
Optimizing Data Freshness, Throughput, and Delay
in Multi-Server Information-Update Systems

Ahmed M. Bedewy, Yin Sun, and Ness B. Shroff

Dept. of ECE, The Ohio State University, Columbus, OH.

Abstract—In this work, we consider an information-update
system where a source sends update packets to a remote monitor
via multiple network servers. An important metric of data
freshness at the monitor is the age-of-information, or simply age,
which is defined as the time elapsed since the freshest packet
at the monitor was generated. Recent studies on information-
update systems have shown that the age-of-information can be
reduced by intelligently dropping stale packets. However, packet
dropping may not be appropriate in many systems (such as
news and social networks), where users are interested in not
just the latest updates, but also past news. Therefore, all packets
may need to be successfully delivered. In this paper, we study
how to optimize the age-of-information without throughput loss.
We show that the preemptive Last-Come First-Served (LCFS)
policy simultaneous optimizes the age, throughput, and delay
performance in infinite buffer systems, and hence is appropriate
for practical information-update systems. We also show age-
optimality regardless of the buffer size. Numerical results are
provided to validate our theoretical results.

I. INTRODUCTION

With the ever prevalence of mobile devices and applications,
the demand has increased on real-time information updates,
such as news, weather reports, email notifications, stock
quotes, social updates, mobile ads, etc. Also, in network-
based monitoring and control systems, timely status updates
are crucial. These include, but are not limited to, sensor
networks used in temperature or other physical phenomenon,
and autonomous vehicle systems.

A common objective in these applications is to keep the
monitor updated with the latest information. To identify
the timeliness of the update, a metric called the age-of-
information, or simply age, was defined in [1]–[4]. At time
t, if U(t) is defined as the time when the freshest update at
the monitor was generated at the source, the status update age
is ∆(t) = t− U(t). Hence, the age is the time elapsed since
the freshest packet was generated.

Most works try to analytically characterize the time-average
age of different information-update policies under Poisson
arrival process, and find a policy with a smaller time-average
age [4]–[10]. In [4]–[6], the update generation rate was op-
timized to improve data freshness in First-Come First-Served
(FCFS) information-update systems. To improve the age, these
studies reduce the update generation rate from the maximum
achievable rate, which in turn degrades system throughput.
In [7], [8], it was found that the age can be improved by
discarding old packets waiting in the queue if a new sample
arrives, which can greatly reduce the impact of queueing delay
on data freshness. However, discarding packets may not be
appropriate for applications where the users are interested
in not just the latest updates, but also past news, where all
packets may need to be successfully delivered. In [9], [10], the
time-average age was characterized for several information-
update policies under Poisson arrival process. Applications

!"#$%& '&()*+,)*"+-#&#&

!&$.&$/0

!&$.&$/1

!&$.&$/2

Figure 1: System model.

of information updates in channel information feedback and
sensor networks were considered in [11], [12].

One important problem is how to achieve the optimal
age performance in information-update systems. Recently, the
joint control of the generation and transmission of update
packets was studied in [12]–[14]. An information update
policy was developed in [14], which was proven to minimize
the time-average age and time-average age penalty among all
causally feasible policies. A counter-intuitive phenomenon was
revealed in this study: While a zero-wait or work-conserving
policy, that submits a fresh update once the server becomes
idle, achieves the maximum throughput and the minimum
average delay, surprisingly, this zero-wait policy does not
always optimize the age. It was shown that in many scenarios
the age-optimal policy is to insert waiting times between
updates, which is, however, not throughput-optimal. Therefore,
how to jointly optimize data freshness, throughput, and delay
performance in information-update systems remains an open
problem.

In this paper, we consider an information-update system
with multiple servers, which is illustrated in Fig. 1. We aim
to answer the following questions: How to minimize the age-
of-information without throughput loss? How to establish age-
optimality in a general policy space and under arbitrary arrival
process? Is it possible to simultaneously optimize multiple
performance metrics, such as age, throughput, and delay? To
that end, the following are the key contributions of this paper:
• We prove that, if the packet service times are i.i.d.

exponentially distributed, then for an arbitrary arrival
process and any buffer size, the preemptive Last-Come
First-Served (LCFS) policy achieves an age that is
stochastically smaller than any causally feasible policies
(Theorem 1). This implies that the preemptive LCFS
policy minimizes many data freshness metrics, including
time-average age, average peak age, and time-average
age penalty (Corollary 5). The intuition behind this age-
optimality result is that new update packets with the
freshest information are served as early as possible in
the preemptive LCFS policy.

• In addition, we show that if the queue has an infinite



∆(t)

∆(0)

T1T0 s1 s2 T2 t

Figure 2: Evolution of the age-of-information ∆(t).

buffer size, then the preemptive LCFS policy is also
throughput-optimal and delay-optimal among all causally
feasible policies (Theorem 6). Numerical results are pro-
vided to validate our theoretical results.

The closest study to our work is [9], which analyzed the
time-average age of preemptive and non-preemptive LCFS
policies for a single-server system with Poisson arrival process
and a buffer size of one packet. In our paper, we prove that
the preemptive LCFS policy is age-optimal for multi-server
systems with an arbitrary arrival process and any buffer size.
Hence, our study complements that of [9]. To the best of our
knowledge, this is the first study which simultaneously opti-
mizes data freshness, throughput, and delay in information-
update systems.

II. SYSTEM MODEL

We consider an information-update system depicted in Fig.
1, where a source sends an infinite sequence of update packets
to a destination through m identical servers. Each server could
be a wireless channel, a TCP connection, etc. The update pack-
ets are generated at time s1, s2, . . ., where s1 = 0 ≤ s2 ≤ . . .
are deterministic and arbitrarily given. After generation, each
update packet is stored in a queue, waiting to be assigned
to one of the servers. Let B denote the buffer size of the
queue which can be infinite, finite, or even zero. If B is finite,
the queue buffer may overflow under bursty traffic and some
packets are dropped, which would incur a throughput loss. The
packet service times are exponentially distributed with rate µ,
which are i.i.d. across time and servers. Let Ti denote the i-th
packet delivery time instant.

The system starts to operate at time t = 0. Define U(t) as
the time when the freshest update at the monitor at time t was
generated at the source, where we set U(t) = 0 at t = 0. The
age-of-information, or simply the age, is defined as

∆(t) = t− U(t). (1)

From this definition, we can deduce that the age increases
linearly with t but is reset to a smaller value with each update
delivery that contains newer information, as shown in Fig. 2.
Define Ak as the k-th peak value of ∆(t) since time t = 0.

Following [14], we define an age penalty function g(∆(t))
to represent the level of “dissatisfaction” for data staleness
or the “need” for new information update, where g(·) is a
general non-decreasing function. A practical example of the
age penalty function can be found in [11].

A. Scheduling Policy
A scheduling policy, denoted by π, assigns update packets

to the servers over time. A scheduling policy can be either
preemptive or non-preemptive.

Definition 1. Service Preemption: In a preemptive policy,
a server can switch to send an incoming packet with a higher
priority at any time; the preempted packets will be stored back
to the queue if there is enough buffer space and sent at a later
time when the servers are available again. In contrast, in a
non-preemptive policy, a server must complete delivering the
current packet before starting to send another packet.

Definition 2. Work Conservation: A policy is said to be
work-conserving, if no server is idle when there are packets
waiting in the queue.

We use Π to denote the set of all causal policies. Let Πwc ⊆
Π be the set of work-conserving feasible policies, and Πnwc ⊆
Π be the set of non-work-conserving feasible policies.

B. Age Optimality
We will need the following definitions: Let ~x =

(x1, x2, . . . , xn) and ~y = (y1, y2, . . . , yn) be two vectors in
Rn, then we denote ~x ≤ ~y if xi ≤ yi for i = 1, 2, . . . , n.

Definition 3. Stochastic Ordering: [15] Let X and Y be
two random variables. Then, X is said to be stochastically
smaller than Y (denoted as X ≤st Y ), if

P{X > x} ≤ P{Y > x}, ∀x ∈ R.

Definition 4. Multivariate Stochastic Ordering: [15] A
set U ⊆ Rn is called upper if ~y ∈ U whenever ~y ≥ ~x and
~x ∈ U . Let ~X and ~Y be two random vectors. Then, ~X is said
to be stochastically smaller than ~Y (denoted as ~X ≤st ~Y ), if

P{ ~X ∈ U} ≤ P{~Y ∈ U}, for all upper sets U ⊆ Rn.

Definition 5. Stochastic Ordering of Stochastic Pro-
cesses: [15] Let {X(t), t ∈ [0,∞)} and {Y (t), t ∈ [0,∞)} be
two stochastic processes. Then, {X(t), t ∈ [0,∞)} is said to
be stochastically smaller than {Y (t), t ∈ [0,∞)} (denoted by
{X(t), t ∈ [0,∞)} ≤st {Y (t), t ∈ [0,∞)}), if, for all choices
of an integer n and t1 < t2 < . . . < tn in [0,∞), it holds that

(X(t1), X(t2), . . . , X(tn))≤st (Y (t1), Y (t2), . . . , Y (tn)), (2)

where the multivariate stochastic ordering in (2) was defined
in Definition 4.

Definition 6. Age Optimality: A policy P ∈ Π is said to
be age-optimal, if for all π ∈ Π

{∆p(t), t ∈ [0,∞)} ≤st {∆π(t), t ∈ [0,∞)}. (3)

As we will see in Corollary 5, this definition of age optimality
is stronger than many definitions proposed in prior studies.

III. OPTIMALITY ANALYSIS

In this section, we study the preemptive LCFS policy
depicted in Algorithm 1, where αi is the i-th smallest time
stamp of the packets under service. We will show that the
preemptive LCFS policy is age-optimal, which is stated in the
following theorem.

Theorem 1. If the packet service times are exponentially
distributed and i.i.d. across time and servers, then for any
given arrival time sequence s1, s2, . . . and buffer size B, the
preemptive LCFS policy is age-optimal.



Algorithm 1: Preemptive Last Come First Served policy.
1 αi := 0, i = 1, . . .m;
2 while the system is ON do
3 if a new packet with time stamp s arrives then
4 if all servers are busy then
5 The new packet is assigned to a server by

preempting the packet with time stamp α1;
6 αi := αi+1, i = 1, . . .m− 1;
7 αm := s;
8 if the buffer is not full then
9 The preempted packet is stored back to

the queue;
10 else // the buffer is full
11 The preempted packet is dropped;
12 end
13 else // At least one of the servers is idle
14 Assign the new packet to one idle server;
15 end
16 end
17 if a packet is delivered then
18 if the buffer is not empty then
19 Pick any packet in the buffer and assign it to

the idle server;
20 end
21 end
22 end

We need to define the system state of any policy π:
Definition 7. At any time t, the system state of policy π

is specified by Vπ(t) = (Uπ(t), α1,π(t), . . . , αm,π(t)), where
Uπ(t) is the largest time stamp of the packets that have already
been delivered to the destination. Define αi,π(t) as the i-th
smallest time stamp of the packets being processed by the
servers. Without loss of generality, if k servers are sending
stale packets such that α1,π(t) ≤ . . . ≤ αk,π(t) ≤ Uπ(t) or k
servers are idle, then we set α1,π(t) = . . . = αk,π(t) = Uπ(t).
Hence,

Uπ(t) ≤ α1,π(t) ≤ . . . ≤ αm,π(t). (4)

Let {Vπ(t), t ∈ [0,∞)} be the state process of policy π, which
is assumed to be right-continuous.

For notational simplicity, let policy P denote the preemp-
tive LCFS policy. Then, in policy P , α1,P (t), α2,P (t), . . . ,
αm,P (t) are the time stamps of m freshest packets among all
packets generated during [0, t].

The key step in the proof of Theorem 1 is the following
lemma, where we compare policy P with any work-conserving
policy π ∈ Πwc.

Lemma 2. For any given arrival time sequence s1, s2, . . . and
buffer size B, suppose that VP (0−) = Vπ(0−) for all work
conserving policies π ∈ Πwc, then

{VP (t), t ∈ [0,∞)}≥st {Vπ(t), t ∈ [0,∞)}. (5)

We use coupling and forward induction to prove Lemma
2. For any work-conserving policy π, suppose that stochastic
processes V̂P (t) and V̂π(t) have the same stochastic laws as
VP (t) and Vπ(t). The state processes V̂P (t) and V̂π(t) are
coupled in the following manner: Consider the packet delivery
events during the evolutions of V̂P (t) and V̂π(t). If the packet

with time stamp α̂i,P (t) is completed at time t as V̂P (t)
evolves, then the packet with time stamp α̂i,π(t) is completed
at time t as V̂P (t) evolves. Such a coupling is valid since the
service time is exponentially distributed and thus memoryless.
According to Theorem 6.B.30 in [15], if we can show

P
[
V̂P (t) ≥ V̂π(t), t ∈ [0,∞)

]
= 1, (6)

then (5) is proven. Next, we use the following two lemmas to
prove (6):

Lemma 3. Suppose that under policy P ,
{Û ′P , α̂′1,P , . . . , α̂′m,P } is obtained by delivering a packet
with time stamp α̂l,P to the destination in the system whose
state is {ÛP , α̂1,P , . . . , α̂m,P }. Further, suppose that under
policy π, {Û ′π, α̂′1,π, . . . , α̂′m,π} is obtained by delivering a
packet with time stamp α̂l,π to the destination in the system
whose state is {Ûπ, α̂1,π, . . . , α̂m,π}. If

ÛP ≥ Ûπ, α̂i,P ≥ α̂i,π, ∀i = 1, . . . ,m,

then,
Û ′P ≥ Û ′π, α̂′i,P ≥ α̂′i,π, ∀i = 1, . . . ,m. (7)

Proof. See Appendix A.

Lemma 4. Suppose that under policy P ,
{Û ′P , α̂′1,P , . . . , α̂′m,P } is obtained by adding a fresh
packet with time stamp s to the system whose state is
{ÛP , α̂1,P , . . . , α̂m,P }. Further, suppose that under policy
π, {Û ′π, α̂′1,π, . . . , α̂′m,π} is obtained by adding a fresh
packet with time stamp s to the system whose state is
{Ûπ, α̂1,π, . . . , α̂m,π}. If

ÛP ≥ Ûπ, α̂i,P ≥ α̂i,π, ∀i = 1, . . . ,m,

then
Û ′P ≥ Û ′π, α̂′i,P ≥ α̂′i,π, ∀i = 1, . . . ,m. (8)

Proof. See Appendix B.

Proof of Lemma 2. For any sample path, we have that
ÛP (0−) = Ûπ(0−) and α̂i,P (0−) = α̂i,π(0−) for i =
1, . . . ,m. This, together with Lemma 3 and 4, implies that

ÛP (t) ≥ Ûπ(t), α̂i,P (t) ≥ α̂i,π(t)

holds for all t ∈ [0,∞) and i = 1, . . . ,m. Hence, (6) follows.
Because {V̂P (t), t ∈ [0,∞)} and {VP (t), t ∈ [0,∞)} are

of the same distribution, {V̂π(t), t ∈ [0,∞)} and {Vπ(t), t ∈
[0,∞)} are of the same distribution, by Theorem 6.B.30 in
[15] we get (5). This completes the proof.

Proof of Theorem 1. As a result of Lemma 2, we have

{UP (t), t ∈ [0,∞)} ≥st {Uπ(t), t ∈ [0,∞)}, ∀π ∈ Πwc,

which implies

{∆P (t), t ∈ [0,∞)}≤st{∆π(t), t ∈ [0,∞)}, ∀π ∈ Πwc.

Finally, since the service times are i.i.d. across time and
servers, service idling only increases the waiting time of the
packet in the system. Therefore, the age under non-work-
conserving policies will be greater. As a result, we have

{∆P (t), t ∈ [0,∞)} ≤st {∆π(t), t ∈ [0,∞)},∀π ∈ Π.



This completes the proof.

As a result of Theorem 1, we can deduce the following
corollary:

Corollary 5. If the packet service times are i.i.d. exponentially
distributed across time and servers, then for all arrival time
sequence s1, s2, . . ., buffer size B, π ∈ Π, and non-decreasing
function g,

lim
T→∞

1

T

∫ T

0

∆prmp-LCFS(t)dt ≤st lim
T→∞

1

T

∫ T

0

∆π(t)dt,

lim
K→∞

1

K

K∑
k=1

Ak,prmp-LCFS ≤st lim
K→∞

1

K

K∑
k=1

Ak,π,

lim
T→∞

1

T

∫ T

0

g(∆prmp-LCFS(t))dt ≤st lim
T→∞

1

T

∫ T

0

g(∆π(t))dt,

where the limits are assumed to exist.1

Hence, the preemptive LCFS policy minimizes time-average
age, average peak age, and time-average age penalty for any
non-decreasing penalty function g. Finally, the delay and
throughput optimality of the preemptive LCFS policy is stated
as follows:

Theorem 6. If the packet service times are i.i.d. exponentially
distributed across time and servers, then for any arrival time
sequence s1, s2, . . . and infinite buffer size B = ∞, the
preemptive LCFS policy is throughput-optimal and mean-
delay-optimal among all policies in Π.

In particular, any work-conserving policy is throughput
optimal and mean-delay-optimal. The proof of this theorem
is omitted due to space limitation.

IV. NUMERICAL RESULTS

We present some numerical results to illustrate the age
and throughput performance of different policies. The packet
service times are exponentially distributed with mean 1/µ = 1,
which is i.i.d. across time and servers. The inter-arrival times
are i.i.d. Erlang-2 distribution with mean 1/λ. The number of
servers is m. Hence, the traffic intensity is ρ = λ/mµ. The
queue buffer size is denoted as B, which is a non-negative
integer.

Figure 3 illustrates the time-average age versus ρ for an
information-update system with m = 1 server. One can
observe that the preemptive LCFS policy achieves a better
age performance than the FCFS policy analyzed in [4], and
the non-preemptive LCFS policy with buffer size B = 1 [9]
which was also named “M/M/1/2*” in [7]. Note that in these
prior studies, the time-average age was characterized only for
the special case of Poisson arrival process.

Figure 4 plots the time-average age versus ρ for an
information-update system with m = 2 servers. We found that
the age performance of each policy is better than that in Fig. 3,
because of the diversity provided by two servers. In addition,
the preemptive LCFS policy achieves the best age performance
among all plotted policies. It is important to emphasize that the
age performance of the preemptive LCFS policy remains the
same for any buffer size B ≥ 0. However, the age performance
of the non-preemptive LCFS policy and FCFS policy varies

1Please refer to Fig. 2 and Section II for the peak age Ak,π .

ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e

ra
g

e
 a

g
e

0

1

2

3

4

5

6

7

8

Preemptive LCFS, Any B ≥ 0
Non-preemptive LCFS, B = 1
FCFS, B = 1
FCFS, B = ∞

Figure 3: Average age versus traffic intensity ρ for an update
system with m = 1 server and buffer size B.

ρ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
e
ra

g
e

 a
g
e

0

1

2

3

4

5 Preemptive LCFS, Any B ≥ 0
Non-preemptive LCFS, B = 1
FCFS, B = 1
FCFS, B = 10
FCFS, B = ∞

Figure 4: Average age versus traffic intensity ρ for an update
system with m = 2 servers and buffer size B.

with the buffer size B when there are multiple servers. These
numerical results validate Theorem 1.

Figure 5 depicts the throughput versus buffer size B for
an information-update system with m = 2 servers. From
the figure, we can deduce that the preemptive LCFS policy
with an infinite buffer achieves the maximum throughput of
2, and it is better than the other policies. This is because
other policies have a finite buffer which leads to packet
dropping and throughput loss. This result is in accordance with
Theorem 6 which shows that the preemptive LCFS policy can
simultaneously maintain age and throughput optimality. The
delay performance is omitted because any work-conserving
policy is mean-delay-optimal.

V. CONCLUSIONS

In this paper, we considered an information-update system,
in which a source sends update packets to a destination
through multiple network servers. It was showed that, if the
packet service times are i.i.d. exponentially distributed, then
for any given arrival process and buffer size, the preemptive
LCFS policy simultaneously optimizes the data freshness,
throughput, and delay performance among all causally feasible
policies. We plan to extend these results to more general
system settings with general service time distribution.



0 20 40 60 80 100
Buffer size B

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

T
h

ro
u
g

h
p

u
t

Preemptive LCFS, B=∞
preemptive LCFS, varying B
Non-preemptive LCFS, B=1

Figure 5: Throughput versus buffer size B for an update
system with m = 2 servers.

APPENDIX A
PROOF OF LEMMA 3

Since a packet with time stamp α̂l,P is delivered in policy
P and a packet with time stamp α̂l,π is delivered in policy π,
we have

Û ′P = α̂l,P ≥ α̂l,π = Û ′π. (9)

In policy P , if the queue is empty, then one server will
be idle after the packet delivery. Otherwise, if there exist
packets in the queue, one of these packets will be assigned to
the available server. Because policy P follows a preemptive
LCFS principle, the time stamp of this assigned packet must
be smaller than α̂l,P , and hence the packet is stale. In both
cases, we will have

α̂′i,P = Û ′P , i = 1, . . . , l,

α̂′i,P = α̂i,P , i = l + 1, . . . ,m.
(10)

We consider two cases for policy π.
Case 1: The queue is empty or the packet which will be

served is outdated. In this case, we have

α̂′i,P = Û ′P ≥ Û ′π = α̂′i,π, for i = 1, . . . , l,

α̂′i,P = α̂i,P ≥ α̂i,π = α̂′i,π, for i = l + 1, . . . ,m.
(11)

Case 2: The packet which will be served is not outdated.
Assume this packet has a time stamp s. Since policy P is a
preemptive LCFS policy, α̂′1,p, α̂

′
2,P , . . . , α̂

′
m,P are the freshest

packets among all packets which have arrived. As a result we
have

α̂′i,P ≥ α̂′i,π, i = 1, . . . ,m− 1,

α̂′m,P ≥ s = α̂′m,π.
(12)

Hence, (7) holds, which complete the proof.

APPENDIX B
PROOF OF LEMMA 4

Since policy P is a preemptive policy, this packet will be
immediately assigned to a server. If one server is idle, then
the new packet will be assigned to an idle server; otherwise,
if all servers are busy, then the new packet will preempt the
packet with minimum time stamp α1,P . The preempted packet
will be stored back to the queue if the queue is not full, and
will be discarded if the queue is full. In both cases, the system

state will not be affected. Since s ≥ α̂i,P for i = 1, . . . ,m,
we have

α̂′i,P = α̂i+1,P i=1,. . .,m− 1,

α̂′m,P =s.
(13)

For policy π, we consider two cases:
Case 1: One of the servers is idle, then the new packet

will be assigned to an idle server. Since s ≥ α̂i,π for all
i = 1, . . . ,m, after the assignment we will have

α̂′m,P = s = α̂′m,π,

α̂′i,P = α̂i+1,P ≥ α̂i+1,π= α̂′i,π, i=1, . . . ,m− 1,
(14)

Case 2: All servers are busy. If policy π is non-preemptive
policy, then the new packet will be stored in the queue if the
queue is not full. Otherwise, the new packet will either be
discarded or replace one of the existed packets in the queue.
As a result, α̂i,π = α̂′i,π for all i. Using (13), we get

α̂′i,P = α̂i+1,P ≥ α̂i+1,π≥ α̂i,π= α̂′i,π, i=1,. . .,m− 1,

α̂′m,P =s > α̂m,π= α̂′m,π.
(15)

On the other hand, if policy π is a preemptive policy, then
this fresh packet preempts one packet under service. Suppose
that the preempted packet has a time stamp α̂l,π, then we have

α̂′i,P = α̂i+1,P ≥ α̂i+1,π≥ α̂i,π= α̂′i,π, i=1, . . . , l − 1,

α̂′i,P = α̂i+1,P ≥ α̂i+1,π= α̂′i,π, i= l, . . . ,m− 1,

α̂′m,P =s= α̂′m,π.

Since there is no packet delivery, we have

Û ′P = ÛP ≥ Ûπ = Û ′π. (16)

Hence, (8) holds, which complete the proof.
REFERENCES

[1] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying update streams
in a soft real-time database system,” in ACM SIGMOD Record. ACM,
1995, vol. 24, pp. 245–256.

[2] J. Cho and H. Garcia-Molina, “Synchronizing a database to improve
freshness,” in Acm Sigmod Record. ACM, 2000, vol. 29, pp. 117–128.

[3] L. Golab, T. Johnson, and V. Shkapenyuk, “Scheduling updates in a real-
time stream warehouse,” in Data Engineering, 2009. ICDE’09. IEEE
25th International Conference on. IEEE, 2009, pp. 1207–1210.

[4] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?,” in Proc. IEEE INFOCOM, 2012, pp. 2731–2735.

[5] R. Yates and S. Kaul, “Real-time status updating: Multiple sources,” in
Proc. IEEE Int. Symp. Inform. Theory, July 2012.

[6] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE Int. Symp. Inform. Theory, 2015.

[7] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in Proc. IEEE Int. Symp. Inform. Theory, June
2014, pp. 1583–1587.

[8] N. Pappas, J. Gunnarsson, L. Kratz, M. Kountouris, and V. Angelakis,
“Age of information of multiple sources with queue management,” in
Proc. IEEE ICC, June 2015, pp. 5935–5940.

[9] S. Kaul, R. Yates, and M. Gruteser, “Status updates through queues,”
in Conf. on Info. Sciences and Systems, Mar. 2012.

[10] C. Kam, S. Kompella, and A. Ephremides, “Effect of message transmis-
sion diversity on status age,” in Proc. IEEE Int. Symp. Inform. Theory,
June 2014, pp. 2411–2415.

[11] M. Costa, S. Valentin, and A. Ephremides, “On the age of channel
information for a finite-state markov model,” in Proc. IEEE ICC, June
2015, pp. 4101–4106.

[12] T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of information
under energy replenishment constraints,” in Proc. Info. Theory and Appl.
Workshop, Feb. 2015.

[13] R. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE Int. Symp. Inform. Theory, 2015.

[14] Y. Sun, E. Uysal-Biyikoglu, R. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” in Proc. IEEE
INFOCOM, April 2016.

[15] M. Shaked and J. G. Shanthikumar, Stochastic orders, Springer Science
& Business Media, 2007.


