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Abstract— In recent years, there has been a growing interest
in the use of drone for commercial applications. To support
these drone systems, autonomous drone charging has received
lots of attention. However, control algorithms on how to assign
drones to different charging stations have not been well studied.
In this work, we consider a drone charging network with charg-
ing stations equipped with renewable resources and batteries,
and focus on the problem of designing a joint drone-charging-
station association and energy control algorithm, with the aim
of minimizing the electricity cost of the charging network
system. We show that our algorithm achieves asymptotic (as
the battery capacity increases) optimality. We then show via
simulations that a large cost reduction is achieved by our
proposed algorithm under a reasonable battery size.

I. INTRODUCTION

Recently, Unmanned Aerial Vehicles (UAVs), also known
as drones, have been widely adopted for commercial, recre-
ational and public use. There is a growing interest in
this technology from the industry, especially from oil and
gas companies, and utility providers that rely on exten-
sive surveillance, measurements. Moreover, major delivery
companies and service providers (e.g. Amazon, Google) are
looking into deploying drones for routine delivery operation.
Drones are also used for remote monitoring purposes, such
as environmental surveying, searching and civil structures
health check-up [1]. It is reported that total spending on
drones worldwide will be over $100 billion by 2020 [2].

Despite the popularity of drones in commercial applica-
tions, the main barrier to wide-spread of drone systems is
the short flight time. To address this problem, one option
is to equip drones with Energy Harvesting (EH) devices,
which increase the lifetime but are not reliable [3]. A more
popular option is to deploy autonomous charging stations so
that drones can get charged intermittently [1] [4]. Further-
more, equipping drone charging stations with EH devices is
considered as an attractive way to keep costs down so that
one can store and use renewable energy, but also have the
option of drawing from the power grid to ensure stability [5].

Few works have focused on the problem of designing
drone-charging-station navigation paths. In both [6] and
[7], the authors develop a virtual metric called Congestion
Contribution and consider the congestion that may occur at
the battery charging stations when making drone navigation
decisions. However, in their models, the charging station is
powered only by the power grid, and electricity price is
not considered in their solutions. In commercial areas, the
shortest distance from the source to destination is considered
in Amazon drones [8], while Google drones only consider
the furthest distance they can deliver without battery charging
[9]. None of the above works have considered the scenario
where charging stations are equipped with EH devices, or

Drone

Charging
Station

Fig. 1: An example of a drone charging network with one
association decision.

when electricity prices are time-varying. To the end, a natural
problem that arises is: to minimize the cost of the whole
system, how to design the control algorithm for the drone-
charging-station association, and the usage of batteries with
renewable resources, when the drone positions, required
charging time, deadline as well as the electricity prices are
taken into account.

In this work, we consider a drone charging network, where
each charging station in the network is equipped with a bat-
tery and can be charged with renewable resources (e.g. wind,
solar, etc.) and the power grid with time-varying electricity
prices. A drone sends out a charging request when its battery
level is below a threshold, and we focus on the problem of
deciding which charging station is allocated to the request,
when to charge the drone, and how much energy should
be purchased from the power grid, by considering drone’s
position, required charging time, deadline, the batteries state
and the electricity price. The objective is to reduce the
monetary cost of the network, under the constraint that each
request should be completed within its deadline.

The proposed algorithm consists of a drone-charging-
station association control component and an energy con-
trol component. The association control component tries to
navigate the request to the charging station and assign the
time-slots with minimum total cost needed to finish that
request, by considering both the battery status of the charging
station and future electricity prices. Once the association
decision is made, the energy control component determines
how much energy should be purchased from the power grid
of each charging station. Our proposed algorithm is shown

Jiashang Liu and Wenxin Li are with Department of ECE, The Ohio State
University (e-mail: liu.3992@osu.edu, li.7328@osu.edu). Ness B. Shroff
holds a joint appointment in both the Department of ECE and the Depart-
ment of CSE at The Ohio State University (e-mail: shroff.11@osu.edu).
Prasun Sinha is with the Department of CSE, The Ohio State University
(e-mail:sinha.43@osu.edu). This work has been supported in part by NSF
grants 1409336, 1719371, and a grant from IITP. The authors thank Atilla
Eryilmaz for his insightful comments on this work.



to achieve asymptotic (as the battery capacity increases)
optimality. Finally, we show how to solve the drone-station
association problem by reducing it into a minimum weighted
r-dimensional matching problem.

The organization of this paper is as follows. We discuss the
battery, tasks and energy models in Section II, and formulate
the electricity cost minimization problem in Section III. We
propose a joint control algorithm and analyze its performance
in Section IV. In Section V we conduct and present detailed
simulations. Finally, we conclude our paper in Section VI.

II. SYSTEM MODEL

We consider a drone charging network system with J
charging stations equipped with batteries. Each charging
station can provide the same charging capability for all the
drones. Time is assumed to be slotted. At each time-slot,
those drones that need to be charged will send out a charging
request. We focus on the problem of drone-charging-station
association, with the aim of minimizing the overall system
cost. A graphic illustration of the system is given in Figure 1.

A. Battery Model

Each charging station has a rechargeable battery with
maximum battery capacity Bmax, as depicted in Figure 2.
We denote Bj(t) as the battery level of the charging station
j at the beginning of time-slot t, with the initial condition

Bj(0) = Bmax. (1)

For charging station j and time-slot t, let λj(t) denote the
amount of harvested energy, and bj(t) denote the amount of
energy drawn from the battery. Note that bj(t) can either be
positive or negative. A positive value of bj(t) represents the
discharge status of the battery, while negative value implies
that the battery is charged. Based on the definition above,
the battery level evolution of station j can be expressed as

Bj(t+ 1) = min{Bj(t)− bj(t) + λj(t), Bmax}. (2)

For charging station j at every time slot t, we have:

bj(t) ≤ Bj(t), (3)

which indicates that the amount of energy obtained from the
battery is no more than the current battery level. In addition,
according to the physical limitation of a battery, we assume
that the amount of energy charged to the battery in each
time-slot is no more than a constant upper bound bmax, i.e.,

bj(t) ≥ −bmax (4)

holds for any charging station j and time-slot t.

B. Tasks Model

Let N(t) represent the set of drone charging requests that
arrive at the beginning of time-slot t, with the number of
requests being nt, i.e., nt = |N(t)|, where | · | denotes the
cardinality of a set. For each request i ∈ N(t), let cit denote
the required charging time, which is equal to the number
of time-slots needed to complete request i. Also, there is a
deadline dit associated with each request i ∈ N(t), which
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Fig. 2: Model of charging station j.

is the maximum number of time-slots allowed to finish the
request after its arrival time t, and let dmax , maxi,t d

i
t. For

the request with larger value of dit, it is more delay-tolerant,
and we can opportunistically schedule it in order to exploit
the fluctuating nature of the electricity price and make use
of the renewable energy.

One of the decisions is the request-charging-station allo-
cation state in each time-slot t, which is denoted by a binary
matrix A ∈ {0, 1}nt×J , in which Aij = 1 when request i
is allocated to charging station j and Aij = 0 otherwise.
Each charging request can only be assigned to one charging
station, which implies the following constraint:

J∑
j=1

Aij = 1, for all i ∈ N(t). (5)

We assume that the drone with a charging request can
fly to the assigned charging station with zero extra time
and is able to be served immediately in that time-slot. This
is because compared to the required charging time and
deadline, the time needed to fly to the assigned charging
station is small. However, the energy spent during the flight
cannot be ignored [10]. To model different amounts of energy
spent flying to different charging stations, we introduce an
extra charging time lij if request i is assigned to charging
station j. With larger distance between the current drone
position and a charging station j, lij is larger. In such cases,
the total required charging time of request i ∈ N(t) becomes
cit +

∑J
j=1Aij lij .

Another decision being made for each request is the
selection of time-slots to be assigned to the request within its
deadline, which is equal to the required charging time for that
request. Let binary variables xik ∈ {0, 1} denote the selection
of time-slot t+ k for request i, with xik = 1 when time-slot
t + k is selected to serve request i, and xik = 0 otherwise.
We assume that one charging task can be interrupted by
another charging task, and those time-slots assigned to one
charging request are not necessarily consecutive. Based on
the definition of xik, we have the following constraint:

dit∑
k=0

xik = cit +

J∑
j=1

Aij lij . (6)

Note that these two decisions are assumed to be made
once request i ∈ N(t) arrives, and they are fixed thereafter.



In the rest of the paper, we call these two decisions together
as the association control decision.

C. Energy and Price Model

We assume that each charging request needs to consume
one unit of energy per time-slot. Let Ej(t) denote the amount
of energy consumption of charging station j in time-slot t.
Recall that for each charging station j in each time-slot
τ , Aij represents whether request i ∈ N(τ) is assigned
to charging station j, and xik represents whether time-slot
τ + k is assigned to serve request i. Then we must have the
following equation:

Ej(t) =

t∑
τ=t−dmax

nτ∑
i=1

Aijx
i
t−τ . (7)

According to the power consumption constraint of the
charging station, at any time-slot, the amount of energy
consumption of any charging station is assumed to be upper
bounded by a constant Emax, i.e.,

Ej(t) ≤ Emax (8)

holds for any charging station j in any time-slot t. For
simplicity, Emax is assumed to be an integer.

Let dj(t) denote the amount of energy purchased from the
power grid of charging station j in time-slot t. We claim that
Ej(t) = bj(t) + dj(t), since bj(t) represents the amount of
energy drawn from the battery, and Ej(t) is the amount of
energy consumption of charging station j. In our model, the
energy is not sold to the grid, i.e., dj(t) ≥ 0, equivalently,

bj(t) ≤ Ej(t). (9)

For a given value of Ej(t), the value of bj(t) or dj(t) can
be determined using the information of the other parameter.
As consequence, in the control algorithm, it suffices to figure
out only one parameter among bj(t) and dj(t). We refer to
bj(t) as the energy control decision in the rest of this paper.

The price of electricity is assumed to be time-varying
according to the specific pricing strategy of energy providers.
We assume that the price at time t is P (t) per unit, and
P (τ)(t ≤ τ ≤ dmax) are known at the beginning of time-
slot t. This assumption is valid since we can have a precise
prediction from the history information of electricity price
[11]. Therefore, the cost of purchasing energy from the
power grid for charging station j in time-slot t is:

P (t)dj(t) = P (t)Ej(t)− P (t)bj(t). (10)

In this paper, all the processes in the system are assumed
to be ergodic and have bounded values. We let Pmax and
λmax denote the upper bound of energy price and renewable
energy in one time-slot.

III. PROBLEM FORMULATION

From Eqs (7) and (10), we conclude that in each time-slot,
the total cost of the system is determined by (1) the request-
charging-station association decision, (2) the selection of
time-slots assigned to the requests, and (3) the amount of

energy discharged from/charged to the battery. We aim to
design online control algorithms with the decisions above
in each time-slot, and the objective is to minimize long-
term average cost of the whole charging network system.
We formally state the problem below as Problem P1.

Problem P1:

min
A,b,x

lim
T→∞

1

T

T∑
t=1

J∑
j=1

E [P (t)Ej(t)− P (t)bj(t)]

s. t. For any charging station j and request i in time-slot t:
(1)–(9) hold.

The expectation in the objective function for time-slot t is
taken over all the randomness of the energy price, arrivals of
requests and renewable energy, together with control actions
from the beginning to time-slot T .

Note that term limT→∞
∑T
t=1

∑J
j=1 P (t)Ej(t) represents

the total cost demand without drawing energy from the
battery in the whole time horizon, which can also be derived
by simply adding the cost of all charging requests one by
one. Thus, we have the following equation:

lim
T→∞

T∑
t=1

J∑
j=1

E[P (t)Ej(t)]

= lim
T→∞

1

T

T∑
t=1

J∑
j=1

E

 nt∑
i=1

dit∑
k=0

Aijx
i
kP (t+ k)

 ,
where

∑dit
k=0

∑J
j=1Aijx

i
kP (t + k) is the cost demand of

request i ∈ N(t) if no energy is drawn from the battery.
Now, we reformulate P1 as P2 stated below:

Problem P2:

min
A,b,x

lim
T→∞

1

T

T∑
t=1

E

[
nt∑
i=1

dit∑
k=0

J∑
j=1

Aijx
i
kP (t+ k)

−
J∑
j=1

bj(t)P (t)

]
s. t. For any charging station j and request i in time-slot t,

(1)–(9) hold.
To proceed with the theoretical analysis, we denote the

available space in the battery as Ej(t) , Bmax−Bj(t). Note
that (1) and (2) are equivalent to the following equations:

Ej(0) = 0, (11)
Ej(t+ 1) = max{0, Ej(t)− λj(t) + bj(t)}, (12)
Ej(t) ≤ Bmax. (13)

In P2, (13) holds in each time-slot, and this upper bound
makes it very difficult to find a feasible solution to P2.
We consider a more tractable problem by considering the
following relaxed constraint that can be derived from (12)
and (13):

lim sup
T→∞

1

T

T∑
t=1

bj(t) ≤ λ̄j , (14)



where λ̄j is the average incoming rate of renewable energy
of charging station j.

We prove this argument by contradiction. Suppose (14)
does not hold, then there must exist a δ > 0 such that
lim supT→∞

1
T

∑T
t=1 bj(t) ≥ λ̄j + δ, hence Ej(t) is diver-

gent and approaches infinity, which contradicts with (13).
By replacing (13) with (14), we have a relaxed version of

P2, which we denote as Problem P3, stated formally as the
following:

Problem P3:

min
A,b,x

lim
T→∞

1

T

T∑
t=1

E

[
nt∑
i=1

dit∑
k=0

J∑
j=1

Aijx
i
kP (t+ k)

−
J∑
j=1

bj(t)P (t)

]
s. t. For any charging station j and request i in time-slot t,

(4)–(9), (11), (12) and (14) hold.

It can be seen that P3 is a relaxed version of P2, since
(14) is a relaxation of (13), while the other constraints remain
the same. In fact, in Problem P3, an allocation scheme can
even be feasible when the process {Ej(t)}t is unbounded,
as long as Ej(t) is kept to be rate-stable [12] and (14)
is satisfied for any charging station j. In other words, in
Problem P3, the maximum capacity of the batteries is relaxed
to be infinity, while the available space in the battery is
enforced for guaranteeing stability.

Let C∗2 and C∗3 denote the optimal objective values of P2
and P3 respectively. Note that C∗2 is a function of the battery
capacity Bmax, thus we denote it as C∗2 (Bmax). Given that
P3 is a relaxed version of P2, C∗3 is the lower bound of
C∗2 (Bmax), In other words, we must have:

C∗3 ≤ C∗2 (Bmax), for any finite value of Bmax.

In the next section, we propose a joint association and
energy control policy under the constraints in P2, and show
that its average operational cost can get arbitrarily close to
C∗3 by increasing the battery capacity Bmax.

IV. JOINT ASSOCIATION AND ENERGY CONTROL POLICY

We first introduce a free control parameter V > 0, which
satisfies the following equation:

Bmax = V Pmax + Emax, (15)

where Pmax and Emax are defined in Section II. Our pro-
posed algorithm that conforms to the constraints in P2 natu-
rally breaks into two components. On one hand, to minimize
the cost of the system, the association control component
tries to allocate those time-slots with small electricity cost of
a nearby charging station with sufficient harvested renewable
energy to each charging request. On the other hand, the
energy control component saves electricity cost by using the
battery as a energy storing buffer. It purchases energy from
the power grid when the electricity price P (t) is relatively
low, while uses the energy in the battery when P (t) is

relatively high. In the following we describe our proposed
algorithm in detail.

Association control component: Our objective in this
component can be characterized by the following Problem
PA, in which Aij = 1 if request i is assigned to charging
station j and xik = 1 if time-slot t + k is selected to serve
request i.

Problem PA:

arg min
A,x

nt∑
i=1

J∑
j=1

Aij

{
min (V P (t), Bmax −Bj(t))xi0

+

dit∑
k=1

V P (t+ k)xik

}
s. t. (5)–(8) hold.

The objective of PA is essentially to find out those
time-slots that satisfy constraints (5)–(8) with the smallest
total cost. According to the objective function of PA, we
observe that the cost of each time-slot between each request-
charging-station pair (i, j) is

min (V P (t), Bmax −Bj(t))︸ ︷︷ ︸
cost from charging-station j

to request i in time-slot t

xi0

+

dit∑
k=1

V P (t+ k)︸ ︷︷ ︸
cost from charging-station j

to request i in time-slot t+ k

xik,

with the cost in time-slot t capturing V times the energy
price from the power grid capped by the available space in
the battery, and the cost in other time-slots capturing the
energy prices only. Note that (6) also plays an important
role in minimizing the total cost. A charging station with a
sufficient amount of energy stored in the battery, i.e., with a
low value of the available space in the battery, may not be
selected to serve the request because it takes a longer total
charging time with higher cost if the charging station is far
away from the current drone position. However, the closest
charging station may not be selected because its battery level
is low compared to a further charging station. We will present
a detailed discussion about PA in Section IV-B.

Energy control component: The energy control compo-
nent has a threshold-based structure. The battery at each
charging station is either charged with the maximum charg-
ing rate, or discharged with the exact amount of energy that
needs to be consumed by that charging station, depending
on the both the instantaneous energy price and the current
battery level:

b∗j (t) =

{
−bmax, If Bj(t) < Bmax − V P (t)
Ej(t), If Bj(t) ≥ Bmax − V P (t)

.

The scheme decides whether the battery is charged or
not by comparing Bj(t) + V P (t) with the battery capacity
Bmax. If the threshold is not exceeded, it indicates that either
the battery level or the electricity price is relatively low. In
such cases, energy will be purchased from the power grid to



serve the energy demand of the current charging requests,
and charge the battery with the maximum charging rate.
However, when either the battery level or the electricity price
is high, the scheme uses the energy stored in the battery.
Here, the parameter V trades-off the monetary cost and
the battery level. As the control parameter V increases, the
scheme weights more on the electricity price than the battery
level, which leads to a larger reduction of electricity cost.
However, as shown in (15), the maximum battery capacity
Bmax is a linear function of V . With a large value of V , the
charging station needs to be equipped with a larger battery
that incurs a larger one-time installment cost.

A. Performance Analysis

The following theorem shows that the performance of our
proposed algorithm can be arbitrarily close to optimal as
the battery size Bmax increases, with a gap to the optimal
average cost shrinking in the order of O(1/Bmax).

Theorem 1. The proposed joint association control and en-
ergy control policy with battery capacity Bmax = V Pmax +
Emax can achieve long-term average cost

lim
T→∞

1

T

T∑
t=1

E

[
nt∑
i=1

dit∑
k=0

J∑
j=1

Aijx
i
kP (t+ k)

−
J∑
j=1

bj(t)P (t)

]
≤ C∗3 + C/V,

where C , J max(bmax, Emax)2 + Jλ2max.

Idea of proof: We define Lyapunov function as L(t) =
1
2

∑J
j=1 E2j (t), and use the drift-plus-penalty method to ob-

tain a near-optimal algorithm for P3. We then find that,
with a certain battery capacity, the near-optimal solution also
satisfies the constraints of P2.

The proof of Theorem 1 is similar to the one of Lemma
1 in [13], thus we omit it here. As we can see from
Theorem 1, with increasing value of the battery capacity,
the performance of our proposed algorithm approaches the
optimal. The reason is that with larger battery capacity, the
system can store more renewable energy, and better exploit
the fluctuations of electricity prices, by using energy stored
in the batteries instead of purchasing energy from the power
grid when the price is high, to save the electricity cost.

B. Revisiting Association Control

In each time-slot t, we need to solve Problem PA for
request-charging-station association and time-slot selection.
However, the following theorem indicates that there even ex-
ists no polynomial time algorithm which solves the decision
problem related to Problem PA.

Theorem 2. Finding a feasible solution that satisfies con-
straints (5)–(8) in Problem PA is NP-hard.

The proof is via reducing Partition Problem [14] to the
decision problem. We first present the formal definition of
Partition Problem as follows.

Definition 1 (Partition Problem [14]). Given a collection
of positive integers A = {a1, a2, . . . , aP }, can set A be
partitioned into two disjoint subsets, such that the summation
of integers in the two sets are identical?

Proof of Theorem 2. Given any given instance
{a1, a2, . . . , aP } of the Partition Problem, consider
Problem PA with input parameters nt = P, J = 2, cit =
ai, d

i
t = dmax = 1

2

∑P
p=1 ap, lij = 0(∀i ∈ N(t), j ∈ {1, 2})

and Emax = 1. We make the observation that any feasible
solution to problem PA will imply a feasible solution to the
Partition Problem. The proof is complete.

As the decision version of a problem is always easier
than or the same as the optimization version, we conclude
that in general, one cannot expect the existence of a poly-
nomial time algorithm, which can always find a feasible
solution to PA with provable performance guarantee. To
address this challenge, we show how to convert PA into
the minimum weighted (K + 1)-dimensional nt-matching
problem [15], which is known to be NP-hard and can be
solved in O∗(2.851Knt) time1 according to [15]. In practice,
solving the association control problem based on algorithms
for (K + 1)-dimensional nt-matching problem may suffer
from a high computational complexity. However, theoretical
speaking, it can be seen that the aforementioned running time
is still polynomial in the input size for constant value of K
and nt, where parameter K , maxi(c

i
t+maxj lij) represents

the largest possible total charging time needed among all the
requests in the context of PA. Moreover, we will present a
greedy algorithm for practical purpose later.

The formal definition of minimum weighted (K + 1)-
dimensional nt-matching problem is given as follows.

Definition 2 (Minimum Weighted (K + 1)-Dimensional
nt-Matching Problem [15]2). Let T1, . . . , TK+1 be finite,
pairwise disjoint sets, and L be a subset of T1×· · ·×TK+1,
i.e., L consists of tuples (t1, . . . , tK+1) where ti ∈ Ti(∀i ∈
[K + 1]). Let W : L → R be a weight function defining the
weight of elements in L, the problem is to find a setM⊆ L
with cardinality |M| = nt such that any two distinct tuples
in M share no common node in Ti(∀i ∈ [K+ 1]), while the
total weight

∑
l∈MW (l) is minimized.

We first focus on the simple case with K = cit, d
i
t =

dmax, lij = 0 (∀i ∈ N(t), j ∈ [J ]) and Emax = 1.
Let N , T1, T2, . . . , TK be finite and disjoint sets, where
N = {1, 2, . . . , I} represents the set of requests and Tk
represents the set of time-slots of all the charging stations
that can serve a charging request in kth order. Each set Tk
consists of J(dmax + 1) nodes, i.e., tkjs ∈ Tk (j ∈ [J ],
s ∈ {0, 1, 2, . . . , dmax}) represents the time-slot t + s of
charging station j. We construct set of tuples L ⊆ N ×T1×

1The O∗ notation hides polynomial factors in the running time [15].
2 [15] considers the problem that maximizes the total weight, which can be
easily adapted to the minimization one by converting weight of each tuple
to its opposite.



T2 × · · · × TK as follows:

L =
{

(i, t1js1 , t
2
js2 , . . . , t

K
jsK )

∣∣∣ i∈N(t),j∈[J],
0≤s1≤s2≤···≤sK≤dit

}
.

Element l = (i, t1js1 , t
2
js2
, . . . , tKjsK ) belonging to L indicates

that request i is served by charging station j in time-slots
t+ s1, t+ s2, . . . , t+ sK .

We define the weight function W : L → R as follows:

W (l) =

K∑
k=2

V P (t+ sk)

+

{
min (V P (t), Bmax −Bj(t)) If s1 = 0
V P (t+ s1) If s1 6= 0

,

for l = (i, t1js1 , t
2
js2
, . . . , tKjsK ) ∈ L. Now we are able to

introduce Problem PM shown as below:

Problem PM:

min
M⊆L

∑
l∈M

W (l)

s.t. ∀t ∈ ∪Kk=1Tk, there exists at most one element l ∈M
that contains t,
∀i ∈ N , there exists exact one element l ∈M that
contains i.

It can be verified that PM is indeed a minimum weighted
(K + 1)-dimensional nt-matching problem. To see how to
convert PA to PM, we first note that (5) indicates that each
request i can only be assigned to exact one charging station.
By our construction of elements l in L, each request i will
be served by those time-slots in the same charging station,
and the second constraint of PM ensures that each request
will be assigned to one charging station. In addition, our
construction also guarantees that each request will be served
with the amount of cit time-slots, which is implied by (6).
Lastly, the first constraint of PM claims that each time-slot
of a charging station can only be assigned to one request,
which satisfies the power constraint shown by (8).

In the general case when Emax > 1, we can still con-
vert PA into the minimum weighted matching problem by
extending each charging station j ∈ J into a set of Emax

identical virtual charging stations {j(1), j(2), . . . , j(Emax)},
and construct the set Tk with JEmax(dmax + 1) nodes. In
the case when requests have different required time cit and
lij 6= 0, we can let K , maxi{cit + maxj lij} and introduce
dummy nodes in set Tk for the request i if k > cit + lij .

In practice, due to the short lifetime of drones, a large
number of drones are used to support one task, which implies
drones can be charged lately and the deadline of charging
request is large. For cases where the deadlines of the requests
are large enough to ensure that all the requests can be finished
within deadlines by only one charging station, we propose
an approximate greedy algorithm with low time complexity
to solve PA. As shown in Algorithm 1, the greedy algorithm
essentially selects the request-station pair and time-slots with
the minimum total cost for the association decision.

Algorithm 1: Greedy Algorithm

Input: P (t+ k), cit, d
i
t, lij and Bj(t), for

i ∈ N(t), j ∈ [J ], and k ∈ {0, 1, . . . , dmax}.
Output: Aij , xik.

1 U ← {1, 2, . . . , nt}; Tj ← {0, 1, . . . , dmax},∀j.
2 while U 6= ∅ do
3 W ∗ ←∞;T ∗ ← ∅;
4 for i ∈ U, j ∈ [J ] do

/* Find the valid pair (i, j) with

minimum total weight */

5 if |Tj | ≥ dit then

6 Wij ← min

{∑
k∈T V P (t+ k)1{k 6=0} +

min (V P (t), Bmax −Bj(t))1{k=0}

∣∣∣∣k ≤
dit, T ⊆ Tj , |T | = cit

}
;

7 if Wij < W ∗ then
8 W ∗ ←Wij ; i∗ ← i; j ← j∗; T ∗ ← T ;

9 Ai∗j∗ ← 1;xik ← 1,∀k ∈ T ∗;
10 U ← U − i∗; Tj∗ ← Tj∗\T ∗

TABLE I: Simulation Parameter Settings

Parameters Value
a time-slot 10 minutes
λj(t) U(2, 10) Wh/time-slot

nt = |N(t)| U(5, 10) per 10 time-slots
Required charging time cit U(10, 15) time-slots

Deadline dit U(20, 30) time-slots
Maximum charging rate −bmax = 10 Wh/time-slot
Maximum power supply Emax = 5

Energy price from a power grid (1− 100)× 10−4 cents/Wh

V. NUMERICAL RESULTS

A. Simulation Setup

We conduct our simulation on a charging network with
J = 10 charging stations. Each time-slot is set to 10 minutes.
The number of charging requests for every 10 time-slots is
uniformly distributed in [5, 10], and the request positions
are uniformly distributed on a 2D plane. The required
charging time and the deadline for each request are uniformly
distributed in intervals [10, 15] and [20, 30] respectively. The
renewable arrival λj(t) is uniformly distributed between 2
and 10 Wh/time-slot. For request i and charging station j,
the extra required charging time lij is proportional to the
Euclidean distance sij between the drone position of request
i and charging station j, with lij = 10sij . We use the real
market electricity price data obtained from [16], as shown
in Figure 3. The system parameter values are summarized in
Table I.
Benchmark control policies: We compare our policy with
the following benchmark policies:

Closest charging station (CCS) with energy control (EC)
policy: For each request, this policy chooses the closest
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Fig. 3: Energy prices in real electricity market [16].
available charging station and select those time-slots with
the lowest electricity prices, without considering the battery
status of charging stations. In each time-slot, the charging
station chooses to charge/discharge the battery following our
proposed energy control component.

CCS without EC policy: This policy allocates the closest
charging station for each charging request, and selects the
time-slots with lowest prices. In each time-slot, the charging
station first uses the energy inside the battery, then purchases
energy from the power grid to meet the rest of energy
demand.

Baseline policy: This policy allocates the closest charging
station for each charging request and starts serving the
request right after its arrival. The batteries are only charged
with renewable energy, and remaining energy demand is
purchased from the power grid.

B. Key Observations

The cost reductions shown in Figure 4 are with respect to
the baseline policy. From Figure 4 we observe that:
• Both CCS policy and our proposed policy achieve better

performances as the battery capacity increases. This is
because with larger battery capacity, there are more
chances to use battery as a buffer, and to use the fluc-
tuations of electricity prices. Our proposed algorithm
achieves a cost reduction exceeding 50% with a battery
size of 5 kWh.

• The performance of CCS without EC policy remains
the same under small and large battery capacity. Since
the battery is only used to store the renewable energy
without EC, increasing the battery size will not bring
an additional performance gain, if the the battery size
is already large enough to store the renewable energy.

• Compared with CCS with EC, our proposed policy
achieves a better performance, which benefits from the
utilization of battery status. In our association control
component, at the arrivals of requests our proposed
policy will prefer charging stations with higher battery
level and achieve a better utilization of the renewable
energy in those charging stations.

VI. CONCLUSION

In this work, we focus on the drone charging system with
renewable energy and batteries, with the aim of design-
ing joint drone-charging-station association/energy control
algorithms to reduce the monetary operational cost. We
prove that our proposed algorithm achieves a cost that is
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Fig. 4: Reduction in electricity bill under different policies.

arbitrarily close to optimal, as the battery capacity increases.
In addition, the simulations show that our proposed algorithm
achieves significantly large reduction in electricity cost under
reasonable battery capacity.
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