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Abstract—In this work we study how to manage the freshness
of status updates sent from a source to a remote monitor via
a network server. A proper metric of data freshness at the
monitor is the status update age, which is defined as how old the
freshest update is since the moment this update was generated
at the source. A logical policy is the zero wait policy, i.e., the
source submits a fresh update once the server is free, which
achieves the maximum throughput and the minimum average
delay. Surprisingly, this zero wait policy does not always minimize
the average age. This motivates us to study how to optimally
control the status updates to keep data fresh and to understand
when the zero wait policy is optimal. We introduce a penalty
function to characterize the level of “dissatisfaction” on data
staleness, and formulate the average age penalty minimization
problem as a constrained semi-Markov decision process (SMDP)
with an uncountable state space. Despite of the difficulty of this
problem, we develop efficient algorithms to find the optimal status
update policy. We show that, in many scenarios, the optimal
policy is to wait for a certain amount of time before submitting
a new update. In particular, the zero wait policy can be far from
the optimum if (i) the penalty function grows quickly with respect
to the age, and (ii) the update service times are highly random
and positive correlated. To the best of our knowledge, this is
the first optimal control policy which is proven to minimize the
age-of-information in status update systems.

I. INTRODUCTION

In recent years, the proliferation of mobile devices and
applications has significantly boosted the need for real-time
information updates, such as news, weather reports, email
notifications, stock quotes, social updates, mobile ads, etc.
Timely status updates are also critical in network-based moni-
toring and control systems, including sensor networks used in
temperature and air pollution monitoring, surround monitoring
in autonomous vehicles, and phasor data updates in power grid
stabilization systems.

A common need in these applications is to maximize the
freshness of the data at the monitor. In light of this, a metric
called status update age, or simply age, was defined in [1]. At
time t, if the freshest update at the monitor has a time stamp
U(t), the status update age is ∆(t) = t−U(t). Hence, the age
is the time elapsed since the freshest packet was generated.

Most existing research on status update age focuses on an
“enqueue-and-forward” model [1]–[7], where status updates
are randomly generated or arrive at a source node. The source
enqueues these updates and forwards them later to a remote
monitor through a network cloud. It is worth noting that the
goal of age minimization differs from those of throughput
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Fig. 1. System model.

maximization and delay minimization: A high update fre-
quency improves the system utilization, but may also induce
a large waiting time in the queue which in turn increases the
age; on the other hand, a low update frequency can reduce
the queueing delay, but the monitor may end up having stale
status information due to not enough updates [1], [5], [7].
In [6], it was found that a good policy is to discard the old
packets waiting in the queue if a new sample arrives, which
can greatly reduce the impact of queueing delay.

In this paper, we study a “generate-at-will” model depicted
in Fig. 1. In this model, the source keeps monitoring the
network server’s idle/busy state, and in contrast to [1]–[7],
is able to generate status updates at any time by its own will.
Hence, no updates need to be generated when the server is
busy, which completely eliminates the waiting time in the
queue and hence the queue in Fig. 1 is always empty. A
simple zero wait policy, also known as the work-conserving
policy in queueing theory, that submits a fresh update once the
server becomes idle, achieves the maximum throughput and
the minimum average delay. Surprisingly, this zero wait policy
does not always minimize the average age of the information
[8]. The following example reveals the reason behind this
phenomenon:

Example: Suppose that the source submits a stream of
update packets to a remote monitor. The service times of these
updates form a periodic sequence

0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, . . .

Suppose that update 1 is generated and submitted at time t and
delivered at time t. Under the zero wait policy, update 2 is also
generated at time t and delivered at time t. However, despite
of its short service time, update 2 has not brought any fresher
information to the monitor after update 1 is delivered, because
both updates are sampled at time t. Therefore, the potential
benefit of the zero service time of update 2 is wasted! This
issue occurs periodically over time: Whenever two consecutive
updates have zero service time, the second update of the two
is wasted. Therefore, 1/4 updates in this sequence are wasted
in the zero wait policy!

For comparison, consider a policy that waits for 0.5 seconds
after each update with zero service time, and does not wait
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Fig. 2. Evolution of the status update age ∆(t).

after each update with a service time of 2 seconds. The average
age of the zero wait policy is 2 seconds, and the average age
of the second policy is 1.85 seconds.1 Hence, the zero wait
policy is not optimal.

This example points out a key difference between status
update systems and data communication systems: In status
update systems, an update packet is useful only if it carries
fresh information to the monitor; however, in communication
systems, all packets are equally important. While the theory
of data communications is quite mature, the optimal control
of status updates remains open.

For a source that can insert waiting times between updates,
the aim of this paper is to answer the following questions: How
to optimally submit update packets to maximize data freshness
at the monitor? When is the zero wait policy optimal? To that
end, the following are the key contributions of this paper:
• We generalize existing status update studies by introduc-

ing two new features: age penalty functions and non-
i.i.d. service processes. We define an age penalty function
g(∆) to characterize the level of “dissatisfaction” for
data staleness, where g(·) is measurable, non-negative,
and non-decreasing, which is determined by the specific
application. The update service process is modeled as
a stationary ergodic Markov chain with an uncountable
state space, which generalizes the i.i.d. service processes
studied in previous work [1]–[8], [10].

• We formulate the average age penalty minimization
problem as a constrained semi-Markov decision process
(SMDP) with an uncountable state space. Despite of the
difficulty of this problem, we manage to solve it by a
divide-and-conquer approach: We first prove that there
exists a stationary randomized policy that is optimal for
this problem (Theorem 1). Further, we prove that there
exists a stationary deterministic policy that is optimal
for this problem (Theorem 2). Finally, we develop a
low-complexity algorithm to find the optimal stationary
deterministic policy (Theorem 3). To the best of our
knowledge, this is the first optimal control policy which
is proven to minimize the age-of-information (i.e., max-
imize data freshness) in status update systems.

• We further investigate when the zero wait policy is
optimal. For the special case of proportional penalty
function and i.i.d. service times, we devise a simpler
solution to minimize the average age (Theorem 4). This
solution explicitly characterizes when the zero wait policy

1To compute the average age, one need to use (8), (12), and refer to Fig.
2. Its matlab code is provided in Appendix A of [9].

is optimal, and when it is not. For general age penalty
functions and correlated service processes, sufficient con-
ditions for the optimality of the zero wait policy are
provided (Lemma 3).

• Our theoretical and simulation results demonstrate that,
in many scenarios, the optimal policy is to wait for a
certain amount of time before submitting a new update. In
particular, the zero wait policy can be far from optimality
if (i) the penalty function grows quickly with respect
to the age, and (ii) the update service times are highly
random and positive correlated.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a system depicted in Fig. 1, where a source
generates status update packets and sends them to a remote
monitor through a network server. This server provides First-
Come First-Served (FCFS) service to the submitted update
packets. The service of an update packet is considered com-
plete, when it is successfully received by the monitor. After
that, the server becomes available for sending the next packet.

The source generates and submits updates at successive
times S0, S1, . . . Update i, submitted at time Si, is delivered
at time Di = Si + Yi, where Yi ≥ 0 is the service time
of update i. Suppose that update 0 is submitted to an idle
server at time S0 = −Y0 and delivered at D0 = 0, as shown
in Fig. 2. The source has access to the idle/busy state of
the server and is able to generate updates at any time by
its own will. Hence, the source should not generate update
i + 1 when the server is busy processing update i, because
this will incur an unnecessary waiting time in the queue. After
update i is delivered at time Di, the source may introduce a
waiting time Zi ∈ [0,M ] before submitting update i + 1 at
time Si+1 = Di + Zi, where M represents the maximum
amount of waiting time allowed by the system. The source
can switch to a low-power sleep mode during [Di, Si+1). We
assume that the service process (Y0, Y1, . . .) is a stationary
and ergodic Markov chain with a possibly uncountable state
space and a positive mean 0 < E[Yi] <∞, which generalizes
the i.i.d. service processes in previous studies [1]–[8], [10].
The ergodicity of this Markov chain is assumed in the sense
of ergodic theory [11], which allows the Markov chain to be
periodic.2 This Markovian service process model is introduced
to study the impact of temporal-correlation on the optimality of
the zero wait policy. In Section IV, we will see that zero wait
policy is near-optimal when the service process is negative
correlated; and can be far from optimality when the service
process is positive correlated.

At any time t, the monitor’s most recently received update
packet is time-stamped with U(t) = max{Si : Di ≤ t}. The
status update age ∆(t) is defined as [1]

∆(t) = t− U(t), (1)

which is also referred to as age-of-information or simply age.
As shown in Fig. 2, the age ∆(t) is a stochastic process
that increases linearly with t between updates, with downward
jumps occurring when updates are delivered.

2The results in this paper can be readily extended to a more general
model where the Markov chain (Y0, Y1, . . .) has a longer memory, i.e.,
the sequence (W0,W1, . . .) forms a Markov chain, with Wi defined as
Wi = (Yi, Yi+1, . . . , Yi+k) for some finite k.
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Fig. 3. Evolutions of two age penalty functions.

We introduce an age penalty function g(∆) to represent the
level of “dissatisfaction” for data staleness or the “need” for
new information update, where the function g : [0,∞) →
[0,∞) is assumed to be measurable, non-negative, and non-
decreasing. Some examples of g(·) are power function g(∆) =
∆a, exponential function g(∆) = ea∆, and the stair-step
function g(∆) = ba∆c, where a ≥ 0 and bxc is the largest
integer no greater than x. Two examples of age penalty
functions are depicted in Figure 3. Note that this age penalty
model is quite general, which allows g(·) to be discontinuous
and non-convex.

To analyze the average age penalty, we decompose the area
under the curve g(∆(t)) into a sum of disjoint components:
Consider the time interval [0, Dn], where Dn =

∑n−1
i=0 (Yi +

Zi). In this interval, the area under g(∆(t)) can be seen as
the concatenation of the areas Qi, 0 ≤ i ≤ n− 1, such that∫ Dn

0

g(∆(t))dt =

n−1∑
i=0

Qi,

where

Qi =

∫ Yi+Yi+Zi

Yi

g(τ)dτ.

Let us define

q(y, z, y′) =

∫ y+z+y′

y

g(τ)dτ. (2)

Then, Qi can be expressed as Qi = q(Yi, Zi, Yi+1). We
assume that

E [q(Yi,M, Yi+1)] <∞. (3)

Our goal is to minimize the average age penalty by con-
trolling the sequence of waiting times (Z0, Z1, . . .). Let π ,

(Z0, Z1, . . .) denote a status update policy. We consider the
class of causally feasible policies, in which control decisions
are made based on history and current information of the
system, as well as the distribution of the service process
(Y0, Y1, . . .). Specifically, Zi is determined based on the past
realizations of (Y0, Y1, . . . , Yi), without using the realizations
of future service times (Yi+1, Yi+2, . . .); but the conditional
distribution of (Yi+1, Yi+2, . . .) based on (Y0, Y1, . . . , Yi) is
available. Let Π denote the set of all causally feasible policies
satisfying Zi ∈ [0,M ] for all i.

The average age penalty can be represented by

lim sup
n→∞

E
[∫Dn

0
g(∆(t))dt

]
E [Dn]

.

Using this, the stochastic optimization problem for minimizing
the average age penalty can be formulated as

gopt = min
π∈Π

lim sup
n→∞

E
[∑n−1

i=0 q(Yi, Zi, Yi+1)
]

E[
∑n−1
i=0 (Yi + Zi)]

(4)

s.t. lim inf
n→∞

1

n
E

[
n−1∑
i=0

(Yi + Zi)

]
≥ Tmin,

where gopt is the optimum objective value of Problem (4),
the expectation E is taken over the stochastic service process
(Y0, Y1, . . .) for given policy π, and Tmin is the minimum
average update period of the source due to hardware and
physical constraints (e.g., limited power resource and cooling
capacity). We assume M > Tmin such that Problem (4) is
feasible and gopt <∞.

Problem (4) belongs to the class of constrained semi-
Markov decision processes (SMDP) with a possibly uncount-
able state space, which is well-known for its difficulty. In this
problem, Yi is the state of the embedded Markov chain, Zi is
the control action taken after observing Yi, Yi+Zi is the update
period, and q(Yi, Zi, Yi+1) is the reward related to both stage
i and i + 1. The class of SMDPs include Markov decision
problems (MDPs) [12], [13] and optimization problems of
renewal processes [14] as special cases. Most existing studies
on SMDPs deal with (i) unconstrained SMDPs, e.g., [13],
[15]–[17], or (ii) constrained SMDPs with a countable state
space, e.g., [18]–[21]. However, the optimality equations (e.g.,
Bellman’s equation) for solving unconstrained SMDPs are
not applied to constrained SMDPs [22], and the studies for
problems with a countable state space cannot be directly
applied to Problem (4), which has an uncountable state space.

III. OPTIMAL STATUS UPDATE POLICY

In this section, we develop a chain of novel theoretical
results to solve Problem (4): First, we prove that there exists a
stationary randomized policy that is optimal for Problem (4).
Further, we prove that there exists a stationary deterministic
policy that is optimal for Problem (4). Finally, we develop
a low-complexity algorithm to find the optimal stationary
deterministic policy that solves Problem (4).

A. Optimality of Stationary Randomized Policies
A policy π ∈ Π is said to be a stationary randomized

policy, if it observes Yi and then chooses a waiting time
Zi ∈ [0,M ] based only on the observed value of Yi. In this



case, Zi is determined according to a conditional probability
measure p(y,A) , Pr[Zi ∈ A|Yi = y] that is invariant for
all i = 0, 1, . . . We use ΠSR (ΠSR ⊆ Π) to denote the set of
stationary randomized policies such that

ΠSR ={π : After observing Yi = yi, Zi ∈ [0,M ] is chosen
according to probability measure p(yi, A), i = 0, 1, . . .}.

Note that (Yi, Zi, Yi+1) is stationary and ergodic for all
stationary randomized policies. In the sequel, when we refer
to the stationary distribution of a stationary randomized policy
π ∈ ΠSR, we will remove subscript i. In particular, the random
variables (Yi, Zi, Yi+1) are replaced by (Y, Z, Y ′), where
Z is chosen based on the conditional probability measure
Pr[Z ∈ A|Y = y] = p(y,A) after observing Y = y, and
(Y, Y ′) have the same joint distribution as (Y0, Y1). The first
key result of this paper is stated as follows:

Theorem 1: (Optimality of Stationary Randomized Policies)
If g(·) is measurable and non-negative, (Y0, Y1, . . .) is a
stationary ergodic Markov chain with Yi ≥ 0 and 0 < E[Yi] <
∞, condition (3) is satisfied, then there exists a stationary
randomized policy that is optimal for Problem (4).

Proof sketch of Theorem 1: For any policy π ∈ Π, define
finite horizon average occupations

an,π,
1

n
E
[ n−1∑
i=0

q(Yi, Zi, Yi+1)

]
−

gopt

n
E
[ n−1∑
i=0

(Yi + Zi)

]
, (5)

bn,π ,
1

n
E

[
n−1∑
i=0

(Yi + Zi)

]
. (6)

Let ΓSR be the set of limit points of sequences ((an,π, bn,π),
n = 1, 2, . . .) associated with stationary randomized policies
in ΠSR. We first prove that ΓSR is convex and compact. Then,
we show that there exists an optimal policy πopt of Problem
(4), such that the sequence ((an,πopt , bn,πopt), n = 1, 2, . . .)
associated with policy πopt has a limit point (a∗, b∗) satisfying
(a∗, b∗) ∈ ΓSR, a∗ ≤ 0, and b∗ ≥ Tmin. Since (a∗, b∗) ∈ ΓSR,
there exists a stationary randomized policy π∗ achieving this
limit point (a∗, b∗). Finally, we show that policy π∗ is optimal
for Problem (4), which completes the proof. The details are
available in Appendix A.

The convexity and compactness properties of the set of
occupation measures are essential in the study of constrained
MDPs [23, Sec. 1.5], which dates back to Derman’s mono-
graph in 1970 [24]. Recently, it was used in stochastic opti-
mization for discrete-time queueing systems and renewal pro-
cesses, e.g., [14], [25]. The techniques in these studies cannot
directly handle constrained SMDPs with an uncountable state
space, like Problem (4). One crucial novel idea in our proof
is to introduce gopt in the definition of average occupation in
(5), which turns out to be essential in later steps for showing
the optimality of the stationary randomized policy π∗.

By Theorem 1, we only need to consider the class of
stationary randomized policies ΠSR. Therefore, Problem (4)
can be simplified to the following functional optimization
problem (as shown in Appendix A):

min
p(y,A)

E[q(Y,Z, Y ′)]

E[Y + Z]
(7)

s.t. E[Y + Z] ≥ Tmin

0 ≤ Z ≤M

where p(y,A) = Pr[Z ∈ A|Y = y] is the conditional
probability measure of some stationary randomized policy, and
(Y, Y ′) have the same distribution as (Y0, Y1).

B. Optimality of Stationary Deterministic Policies
A policy π ∈ ΠSR is said to be a stationary deterministic

policy if Zi = z(Yi) for all i = 0, 1, . . ., where z : [0,∞) →
[0,M ] is a deterministic function. We use ΠSD (ΠSD ⊆ ΠSR)
to denote the set of stationary deterministic policies such that

ΠSD ={π :Zi=z(Yi) for all i, 0 ≤ z(y) ≤M,∀ y ≥ 0}.

Theorem 2: (Optimality of Stationary Deterministic Poli-
cies) If g(·) is measurable and non-decreasing, then there
exists a stationary deterministic policy that is optimal for
Problem (7).

Proof sketch of Theorem 2: Since g(·) is non-decreasing,
q(y, ·, y′) is convex. Using Jensen’s inequality, we can show
that for any feasible stationary randomized policy π1 ∈ ΠSR,
there is a feasible stationary deterministic policy that is no
worse than policy π1. The details are provided in Appendix B
of [9].

Let µY be the probability measure of Yi, then any bounded
measurable function z : [0,∞) → [0,M ] belongs to the
Lebesgue space L2(µY ) [26, Section 3], because∫ ∞

0

|z(y)|2dµY (y) ≤
∫ ∞

0

M2dµY (y) = M2 <∞.

By Theorems 1 and 2, we only need to consider the class
of stationary deterministic policies ΠSD and Problem (4) is
simplified to the following functional optimization problem:

min
z(·)∈L2(µY )

E [q(Y, z(Y ), Y ′)]

E[Y + z(Y )]
(8)

s.t. E[Y + z(Y )] ≥ Tmin (9)
0 ≤ z(y) ≤M, ∀ y ≥ 0,

where z(·) is the function associated with a stationary deter-
ministic policy π ∈ ΠSD. The optimum objective value of
Problem (8) is equal to gopt.

C. A Low Complexity Solution to Problem (8)
Lemma 1: If g(·) is measurable, non-negative, and non-

decreasing, then the functional h : L2(µY ) → [0,∞) defined
by

h(z) =
E [q(Y, z(Y ), Y ′)]

E[Y + z(Y )]

is quasi-convex.
Proof: See Appendix C of [9].

Therefore, Problem (8) is a functional quasi-convex opti-
mization problem. In order to solve Problem (8), we consider
the following functional convex optimization problem with a
parameter c:

f(c) = min
z(·)∈L2(µY )

E [q(Y, z(Y ), Y ′)]− cE[Y + z(Y )] (10)

s.t. E[Y + z(Y )] ≥ Tmin

0 ≤ z(y) ≤M, ∀ y ≥ 0.

It is easy to show that gopt ≤ c if and only if f(c) ≤ 0
[27]. Therefore, we can solve Problem (8) by a two-layer
nested algorithm, such as Algorithm 1. In the inner layer, we



Algorithm 1 Two-layer bisection method for Problem (8)
given l = 0, sufficiently large u > gSD, tolerance ε1.
repeat
c := (l + u)/2.
given ζl = 0, sufficiently large ζu > 0, tolerance ε2.
ζ := ζl, ν := ζ + c.
Compute zν(·) in (11).
if E[zν(Y )] + E[Y ] < Tmin then

repeat
ζ := (ζl + ζu)/2, ν := ζ + c.
Compute zν(·) in (11).
if E[zν(Y )] + E[Y ] ≥ Tmin, ζu := ζ; else, ζl := ζ.

until ζu − ζl ≤ ε2.
end if
if f(c) ≤ 0, u := c; else, l := c.

until u− l ≤ ε1.
return z(·) := zν(·).

use bisection to solve Problem (10) for given parameter c;
in the outer layer, we employ bisection again to search for
a c∗ such that f(c∗) = 0 and thus gopt = c∗. Algorithm 1
has low complexity. It requires at most dlog2((u − l)/ε1)e×
dlog2((ζu − ζl)/ε2)e iterations to terminate. Each iteration
involves computing E[zν(Y )] based on (11). The optimality
of Algorithm 1 is guaranteed by the following theorem:

Theorem 3: If g(·) is measurable, non-negative, and non-
decreasing, then an optimal solution πopt to Problem (8)
is obtained by Algorithm 1, where the function zν(·) is
determined by

zν(y) = sup{z ∈ [0,M ] : E [g(y+z+Y ′)|Y = y] ≤ ν}. (11)

Proof Sketch of Theorem 3: We use Lagrangian duality
theory to solve Problem (8). Different from traditional finite
dimensional optimization problems [27], Problem (8) is an
infinite dimensional functional optimization problem. There-
fore, the Karush-Kuhn-Tucker (KKT) theorem for infinite
dimensional space [28], [29] and the calculus of variations
are required in the analysis. In particular, since the Lagrangian
may not be strictly convex for some penalty functions, one-
sided Gâteaux derivative (similar to sub-gradient in finite
dimensional space) is used to solve the KKT conditions in
Lebesgue space L2(µY ). The proof details are provided in
Appendix D of [9].

IV. WHEN IS IT BETTER TO WAIT THAN TO UPDATE?

When Tmin ≤ E[Y ], a logical policy is the zero wait policy:
the source submits a fresh update once the prior update com-
pletes service, i.e., πzero wait = (0, 0, . . .). As mentioned before,
this zero wait policy is not always optimal to keep data fresh.
When Tmin > E[Y ], due to the constraint (9), the minimum
possible average waiting time is E[z(Y )] = Tmin − E[Y ].
However, even in this case, the optimal policy may have
additional waiting time such that E[z(Y )] > Tmin − E[Y ].
In this section, we will study when it is optimal to submit
updates with the minimum wait and when it is not.

Algorithm 2 Bisection method for solving Problem (13)
given l = 0, sufficiently large u, tolerance ε.
repeat
β := (l + u)/2.

o := E
[
(β)M+Y

Y

]
−max

(
Tmin,

E[((β)M+Y
Y )2]
2β

)
, where

(x)ba = min[max[x, a], b].
if o ≥ 0, u := β; else, l := β.

until u− l ≤ ε.
Compute z(·) by (15).
return z(·).

A. A Special Case of g(∆) = ∆ with i.i.d. Service Times

Consider the case that g(∆) = ∆ and the Yi’s are i.i.d.. In
this case, Problem (8) has a simpler solution than that provided
by Algorithm 1. Interestingly, this solution explicitly charac-
terizes whether the optimal control z(·) can have minimum
wait such that E[z(Y )] = Tmin − E[Y ].

As shown in Fig. 2, q(y, z, y′) is the area of a trapezoid,
computed as

q(y, z, y′) =
1

2
(2y + z + y′)(z + y′).

Because the Yi’s are i.i.d., Y and Y ′ in Problem (8) are also
i.i.d. Using this, we can obtain

E[q(Y, z(Y ), Y ′)]

=E
[

1

2
(Y + z(Y ))2 + (Y + z(Y ))Y ′

]
(12)

=
1

2
E
[
(Y + z(Y ))2

]
+ E [Y + z(Y )]E [Y ′] ,

where in (12) we have used that E[Y 2] = E[Y ′2]. Hence,
Problem (8) can be reformulated as

min
z∈L2(µY )

E[(Y + z(Y ))2]

2E[Y + z(Y )]
+ E[Y] (13)

s.t. E[Y + z(Y )] ≥ Tmin (14)
0 ≤ z(y) ≤M, ∀ y ≥ 0.

The following lemma tells us that Problem (13) is a functional
convex optimization problem.

Lemma 2: The functional h1 : L2(µY )→ R defined by

h1(z) =
E[(Y + z(Y ))2]

E[Y + z(Y )]

is convex on the domain

dom h1 =
{
z : z(y) ∈ [0,M ], ∀y ≥ 0, z ∈ L2(µY )

}
.

Proof: See Appendix E of [9].
Using the KKT theorem for infinite dimensional space and the
calculus of variations, we can obtain

Theorem 4: The optimal solution to Problem (13) is

z(y) = (β − y)M0 , (15)

where (x)ba , min[max[x, a], b] and β > 0 is the root of the
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Fig. 4. Average age vs. Tmin with i.i.d. discrete service times.
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Fig. 5. Average age vs. Tmin with i.i.d. log-normal distributed service times.

following equation:

E
[
(β)M+Y

Y

]
= max

(
Tmin,

E[((β)M+Y
Y )2]

2β

)
. (16)

Proof: See Appendix F of [9].
Equation (15) has the form of a water-filling solution, where

the water-level β is given by the root of equation (16). One
can observe that (11) reduces to (15) if g(∆) = ∆, the Yi’s are
i.i.d., and τ is replaced by β + E[Y ]. The root β of equation
(16) can be simply solved by the bisection search method in
Algorithm 2. We note that Algorithm 2 has a lower complexity
than Algorithm 1 in the special case of g(∆) = ∆ and i.i.d.
service process, while Algorithm 1 can obtain the optimal
policy in more general scenarios.

Interestingly, Theorem 4 provides a closed-form criterion
on whether the optimal z(·) satisfies E[z(Y )] = Tmin−E[Y ].
Specifically, (15) implies (β)M+Y

Y = Y +z(Y ). This and (16)
tell us that if Tmin ≥ E[(Y+z(Y ))2]

2β , then the optimal control
z(·) satisfies

E[Y + z(Y )] = Tmin ≥
E[(Y + z(Y ))2]

2β
, (17)

such that the optimal policy has the minimum average wait-
ing time E[z(Y )] = Tmin − E[Y ]; otherwise, if Tmin <
E[(Y+z(Y ))2]

2β , the optimal control z(·) satisfies

E[Y + z(Y )] =
E[(Y + z(Y ))2]

2β
> Tmin, (18)

such that the average waiting time E[z(Y )] of the optimal
policy is larger than Tmin − E[Y ].

Furthermore, we consider the case Tmin = 0, where the
constraint (14) is always satisfied and can be removed. Note
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Fig. 6. Average age vs. the correlation coefficient ρ between Yi and Yi+1

for discrete service times, where Tmin ≤ E[Y ].
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Fig. 7. Average age vs. the correlation coefficient ρ between Yi and Yi+1

for log-normal distributed service times, where Tmin ≤ E[Y ].

that we have the same problem for all Tmin ≤ E[Y ] and hence
we can pick Tmin = E[Y ]. By substituting Tmin = E[Y ] into
(17) and (18), we can obtain the criterion on whether the zero
waiting policy is optimal.

1) Simulation Results: We use “Optimal policy” to refer
to the policy provided in Theorem 3 (or its special case in
Theorem 4), and compare it with two reference policies:
• “Constant wait”: Each update is followed by a constant

wait Zi = const before submitting the next update with
const = Tmin − E[Y ].

• “Minimum wait”: The update waiting time is given by a
deterministic function Zi = z(Yi), where z(·) is given by
(15) and β is chosen to satisfy E[z(Y )] = Tmin−E[Y ].3

When E[Y ] = Tmin, both the constant wait and minimum
wait policies reduce to the zero wait policy. Two models of
the service processes are considered: The first one is a discrete
Markov chain with a probability mass function Pr[Yi = 0] =
Pr[Yi = 2] = 0.5 and a transition matrix

P =

[
p 1− p

1− p p

]
.

Hence, the Yi’s are i.i.d. when p = 0.5, and the correlation
coefficient between Yi and Yi+1 is ρ = 2p − 1. The second
one is a log-normal distributed Markov chain, where Yi =
eσXi/E[eσXi ] and (X0, X1, . . .) is a Gaussian Markov process
satisfying the first-order AR equation

Xi+1 = ηXi +
√

1− η2Wi,

where σ > 0 is the scale parameter of log-normal distribution,
η ∈ [−1, 1] is the parameter of the AR model, and the
Wi’s are i.i.d. Gaussian random variables with zero mean

3This policy was called “β-minimum” in [8].
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Fig. 9. Average age penalty vs. the parameter α of stair-step penalty functions
with discrete service times, where Tmin ≤ E[Y ], g(∆) = bα∆c, and ρ =
0.4.

and unit variance. The log-normal distributed Markov chain is
normalized such that E[Yi] = 1. According to the properties
of log-normal distribution, the correlation coefficient between
Yi and Yi+1 is ρ = (eη − 1)/(e− 1). Then, the Yi’s are i.i.d.
when η = 0. The value of M is set to be 10.

Figures 4 and 5 illustrate the average age vs. Tmin for i.i.d.
discrete and log-normal distributed service times, respectively.
In both figures, one can observe that the constant wait policy
always incurs a larger average age than the optimal policy. In
addition, as expected from (17) and (18), as Tmin exceeds a
certain threshold, the optimal policy meets the constraint (14)
with equality. For smaller values of Tmin, the constraint is
not active for the optimal solution. Consequently, the average
age achieved by the minimum wait policy deviates from the
optimum for small values of Tmin.

B. General Age Penalties and Correlated Service Processes

For general age penalties and correlated service processes,
it is essentially difficult to find closed-form characterization
on whether the optimal control z(·) can have minimum wait
such that E[z(Y )] = Tmin−E[Y ]. Therefore, we focus on the
case of Tmin ≤ E[Y ] and study when the zero wait policy
minimizes the average age penalty. Sufficient conditions for
the optimality of the zero wait policy are provided as follows:

Lemma 3: Suppose that Tmin ≤ E[Y ], g(·) is measurable,
non-negative, and non-decreasing. The zero wait policy is
optimal for Problem (8) if one of the following is satisfied:
1). The correlation coefficient between Yi and Yi+1 is −1;
2). The Yi’s are equal to a constant value;
3). g(·) is a constant function.

Proof: See Appendix G of [9].

1) Simulation Results: We now provide some simulation
results for general age penalties and/or correlated service
processes. Figures 6 and 7 depict the average age vs. the
correlation coefficient ρ between Yi and Yi+1 for discrete and
log-normal distributed service times, respectively. In Fig. 6, the
regime of ρ is [−1, 1]. We observe that the zero wait policy
is optimal when ρ ∈ [−1,−0.5], and the performance gap
between the optimal policy and the zero wait policy grows
with ρ when ρ ≥ −0.5. This is in accordance with the
example in the introduction: As ρ grows, the occurrence of
two consecutive zero service times (i.e., (Yi, Yi+1) = (0, 0))
increases. Therefore, more and more updates are wasted in the
zero wait policy, leading to a larger gap from the optimum. In
Fig. 7, the regime of ρ is [(e−1 − 1)/(e− 1), 1]. In this case,
the sub-optimality gap of the zero wait policy also increases
with ρ. The point ρ = 1 is not plotted in these figures because
the corresponding Markov chains are not ergodic.

Figure 8 considers the average age vs. the parameter σ of
log-normal distributed service times, where ρ = (e0.5−1)/(e−
1). We observe that the zero wait policy is optimal for small
σ and is not optimal for large σ. Note that when σ = 0, the
service times are constant, i.e., Yi = 1 for all i.

Figures 9 shows the average age penalty vs. the parameter
α of stair-step penalty functions, where g(∆) = bα∆c. The
correlation coefficient is ρ = 0.4 for discrete service times. We
find that the zero wait policy is optimal if α = 0, in which
case g(∆) is a constant function. When α > 0, the zero wait
policy may not be optimal. Due to space limitations, additional
simulation results of power and exponential penalty functions
are provided in [9].

These simulation results suggest that the conditions in
Lemma 3 are sufficient but not necessary.

V. CONCLUSION

We studied the optimal control of status updates from a
source to a remote monitor via a FCFS network server. We
generalized the existing studies on status update age to cover
general age penalty functions and non-i.i.d. service processes.
We developed efficient algorithms to find the optimal status
update policy for minimizing the average age penalty. We
showed that, surprisingly, in many scenarios, the optimal
policy is to wait for a certain time before submitting a new
update. In particular, the widely-adopted zero wait policy can
be far from the optimum if (i) the penalty function grows
quickly with respect to the age, and (ii) the update service
times are highly random and positive correlated.

APPENDIX A
PROOF OF THEOREM 1

A. An Upper Bound of gopt

By restricting Π in Problem (4) to ΠSR, we obtain the
following problem:

gSR = min
π∈ΠSR

lim sup
n→∞

E
[∑n−1

i=0 q(Yi, Zi, Yi+1)
]

E[
∑n−1
i=0 (Yi + Zi)]

(19)

s.t. lim inf
n→∞

1

n
E

[
n−1∑
i=0

(Yi + Zi)

]
≥ Tmin,



where gSR is the optimum objective value of Problem (19).
Since ΠSR ⊆ Π, we can obtain

gSR ≥ gopt. (20)

It is easy to show that the (Yi, Zi, Yi+1)’s are stationary
and ergodic for all stationary randomized policies. This, to-
gether with the condition that g(·) is measurable, tells us
that q(Yi, Zi, Yi+1) is stationary and ergodic [11, Theorems
7.1.1 and 7.1.3]. For any stationary randomized policy π =
(Z0, Z1, . . .) ∈ ΠSR, we obtain

1

n
E

[
n−1∑
i=0

q(Yi, Zi, Yi+1)

]
= E[q(Y0, Z0, Y1)], (21)

1

n
E

[
n−1∑
i=0

(Yi + Zi)

]
= E[Y0 + Z0]. (22)

Hence, Problem (19) can be reformulated as Problem (7).

B. The Upper Bound of gopt is Tight, i.e., gSR = gopt

We will show gSR = gopt in 4 steps. The following
definitions are needed: Since gopt is finite, for each causally
feasible policy π = (Z0, Z1, . . .) ∈ Π we can define an,π and
bn,π as in (5) and (6), respectively.

Further, define ΓSR as the set of limit points of sequences(
(an,π , bn,π), n = 1, 2, . . .

)
associated with all stationary

randomized policies π ∈ ΠSR. Because the renewal reward
q(Yi, Zi, Yi+1) and renewal interval Yi+Zi are stationary and
ergodic for all stationary randomized policies π ∈ ΠSR, the
sequence (an,π, bn,π) has a unique limit point in the form of(

E[q(Y,Z, Y ′)]− goptE[Y + Z],E[Y + Z]
)
. (23)

Hence, ΓSR is the set of all points (E[q(Y, Z, Y ′)]− goptE[Y +
Z],E[Y + Z]), where each point is associated with a condi-
tional probability measure p(y,A) = Pr[Z ∈ A|Y = y], and
the measure of (Y, Y ′) is the same as that of (Y0, Y1). Note
that E[Y ] = E[Y ′].

Step 1: We will show that ΓSR is a convex and compact set.
It is easy to show that ΓSR is convex by considering a sta-

tionary randomized policy that is a mixture of two stationary
randomized policies.

For compactness, let ((dj , ej), j = 1, 2, · · · ) be any se-
quence of points in ΓSR, we need to show that there is a
convergent subsequence (djk , ejk) whose limit is also in ΓSR.
Since (dj , ej) ∈ ΓSR, there must exist (Y,Z(j), Y

′) with
conditional probability pj(y,A) = Pr[Z(j) ∈ A|Y = y], such
that dj = E[q(Y, Z(j), Y

′)]−goptE[Y +Z(j)], ej = E[Y +Z(j)].
Let µj be the joint probability measure of (Y,Z(j), Y

′), then
(dj , ej) is uniquely determined by µj . For any L satisfying
L ≥M , we can obtain

µj(Y ≤ L,Z(j) ≤ L, Y ′ ≤ L)

= Pr(Y ≤ L, Y ′ ≤ L)

≥Pr(Y + Y ′ ≤ L)

≥1− E[Y + Y ′]

L
, ∀ j,

where the equality is due to the fact that Z(j) ≤M ≤ L and
the last inequality is due to Markov’s inequality. Therefore,

for any ε, there is an L such that

lim inf
j→∞

µj(|Y | ≤ L, |Z(j)| ≤ L, |Y ′| ≤ L) ≥ 1− ε.

Hence, the sequence of measures µj is tight. By Helly’s
selection theorem [11, Theorem 3.9.2], there is a subsequence
of measures µjk that converges weakly to a limit measure µ∞.

Let (Y,Z(∞), Y
′) and p∞(y,A) = Pr[Z∞ ∈ A|Y = y]

denote the random vector and conditional probability cor-
responding to the limit measure µ∞, respectively. We can
define d∞ = E[q(Y,Z(∞), Y

′)] − goptE[Y + Z(∞)], e∞ =
E[Y + Z(∞)]. Since the function q(y, z, y′) is in the form of
an integral, it is continuous and thus measurable. Using the
continuous mapping theorem [11, Theorem 3.2.4], we can ob-
tain that q(Y,Z(jk), Y

′) converges weakly to q(Y,Z(∞), Y
′).

Then, using the condition (3), together with the dominated
convergence theorem (Theorem 1.6.7 of [11]) and Theorem
3.2.2 of [11], we can obtain limk→∞(djk , ejk) = (d∞, e∞).
Hence, ((dj , ej), j = 1, 2, · · · ) has a convergent subsequence.
Further, we can generate a stationary randomized policy π∞,SR
by using the conditional probability p∞(y,A) correspond-
ing to µ∞. Then, (d∞, e∞) is the limit point generated
by the stationary randomized policy π∞,SR, which implies
(d∞, e∞) ∈ ΓSR. In summary, any sequence (dj , ej) in ΓSR
has a convergent subsequence (djk , ejk) whose limit (d∞, e∞)
is also in ΓSR. Therefore, ΓSR is a compact set.

Step 2: We will show that there exists an optimal policy
πopt ∈ Π of Problem (4) such that the sequence (an,πopt , bn,πopt)
associated with policy πopt has at least one limit point in ΓSR.

Since the sequence (Y0, Y1, . . .) is a Markov chain, the
observation Yi+1 depends only on the immediately preceding
state Yi and not on the history state and control Y0, . . . , Yi−1,
Z0, . . . , Zi−1. Therefore, Yi is the sufficient statistic [13, p.
252] for solving Problem (4). This tells us that there exists
an optimal policy πopt = (Z0, Z1, . . .) ∈ Π of Problem (4) in
which the control action Zi is determined based on only Yi, but
not the history state and control Y0, . . . , Yi−1, Z0, . . . , Zi−1

[13]. We will show that the sequence (an,πopt , bn,πopt) associ-
ated with this policy πopt has at least one limit point in ΓSR.

It is known that Zi takes values in the standard Borel space
(R,R), where R is the Borel σ-field. According to [11, Tho-
erem 5.1.9], for each i there exists a conditional probability
measure p′i(y,A) such that p′i(y,A) = Pr(Zi ∈ A|Yi = y) for
almost all y. One can use this conditional probability p′i(y,A)
to generate a stationary randomized policy π′i,SR ∈ ΠSR. Then,
the one-stage expectation (E[q(Yi, Zi, Yi+1)] − goptE[Yi +
Zi],E[Yi + Zi]) is exactly the limit point generated by the
stationary randomized policy π′i,SR. Thus, (E[q(Yi, Zi, Yi+1)]−
goptE[Yi + Zi],E[Yi + Zi]) ∈ ΓSR for all i = 0, 1, 2, . . .
Using (5), (6), and the fact that ΓSR is convex, we can
obtain (an,πopt , bn,πopt) ∈ ΓSR for all n = 1, 2, 3 . . . In other
words, the sequence (an,πopt , bn,πopt) is within ΓSR. Since ΓSR
is a compact set, the sequence (an,πopt , bn,πopt) must have a
convergent subsequence, whose limit is in ΓSR.

Step 3: Let (a∗, b∗) ∈ ΓSR be one limit point of the sequence
(an,πopt , bn,πopt) associated with policy πopt. We will show that
a∗ ≤ 0 and b∗ ≥ Tmin.

Policy πopt is feasible for Problem (4) and meanwhile



achieves the optimum objective value gopt. Hence,

lim sup
n→∞

cn,πopt

bn,πopt

= gopt, (24)

lim inf
n→∞

bn,πopt ≥ Tmin, (25)

where

cn,πopt ,
1

n
E
[ n−1∑
i=0

q(Yi, Zi, Yi+1)

]
.

By (6), bn,πopt is upper bounded by

bn,πopt ≤
1

n
E

[
n−1∑
i=0

(M + Yi+1)

]
= M + E[Y ] <∞.

Hence, by (5), we have

an,πopt = cn,πopt − goptbn,πopt

≤ max{cn,πopt − goptbn,πopt , 0}

= max{
cn,πopt

bn,πopt

− gopt, 0}bn,πopt

≤ max{
cn,πopt

bn,πopt

− gopt, 0}(M + E[Y ]).

Taking the lim sup in this inequality and using (24), yields

lim sup
n→∞

an,πopt ≤ 0. (26)

Because (a∗, b∗) is one limit point of (an,πopt , bn,πopt), we have

a∗ ≤ lim sup
n→∞

an,πopt , b
∗ ≥ lim inf

n→∞
bn,πopt . (27)

By (25)-(27), we have a∗ ≤ 0 and b∗ ≥ Tmin.

Step 4: We will show that there exists a stationary ran-
domized policy that is optimal for Problems (4) and (7), and
thus gSR = gopt. By the definition of ΓSR, (a∗, b∗) ∈ ΓSR
must be the limit point generated by a stationary randomized
policy π∗ ∈ ΠSR. Let (Y,Z∗, Y ′) be a random vector with the
stationary distribution of policy π∗. Then, (23) implies

(a∗, b∗) =
(
E[q(Y,Z∗, Y ′)]− goptE[Y + Z∗],E[Y + Z∗]

)
.

Using a∗ ≤ 0 and b∗ ≥ Tmin, we can obtain

E[q(Y,Z∗, Y ′)]− E[Y + Z∗]gopt ≤ 0, (28)
E[Y + Z∗] ≥ Tmin. (29)

By (28) and E[Y + Z∗] > 0, we have

E[q(Y,Z∗, Y ′)]

E[Y + Z∗]
≤ gopt.

Further, the inequality (29) suggests that the stationary ran-
domized policy π∗ is feasible for Problem (7). Hence,

E[q(Y,Z∗, Y ′)]

E[Y + Z∗]
≥ gSR.

Therefore, gSR ≤ gopt. This and (20) suggest that

E[q(Y, Z∗, Y ′)]

E[Y + Z∗]
= gSR = gopt.

This completes the proof.
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