Section V.

II. SYSTEM MODEL

We consider a wireless downlink communication scenario
with one base station and N mobile users. Data packets to
be transmitted from the base station to the users are stored
in N separate queues at the base station. Time is slotted
with the slots of all the users synchronized. The channel
between the base station and each user is i.i.d. across time
slots and independent across users. We do not assign any
specific distribution to the channels throughout this work.
The channel state of a user in a slot denotes the number of
packets that can be successfully transmitted without outage
to that user, in that slot. Transmission at a rate below the
channel state always succeeds, while transmission at a rate
above the channel state always fails. We assume the channel
state lies in a finite discrete state space S. Let C;[t] be the
random variable denoting the channel state of user ¢ in slot ¢.
The channel state of the network in slot ¢ is denoted by the
vector C[t] = [C1[t], Ca[t], -+ ,Cn|[t]] € SN. In each slot,

the scheduler has access to estimates of the channel states,
ie., Clt] = [C1[t], Ca[t], -+ ,Cn[t]] € 8. The estimator is
fixed for each user and the estimates are independent across
users. The channel/estimator joint statistics for user ¢ is given
by the |S|? probabilities P(C;=c;, Ci=¢&;), Vc;ES, &;ES.

We adopt the one-hop interference model, where, in each
slot, only one user is scheduled for data transmission. The
scheduler (base station), based on the channel estimate and
the queue length information, decides which user to schedule
and performs rate adaptation in order to maximize the overall
network stability region. Let I[t] and R[t] denote the index
of the user scheduled to transmit and the corresponding rate
of transmission, respectively, at slot . Due to potential mis-
match between the channel estimates and the actual channels,
it is possible that the allocated rate is larger than the actual
channel rate, thus leading to outage. In this case, the packet is
retained at the head of the queue and a retransmission will be
attempted later. Let Q;[t] denote the state (length) of queue
i at the beginning of slot ¢. Let A;[t] denote the number of
exogenous packet arrivals at queue ¢ at the beginning of slot
t with E[A;[t]] = A;. The queue state evolution can now be
written as a discrete stochastic process:

Qilt+1] = [Qi[-1(I[=)R[A) - L(RA<Ci[)] "+Aile], (1)

where [-]T = max{0, -}. We adopt the following definition of

queue stability [2]: Queue ¢ is stable if there exists a limiting

stationary distribution F; such that lim;_, o, P(Q;[t] < q) =

Fi(q).

ITI. FULL KNOWLEDGE OF CHANNEL/ESTIMATOR JOINT
STATISTICS

In this section, we consider the scenario where the sched-
uler has full access to the channel/estimator joint statistics,
ie., P(Ci:CZ', CZ:@), Ve, €S8, ¢,€S for ie{l, cee N} We
characterize the network stability region next.

A. Network Stability Region

Consider the class of stationary scheduling policies G that
base their decision on the current queue length information
[Q1,-..,QnN], the channel estimates [C;,...,Cy], and full
knowledge of channel/estimator joint statistics. Define the
network stability region as the closure of the arrival rates
that can be supported by the policies in G without leading
to system instability. Let Ps(¢ = [¢1,...,¢n]) denote the
probability of the channel estimate vector. Thus,

N
Pg(é=1ér,....en)) = [[ P(Ci = &), )
=1

where the probabilities P(@z = ¢;) are evaluated from the
knowledge of the channel/estimator joint statistics. Defining
CH[A] as the convex hull ([16]) of set A and 1, as the
ith coordinate vector, we record our result on the network
stability region below.

Proposition 1. The stability region of the network is given



where 7 (¢;) = argmax,cg { P(C; > r

Ci=¢ )-r} and
the conditional probabilities P(C; > rf(él)@l = ¢;) are
evaluated from the knowledge of the channel/estimator joint
statistics.

Proof Outline: The proof contains two parts. We first show
that any rate vector A strictly within A is stably supportable
by some randomized stationary policy. In the second part, we
establish that any arrival rate A outside A is not supportable
by any policy. We show this by first identifying a hyperplane
that separates A and A using the strict separation theorem
([17]). We then define an appropriate Lyapunov function and
show that, for any scheduling policy, there exists a positive
drift, thus rendering the queues unstable ([18]). Details of the
proof are available in our online technical report ([25]).

B. Optimal Scheduling and Rate Allocation

In this section, we propose a maximum-weight type
scheduling policy with rate adaptation and show that it is
throughput-optimal, i.e., it can support any arrival rate that
can be supported by any other policy in G. The policy is
introduced next.

Scheduling Policy ¥

At time slot ¢, the base station makes the scheduling and
rate adaptation decisions based on the channel/estimator
joint statistics and the channel estimate vector C' = ¢
(the time index is dropped for notational simplicity).

(1) Rate Adaptation:
For each user i, assign rate R; such that,

R; = arg max {P(C’i > 7“’@ =¢) ~r}
resS

(2) Scheduling Decision:

Schedule the user I that maximizes the queue-
weighted rate R;, as follows:

I = argmax {Q; - P(C; > Ri‘@ =) Ri}

Note that when the channel state eslimation is accurate, the
conditional probability P(C; > r|C¢ = ¢;) will be a step
function, with ¥ essentially becoming the classic maximum-
weight policy in [2]. The next proposition establishes the
throughput optimality of policy W. Details are provided in
[25].

Proposition 2. The scheduling policy V stably supports all

arrival rates that lie in the interior of the stability region A.

Proof Outline: The proof proceeds as follows. Consider a
Lyapunov function L(Q[t]) = qu\;1 Q?[t]. For any arrival
rate A that lies strictly within the stability region A, we

know it is stably supportable by some policy Go. Under Gy,
we show that the corresponding Lyapunov drift is negative.
We then show that policy ¥ minimizes the Lyapunov drift
and hence it will have a negative drift, thus establishing the
throughput optimality of W.

The results obtained thus far when the channel/estimator
joint statistics is available at the scheduler are along ex-
pected lines. Nonetheless, they serve as a benchmark to
the rest of the work under incomplete knowledge of the
channel/estimator joint statistics, which is the main focus of
the paper.

IV. INCOMPLETE KNOWLEDGE OF CHANNEL/ESTIMATOR
JOINT STATISTICS

In this section, we study scheduling with rate adaptation
when the scheduler only has knowledge of the marginal
statistics of the estimator, ie., P(C; = &), Ve; € S,
it € {1,...,N}, and hence, the knowledge of the chan-
nel/estimator joint statistics is incomplete at the scheduler.
We first illustrate, with a simple example, that significant
system level losses are incurred when no effort is made
to learn these statistics, and hence no rate adaptation is
performed.

A. Illustration of the Gains from Rate Adaptation

With incomplete information on the channel-estimator
joint statistics, the scheduler naively trusts the channel es-
timates to be actual channel states and transmits at the rate
allowed in this state. Under this scheduling structure, for the
single-hop network we consider, the stability region is given
in [25] by

A = > Pse)-

eesSN

CH[ 0, P(Ci>&|Ci=é; )ér - Tiyi=1,- - ,N]. 3)

For a two-user single-hop network, this region is plotted
in Fig. 1 along-side the network stability region when full
knowledge of the channel/estimator joint statistics is available
at the scheduler and hence rate adaptation is performed. The
channel between the base station and each user is independent
and binary (S = {0.2,1}) with P(C; = 1) = 0.8, for i =
1,2. For different mismatch between the channel and the
estimate, Fig. 1 plots the stability region of the system
when rate adaptation is performed and when it is not. Note
the significant reduction in the stability region when rate
adaptation is not performed. This loss increases with increase
in the degree of channel-estimator mismatch. The preceding
example underscores the importance of rate adaptation and
hence the need to learn the channel/estimator joint statistics.
We now proceed to introduce our joint statistics learning-
scheduling policy.

B. Joint Statistics Learning - Scheduling Policy

We design the policy with the following main components:
(1) The fraction of time slots the policy spends in learning
the channel/estimator joint statistics is fixed at v € (0,1),
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(2) The worst-case rate of convergence of the statistics
learning process is maximized. We formally introduce the
policy next, followed by a discussion on the policy design.

Joint statistics learning-scheduling policy
(parameterized by 7)

(1) In each slot, the scheduler first decides whether to
explore the channel of one of the users or transmit data
to one of the users. Specifically, it randomly decides to
explore the channel of user ¢ with probability :U’C /N
where YN, xt /N < 1. The quantity z& € (0,1] is
a function of v and the channel estimate, ¢;, of user
i. It is optimized to maximize the worst-case rate of
convergence of the statistics learning mechanism subject
to the ~ constraint. We postpone the discussion on this
optimization to Proposition 4. Note that, we have dropped
the time index from the estimates for ease of notation.

(2) If a user is chosen for exploration, this time slot
becomes an observing slot. Call the chosen user as e.
The scheduler now sends data at a rate r that is chosen
uniformly at random from the set S. Let the quantity &(¢)
indicate whether the transmission was successful or not:

&)y =1(ce > r),

where, recall, ¢, denotes the current channel state of user
e. Let ©;¢, denote the set of exploration time slots
when the channel estimate of user ¢ was ¢ and user
1 was explored with rate r. Thus, the current slot is
added to the set O, ¢_,. Now, an estimate of the quantity

P(C. > r’ée = () is obtained using the following
update:

~

P(C, > _ Lkeo

O k
C.=¢é)= von S(K)

©c,z.rl

where |V| denotes the cardinality of set V. We assume
P,(C.|C,) to be uniform when O, , 0, ie.,
ﬁt(ce > r’ae = ée) =1- 7"/‘8|

(3) With probability 1 — Zivzl xl; no user is chosen
for exploration and the slot is used for data transmission.
The scheduler follows policy ¥ introduced in the previous
section with P(C; > TTAi

C

= ¢; ) replaced by the estimate

An illustration of the proposed policy is provided in Fig. 2.
We now discuss the design of the quantities x’cl ¢ €S8,

oy x

ie{l,...,N}. Let n; ¢, = P(C; = &)=+ be a measure of
how often the channel of user i is explored when the estimate
is ¢;. For fairness considerations, we impose the following
constraint in addition to the «-constraint discussed earlier:

Z Nie; = W/N-

C,ES

The preceding constraint ensures that each user’s channel
is explored for an equal fraction, /N, of the total time
slots. From strong law of large numbers, with probability
one, ﬁt(Ci > r‘@ = ¢;) will converge to P(C; > r’@ =
¢;) as t tends to infinity. The rate of convergence of the
channel/estimate joint statistics, parameterized by the user
and the channel estimate, is given by the following lemma.
Henceforth, we drop the suffix ¢ from ¢; for notational
convenience.

Lemma 3.

P,(C; > r|C; = &)=P(C; > r|C; = ¢)

:\/ia'

lim sup
t—o0




Obtain Channel Estimates

Cise-esC

'

N

1 N
Evaluate Ko oeeesXe
I
A 4
y
ith
.. probability ..
x. /N,
Probe the. channel of Rate Adaptation Decision
o o user j with randomly RIS . .
selected rate 7 R[t]=argmax, P(C, 2r[C =¢)
I : | ]
Update the estimate Link Activation Decision
of P(C,2r|C,=¢) [[1]=argmax, Q[/[R[/]P(C 2 R[1]|C, =¢ )
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almost surely (a.s.), where

o= \/P(Ci > r|Ci = ¢&)(1 - P(C; > r|C; = ).

Proof: We use N,.[t] to denote the number of exploration
slot corresponding to estimated channel C; = ¢ and rate 7.
We express the left hand side of the equation in the lemma
as follows.

PtC’>r‘C—c PC;>r ‘C—c

V/(2loglog(i,ct/IS1))/ (ni,et/IS])
PtC>7"C—c (C>T‘C—C

v/ (2loglog N, [t])/N,[1]

log log N,.[t] ) ni,ét/|S|
log log(n;,et/|S|)

N,.[t]
From Law of Iterated Logarithm ([19]), we get

lim sup
t—o0

=lim sup
t—o00

4)

V/(2loglog N [t]) /N, 1]

almost surely. We also have

lim sup
t—o0

=0 (5

log log N, [t]
log log(n;,ct/|S|)

log log N..[t] — loglog(n;,ct/|S|)
log log(n,ct/|S|)

log (1 + elNeltl/(nicl/151)] )
=1 el ct/ISD ) )

log log(n;,t/|S])

Because {N,[t]} is a renewal process ([20]) with inter-
renewal time (7, 2/|S|)™!, we will have

tli}m N, [t]/(ni.et/|S]) =1 almost surely.

Hence (6) tends to 1 almost surely. Substituting equation
(5) and (6) into (4) we get

Bi(Ci > 7"@ =) —P(C; >7|C = ¢)
lim sup =0,

twoo /(2loglog(mi.t/[S]))/ (mi.ct/IS])

almost surely. [ ]

Note from the preceding lemma that, for each {3,¢é},
the higher the quantity 7 ¢, the faster the convergence of
Pt(C > r|C = ¢). Also note that, for each user ¢, the
channel estimate ¢ with the slowest convergence affects the
overall convergence performance for that user 7. Taking note
of this, we proceed to design z that maximizes the lowest
convergence rate — the bottleneck.

The optimization problem (U) for user 7 is given by

1

n;zzx méin e =7 (Cy = &)zt
g
s.t. Zni7é = N
¢ceS
0<azi<1, forall ¢€8

For ease of exposition, we assume, without loss of gener-
ality, that P(C =51) < P(C;=s5)<--- < P(C; = 51s])-

Let [z0*, 2" be the optimal solution to the above

517 827.'. 5‘5‘]
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problem. We now record the structural properties of the
optimal solution.

Proposition 4. The solution x%:, Yk € {1,...,|S|}, 10 the
optimization problem (U) can be obtained with the following
algorithm:

(1) Initialization: Let k =1; T =0, w = 0;

V=%, er P(Ci=s;)

) If P(C = s3) > =  then,

—w

vl >k, xz = —
(S/—w)- P(C =5

Algorithm terminates.
(3) Otherwise x?;; =1, T=IUs, w=w+1 k=

k+ 1. If T' = S, algorithm terminates, otherwise
repeat Step (2).

Proof Outline: The proof proceeds by establishing two
crucial properties of the optimal solution. First, define (2;
as the set of all channel estimates s; such that the optimal
xl =1. Thus Q; = Up{sy : 2%* = 1}. If no such estimate
exists, ; = (). The optimal solution has the following

properties:

(1) If Q; =0 then P(C; = sp)xlt = v/|S|, Vk.
(2) If Q; # 0, then 2 = 1.

Recall that the channel states are ordered such that P (@ =
51) < P(C; = s3) < -+ < P(C; = s)5)). The first
property essentially says that if there does not exist a channel
estimate s, for which x?s* = 1,Athen t_he optimal solution is
such that the learning rate (%) is uniform (%)
for all s, k € {1,...,|S|}. Because, otherwise, there is
always room to improve the bottleneck convergence rate by
redesigning the quantities :z:f;; The second property says that
whenever there exists an estimate sy -1 for which x;: =1,

the estimate s; acts as a bottleneck, and the optimal value of
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Illustration of the design of optimal xéz when N =2,y=0.2and § ={1,...,6}.

mg"; must be 1. The proposed algorithm now checks whether a
solution yielding uniform convergence rate is feasible. If so,
. . .. . % _ Al ol
the solution is trivially given by z%; PO o) BT for all
ke {1,...,|S|}. Otherwise, using the preceding properties,
the algorithm assigns x> = 1 and goes on to solve the
reduced optimization problem over x7; ..., xy , iteratively.

IS|

Details of the proof can be found in [25].

The proposed algorithm is illustrated in Fig. 3 when
v=102 N =2and § = {1,...,6}. Focusing on User
1, Fig. 3(a) plots the probability of the estimated channels
and the optimal /yalues of mi*, s € S. Note that, the lower
the value of P(C; = s), the higher the assigned zl*, since
the algorithm maximizes the bottleneck convergence rate
P(CI#S)EI*. This is further illustrated in Fig. 3(b) where the
optimized convergence rate is shown to be ‘near uniform’,
underlining the minmax nature of the optimization. Note that
the structure of the minmax algorithm bears some similarity
with the water-filling algorithm used in power allocation
across parallel channels ([21]). There the algorithm tries to
‘equalize’ the sum of two components (signal and noise
powers) across channels, while the minmax algorithm we
propose tries to ‘equalize’ the product of two components
(P(C; = s) and z*).

We now perform a stability region analysis of the proposed
policy. Define the stability region of a policy as the exhaustive
set of arrival rates such that the network queues are rendered
stable under the policy. The stability region of the proposed
policy, parameterized by v € (0, 1), is recorded below.

Proposition 5. The stability region A, of the proposed policy
is given by
AL ={\ st A €A} = (1-9)A.
Y 1— y
where A is the stability region of the network when complete
channel/estimator joint statistics is available at the scheduler.

Proof Outline: The proof proceeds by showing that, under
the proposed joint statistics learning - scheduling policy, the
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instantaneous maximal sum of the queue weighted achievable
rates, with sufficient time, can be arbitrarily close to the case
when perfect knowledge of the statistics is available. Details
are provided in [25].

C. Throughput - Delay Tradeoff

As v — 0, the proposed policy has a stability region
that can be arbitrarily close to the system stability region
A. The trade-off involved here is the speed of convergence
and hence queueing delays before convergence. Since an
analytical study of this trade-off appears complicated, we
proceed to perform a numerical study. The simulation setup
is described next.

We use i.i.d. Rayleigh fading channels with minimum
mean square error (MMSE) channel estimator as seen in [22]
and [23]. The channel model is given by

Y = /phX +v,

where X, Y correspond to transmitted and received signals,
p is the average SNR at the receiver, and v is the additive
noise. Both h and v are zero-mean complex Gaussian random
variables, i.e., with probability density CA/(0, 1). Let h de-
note the estimate of the channel and h denote the estimation
error. Under the channel statistics assumed, A is zero-mean
complex Gaussian with variance 3, where the value of
depends on the resources allocated for estimation ([24]).
Given the value of h, the channel rate is R = log(1+ p|h|?).
We quantize the transmission rate to make the channel state
space to be discrete and finite. We assume a two-user network
and fix § = 0.1 and p = 50 for both users’ channels.
We study the average behavior of the proposed policy by
implementing it over 10000 parallel queuing systems.

We first study the time evolution of the probability of
transmission success for different values of ~. Fig. 4(a)
shows that, for any <, the probability of successful trans-
mission increases as the accuracy of the estimate of the
channel/estimator joint statistics improves with time. Also,
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as expected, the larger the value of ~ is, the faster is the
improvement in the probability of successful transmission.
Note that higher transmission success probability essentially
means lesser number of retransmissions. This is illustrated in
Fig. 4(b).

In Fig. 5, we study the time evolution of the average
packet delay - the delay between the time a packet enters
the queue and the time it leaves the head of the queue -
for various values of . Note that v influences the average
delay through (1) the average number of retransmissions and
(2) the fraction of time slots available for transmissions.
It is expected that the nature of the influence of + on
the average delay depends on whether the estimate of the
channel/estimator joint statistics has reached convergence
or not. After convergence, the average delay is influenced
by ~ solely through the fraction of time slots available
for transmissions. Thus, after convergence, the higher the
value of ~, the higher the average delay. This is illustrated



in Fig. 5. Before convergence, however, the effect of
on the average delay is not straightforward. Fig. 5, along
with the fact that higher v results in faster convergence,
suggests the following: before convergence, ~ influences the
average delay predominantly through the average number
of retransmissions, resulting in decreasing average delay for
increasing ~. In fact, Fig. 5 suggests the existence of a larger
phenomenon: the trade-off between throughput (the stability
region) and the delay before convergence.

V. CONCLUSION

We studied scheduling with rate adaptation in single-hop
queueing networks, under imperfect channel state informa-
tion. Under complete knowledge of the channel/estimator
joint statistics at the scheduler, we characterized the net-
work stability region and proposed a maximum-weight type
scheduling policy that is throughput optimal. Under incom-
plete knowledge of the channel/estimator joint statistics, we
designed a joint statistics learning - scheduling policy that
maximizes the worst case rate of convergence of the statistics
learning mechanism. We showed that the proposed policy can
be tuned to achieve a stability region arbitrarily close to the
network stability region with a corresponding trade-off in
the average packet delay before convergence and the time
for convergence.
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