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Abstract—In this work, we study how to optimally manage the
freshness of information updates sent from a source node to a
destination via a channel. A proper metric for data freshness at
the destination is the age-of-information, or simply age, which
is defined as how old the freshest received update is since the
moment that this update was generated at the source node
(e.g., a sensor). A reasonable update policy is the zero-wait
policy, i.e., the source node submits a fresh update once the
previous update is delivered and the channel becomes free, which
achieves the maximum throughput and the minimum delay.
Surprisingly, this zero-wait policy does not always minimize the
age. This counter-intuitive phenomenon motivates us to study
how to optimally control information updates to keep the data
fresh and to understand when the zero-wait policy is optimal.
We introduce a general age penalty function to characterize
the level of dissatisfaction on data staleness and formulate the
average age penalty minimization problem as a constrained semi-
Markov decision problem (SMDP) with an uncountable state
space. We develop efficient algorithms to find the optimal update
policy among all causal policies, and establish sufficient and
necessary conditions for the optimality of the zero-wait policy.
Our investigation shows that the zero-wait policy is far from the
optimum if (i) the age penalty function grows quickly with respect
to the age, (ii) the packet transmission times over the channel are
positively correlated over time, or (iii) the packet transmission
times are highly random (e.g., following a heavy-tail distribution).

I. INTRODUCTION

In recent years, the proliferation of mobile devices and
applications has significantly boosted the need for real-time in-
formation updates, such as news, weather reports, traffic alerts,
email notifications, stock quotes, social updates, mobile ads,
etc. In addition, timely information updates are also critical
in real-time monitoring and control systems, including sensor
networks used in temperature and air pollution monitoring [2],
surround monitoring in autonomous vehicles [3], phasor data
updates in power grid stabilization systems [4], and so on.

A common need in these real-time applications is to opti-
mize the freshness of the data. In light of this, a metric of
data freshness called the age-of-information, or simply age,
was defined in, e.g., [5], [6]. At any time t, if the freshest
update delivered at the destination of information updates (e.g.,
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a monitor or controller) was generated at time U(t), then the
age at the destination is

∆(t) = t− U(t). (1)

Hence, the age is the amount of time elapsed since the moment
that the freshest delivered update was generated.

Most existing research on the age-of-information focuses on
an “enqueue-and-forward” model [6]–[21], where information
update packets arrive stochastically at the source node. The
source node enqueues these updates and then forwards them
to a destination through a channel. It is worth noting that
there is a significant difference between age and delay: A low
update frequency results in a short queueing delay because the
queue is almost empty, but the destination may end up having
stale data due to infrequent updates. On the other hand, a
high update frequency will increase the queueing delay, and
the age is also high because the updates are becoming stale
during their long waiting time in the queue. Hence, delay is
an increasing function of the update frequency, but the age
first decreases and then increases with respect to the update
frequency [6]. In [6], [13], it was found that a good policy is
to discard the old updates waiting in the queue when a new
sample arrives, which can greatly reduce the negative impact
of queueing delay. In [20], [21], a Last Generated First Served
(LGFS) policy was shown to minimize the age process in a
strong sense (in the sense of stochastic ordering) for multi-
channel and multi-hop networks with an arbitrary (e.g., out-
of-order) update arrival process.

In this paper, we study a “generate-at-will” model proposed
in [22]: As depicted in Fig. 1, the source node (e.g., a
sensor) has access to the channel’s idle/busy state through
acknowledgements (ACKs), and in contrast to [6]–[21], is
able to generate information updates at any time by its own
will. Because of queueing, update packets may need to wait
in the queue for their transmission opportunity, and become
stale while waiting. Hence, it is better not to generate updates
when the channel is busy, which completely eliminates the
waiting time in the queue. In this case, a reasonable update
policy is the zero-wait policy, also called just-in-time updating
in [22] and the work-conserving policy in queueing theory
[23], that submits a fresh update once the previous update
is delivered and an ACK is received.1 The zero-wait policy
achieves the maximum throughput and the minimum delay.
Surprisingly, this zero-wait policy does not always minimize

1This policy was proposed in [6, Section VII] to provide a lower bound to
the age in the “enqueue-and-forward” model.
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Fig. 1. System model.

the age-of-information. In particular, an optimal policy was
obtained in [22] for minimizing the time-average age, from
which one can deduce that the zero-wait policy is not age-
optimal. The following example reveals the reason behind this
counter-intuitive phenomenon:

Example: Suppose that the source node sends a sequence of
information updates to a destination. The transmission times
of these updates form a periodic sequence

0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 2, 2, . . .

Suppose that Update 1 is generated and submitted at time 0
and delivered at time 0. Under the zero-wait policy, Update
2 is also generated at time 0 and delivered at time 0.
However, despite its negligible transmission time, Update 2
has not brought any new information to the destination after
Update 1 was delivered, because both updates were sampled
at the same time. Therefore, the potential benefit of the zero
transmission time of Update 2 is wasted! This issue occurs
periodically over time: Whenever two consecutive updates
have zero transmission time, the second update of the two
is wasted. Therefore, a 1/4 of the updates in this sequence are
wasted in the zero-wait policy!

For comparison, consider a ε-wait policy that waits for ε
seconds after each update with a zero transmission time, and
does not wait after each update with a transmission time of 2
seconds. Note that the control decisions in the ε-wait policy
are made causally. The time-evolution of the age ∆(t) in the
ε-wait policy is shown in Fig. 2. Update 1 is generated and
delivered at time 0. Update 2 is generated and delivered at
time ε. Update 3 is generated at time 2ε and is delivered at
time 2 + 2ε. Because the transmission time of Update 3 is
2 seconds, the latest delivered update at time 2 + 2ε is of
the age 2 seconds. Hence, the age ∆(t) drops to 2 seconds
at time 2 + 2ε. Update 4 is generated at time 2 + 2ε and is
delivered at time 4 + 2ε. At time 4 + 2ε, the age drops to zero
because Update 5 is generated at this time and is delivered
immediately.

According to Fig. 2, one can compute the time-average age
of the ε-wait policy, which is given by

(ε2/2 + ε2/2 + 2ε+ 42/2)/(4 + 2ε)

=(ε2 + 2ε+ 8)/(4 + 2ε) seconds.

If the waiting time is ε = 0.5, the time-average age of the
ε-wait policy is 1.85 seconds. If the waiting time is ε = 0, it
reduces to the zero-wait policy, whose time-average age is 2
seconds. Hence, the zero-wait policy is not optimal! In Section
V, we will see more numerical results showing that the zero-
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Fig. 2. Evolution of the age ∆(t) in the ε-wait policy in the example.

wait policy can be far from the optimum.
This example points out a key difference between data

communication systems and information update systems: In
communication systems, all packets are equally important;
however, in information update systems, an update packet
is useful only if it carries some fresh information to the
destination. While the theory of data communications is quite
mature, the optimal control of information updates remains
open.

The aim of this paper is to answer the following questions:
How to optimally submit update packets to minimize the age-
of-information at the destination? When is the zero-wait policy
optimal? To that end, the following are the key contributions
of this paper:

• We generalize [22] by introducing two new features:
(i) age penalty functions and (ii) correlated (non-i.i.d.)
packet transmission times. We define a general age
penalty function g(∆) to characterize the level of dissat-
isfaction for data staleness, where g(·) can be any non-
negative and non-decreasing function. This age penalty
model is quite general, as it allows g(·) to be discontinu-
ous and non-convex. In practice, one can choose the age
penalty function based on the specific applications; a few
examples are provided in Section III-B. In addition, the
packet transmission times are modeled as a stationary
ergodic Markov chain with an uncountable state space,
which is more general than the i.i.d. transmission time
processes assumed in related studies.

• We formulate the average age penalty minimization prob-
lem as a constrained semi-Markov decision problem
(SMDP) with an uncountable state space. The set of
feasible policies in this problem contains all causal
policies, such that control decisions are made based on
the history and current information of the system, which
is more general than the feasible policy space considered
in [22]. Despite the difficulty of this problem, we manage
to solve it by a divide-and-conquer approach: We first
prove that there exists a stationary randomized policy
that is optimal for this problem (Theorem 1). Further, we
prove that there exists a stationary deterministic policy
that is optimal for this problem (Theorem 2). Finally, we
develop a low-complexity algorithm to find the optimal
stationary deterministic policy (Theorem 3).

• We further investigate when the zero-wait policy is opti-
mal. For the special case of proportional penalty function
and i.i.d. transmission times, we devise a simpler solution
to minimize the average age (Theorem 4), and obtain a
sufficient and necessary condition to characterize when
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the zero-wait policy is optimal (Theorem 5). We find
that the zero-wait policy is optimal if the transmission
times are constant; and is not optimal for many commonly
used transmission time distributions in communication
and queueing theory, such as exponential distribution,
geometric distribution, Erlang distribution, hyperexpo-
nential distribution, etc. (Corollary 1). In addition, several
sufficient conditions for the optimality of the zero-wait
policy are provided for general age penalty functions and
correlated transmission time processes (Lemma 3).

• Our theoretical and simulation results demonstrate that,
in many scenarios, the optimal information update policy
is to wait for a certain amount of time before submitting a
new update. In particular, the zero-wait policy is far from
the optimum if (i) the age penalty function grows quickly
with respect to the age, (ii) the packet transmission times
over the channel are positively correlated over time, or
(iii) the packet transmission times are highly random
(e.g., following a heavy-tail distribution).

The rest of this paper is organized as follows. In Section II,
we discuss some related work. In Section III, we describe the
system model and the formulation of the average age penalty
minimization problem. In Section IV, we develop the optimal
update policy that minimizes the average age penalty among
all causal policies. In Section V, we provide sufficient and
necessary conditions for the optimality of the zero-wait policy
Finally, in Section VI, we conclude the paper.

II. RELATED WORK

The age-of-information was defined as a metric of data
freshness as early as 1990s in the studies of real-time databases
[5], [24]–[26]. In recent years, queueing theoretic techniques
were used to evaluate the age-of-information in various system
settings. The average age was analyzed for First-Come First-
Served (FCFS) systems [6], Last-Come First-Served (LCFS)
systems [7], multi-source networks [8], [9], and multi-channel
networks [10]–[12]. A peak age metric was introduced in [13]
and studied for a multi-class M/G/1 queueing system [16].

In [13]–[15], a packet management policy was shown to
reduce the age, in which the old updates waiting in the queue
are discarded when a new sample arrives. In [17], [27], it
was shown that controlling buffer size and packet deadline
can improve the age. The age performance in the presence of
errors was analyzed in [18]. Gamma-distributed transmission
times was considered in [19]. The age-of-information under
energy-harvesting constraints was studied in [22], [28], [29].
Source coding techniques for reducing the age were evaluated
in [30]. In [20], [21], it was proven that the LGFS policy
achieves a smaller age process (in a stochastic ordering sense)
than any other causal policy for multi-channel and multi-hop
networks with an arbitrary (e.g., out-of-order) update arrival
process. Scheduling of updates broadcasted to multiple users
with unreliable channels was optimized in [31]. NP-hardness
of wireless scheduling for minimizing the age in general
networks was investigated in [32], [33]. Reducing the age of
channel state information in wireless systems was studied in
[34], [35]. Experimental evaluation of the age-of-information
was conducted via emulation in [36].

The work that is most relevant to this paper is [22]. We have
generalized the results in [22] by finding the optimal update
policy for more general age penalty model, transmission time
model, and in a larger feasible policy space.

III. MODEL AND FORMULATION

A. System Model

We consider an information update system depicted in
Fig. 1, where a source node generates update packets and
sends them to a destination through a channel. The source
node generates and submits update packets at successive times
S0, S1, . . . The source node has access to the idle/busy state
of the channel through ACK and is able to generate updates
at any time by its own will. As we have mentioned before,
the source node should not generate a new update when the
channel is busy sending previous updates, because this will
incur an unnecessary waiting time in the queue.

Suppose that Update i is submitted at time Si, and its
transmission time is Yi ≥ 0. Hence, Update i is delivered at
time Di = Si + Yi. We assume that Update 0 is submitted to
an idle channel at time S0 = −Y0 and is delivered at D0 = 0,
as shown in Fig. 3. After Update i is delivered at time Di, the
source node may insert a waiting time Zi ∈ [0,M ] before
submitting Update i + 1 at time Si+1 = Di + Zi, where
M <∞ is the maximum waiting time allowed by the system.
The source node can switch to a low-power sleep mode during
the waiting period [Di, Si+1). We assume that the transmission
time process (Y0, Y1, . . .) is a stationary and ergodic Markov
chain with a possibly uncountable state space and a positive
mean 0 < E[Yi] < ∞.2 This model generalizes the i.i.d.
transmission time processes in related studies. This Markovian
model is introduced to study the impact of temporal correlation
on the optimality of the zero-wait policy. In Section V, we will
see that the zero-wait policy is close to the optimum when
the transmission times are negatively correlated; and is far
from the optimum when the transmission times are positively
correlated.

At any time t, the most recently received update packet is
generated at time

U(t) = max{Si : Di ≤ t}. (2)

The age-of-information ∆(t) is defined as [5], [6]

∆(t) = t− U(t), (3)

which is also referred to as age. The age ∆(t) is a stochastic
process that increases linearly with t between updates, with
downward jumps occurring when updates are delivered. As
shown in Fig. 3, Update i is sent at time t = Si, and is
delivered at time Di = Si + Yi with age ∆(Di) = Di −
Si = Yi. After that, the age increases linearly and reaches
∆(D−i+1) = Yi+Zi+Yi+1 just before Update i+1 is delivered.
Then, at time Di+1, the age drops to ∆(Di+1) = Yi+1.

2The results in this paper can be readily extended to a more general
Markovian transmission time process (Y0, Y1, . . .) with a longer memory,
in which Wi is defined as Wi = (Yi, Yi+1, . . . , Yi+k) for some finite k,
and the sequence (W0,W1, . . .) forms a Markov chain.
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Fig. 3. Evolution of the age-of-information ∆(t).

B. Problem Formulation

We introduce an age penalty function g(∆) to represent
the level of dissatisfaction for data staleness or the need for
new information update. The function g : [0,∞)→ [0,∞) is
assumed to be measurable, non-negative, and non-decreasing.
This age penalty model is quite general, as it allows g(·) to
be discontinuous and non-convex. In practice, one can specify
the age penalty function based on the applications. A few
examples are discussed in the following:

1. Online Learning: Fresh data is critical in online learning
which is of great interest to practitioners due to the recent
emergence of real-time applications such as advertise-
ment placement and online web ranking [37], [38]. One
can employ the age penalty functions that grow quickly
with respect to the age, such as the power function
g(∆) = ∆a and the exponential function g(∆) = ea∆

with a ≥ 0, to characterize the desire for data refreshing
in these applications.

2. Periodic Inspection and Monitoring: One can use the
stair-step function g(∆) = ba∆c, where bxc is the
largest integer no greater than x, to characterize the
dissatisfaction of data staleness if the information of
interest is checked periodically [39], [40].

Two age penalty functions are depicted in Figure 4. To
analyze the average age penalty, we decompose the area under
the curve g(∆(t)) into a sum of disjoint components: Consider
the time interval [0, Dn], where Dn =

∑n−1
i=0 (Zi + Yi+1).

In this interval, the area under g(∆(t)) can be seen as the
concatenation of the areas Qi, 0 ≤ i ≤ n− 1, such that

∫ Dn

0

g(∆(t))dt =

n−1∑

i=0

Qi,

where

Qi =

∫ Di+Zi+Yi+1

Di

g(∆(t))dt =

∫ Yi+Zi+Yi+1

Yi

g(τ)dτ. (4)

In the second equation of (4), we have used the fact that
∆(t) = t− Si = t− (Di − Yi) for t ∈ [Di, Di + Zi + Yi+1].
Let us define

q(y, z, y′) =

∫ y+z+y′

y

g(τ)dτ. (5)

Then, Qi can be expressed as Qi = q(Yi, Zi, Yi+1). Since
g(∆) is non-negative, the function q(y, z, y′) is non-decreasing

t

g1(∆(t)) = e0.2∆(t) − 1

S1 S2 Sn−1 Sn0 D1 D2 Dn−1 Dn

Q0 Q1 Qn−1

Z0 Y1 Z1 Y2 Yn−1 Zn−1 Yn

(a) An exponential age penalty function g1(∆) = e0.2∆ − 1.

t

g2(∆(t)) = b∆(t)c

S1 S2 Sn−1 Sn0 D1 D2 Dn−1 Dn

Q0 Q1

Qn−1

Z0 Y1 Z1 Y2 Yn−1 Zn−1 Yn

(b) A stair-step age penalty function g2(∆) = b∆c.

Fig. 4. Evolutions of two age penalty functions.

in z. We assume

E [q(Yi,M, Yi+1)] <∞, (6)

which implies E [q(Yi, Zi, Yi+1)] <∞ for all Zi ∈ [0,M ].
Our goal is to minimize the average age penalty by

controlling the sequence of waiting times (Z0, Z1, . . .). Let
π , (Z0, Z1, . . .) denote an information update policy. We
consider the class of causal policies, in which control deci-
sions are made based on the history and current information
of the system, as well as the distribution of the transmis-
sion time process (Y0, Y1, . . .). Specifically, Zi is determined
based on the past states (Y0, Y1, . . . , Yi) and control actions
(Z0, Z1, . . . , Zi−1), without using the realizations of future
transmission times (Yi+1, Yi+2, . . .); but the conditional dis-
tribution of (Yi+1, Yi+2, . . .) given (Y0, Y1, . . . , Yi) is avail-
able. Let Π denote the set of all causal policies satisfying
Zi ∈ [0,M ] for all i.

The average age penalty per unit time is defined by3

lim sup
n→∞

E
[∫Dn

0
g(∆(t))dt

]

E [Dn]
. (7)

Because the transmission time process (Y0, Y1, . . .) is station-
ary and ergodic, we can obtain E[Yi] = E[Yi+1] and hence

3There are two widely used definitions of average cost per unit time in
infinite-horizon undiscounted semi-Markov decision problems (SMDP) [41]–
[45]: In one definition, the average cost is the limit of expected total cost
over a finite deterministic horizon divided by the length of the horizon,
i.e., lim supT→∞

1
T
E
[ ∫ T

0 g(∆(t))dt
]
; in the second definition, the average

cost is the limit of the expected total cost over a finite number of stages
divided by the expected cumulative time of these stages, as in (7). These
two definitions are both reasonable [41], [44], [45]. They are equal under
stationary randomized policies in which the generated semi-Markov chain
has one ergodic class; see [41]–[43] for finite and countable state models. In
general, however, these criteria are different. In our study, the second definition
turns out to be analytically convenient.
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E [Dn] = E[
∑n−1
i=0 (Zi + Yi+1)] = E[

∑n−1
i=0 (Yi + Zi)]. Using

this, the optimal information update problem for minimizing
the average age penalty can be formulated as

gopt = min
π∈Π

lim sup
n→∞

E
[∑n−1

i=0 q(Yi, Zi, Yi+1)
]

E[
∑n−1
i=0 (Yi + Zi)]

(8)

s.t. lim inf
n→∞

1

n
E

[
n−1∑

i=0

(Yi + Zi)

]
≥ 1

fmax
, (9)

where gopt is the optimum objective value of Problem (8), the
expectation E is taken over the stochastic process (Y0, Y1, . . .)
for given policy π, and fmax is the maximum allowed av-
erage update frequency due to a long-term average resource
constraint (i.e., on the power resource or CPU cycles) spent
on generating information updates. We assume M > 1/fmax

such that Problem (8) is always feasible and gopt <∞. In this
paper, we will study Problem (8) both with and without the
constraint (9). In Section V, sufficient and necessary conditions
will be provided to characterize when the zero-wait policy is
optimal for solving Problem (8) without the constraint (9).

In Problem (8), Yi is the state of an embedded Markov
chain, Zi is the control action taken after observing Yi, Yi+Zi
is the period of stage i, and q(Yi, Zi, Yi+1) is the reward
related to both stage i and i+1. Therefore, Problem (8) belongs
to the class of constrained semi-Markov decision problems
(SMDP) with an uncountable state space, which is generally
known to be quite difficult. The class of SMDPs includes
Markov decision problems (MDPs) [45], [46] and optimization
problems of renewal processes [47] as special cases. Most ex-
isting studies on SMDPs deal with (i) unconstrained SMDPs,
e.g., [41], [45], [48], [49], or (ii) constrained SMDPs with
a countable state space, e.g., [44], [50]–[52]. However, the
optimality equations (e.g., Bellman’s equation) for solving
unconstrained SMDPs are not applied to constrained SMDPs
[53], and the studies on constrained SMDPs with a countable
state space cannot be directly applied to Problem (8) which
has an uncountable state space.

IV. OPTIMAL INFORMATION UPDATE POLICY

In this section, we develop a chain of new theoretical results
to solve Problem (8) in a divide-and-conquer fashion: First, we
prove that there exists a stationary randomized policy that is
optimal for Problem (8). Further, we prove that there exists
a stationary deterministic policy that is optimal for Problem
(8). Finally, we develop a low-complexity algorithm to find the
optimal stationary deterministic policy that solves Problem (8).

A. Optimality of Stationary Randomized Policies

A policy π ∈ Π is said to be a stationary randomized
policy, if it observes Yi and then chooses a waiting time
Zi ∈ [0,M ] based only on the observed value of Yi. In this
case, Zi is determined according to a conditional probability
measure p(y,A) , Pr[Zi ∈ A|Yi = y] that is invariant for

all i = 0, 1, . . . We use ΠSR (ΠSR ⊆ Π) to denote the set of
stationary randomized policies such that

ΠSR ={π ∈ Π : Given the observation Yi = yi, Zi is chosen
according to the probability measure p(yi, A) for all i}.

Note that (Yi, Zi, Yi+1) is stationary and ergodic for all
stationary randomized policies. In the sequel, when we refer
to the stationary distribution of a stationary randomized policy
π ∈ ΠSR, we will remove subscript i. In particular, the random
variables (Yi, Zi, Yi+1) are replaced by (Y, Z, Y ′), where
Z is chosen based on the conditional probability measure
Pr[Z ∈ A|Y = y] = p(y,A) after observing Y = y, and
(Y, Y ′) have the same joint distribution as (Y0, Y1). The first
key result of this paper is stated as follows:

Theorem 1: (Optimality of Stationary Randomized Policies)
If M < ∞, g : [0,∞) → [0,∞) is measurable and non-
negative, (Y0, Y1, . . .) is a stationary ergodic Markov chain
with Yi ≥ 0 and 0 < E[Yi] <∞, and condition (6) is satisfied,
then there exists a stationary randomized policy that is optimal
for Problem (8).

Proof sketch of Theorem 1: For any policy π ∈ Π, define
the finite time-horizon average occupation measures

an,π,
1

n
E
[ n−1∑

i=0

q(Yi, Zi, Yi+1)

]
−
gopt

n
E
[ n−1∑

i=0

(Yi + Zi)

]
,

(10)

bn,π ,
1

n
E

[
n−1∑

i=0

(Yi + Zi)

]
. (11)

Let ΓSR be the set of limit points of sequences ((an,π, bn,π),
n = 1, 2, . . .) associated with all stationary randomized
policies in ΠSR. We first prove that ΓSR is convex and compact.
Then, we show that there exists an optimal policy πopt of Prob-
lem (8), such that the sequence ((an,πopt , bn,πopt), n = 1, 2, . . .)
associated with policy πopt has a limit point (a∗, b∗) satisfying
(a∗, b∗) ∈ ΓSR, a∗ ≤ 0, and b∗ ≥ 1

fmax
. Since (a∗, b∗) ∈ ΓSR,

there exists a stationary randomized policy π∗ achieving this
limit point (a∗, b∗). Finally, we show that policy π∗ is optimal
for Problem (8), which completes the proof. The details are
available in Appendix A.

The convexity and compactness properties of the set of
average occupation measures are essential in the study of
constrained MDPs [54, Sec. 1.5], which dates back to Der-
man’s monograph in 1970 [55]. Recently, it was used in
stochastic optimization for discrete-time queueing systems and
renewal processes, e.g., [47], [56]. The techniques in these
studies cannot directly handle constrained SMDPs with an
uncountable state space, like Problem (8). One crucial novel
idea in our proof is to introduce gopt in the definition of average
occupation measures in (10), which turns out to be essential
in later steps for showing the optimality of the stationary
randomized policy π∗. In addition, we have also used one
property of Problem (8) in the proof: the observation Yi+1

depends only on the immediately preceding state Yi and not
on earlier system states (Y0, . . . , Yi−1) and control actions
(Z0, . . . , Zi−1).

By Theorem 1, we only need to consider the class of
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stationary randomized policies ΠSR. Using this, Problem (8)
can be simplified to the following functional optimization
problem, as shown in Appendix A:

min
p(y,A)

E[q(Y,Z, Y ′)]

E[Y + Z]
(12)

s.t. E[Y + Z] ≥ 1

fmax

0 ≤ Z ≤M,

where p(y,A) = Pr[Z ∈ A|Y = y] is the conditional
probability measure of some stationary randomized policy, and
(Y, Y ′) have the same distribution as (Y0, Y1).

B. Optimality of Stationary Deterministic Policies

A policy π ∈ ΠSR is said to be a stationary deterministic
policy if Zi = z(Yi) for all i = 0, 1, . . ., where z : [0,∞) →
[0,M ] is a deterministic function. We use ΠSD (ΠSD ⊆ ΠSR)
to denote the set of stationary deterministic policies such that

ΠSD ={π ∈ ΠSR :Zi=z(Yi) for all i}.

Theorem 2: (Optimality of Stationary Deterministic Poli-
cies) If g : [0,∞)→ [0,∞) is measurable and non-decreasing,
then there exists a stationary deterministic policy that is
optimal for Problem (12).

Proof sketch of Theorem 2: Since g(∆) is non-
decreasing, q(y, z, y′) is convex in z for any fixed y and y′.
Using Jensen’s inequality, we can show that for any feasible
stationary randomized policy π1 ∈ ΠSR, there is a feasible
stationary deterministic policy that is no worse than policy
π1. The details are provided in Appendix B.

Let µY be the probability measure of Yi, then any bounded
measurable function z : [0,∞) → [0,M ] belongs to the
Lebesgue space L2(µY ) [57, Section 3], because

∫ ∞

0

|z(y)|2dµY (y) ≤
∫ ∞

0

M2dµY (y) = M2 <∞.

By Theorems 1 and 2, we only need to consider the class
of stationary deterministic policies ΠSD and Problem (8) is
simplified as the following functional optimization problem:

min
z(·)∈L2(µY )

E [q(Y, z(Y ), Y ′)]

E[Y + z(Y )]
(13)

s.t. E[Y + z(Y )] ≥ 1

fmax
(14)

0 ≤ z(y) ≤M, ∀ y ≥ 0,

where z(·) is the function associated with a stationary deter-
ministic policy π ∈ ΠSD, and (Y, Y ′) have the same distri-
bution as (Y0, Y1). The optimum objective value of Problem
(13) is equal to gopt.

C. A Low Complexity Solution to Problem (13)

Lemma 1: If g : [0,∞) → [0,∞) is measurable,
non-negative, and non-decreasing, then the functional h :
L2(µY )→ [0,∞) defined by

h(z) =
E [q(Y, z(Y ), Y ′)]

E[Y + z(Y )]

Algorithm 1 Two-layer bisection method for Problem (13)
given l = 0, sufficiently large u > gopt, tolerance ε1.
repeat
c := (l + u)/2.
given ζl = 0, sufficiently large ζu > 0, tolerance ε2.
ζ := ζl, ν := ζ + c.
Compute zν(·) in (17).
if E[Y + zν(Y )] < 1

fmax
then

repeat
ζ := (ζl + ζu)/2, ν := ζ + c.
Compute zν(·) in (17).
if E[Y + zν(Y )] ≥ 1

fmax
, ζu := ζ; else, ζl := ζ.

until ζu − ζl ≤ ε2.
end if
if f(c) ≤ 0, u := c; else, l := c.

until u− l ≤ ε1.
return z(·) := zν(·).

is quasi-convex.
Proof: See Appendix C.

Therefore, Problem (13) is a functional quasi-convex opti-
mization problem. In order to solve Problem (13), we consider
the following functional convex optimization problem with a
parameter c:

f(c) = min
z(·)∈L2(µY )

E [q(Y, z(Y ), Y ′)]− cE[Y + z(Y )] (15)

s.t. E[Y + z(Y )] ≥ 1

fmax
(16)

0 ≤ z(y) ≤M, ∀ y ≥ 0.

It is easy to show that gopt ≤ c if and only if f(c) ≤ 0 [58].
Therefore, we can solve Problem (13) by a two-layer nested
algorithm, such as Algorithm 1. In the inner layer, we use
bisection to solve Problem (15) for any given parameter c;
in the outer layer, we employ bisection again to search for
a c∗ such that f(c∗) = 0 and thus gopt = c∗. Algorithm 1
has low complexity. It requires at most dlog2((u − l)/ε1)e×
dlog2((ζu− ζl)/ε2)e iterations to terminate and each iteration
involves computing E[zν(Y )] based on (17). The optimality
of Algorithm 1 is guaranteed by the following theorem:

Theorem 3: If g : [0,∞) → [0,∞) is measurable, non-
negative, and non-decreasing, then an optimal solution πopt to
Problem (13) is obtained by Algorithm 1, where the function
zν(·) is determined by

zν(y) = sup{z ∈ [0,M ] : E [g(y+z+Y ′)|Y = y] ≤ ν}, (17)

and (Y, Y ′) follow the same distribution as (Y0, Y1).
Proof Sketch of Theorem 3: We use Lagrangian duality

theory to solve Problem (13). Different from traditional finite
dimensional optimization problems [58], Problem (13) is an
infinite dimensional functional optimization problem. There-
fore, the Karush-Kuhn-Tucker (KKT) theorem for infinite
dimensional space [59], [60] and the calculus of variations
are required in the analysis. In particular, since the Lagrangian
may not be strictly convex for some penalty functions, one-
sided Gâteaux derivative (similar to sub-gradient in finite
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⇧

⇧SR

⇧SD

⇡opt

Fig. 5. Illustration of the set of causally feasible policies Π, the set of
stationary randomized policies ΠSR, the set of stationary deterministic policies
ΠSD, and the obtained optimal policy πopt.

dimensional space) is used to solve the KKT conditions in
Lebesgue space L2(µY ). The proof details are provided in
Appendix D.
The policy spaces Π, ΠSR, ΠSD, and the obtained optimal
policy πopt are depicted in Fig. 5.

V. WHEN IS IT BETTER TO WAIT THAN TO UPDATE?

When fmax =∞, the constraint (16) is always satisfied. In
this case, a logical policy is the zero-wait policy: the source
node submits a fresh update once the prior update is delivered,
i.e., πzero-wait = (0, 0, . . .). According to the example in the
introduction, this zero-wait policy is not always optimal. In
this section, we will study when it is optimal to submit updates
with the minimum average waiting time and when it is not.

A. A Special Case of g(∆) = ∆ with i.i.d. Transmission Times

Consider the case that g(∆) = ∆ and the Yi’s are i.i.d.
with 0 < E[Y ] <∞. In this case, Problem (13) has a simpler
solution than that provided by Algorithm 1. Interestingly, this
solution explicitly characterizes whether the optimal control
z(·) can have the minimum average waiting time such that
E[Y + z(Y )] = 1/fmax.

As shown in Fig. 3, Qn = 1
2

[
(Yn + Zn + Yn+1)2 − Y 2

n

]
is

the area of a trapezoid. This corresponds to

q(y, z, y′) =
1

2

[
(y + z + y′)2 − y2

]
.

Because the Yi’s are i.i.d., Y and Y ′ in Problem (13) are also
i.i.d. Using this, we can obtain

E[q(Y, z(Y ), Y ′)]

=E
[

1

2
(Y + z(Y ) + Y ′)2 − 1

2
Y ′

2
]

(18)

=
1

2
E
[
(Y + z(Y ))2

]
+ E [Y + z(Y )]E [Y ′] ,

where in (18) we have used that E[Y 2] = E[Y ′2]. Hence,
Problem (13) can be reformulated as

min
z∈L2(µY )

E[(Y + z(Y ))2]

2E[Y + z(Y )]
+ E[Y] (19)

s.t. E[Y + z(Y )] ≥ 1

fmax
(20)

0 ≤ z(y) ≤M, ∀ y ≥ 0.

Algorithm 2 Bisection method for solving Problem (19)
given l = 0, sufficiently large u, tolerance ε.
repeat
β := (l + u)/2.

o := E [(Y + z(Y ))] − max

(
1

fmax
,
E[(Y+z(Y ))2]

2β

)
,

where z(·) is given by (21).
if o ≥ 0, u := β; else, l := β.

until u− l ≤ ε.
Compute z(·) by (21).
return z(·).

The following lemma tells us that Problem (19) is a functional
convex optimization problem.

Lemma 2: The functional h1 : L2(µY )→ R defined by

h1(z) =
E[(Y + z(Y ))2]

E[Y + z(Y )]

is convex on the domain

dom h1 =
{
z ∈ L2(µY ) : z(y) ∈ [0,M ], ∀y ≥ 0

}
.

Proof: See Appendix E.
Using the KKT theorem for infinite dimensional space and the
calculus of variations, we can obtain

Theorem 4: If E[Y ] > 0, the optimal solution to Problem
(19) is

z(y) = (β − y)M0 , (21)

where (x)M0 , min{max{x, 0},M} and β > 0 satisfies

E [Y + z(Y )] = max

(
1

fmax
,
E[(Y + z(Y ))2]

2β

)
. (22)

Proof: See Appendix F.
Equation (21) has the form of a water-filling solution, where

the water-level β is given by the root of equation (22). One
can observe that (17) reduces to (21) if g(∆) = ∆, the Yi’s are
i.i.d., and ν is replaced by β + E[Y ]. The root β of equation
(22) can be simply solved by the bisection search method in
Algorithm 2. We note that Algorithm 2 has lower complexity
than Algorithm 1 in the special case of g(∆) = ∆ and i.i.d.
transmission process, while Algorithm 1 can obtain the optimal
policy in more general scenarios.

Theorem 4 provides a closed-form criterion on whether the
optimal z(·) satisfies E[Y + z(Y )] = 1/fmax. Specifically,
(21) and (22) tell us that if 1/fmax ≥ E[(Y+z(Y ))2]

2β , then the
optimal control z(·) satisfies

E[Y + z(Y )] =
1

fmax
≥ E[(Y + z(Y ))2]

2β
, (23)

such that the optimal policy achieves the minimum possible
average waiting time; otherwise, if 1/fmax < E[(Y+z(Y ))2]

2β ,
the optimal control z(·) satisfies

E[Y + z(Y )] =
E[(Y + z(Y ))2]

2β
>

1

fmax
, (24)

such that the optimal policy can not achieve the minimum
possible average waiting time. In [22], the author solved a



8

1 1.2 1.4 1.6 1.8 2

1/f
max

1.8

1.9

2

2.1

2.2

2.3

A
v
e

ra
g

e
 a

g
e

Constant wait

Minimum wait

Optimal policy

Fig. 6. Average age vs. 1/fmax with i.i.d. discrete transmission times.

slightly different version of Problem (19): an equality con-
straint on the updating frequency was considered in [22],
while an inequality constraint is adopted in Problem (19). It
was observed in [22] that the optimal time-average age is not
necessarily decreasing in the update frequency. The solution
to Problem (19) in Theorem 4 further allows us to obtain the
optimal update frequency.

Furthermore, if E[Y ] ≥ 1/fmax (e.g., fmax = ∞), the
constraint (20) is always satisfied and can be removed. In this
case, the optimality of the zero-wait policy is characterized by
a sufficient and necessary condition in the following theorem.

Theorem 5: If E[Y ] > 0 and fmax =∞, then the zero-wait
policy is optimal for Problem (19) if, and only if,

E[Y 2] ≤ 2yinfE[Y ], (25)

where yinf = inf{y ∈ [0,∞) : Pr[Y ≤ y] > 0}.
Proof: See Appendix G.

Informally speaking, yinf is the smallest possible value of the
random transmission time Y . From Theorem 5, it immediately
follows that:

Corollary 1: If E[Y ] > 0 and the zero-wait policy is
feasible, then the following assertions are true:

(a). If the transmission times are positive and constant (i.e.,
Y = const > 0), the zero-wait policy is optimal for
Problem (19).

(b). If the transmission times satisfy yinf = 0, the zero-wait
policy is not optimal for Problem (19).

Remark: As one can readily see from Corollary 1(b), the
zero-wait policy is not optimal for many commonly used
distributions in communication and queueing theory, such as
exponential distribution, geometric distribution, Erlang distri-
bution, hyperexponential distribution, etc.

1) Numerical Results: We use “optimal policy” to refer
to the policy provided in Theorem 3 (or its special case in
Theorem 4), and compare it with three reference policies:

• “Constant wait”: Each update is followed by a constant
waiting time Z = 1/fmax − E[Y ] before submitting the
next update.

• “Minimum wait”: The update waiting time is determined
by Z = z(Y ), where z(·) is given by (21) and β in (22)
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Fig. 7. Average age vs. 1/fmax with i.i.d. log-normal distributed transmis-
sion times.

is chosen to satisfy E[z(Y )] = 1/fmax − E[Y ].4

When E[Y ] = 1/fmax, both the constant wait and minimum
wait policies reduce to the zero-wait policy.

Two transmission time models are considered: The first
is a discrete Markov chain with a probability mass function
Pr[Yi = 0] = Pr[Yi = 2] = 0.5 and a transition matrix

P =

[
p 1− p

1− p p

]
.

Hence, the Yi’s are i.i.d. when p = 0.5, and the corre-
lation coefficient between Yi and Yi+1 is ρ = 2p − 1.
The second is a log-normal distributed Markov chain, where
Yi = eσXi/E[eσXi ] and (X0, X1, . . .) is a Gaussian Markov
process satisfying the first-order autoregressive (AR) equation

Xi+1 = ηXi +
√

1− η2Wi,

where σ > 0 is the scale parameter of log-normal distribution,
η ∈ [−1, 1] is the parameter of the AR model, and the
Wi’s are i.i.d. Gaussian random variables with zero mean
and unit variance. The log-normal distributed Markov chain is
normalized such that E[Yi] = 1. According to the properties
of log-normal distribution, the correlation coefficient between
Yi and Yi+1 is ρ = (eη − 1)/(e− 1). Then, the Yi’s are i.i.d.
when η = 0. The value of M is set to be 10.

Figures 6 and 7 illustrate the average age vs. fmax for
i.i.d. discrete and log-normal distributed transmission times,
respectively, where σ = 1.5 In both figures, one can observe
that the constant wait policy always incurs a larger average
age than the optimal policy. In addition, as expected from
(23) and (24), as 1/fmax exceeds a certain threshold, the
optimal policy meets the constraint (20) with equality. For
smaller values of 1/fmax, the constraint (20) is not active in
the optimal solution. Consequently, the minimum wait policy
deviates from the optimal policy for small values of 1/fmax,
which is in accordance with Corollary 1(b).

B. General Age Penalties and Correlated Transmission Times

For general age penalties and correlated transmission time
processes, it is essentially difficult to find closed-form charac-
terization on whether the optimal control z(·) can have the

4This policy was called “β-minimum” in [22].
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for discrete transmission times, where E[Y ] ≥ 1/fmax.
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Fig. 9. Average age vs. the correlation coefficient ρ between Yi and Yi+1

for log-normal distributed transmission times, where E[Y ] ≥ 1/fmax.

minimum average waiting time such that E[Y + z(Y )] =
1/fmax. Therefore, we focus on the case of E[Y ] ≥ 1/fmax

(this is equivalent to removing the update frequency constraint
(16)) and study when the zero-wait policy minimizes the
average age penalty. Sufficient conditions for the optimality
of the zero-wait policy are provided as follows:

Lemma 3: Suppose that E[Y ] ≥ 1/fmax, g(·) is measurable,
non-negative, and non-decreasing. The zero-wait policy is
optimal for Problem (13) if one of the following conditions is
satisfied:
1). The correlation coefficient between Yi and Yi+1 is −1;
2). The Yi’s are equal to a constant value;
3). g(·) is a constant function.

Proof: See Appendix H.
1) Numerical Results: We now provide some Numerical

Results for general age penalties and/or correlated transmis-
sion time processes. Figures 8 and 9 depict the average age vs.
the correlation coefficient ρ between Yi and Yi+1 for discrete
and log-normal distributed transmission times, respectively. In
Fig. 8, the range of ρ is [−1, 1). We observe that the zero-wait
policy is optimal when ρ ∈ [−1,−0.5], and the performance
gap between the optimal policy and the zero-wait policy grows
with ρ when ρ ≥ −0.5. This is in accordance with the
example in the introduction: As ρ grows, the occurrence of two
consecutive zero transmission times (i.e., (Yi, Yi+1) = (0, 0))
increases. Therefore, more and more updates are wasted in the
zero-wait policy, leading to a larger gap from the optimum.
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Fig. 10. Average age vs. the distribution parameter σ of i.i.d. log-normal
distributed transmission times, where E[Y ] ≥ 1/fmax.
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Fig. 11. Average age penalty vs. the parameter α of stair-step penalty
functions with discrete transmission times, where E[Y ] ≥ 1/fmax, g(∆) =
bα∆c, and ρ = 0.4.

In Fig. 9, the range of ρ is [(e−1 − 1)/(e − 1), 1) and the
sub-optimality gap of the zero-wait policy also increases with
ρ. The point ρ = 1 is not plotted in these figures because the
corresponding Markov chains are not ergodic.

Figure 10 considers the average age vs. the parameter σ of
log-normal distributed transmission times, where ρ = (e0.5 −
1)/(e − 1). We observe that the zero-wait policy is optimal
for small σ and is not optimal for large σ. When σ = 0, the
transmission times are constant, i.e., Yi = 1 for all i, and
hence by Lemma 3, the zero-wait policy is optimal. For large
σ, the time-average age of the zero-wait policy is significantly
larger than the optimum. This implies that the sub-optimality
gap of the zero-wait policy can be quite large for heavy-tail
transmission time distributions.

Figures 11-16 show the average age penalty vs. the param-
eter α of three types of age penalty functions, where the stair-
step function g(∆) = bα∆c is considered in Fig. 11 and 12,
the power function g(∆) = ∆α is considered in Fig. 13 and
14, and the exponential function g(∆) = eα∆−1 is considered
in Fig. 15 and 16. The correlation coefficient is ρ = 0.4 for
discrete transmission times, and is ρ = (e0.5 − 1)/(e− 1) for
log-normal distributed transmission times. We find that the
zero-wait policy is optimal if α = 0, in which case g(∆) is a
constant function. When α > 0, the zero-wait policy may not
be optimal.

These numerical results suggest that the conditions in
Lemma 3 are sufficient but not necessary.
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Fig. 12. Average age penalty vs. the parameter α of stair-step penalty func-
tions with log-normal distributed transmission times, where E[Y ] ≥ 1/fmax,
g(∆) = bα∆c, and ρ = (e0.5 − 1)/(e− 1).
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Fig. 13. Average age penalty vs. the parameter α of power penalty functions
with discrete transmission times, where E[Y ] ≥ 1/fmax, g(∆) = ∆α, and
ρ = 0.4.

VI. CONCLUSIONS

We studied the optimal control of information updates sent
from a source node to a remote destination via a commu-
nication server. We generalized prior study on the age-of-
information by considering general age penalty functions and
non-i.i.d. transmission time processes. We developed efficient
algorithms to find the optimal update policy for minimizing
the average age penalty among all causal update policies. We
showed that, surprisingly, the optimal policy is to wait for
a certain amount of time before submitting a new update
in many scenarios. Sufficient and necessary conditions were
established to characterize the optimality of the zero-wait
policy. In particular, the zero-wait policy is far from the
optimum if (i) the age penalty function grows quickly with
respect to the age, (ii) the packet transmission times over
the channel are positively correlated over time, or (iii) the
packet transmission times are highly random (e.g., following
a heavy-tail distribution). In our future work, we will further
investigate how to improve the freshness of real-time signals
transmitted over a channel. Some interesting initial result has
been obtained in [61].

0 0.5 1 1.5 2

α

0

100

200

300

400

500

600

A
v
e
ra

g
e

 a
g

e
 p

e
n

a
lt
y

Optimal policy

Zero wait

Fig. 14. Average age penalty vs. the parameter α of power penalty functions
with log-normal distributed service times, where 1

fmax
≤ E[Y ], g(∆) = ∆α,

and ρ = (e0.5 − 1)/(e− 1).
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Fig. 15. Average age penalty vs. the parameter α of exponential penalty
functions with discrete service times, where 1

fmax
≤ E[Y ], g(∆) = eα∆−1,

and ρ = 0.4.

APPENDIX A
PROOF OF THEOREM 1

A. An Upper Bound of gopt

By restricting Π in Problem (8) to ΠSR, we obtain the
following problem:

gSR = min
π∈ΠSR

lim sup
n→∞

E
[∑n−1

i=0 q(Yi, Zi, Yi+1)
]

E[
∑n−1
i=0 (Yi + Zi)]

(26)

s.t. lim inf
n→∞

1

n
E

[
n−1∑

i=0

(Yi + Zi)

]
≥ 1

fmax
,

where gSR is the optimum objective value of Problem (26).
Since ΠSR ⊆ Π, we can obtain

gSR ≥ gopt. (27)

It is easy to show that the (Yi, Zi, Yi+1)’s are stationary
and ergodic for all stationary randomized policies. This, to-
gether with the condition that g(·) is measurable, tells us
that q(Yi, Zi, Yi+1) is stationary and ergodic [62, Theorems
7.1.1 and 7.1.3]. For any stationary randomized policy π =
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Fig. 16. Average age penalty vs. the parameter α of exponential penalty
functions with log-normal distributed service times, where 1

fmax
≤ E[Y ],

g(∆) = eα∆ − 1, and ρ = (e0.5 − 1)/(e− 1).

(Z0, Z1, . . .) ∈ ΠSR, we obtain

1

n
E

[
n−1∑

i=0

q(Yi, Zi, Yi+1)

]
= E[q(Y0, Z0, Y1)], (28)

1

n
E

[
n−1∑

i=0

(Yi + Zi)

]
= E[Y0 + Z0]. (29)

Hence, Problem (26) can be reformulated as Problem (12).

B. The Upper Bound of gopt is Tight, i.e., gSR = gopt

We will show gSR = gopt in 4 steps. The following
definitions are needed: Since gopt is finite, for each causally
feasible policy π = (Z0, Z1, . . .) ∈ Π we can define an,π and
bn,π as in (10) and (11), respectively.

Further, define ΓSR as the set of limit points of sequences(
(an,π , bn,π), n = 1, 2, . . .

)
associated with all stationary ran-

domized policies π ∈ ΠSR. Because the reward q(Yi, Zi, Yi+1)
and interval Yi+Zi are stationary and ergodic for all stationary
randomized policies π ∈ ΠSR, the sequence (an,π, bn,π) has a
unique limit point in the form of

(
E[q(Y,Z, Y ′)]− goptE[Y + Z],E[Y + Z]

)
. (30)

Hence, ΓSR is the set of all points (E[q(Y, Z, Y ′)]− goptE[Y +
Z],E[Y + Z]), where each point is associated with a condi-
tional probability measure p(y,A) = Pr[Z ∈ A|Y = y], and
the measure of (Y, Y ′) is the same as that of (Y0, Y1). Note
that E[Y ] = E[Y ′].

Step 1: We will show that ΓSR is a convex and compact set.
It is easy to show that ΓSR is convex by considering a sta-

tionary randomized policy that is a mixture of two stationary
randomized policies.

For compactness, let ((dj , ej), j = 1, 2, · · · ) be any se-
quence of points in ΓSR, we need to show that there is a
convergent subsequence (djk , ejk) whose limit is also in ΓSR.
Since (dj , ej) ∈ ΓSR, there must exist (Y,Z(j), Y

′) with
conditional probability pj(y,A) = Pr[Z(j) ∈ A|Y = y], such
that dj = E[q(Y, Z(j), Y

′)]−goptE[Y +Z(j)], ej = E[Y +Z(j)].
Let µj be the joint probability measure of (Y,Z(j), Y

′), then

(dj , ej) is uniquely determined by µj . For any L satisfying
L ≥M , we can obtain

µj(Y ≤ L,Z(j) ≤ L, Y ′ ≤ L)

= Pr(Y ≤ L, Y ′ ≤ L)

≥Pr(Y + Y ′ ≤ L)

≥1− E[Y + Y ′]

L
, ∀ j,

where the equality is due to the fact that Z(j) ≤M ≤ L and
the last inequality is due to Markov’s inequality. Therefore,
for any ε, there is an L such that

lim inf
j→∞

µj(|Y | ≤ L, |Z(j)| ≤ L, |Y ′| ≤ L) ≥ 1− ε.

Hence, the sequence of measures µj is tight. By Helly’s
selection theorem [62, Theorem 3.9.2], there is a subsequence
of measures µjk that converges weakly to a limit measure µ∞.

Let (Y,Z(∞), Y
′) and p∞(y,A) = Pr[Z∞ ∈ A|Y = y]

denote the random vector and conditional probability cor-
responding to the limit measure µ∞, respectively. We can
define d∞ = E[q(Y,Z(∞), Y

′)] − goptE[Y + Z(∞)], e∞ =
E[Y + Z(∞)]. Since the function q(y, z, y′) is in the form of
an integral, it is continuous and thus measurable. Using the
continuous mapping theorem [62, Theorem 3.2.4], we can ob-
tain that q(Y,Z(jk), Y

′) converges weakly to q(Y,Z(∞), Y
′).

Then, using the condition (6), together with the dominated
convergence theorem (Theorem 1.6.7 of [62]) and Theorem
3.2.2 of [62], we can obtain limk→∞(djk , ejk) = (d∞, e∞).
Hence, ((dj , ej), j = 1, 2, · · · ) has a convergent subsequence.
Further, we can generate a stationary randomized policy π∞,SR
by using the conditional probability p∞(y,A) correspond-
ing to µ∞. Then, (d∞, e∞) is the limit point generated
by the stationary randomized policy π∞,SR, which implies
(d∞, e∞) ∈ ΓSR. In summary, any sequence (dj , ej) in ΓSR
has a convergent subsequence (djk , ejk) whose limit (d∞, e∞)
is also in ΓSR. Therefore, ΓSR is a compact set.

Step 2: We will show that there exists an optimal policy
πopt ∈ Π of Problem (8) such that the sequence (an,πopt , bn,πopt)
associated with policy πopt has at least one limit point in ΓSR.

Since the sequence (Y0, Y1, . . .) is a Markov chain, the
observation Yi+1 depends only on the immediately preceding
state Yi and not on the history state and control Y0, . . . , Yi−1,
Z0, . . . , Zi−1. Therefore, Yi is the sufficient statistic [45, p.
252] for solving Problem (8). This tells us that there exists
an optimal policy πopt = (Z0, Z1, . . .) ∈ Π of Problem (8) in
which the control action Zi is determined based on only Yi, but
not the history state and control Y0, . . . , Yi−1, Z0, . . . , Zi−1

[45]. We will show that the sequence (an,πopt , bn,πopt) associ-
ated with this policy πopt has at least one limit point in ΓSR.

It is known that Zi takes values in the standard Borel
space (R,R), where R is the Borel σ-field. According to
[62, Thoerem 5.1.9], for each i there exists a conditional
probability measure p′i(y,A) such that p′i(y,A) = Pr(Zi ∈
A|Yi = y) for almost all y. That is, the control action Zi
is determined based on Yi and the conditional probability
measure p′i(y,A) = Pr(Zi ∈ A|Yi = y). One can use this
conditional probability p′i(y,A) to generate a stationary ran-
domized policy π′i,SR ∈ ΠSR. Then, the one-stage expectation
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(E[q(Yi, Zi, Yi+1)] − goptE[Yi + Zi],E[Yi + Zi]) is exactly
the limit point generated by the stationary randomized policy
π′i,SR. Thus, (E[q(Yi, Zi, Yi+1)]−goptE[Yi+Zi],E[Yi+Zi]) ∈
ΓSR for all i = 0, 1, 2, . . . Using (10), (11), and the fact that
ΓSR is convex, we can obtain (an,πopt , bn,πopt) ∈ ΓSR for all
n = 1, 2, 3 . . . In other words, the sequence (an,πopt , bn,πopt)
is within ΓSR. Since ΓSR is a compact set, the sequence
(an,πopt , bn,πopt) must have a convergent subsequence, whose
limit is in ΓSR.

Step 3: Let (a∗, b∗) ∈ ΓSR be one limit point of the sequence
(an,πopt , bn,πopt) associated with policy πopt. We will show that
a∗ ≤ 0 and b∗ ≥ 1

fmax
.

Policy πopt is feasible for Problem (8) and meanwhile
achieves the optimum objective value gopt. Hence,

lim sup
n→∞

cn,πopt

bn,πopt

= gopt, (31)

lim inf
n→∞

bn,πopt ≥
1

fmax
, (32)

where

cn,πopt ,
1

n
E
[ n−1∑

i=0

q(Yi, Zi, Yi+1)

]
.

By (11), bn,πopt is upper bounded by

bn,πopt ≤M + E[Y ] <∞.

Hence, by (10), we have

an,πopt = cn,πopt − goptbn,πopt

≤ max{cn,πopt − goptbn,πopt , 0}

= max{
cn,πopt

bn,πopt

− gopt, 0}bn,πopt

≤ max{
cn,πopt

bn,πopt

− gopt, 0}(M + E[Y ]).

Taking the lim sup in this inequality and using (31), yields

lim sup
n→∞

an,πopt ≤ 0. (33)

Because (a∗, b∗) is one limit point of (an,πopt , bn,πopt), we have

a∗ ≤ lim sup
n→∞

an,πopt , b
∗ ≥ lim inf

n→∞
bn,πopt . (34)

By (32)-(34), we have a∗ ≤ 0 and b∗ ≥ 1
fmax

.

Step 4: We will show that there exists a stationary random-
ized policy that is optimal for Problems (8) and (12), and
thus gSR = gopt. By the definition of ΓSR, (a∗, b∗) ∈ ΓSR
must be the limit point generated by a stationary randomized
policy π∗ ∈ ΠSR. Let (Y,Z∗, Y ′) be a random vector with the
stationary distribution of policy π∗. Then, (30) implies

(a∗, b∗) =
(
E[q(Y,Z∗, Y ′)]− goptE[Y + Z∗],E[Y + Z∗]

)
.

Using a∗ ≤ 0 and b∗ ≥ 1
fmax

, we can obtain

E[q(Y,Z∗, Y ′)]− E[Y + Z∗]gopt ≤ 0, (35)

E[Y + Z∗] ≥ 1

fmax
. (36)

By (35) and E[Y + Z∗] > 0, we have

E[q(Y,Z∗, Y ′)]

E[Y + Z∗]
≤ gopt.

Further, the inequality (36) suggests that the stationary ran-
domized policy π∗ is feasible for Problem (12). Hence,

E[q(Y,Z∗, Y ′)]

E[Y + Z∗]
≥ gSR.

Therefore, gSR ≤ gopt. This and (27) suggest that

E[q(Y,Z∗, Y ′)]

E[Y + Z∗]
= gSR = gopt.

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Consider an arbitrarily chosen stationary randomized policy
π1 ∈ ΠSR that is feasible for Problem (12). We will show that
there exists a feasible stationary deterministic policy that is no
worse than policy π1.

For any y, we can use the conditional probability p(y,A)
associated with policy π1 to compute the conditional expecta-
tion E[Z|Y = y] by

E[Z|Y = y] =

∫ M

0

zp(y, dz).

Since the conditional expectation E[Z|Y ] is unique w.p.1 [62,
Section 5.1], there is a deterministic function z(·) such that
z(y) = E[Z|Y = y] w.p.1. Consider the set Λ ⊂ ΠSR of all
stationary randomized policies that satisfy E[Z|Y = y] = z(y)
w.p.1. Then, the stationary randomized policy π1 is in Λ. It
is also easy to show that the stationary deterministic policy
(Zi = z(Yi), i = 1, 2, . . .) is also in Λ.

Using the iterated expectation, for any policy in Λ

E[Y + Z] = E
[
Y + E[Z|Y ]

]
= E

[
Y + z(Y )

]
. (37)

Because π1 ∈ Λ is feasible for Problem (12), any policy in Λ
is feasible for Problem (12).

Since q(y, z, y′) is the integral of a non-decreasing function
g, it is easy to show that the function q(y, ·, y′) is convex. For
any policy π ∈ Λ, Jensen’s inequality tells us that

E[q(Y,Z, Y ′)|Y, Y ′]
≥ q(Y,E[Z|Y, Y ′], Y ′)
= q(Y,E[Z|Y ], Y ′) (38)
= q(Y, z(Y ), Y ′), (w.p.1),

where (38) is due to the fact that Z is determined based on
Y , but not Y ′. Taking the expectation over (Y, Y ′), yields

E[q(Y, z(Y ), Y ′)] ≤ E[q(Y,Z, Y ′)]

for any policy π ∈ Λ, where equality holds if Z = z(Y ). This
and (37) suggest that the stationary deterministic policy (Zi =
z(Yi), i = 1, 2, . . .) achieves the smallest objective value for
Problem (12) among all policies in Λ. In conclusion, for any
feasible stationary randomized policy π1 ∈ ΠSR, we can find
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a feasible stationary deterministic policy that is no worse than
policy π1. This completes the proof.

APPENDIX C
PROOF OF LEMMA 1

We need the following lemma:
Lemma 4: If l : R → R is a convex function, then the

functional w : L2(µY )→ R defined by

w(z) =

∫ ∞

0

l(z(y))dµY (y) (39)

is also convex.
Proof: For any λ ∈ [0, 1] and z1, z2 ∈ L2(µY ), we have

w(λz1 + (1− λ)z2)

=

∫ ∞

0

l(λz1(y) + (1− λ)z2(y))dµY (y)

≤
∫ ∞

0

[λl(z1(y)) + (1− λ)l(z2(y))] dµY (y)

=λw(z1) + (1− λ)w(z2). (40)

By this, w(z) is convex.
We now prove Lemma 1. Since q(y, z, y′) is the integral of
a non-negative and non-decreasing function g, it is easy to
show that the function q(y, ·, y′) is non-negative and convex.
Hence, the conditional expectation E [q(y, ·, Y ′)|Y = y] is also
convex. We can obtain

E [q(Y, z(Y ), Y ′)]

=

∫ ∞

0

E [q(y, z(y), Y ′)|Y = y] dµY (y). (41)

According to Lemma 4, E [q(Y, z(Y ), Y ′)] is a convex func-
tional of z and E[Y + z(Y )] is an affine functional of z. It is
known that the ratio of a non-negative convex functional and
positive affine functional is quasi-convex [58, p. 103]. Hence,
h(z) is quasi-convex, which completes the proof.

APPENDIX D
PROOF OF THEOREM 3

We use the Lagrangian duality approach to solve Problem
(15). The Lagrangian of Problem (15) is

L(z, ζ, γ, τ)

=

∫ ∞

0

E [q(y, z(y), Y ′)|Y = y] dµY (y)

− c
∫ ∞

0

[y + z(y)]dµY (y)

+ ζ

[
1

fmax
−
∫ ∞

0

[y + z(y)]dµY (y)

]

−
∫ ∞

0

γ(y)z(y)dµY (y) +

∫ ∞

0

τ(y)(z(y)−M)dµY (y)

=

∫ ∞

0

{
E [q(y, z(y), Y ′)|Y = y]− (c+ ζ)[y + z(y)]

− γ(y)z(y) + τ(y)
[
z(y)−M

]}
dµY (y) + ζ

1

fmax
. (42)

Since Problem (15) is feasible, all constraints are affine,
the refined Slater’s condition [58, Sec. 5.2.3] is satisfied.
According to [59, Proposition 3.3.2] and [60, pp. 70-72], the
Karush-Kuhn-Tucker (KKT) theorem remains valid for the
Lebesgue space L2(µY ). Hence, if a vector (z, ζ, γ, τ) satisfies
the KKT conditions (43)-(49), it is an optimal solution to (15).
The KKT conditions are given by

z = min
x∈L2(µY )

L(x, ζ, γ, τ), (43)

ζ ≥ 0,

∫ ∞

0

[y + z(y)]dµY (y) ≥ 1

fmax
, (44)

γ(y) ≥ 0, z(y) ≥ 0,∀ y ≥ 0, (45)
τ(y) ≥ 0, z(y) ≤M,∀ y ≥ 0, (46)

ζ

[
1

fmax
−
∫ ∞

0

[y + z(y)]dµY (y)

]
= 0, (47)

γ(y)z(y) = 0,∀ y ≥ 0, (48)
τ(y)(z(y)−M) = 0,∀ y ≥ 0. (49)

We now solve the KKT conditions (43)-(49) by using
the calculus of variations. The one-sided Gâteaux derivative
(similar to sub-gradient in finite dimensional space) of a
functional h in the direction of w ∈ L2(µY ) at z ∈ L2(µY )
is defined as

δh(z;w) , lim
ε→0+

h(z + εw)− h(z)

ε
. (50)

If h is a function on R, then (50) becomes the common
one-sided derivative. Let l(z, y, ζ, γ, τ) denote the integrand
in (42), and r(z, y) = E [q(y, z(y), Y ′)|Y = y]. According
to Lemma 4, the function q(y, z, y′) and functionals r(z, y),
l(z, y, ζ, γ, τ), and L(z, ζ, γ, τ) are all convex in z. Therefore,
their one-sided Gâteaux derivatives with respect to z exist [63,
p. 709]. Since g(x) is right-continuous, for any given (y, y′),
the one-sided derivative δq(y, z;w, y′) of function q(y, z, y′)
with respect to z is given by

δq(y, z;w, y′)

= lim
ε→0+

1

ε

{
q(y, z + εw, y′)−q(y, z, y′)

}

=

{
lim
x→z+

g(y + x+ y′)w, if w ≥ 0;

lim
x→z−

g(y + x+ y′)w, if w < 0.

Next, consider the one-sided Gat̂eaux derivative δr(z;w, y) of
functional r(z, y). Since the function g : [0,∞) → [0,∞)
is non-decreasing, z → q(y, z, y′) is convex and finite for
all z ∈ [0,M ]. Hence, the function ε → [q(y, z + εw, y′) −
q(y, z, y′)]/ε is non-decreasing and bounded from above on
(0, a] for some a > 0 [59, Proposition 1.1.2(i)]. By using the
monotone convergence theorem [62, Theorem 1.5.6], we can
interchange the limit and integral operators in δr(z;w, y) such
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that

δr(z;w, y)

= lim
ε→0+

1

ε
E [q(y, z(y) + εw(y), Y ′)− q(y, z(y), Y ′)|Y = y]

=E
[

lim
ε→0+

1

ε

{
q(y, z(y) + εw(y), Y ′)−q(y, z(y), Y ′)

}∣∣∣∣Y = y

]

=E
[

lim
x→z(y)+

g(y + x+ Y ′)w(y)1{w(y)>0}

+ lim
x→z(y)−

g(y + x+ Y ′)w(y)1{w(y)<0}

∣∣∣∣Y = y

]

= lim
x→z(y)+

E
[
g(y + x+ Y ′)w(y)1{w(y)>0}

∣∣∣∣Y = y

]

+ lim
x→z(y)−

E
[
g(y + x+ Y ′)w(y)1{w(y)<0}

∣∣∣∣Y = y

]
, (51)

where 1E is the indicator function of event E. By using the
monotone convergence theorem again, we have

δL(z;w, ζ, γ, τ)

=

∫ ∞

0

δl(z;w, y, ζ, γ, τ)dµY (y)

=

∫ ∞

0

δr(z;w, y)dµY (y)

+

∫ ∞

0

[−(c+ ζ)− γ(y) + τ(y)]w(y)dµY (y). (52)

According to [63, p. 710], z is an optimal solution to (43) if
and only if

δL(z;w, ζ, γ, τ) ≥ 0, ∀ w ∈ L2(µY ). (53)

Since w(·) is an arbitrary function in L2(µY ), considering
positive functions w(y) > 0, we can obtain from (51)-(53)
that for each y ≥ 0, z(y) must satisfy

lim
x→z(y)+

E [g(y+x+Y ′)|Y = y]−(c+ ζ)−γ(y)+τ(y) ≥ 0.

(54)

Similarly, considering negative functions w(y) < 0, we can
obtain that for each y ≥ 0, z(y) must satisfy

lim
x→z(y)−

E [g(y+x+Y ′)|Y = y]−(c+ ζ)−γ(y)+τ(y) ≤ 0.

(55)

Because g(·) is non-decreasing, we can obtain from (54) and
(55) that for each y ≥ 0, z(y) needs to satisfy

E [g(y+x+Y ′)|Y = y]−(c+ ζ)−γ(y)+τ(y) ≥ 0 (56)

for all x > z(y), and

E [g(y+x+Y ′)|Y = y]−(c+ ζ)−γ(y)+τ(y) ≤ 0 (57)

for all x < z(y).

We solve the optimal primal solution z(·) by considering
the following three cases:

Case 1: γ(y) = τ(y) = 0. The solutions to (56) and (57)
may not be unique, if function g is not strictly increasing. In
particular, there may exist an interval [a(y), b(y)] such that
each z(y) ∈ [a(y), b(y)] satisfies (56) and (57) for some y.

In this case, we choose the largest possible solution of z(y)
to make sure that the constraint (14) is satisfied. The largest
solution satisfying (56) and (57) is given by

z(y) = sup{x ∈ [0,M ] : E [g(y+x+Y ′)|Y = y] ≤ c+ ζ},
∀ y ≥ 0,

which is exactly (17).
Case 2: γ(y) > 0. By (48), we have z(y) = 0.
Case 3: τ(y) > 0. By (49), we have z(y) = M .
In summary, the optimal primal solution z(·) is given by

(17).
Next, we find the optimal dual variable ζ. By (44) and (47),

the optimal ζ satisfies

ζ = 0,E [Y + z(Y )] ≥ 1

fmax
(58)

or

ζ > 0,E [Y + z(Y )] =
1

fmax
, (59)

where E [Y + z(Y )] is determined by the optimal primal
solution (17). Since E [Y + z(Y )] is non-decreasing in ζ, we
can use bisection to search for the optimal ζ. By this, an
optimal solution to (15) is obtained for any given c. Finally,
according to Sections 4.2.5 and 11.4 of [58], the optimal c
is solved by an outer-layer bisection search. Therefore, an
optimal solution to Problem (13) is given by Algorithm 1.
This completes the proof.

APPENDIX E
PROOF OF LEMMA 2

Let us rewrite the functional h1 as

h1(z) =

∫∞
0

[y + z(y)]2dµY (y)∫∞
0

[y + z(y)]dµY (y)
.

We need to prove that the functional h1 is convex when
restricted to any line that intersects its domain. For any
w ∈ L2(µY ), consider the function u : R→ R defined as

u(ε) =

∫∞
0

[z(y) + εw(y) + y]2dµY (y)∫∞
0

[z(y) + εw(y) + y]dµY (y))

with domain

dom u = {ε : z(y) + εw(y) ∈ [0,M ], ∀y ≥ 0, ε ∈ R} .

Since the function ε → [z(y) + εw(y) + y]2 is convex, the
function x→ {[z(y) + (ε+ x)w(y) + y]2 − [z(y) + εw(y) +
y]2}/x is non-decreasing and bounded from above on (0, a]
for some a > 0. By using monotone convergence theorem
[62, Theorem 1.5.6], we can interchange the limit and integral
operators such that

d

dε

∫ ∞

0

[z(y) + εw(y) + y]2dµY (y)

=

∫ ∞

0

2[z(y) + εw(y) + y]w(y)dµY (y).
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Similarly,

d

dε

∫ ∞

0

[z(y) + εw(y) + y]dµY (y) =

∫ ∞

0

w(y)dµY (y).

By this, we have

du

dε
=

∫∞
0

2[z(y) + εw(y) + y]w(y)dµY (y)∫∞
0

[z(y) + εw(y) + y]dµY (y)

−
∫∞

0
[z(y)+εw(y) + y]2dµY (y)

∫∞
0
w(y)dµY (y)

[∫∞
0

[z(y) + εw(y) + y]dµY (y)
]2 . (60)

After some additional manipulations, we can obtain

d2u

d2ε
=

2
[∫∞

0
[y+z(y)]dµY (y)

∫∞
0
w(y)dµY (y)

]2
[∫∞

0
[z(y) + εw(y) + y]dµY (y)

]3

×
∫ ∞

0

[
y+z(y)∫∞

0
[y+z(y)]dµY (y)

− w(y)∫∞
0
w(y)dµY (y)

]2

dµY (y).

Since z(y)+εw(y) ≥ 0 for all y on dom u, we have d2u
d2ε ≥ 0.

Hence, the function u is convex for all w ∈ L2(µY ). By this,
the functional h1 is convex, which completes the proof.

APPENDIX F
PROOF OF THEOREM 4

The Lagrangian of Problem (19) is determined as

L1(z, ζ, γ, τ)

=

∫∞
0

[y + z(y)]2dµY (y)

2
∫∞

0
[y + z(y)]dµY (y)

+ζ

[
1

fmax
−
∫ ∞

0

[y + z(y)]dµY (y)

]

−
∫ ∞

0

γ(y)z(y)dµY (y) +

∫ ∞

0

τ(y)(z(y)−M)dµY (y),

where ζ ∈ R, γ, τ ∈ L2(µY ) are dual variables. According to
[59, Proposition 3.3.2] and [60, pp. 70-72], the KKT theorem
remains valid for the Lebesgue space L2(µY ). Hence, if a
vector (z, ζ, γ, τ) satisfies the KKT conditions (61)-(67), it is
an optimal solution to (19). The KKT conditions are given by:

z = min
x∈L2(µY )

L1(x, ζ, γ, τ), (61)

ζ ≥ 0,

∫ ∞

0

[y + z(y)]dµY (y) ≥ 1

fmax
, (62)

γ(y) ≥ 0, z(y) ≥ 0,∀ y ≥ 0, (63)
τ(y) ≥ 0, z(y) ≤M,∀ y ≥ 0, (64)

ζ

[
1

fmax
−
∫ ∞

0

[y + z(y)]dµY (y)

]
= 0, (65)

γ(y)z(y) = 0,∀ y ≥ 0, (66)
τ(y)(z(y)−M) = 0,∀ y ≥ 0. (67)

We now solve the KKT conditions by using the calculus of
variations. For any fixed (ζ, γ, τ), the Gâteaux derivative of the
Lagrange L1 in the direction of w ∈ L2(µY ) at z ∈ L2(µY )
is defined as

δL1(z;w, ζ, γ, τ) , lim
ε→0

L1(z + εw, ζ, γ, τ)− L1(z, ζ, γ, τ)

ε
.

Similar to the derivations of (60), we can obtain

δL1(z;w, ζ, γ, τ)

=

∫ ∞

0

[
y + z(y)∫∞

0
[y + z(y)]dµY (y)

−
∫∞

0
[y + z(y)]2dµY (y)

2
[∫∞

0
[y + z(y)]dµY (y)

]2

− ζ − γ(y) + τ(y)

]
w(y)dµY (y), ∀ w ∈ L2(µY ).

Then, z(·) is an optimal solution to (61) if and only if [63, p.
710]

δL1(z;w, ζ, γ, τ) ≥ 0, ∀ w ∈ L2(µY ).

By δL1(z;w, ζ, γ, τ) = −δL1(z;−w, ζ, γ, τ), we deduce

δL1(z;w, ζ, γ, τ) = 0, ∀ w ∈ L2(µY ).

Since w(·) is arbitrary, we have

y + z(y)∫∞
0

[y + z(y)]dµY (y)
−

∫∞
0

[y + z(y)]2dµY (y)

2
[∫∞

0
[y + z(y)]dµY (y)

]2

− ζ − γ(y) + τ(y) = 0, ∀ y ≥ 0. (68)

For notational simplicity, let us define

β , ζ

∫ ∞

0

[y+z(y)]dµY (y)+

∫∞
0

[y + z(y)]2dµY (y)

2
∫∞

0
[y+z(y)]dµY (y)

. (69)

Since E[Y ] > 0, we have β > 0. The optimal primal solution
z(·) is obtained by considering the following three cases:

Case 1: If γ(y) = τ(y) = 0, then by (68) and (69), we
obtain z(y) = β − y. In this case, we require β − y ∈ [0,M ]
by (63) and (64).

Case 2: If γ(y) > 0, then by (66), z(y) = 0.
Case 3: If τ(y) > 0, then by (67), z(y) = M .
In summary, the optimal primal solution z(·) is given by

(21).
The optimal dual variable β is obtained by considering two

cases:
Case 1: ζ > 0. Then, (65) and (69) imply that
∫ ∞

0

[y+z(y)]dµY (y)=
1

fmax
, β ≥

∫∞
0

[y + z(y)]2dµY (y)

2
∫∞

0
[y+z(y)]dµY (y)

.

(70)

Case 2: ζ = 0. Then, (62) and (69) imply that
∫ ∞

0

[y+z(y)]dµY (y)≥ 1

fmax
, β =

∫∞
0

[y + z(y)]2dµY (y)

2
∫∞

0
[y+z(y)]dµY (y)

.

(71)

Combining (70) and (71), yields
∫ ∞

0

[y+z(y)]dµY (y)=max

(
1

fmax
,

∫∞
0

[z(y)+y]2dµY (y)

2β

)
.

Then, (22) is obtained. This completes the proof.

APPENDIX G
PROOF OF THEOREM 5

Since E[Y ] ≥ 1
fmax

, the constraint (20) is always satisfied
and can be removed. If the zero-wait policy is optimal,
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we solve the KKT conditions of Problem (19) without the
constraint (20). By this, we can obtain that the optimal primal
solution is given by (21) almost everywhere, and the optimal
dual solution β must satisfy

β ≤ yinf , E[Y 2] = 2βE[Y ], (72)

from which (25) follows.
Next, we prove the reverse direction. If (25) holds, by

E[Y ] > 0, we can get E[Y 2] > 0 and yinf > 0. By (25) and
choosing β = E[Y 2]

2E[Y ] > 0, we obtain (72). Substituting (72)
and E[Y ] ≥ 1

fmax
into Theorem 4, yields that the zero-wait

policy is optimal. This completes the proof.

APPENDIX H
PROOF OF LEMMA 3

1). When the correlation coefficient between Yi and Yi+1

is −1, Y + Y ′ is equal a constant value with probability one.
Choosing z(y) = 0, ζ = 0, c = g(Y + Y ′), γ(y) = τ(y) = 0,
one can show that the KKT conditions (43)-(49) are satisfied.

2). If the Yi’s are equal to a constant value, Y +Y ′ is equal
a constant value. The remaining proof follows from part 1).

3). When g(·) is a constant function, all policies are optimal.
This completes the proof.
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