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Abstract—The cost of energy usage is of significant concern
in cloud/data center systems that support a large number of
servers. A simple way to reduce energy consumption and the
electricity bill is to turn some of the servers off during periods
of under utilization. However, turning a server back on typically
consumes a lot of energy. Another way to reduce the energy cost
is to equip cloud systems with renewable resources and batteries.
Most works in the literature have focused on one or the other
approach. In this work, we propose a joint server on-off and
energy control policy, which determines the servers’ on-off status,
as well as the energy purchasing behavior, by taking electricity
price, renewable resources, possible future tasks and turn-on cost
into account. The server on-off control component is proved to be
optimal in terms of energy consumption minimization. The joint
policy is shown to be arbitrarily close to the optimal solution
in terms of electricity bill minimization, in the case where the
battery has infinite capacity with stable energy level. Simulation
results show that even under reasonable battery size, a significant
electricity cost reduction is achieved with the proposed policy.

I. INTRODUCTION

Recent years have witnessed an explosive growth in cloud
systems, due to its ability to free devices from heavy compu-
tation and assist in synchronization of multiple end devices.
However, as these cloud systems have grown their energy
consumption and costs have also grown. In fact, the energy
bill for a cloud system provider could easily be in millions of
dollars per year [1]. Hence, the question of how to optimally
manage its resources to minimize consumption is becoming
increasingly significant and already receiving a large amount
of attention.

A promising approach for reducing energy consumption is
to equip cloud systems with renewable resources and batteries,
leading to the concept of the “green cloud system” [2]–[4].
However, because of the unpredictable nature of renewable
energy sources, to ensure stable operation, cloud systems
typically choose to buy electricity from power grids. These
power grids have time-varying energy prices because they use
a combination of energy sources and supply/demand control.
We also notice that cloud systems are usually deployed to
satisfy the peak demand of input tasks, which means that
during off-peak periods, turning off idle servers can potentially
reduce the energy consumption [5]. However, switching a
server from an off-state to an on-state generally incurs a
heavy turn-on cost [6], which introduces additional energy
consumption.

Many prior studies have focused on reducing the energy
consumption and hence the electricity bill. For instance, to
dynamically determine how many servers are to be kept on, by

taking turn-on cost of servers into consideration, the authors in
[6] proposed an online algorithm that can achieve a constant
competitive ratio. [7] continued to model jobs to be delay-
tolerant with different deadlines, and converted the offline
optimization problem to a generalized assignment problem. On
the other hand, to reduce electricity bill, [1], [8]–[10] proposed
energy management schemes which utilize batteries as buffers
to store energy, to both minimize the peak energy consumption
and the electricity cost. However, none of these works has
considered both on-off costs of the servers, and the renewable
sources together. The key question here is: how should the
control algorithm jointly decide on the on-off sequences of
the number of servers and usage of batteries, when both
operation-cost and turn-on cost of servers together with the
renewable resources and electricity price are considered, in
order to minimize the electricity bill of cloud systems.

In this work, we consider a cloud system equipped with
batteries, which can be recharged with renewable resources
and a power grid, with time-varying electricity price. We focus
on the problem of determining the status of servers, as well as
the energy purchasing behavior, by considering the operation-
cost of servers, the turn-on cost of servers, the electricity
price and the state of batteries. The objective is to reduce the
electricity bill of the cloud system, under the constraint that
the task demands are served in each time-slot.

The proposed policy is a two-step scheme, which first
determines the number of servers to be on, and then determines
the amount of energy to be purchased from a power grid.
To determine the server on-off state, we rely on the Markov
decision process framework that considers the effect of the
future tasks, which balances the future turn-on energy cost and
the current energy cost. We then use the stochastic Lyapunov
optimization technique to determine the amount of energy to
be purchased. We show that our proposed policy achieves
asymptotically optimal performance, and performs well under
reasonable battery sizes through numerical simulations.

Our paper is organized as follows. In Section II we dis-
cuss the task, battery and energy model. In Section III we
formulate our optimization problem. The proposed policy and
its theoretical performance analysis are discussed in Section
IV. Detailed simulation results are shown in Section V. We
conclude our paper in Section VI.

II. SYSTEM MODEL

We consider a cloud system with Nmax servers equipped
with batteries, which can be recharged by renewable sources
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Fig. 1: System Model
or a power grid. Each server has the same computing power.
The system is assumed to be time-slotted, where, during one
time-slot, the on-off status of servers is fixed. Let N(t) denote
the number of servers that are on in time-slot t, with N(t) ≥ 1,
which is one of our control variables. We depict our system
model in Fig. 1.

A. Task Model
Let L(t) denote the number of tasks arriving at the begin-

ning of time-slot t. Each task takes one time-slot to execute
whether it runs on one or multiple servers in parallel. The
tasks are delay-sensitive, and need to be served in that time-
slot. We assume that L(t) is a known integer at the beginning
of time-slot t whose lower and upper bounds are Lmin and
Lmax, respectively. We also assume that the number of tasks
in the next time-slot, only depends on the number of tasks
in the current time-slot, with a known conditional probability
distribution. In other words, Pr(L(t + 1)|L(t)) is known
apriori. This is a reasonable assumption, since with sufficient
history, the number of future tasks can be accurately predicted.

B. Battery Model
The cloud system is equipped with a rechargeable battery.

We use Bmax to denote the maximum battery capacity and
B(t) to denote the battery level at the beginning of time-slot
t. We define λ(t) to be the amount of harvested energy in
time-slot t. In time-slot t, b(t) represents the amount of energy
drawn from or charged to the battery. b(t) can be positive or
negative, with a positive value representing that the energy is
drawn from the battery, and a negative value representing that
the battery is charged. Based on the definitions above, we have
the following equation for the battery level evolution:

B(t+ 1) = min{Bmax, B(t) + λ(t)− b(t)}.

Since the energy drawn from the battery cannot exceed the
current battery level, we must have:

b(t) ≤ B(t).

Also, because of the finite charging rate of the battery, we
assume that in any time-slot, the amount of charged energy
from the power grid to the battery cannot be larger than a
constant value, which we denote as bmax, i.e., b(t) ≥ −bmax.

C. Energy and Price Model
In this paper, we consider three types of energy costs: on

cost, turn-on cost, and service cost. For any server, if it is in

the on-state, we assume that it incurs Con unit(s) of energy
consumption, which is also referred to as on cost. We also
consider the turn-on cost Ct/o of the server, which is the energy
consumption to switch a server from the off-state to the on-
state. We do not consider the turn-off cost as it is negligible
in cloud servers [11]. Lastly, we consider the computational
energy required to serve tasks in one time-slot, which we refer
to as the service cost. We assume that a server consumes f(L)
unit(s) of energy to serve L tasks in one time-slot, where f(L)
is convex. For example, f(L) ∝ L3 for computing systems
according to [11].

In time-slot t, if N(t) servers are turned on, they consume
ConN(t) unit(s) on cost. If at the beginning of time-slot t,
N(t−1) servers are in the on-state, the number of servers that
need to be turned on is max{0, N(t)−N(t−1)}. Also, assume
that fractional tasks can be assigned to a server. Because of the
convexity of function f , it is easy to verify that each on-server
should be assigned with the same number of tasks in order to
minimize the overall energy consumption. Let E(t) denote the
energy consumption of the cloud system in time-slot t. E(t)
can be expressed as follows:

E(t) = ConN(t)+Ct/o [N(t)−N(t− 1)]
+

+N(t) · f(L(t)/N(t)), (1)

where x+ , max{x, 0}.
Let d(t) denote the amount of energy purchased from the

power grid in time-slot t. Recall that E(t) is the amount of
energy that the system requires, and b(t) is the amount of
energy drawn from or charged to the battery. Then, we must
have E(t) = b(t) + d(t). In our model, selling energy to the
power grid is not allowed, i.e., d(t) ≥ 0, so we have:

b(t) ≤ E(t).

Given E(t), if one of b(t) and d(t) is determined, the other one
will be fixed. Thus, the control algorithm needs to determine
either one of b(t) and d(t) in each time-slot. In the rest of this
paper, we refer to b(t) as the energy control decision.

Let P (t) denote the electricity price per unit energy during
time-slot t, which is assumed to be known at the beginning of
each time-slot. P (t) is assumed to be fixed in time-slot t, but
can be different across different time-slots due to the pricing
strategy of energy providers. The cost of purchasing energy
from the power grid in time-slot t is

P (t)d(t) = P (t) [E(t)− b(t)] . (2)

In this paper, we assume that all the processes in the
system are ergodic and have bounded values. We let Pmax,
λmax denote the maximum value of energy price and of the
renewable energy in one time-slot. Also we denote Emax as the
possible maximum energy consumption of the cloud system,
i.e.,

Emax , max
1≤N(t−1)≤Nmax;
1≤N(t)≤Nmax;
Lmin≤L(t)≤Lmax

E(t). (3)



III. PROBLEM FORMULATION

From Eqs. (1) and (2), we know that in each time-slot, the
cost of purchasing energy from the power grid is determined
by (1) the number of servers to be on in that time-slot (i.e.,
instantaneous energy consumption from the cloud system), and
(2) the amount of energy drawn from or charged to the battery.
Our goal is to design an online control algorithm for these two
decisions in each time-slot, which achieves the minimum long-
term average cost of purchasing energy from the power grid.
We formally state the problem below as P1:

(Problem P1)

min
N,b

lim
T→∞

1

T

T∑
t=1

E[P (t) (E(t)− b(t))]

s.t. N(0) = 1 (4)
B(0) = Bmax (5)
b(t) ≥ −bmax, ∀t (6)
b(t) ≤ E(t), ∀t (7)
b(t) ≤ B(t), ∀t (8)
B(t+ 1) = min{Bmax, B(t) + λ(t)− b(t)}, ∀t (9)

Here, the expectation for time-slot t takes over all the random-
ness of the energy price, tasks arrivals, renewable arrivals, and
control action from time-slot 1 to time-slot T .

Eq. (4) indicates that initially one server is in an on-state.
Eq. (5) indicates the initial state of the battery level. Eq. (6)
limits the maximum charging rate of the battery from the
power grid. Eqs. (7) and (8) imply that the amount of energy
drawn from the battery cannot exceed the amount of required
energy, and the current battery level, reflecting the energy
demand constraint and the battery physical constraint. Eq (9)
is the battery level evolution.

To aid our theoretical analysis, we define emptiness of
battery, denoted as E(t), as:

E(t) , Bmax −B(t). (10)

And Eqs. (5) and (9) are equivalent to the following equations:

E(0) = 0 (11)
E(t) ≤ Bmax (12)

E(t+ 1) = [E(t)− λ(t) + b(t)]
+ (13)

In P1, E(t) has an upper bound Bmax in each time-slot, and
this makes it very difficult to find a feasible solution to P1. To
make the problem tractable, we consider a relaxed constraint
of Eq. (12). We show that Eq. (12) together with Eq. (13)
implies the following inequality:

lim sup
T→∞

1

T

T∑
t=1

b(t) ≤ λ̄ (14)

where λ̄ is the long-term average renewable energy arrival rate.
We show this argument using contradiction. Suppose

Eq. (14) does not hold, then there exists δ > 0 such that
lim supT→∞

1
T

∑T
t=1 b(t) ≥ λ̄+ δ, and E(t) is divergent and

it goes to infinity, which is contradicted by Eq. (12).

By replacing Eq. (12) with Eq. (14), we have a new
optimization problem stated formally as follows:

(Problem P2)

min
N,b

lim
T→∞

1

T

T∑
t=1

E[P (t) (E(t)− b(t))]

s.t. In each time-slot t, Eqs. (4)(6)(7)(11)(13)(14) hold

P2 is a relaxed version of P1, because Eq. (14) is a relaxed
constraint of Eq. (12), while all other constraints remain
the same. In P2, E(t) is kept to be rate-stable [12] by any
feasible solution, and E(t) is not necessarily bounded. In other
words, P2 is with infinite maximum battery capacity, while the
emptiness of the battery is enforced for guaranteeing stability.

An online policy is called feasible in P2 if the decisions
under this policy satisfy the constraints in each time-slot. We
denote the set of all feasible policies as Π. In Section IV,
we focus on online policies in Π. We then propose a joint
server on-off and energy control scheme, which is shown to
be arbitrarily close to the optimal solution. Interestingly, by
carefully choosing our control parameter, the proposed scheme
can be adapted to become a feasible solution of P1, which is
with a finite battery size constraint.

IV. JOINT SERVER ON-OFF AND ENERGY CONTROL

In this section, we propose our control policy for the (1)
server on-off decision, and (2) energy control decision by
combining dynamic programming and Lyapunov technique. To
solve P2, we notice that the available distribution information
of future traffic enables us to rely on an infinite-horizon
Markov decision process (MDP) to help develop a good online
policy by considering both current and future possible system
state. To better explain our proposed control policy, we first
describe an overall state transition model and the infinite-
horizon MDP for the cloud system part.

A. State transition model

Let S = S(t) denote the system state at the beginning of
time-slot t, which includes the number of on servers in the
previous time-slot N(t − 1), the number of unit tasks in the
current time-slot L(t), the electricity price P (t) and the empti-
ness of battery E(t), i.e., S(t) = (N(t− 1), L(t), P (t), E(t)).
We omit t and use S,N,L, P, E when there is no confusion.
We use N̄ = N(t − 1) to denote the number of on servers
in the previous time-slot. Let S denote the set of all possible
states. We focus on designing online policies, hence in time-
slot t, the exact future information, i.e., L(τ), P (τ), λ(τ) for
τ > t, is unknown. We define a joint server on-off control and
energy control policy (µ, β), with µ representing the server on-
off control component, and β representing the energy control
component, such that it maps the current and all previous
system states, to both the server on-off decision and the
energy control decision in the current time-slot, i.e., (µ, β) :
S(τ)0≤τ≤t−1 × S → [1, 2, · · · , Nmax]× [−bmax, Emax].

For the rest of the paper, (µM , βL) is referred to as our
proposed control policy, which includes the server on-off



control component µM , and the energy control component βL.
Our proposed policy (µM , βL) is a two-step policy. (1) The
server on-off control component µM uses part of the system
state information in the current time-slot, to make the server
on-off decision, by modeling the sub-problem as an infinite-
horizon Markov decision process. (2) After that, the energy
control component β uses other system state information in
the current time-slot, together with the server on-off decision,
to decide the energy control. Before we describe our policy
(µM , βL) precisely, we introduce the MDP model in the
following subsection.

B. Markov decision process for the cloud servers

We define a sub system state at the beginning of time-slot t,
denoted as S1(t), which is a part of the system state S(t), to be
the number of task arrivals in time-slot t and the number of on
servers in time-slot t−1, i.e., S1(t) = (L(t), N(t−1)), and let
S1 be the set of all sub system states S1. Since the conditional
probability of the number of unit tasks in the next time-slot
is available, i.e., Pr(L(t+ 1)|L(t)) is known apriori, given a
sub system state S1 = (L, N̄) and a server on-off decision N ,
the transition probability to the next state S

′

1 = (L
′
, N

′
) is

Pr(S
′

1|S1, N) =

{
Pr(L

′ |L) if N
′

= N
0 otherwise

(15)

We then define the potential function h(S1) of a given sub
system state S1 = (L, N̄) as follows:

ĥ(S1, N) , Ê(S1, N) +
∑
S

′
1∈S1

Pr(S
′

1|S1, N)h(S
′

1) (16)

h(S1) , min
N

ĥ(S1, N) (17)

where ĥ(S1, N) is a potential value for the state S1 with the
decision N , Ê(S1, N) is the instantaneous energy consump-
tion for the state S1 and the decision N , which is the value
of Eq. (1) with L(t) = L,N(t− 1) = N̄ and N(t) = N . We
will explain how to compute the potential function later.

Given a sub system state S1 and a decision N , Eq. (16)
not only focuses on the instantaneous energy consumption,
but also takes the future potential energy consumption into
account, by computing the expectation of the potential value
of the next possible state. Eq. (17) indicates that for a given
sub system state, its potential function value is the minimum
value attained by an optimal decision.

Intuitively, the potential value is the relative difference of the
total expected energy consumption between S1 and a reference
state S0 with h(S0) = 0. To minimize the average expected en-
ergy consumption, the server on-off decision should minimize
the potential value of the state-decision pair (S1, N), which is
exactly what the servers on-off control of our proposed policy
µM does.

C. Near-Optimal Two-step Control Algorithm

On one hand, in order to minimize the cost of purchasing
energy, our server on-off control component µM focuses on
minimizing the energy consumption of the system, by utilizing

the task statistics information to help determine the number
of servers to be on in each time-slot. On the other hand,
the energy control component βL utilizes battery as a buffer
and exploits the fluctuation of electricity price, by purchasing
energy from the power grid to charge the battery when the
electricity price P (t) is relatively low, while using the energy
stored in battery when P (t) is relatively high. Our proposed
policy (µM , βL) is described in Algorithm 1, with a free
control parameter K that will be discussed later.

Algorithm 1: Joint server on-off and energy control policy
Input: N(t− 1), L(t), P (t), E(t).
Output: N(t), b(t).
/* Server on-off control µM */

1 N(t) = arg minN ĥ((L(t), N(t− 1)), N)
2 Compute E(t) by Eq. (1) with L(t), N(t− 1), N(t)
/* Energy control βL */

3 if E(t) ≥ KP (t) then
4 b(t) = −bmax

5 else
6 b(t) = E(t)

Server On-off Control Component µM : We rely on the
MDP model mentioned in Section IV-B, and in time-slot t,
µM chooses the decision N(t) that minimizes Eq. (16) for
current sub system state S1(t).

Intuitively, since switching a server from the off-state to the
on-state incurs turn-on cost, in order to minimize the average
energy consumption of the system, a smart policy should not
only focus on the instantaneous energy consumption, but also
consider the future possible consumption. For instance, if the
number of current tasks is low, to minimize the instantaneous
energy consumption, turning off some fraction of the servers is
a good choice. However, if the number of future tasks were to
become high with high probability, turning off servers is not a
good option since we save instantaneous energy consumption
but consume more energy by having to turn on servers in the
future. With the known transition probability of tasks, we rely
on our MDP model to predict the future energy consumption,
which enables us to avoid the abovementioned situations and
further minimize the overall energy consumption by taking
future arrivals into consideration.

To solve Eqs. (16) and (17), we use the value iteration
method [13] to compute the potential function values of all
state decision pairs in the beginning, which is described in
Algorithm 2.

Energy Control Component βL: The energy control com-
ponent has a threshold structure, with a free control parameter
K. We will show in the performance analysis that K describes
the gap between the performance of the proposed control
policy and the optimal cost that can be achieved.

On one hand, when the emptiness of the battery is no
less than the electricity price times the control parameter, it
indicates that either the emptiness of battery is large, or the



Algorithm 2: Value iteration for finding the potential
functions value of state decision pairs

Input: ε, Pr(S
′

1|S1, N),∀(S1, N) s.t.
S1 ∈ S1, N = 1, 2, · · · , Nmax.

Output: h(S1) for all S1 ∈ S1.
/* Initial procedure: */

1 h0(S1) = 0,∀S1 ∈ S1
/* Iteration procedure: */

2 do
3 Compute Ê(S1, N) by Eq. (1)
4 ĥk(S1, N) =

Ê(S1, N) +
∑
S

′
1∈S1

Pr(S
′

1|S1, N)hk−1(S
′

1)

5 hk(S1) = minN ĥ
k(S1, N)

6 while maxS1∈S1 h
k(S1)− hk−1(S1) > ε;

electricity price is relatively low. In both cases, to keep the
emptiness of battery stable, and to purchase energy from the
power grid because of its low price, and store it in the battery
for future use, the decision is to charge the battery at the
maximum possible charging rate. On the other hand, if the
emptiness of battery is relatively small, which indicates that
the battery has sufficient energy stored in it, or if the electricity
price is relatively high, the decision is to draw energy from the
battery to fully support the energy consumption of the system
in that time-slot. This avoids purchasing from the power grid
when the price is high, thus saving the cost.

Here, K is a control parameter that trade-offs monetary
costs and the battery level. As K increases, the energy control
component gives more importance to monetary costs than the
battery level, resulting in energy purchase from the power grid
only when energy price is small. It potentially achieves smaller
cost for purchasing energy. However, we note that, when
E(t) is greater than the value KP (t), the battery is charged,
which means that E(t) is never greater than KPmax + Emax.
This implies that the emptiness of battery E(t) is bounded
by a constant, and thus the proposed joint policy (µM , βL)
is feasible to P2. Meanwhile, as K increases, the threshold
to charge the battery becomes large, which means that E(t)
becomes large and potentially a larger battery size is required.

We note that the server on-off control component µM does
not depend on any information of the energy price or the
battery state, and once N(t) and thus E(t) are determined,
the energy control component βL makes the decision only
based on the electricity price and the current battery state.
Intuitively, a control policy in which these two components
are jointly optimized, meaning that the server on-off decision
also considers the battery state, the electricity price and the
amount of energy drawn from the battery, while the energy
control component takes the number of on servers that are
decided to be turned on into account, can perform better than
the proposed control policy. Surprisingly, we have found that
this control policy (µM , βL) performs arbitrarily close to any
possible online policy, which means that it is asymptotically
optimal, as shown in the following subsection.

D. Performance Analysis
Let (Nµ,β(t), bµ,β(t)) denote the actual control by the

policy (µ, β), and G(µ, β) denote the value of the objective
function under the online policy (µ, β), i.e.,

G(µ, β) = lim
T→∞

1

T

T∑
t=1

E[P (t)
(
Eµ,β(t)− bµ,β(t)

)
].

where Eµ,β(t) is computed with Eq (1) with decisions Nµ,β(t)
and Nµ,β(t − 1). We denote ΠM , ΠL as the set of feasible
control policies in which the server on-off decision component
or the energy control component is the same as the proposed
server on-off decision component or the energy control com-
ponent. In other words, µ = µM if (µ, β) ∈ ΠM , β = βL if
(µ, β) ∈ ΠL.

To obtain the performance of the proposed control policy
(µM , βL), we first prove the following two lemmas.

Lemma 1. For any feasible control policy (µ, β) to P2, there
must exist a feasible control policy (µ, βL) ∈ ΠL such that it
satisfies the following inequality:

G(µ, βL) ≤ G(µ, β) + C/K, (18)

where C , λ2max + min{bmax, Emax}2.

Proof. We divide the proof into three steps. In step 1, we
show that for any fixed server on-off control component µ,
there exists an optimal stationary energy control component
which minimizes the objective function. In step 2, we give a
condition when Eq. (18) is satisfied. Finally we show that the
proposed energy control component βL satisfies the condition
in the second step, and thus the proof is completed.

Step 1: Claim: Given any fixed server on-off control
component µ, there exists an optimal stationary energy control
component β∗ which satisfies

E [b∗(t)− λ(t)|E(t)] = 0 (19)
E [P (t)(E(t)− b∗(t))] = G∗, (20)

where G∗ = minβ G(µ, β).
The proof of this claim is similar to the Theorem 1 in [14]

and thus we omit the proof for brevity here. In the following
steps, we focus on β∗, and try to prove

G(µ, βL(t)) ≤ G∗ + C/K (21)

Step 2: We define Lyapunov function V (t) as V (t) =
1
2E(t)2, and one-step conditional Lyapunov drift ∆V (t) as
∆V (t) = E[V (t+ 1)− V (t)|E(t)].

Claim: An energy control component β satisfies Eq. (21) if
it satisfies

∆V (t) +KE [P (t) (E(t)− b(t)) |E(t)] ≤ C +KG∗ (22)

Reason: Suppose Eq. (22) holds, we sum over it from t = 1
to t = T , and divide both sides by TK, then we have

∆L(T )−∆L(1)

TK
+

1

T

T∑
t=1

E [P (t)(E(t)− b(t))|E(t)]

≤ G∗ + C/K



By letting T go to infinity, then the first term on the left-hand
side diminishes, and we obtain Eq. (21).

Step 3: Claim: The proposed energy control component βL

satisfies Eq. (22).
Reason: By the definition of ∆V (t), we have

∆V (t) = E[V (t+ 1)− V (t)|E(t)]

≤ 1

2
E
[
(E(t) + b(t)− λ(t))2 − E(t)2|E(t)

]
≤ E

[
E(t)(b(t)− λ(t)) + b2(t) + λ2(t)|E(t)]

]
≤ C + E [E(t) (b(t)− λ(t)) |E(t)]] (23)

Adding K times one time-slot cost on both sides of Eq. (23),
we have

∆V (t) +KE [P (t) (E(t)− b(t)) |E(t)]

≤ C+E [E(t) (b(t)− λ(t)) |E(t)]]

+KE [P (t) (E(t)− b(t)) |E(t)] (24)

Let b(t) be b∗(t), which is the optimal stationary energy
control component, in Eq. (24). With Eq. (19) and Eq. (20),
we know that there exists one energy control decision β∗

that satisfies Eq. (22). If an energy control decision tries to
minimize the right-hand side of Eq. (24) in each time-slot,
it must also satisfy Eq. (22). We then obtain an optimization
problem which is stated below:

P3: min
b

C+E [E(t) (b(t)− λ(t)) |E(t)]]

+KE [P (t) (E(t)− b(t)) |E(t)] (25)

We can easily verify that the proposed energy control
component βL is the solution to P3, thus it satisfies Eq. (22)
and therefore Eq (21). By the definition of G∗, we complete
the proof.

Lemma 2. Let dmax denote the maximum amount of energy
to be purchased from the grid in each time-slot, i.e., dmax =
supt d(t). If dmax ≤ bmax, given any feasible online control
policy (µ, β) to P2, there must exist a feasible online control
policy (µM , βM ) ∈ ΠM , such that it achieves

G(µM , βM ) ≤ G(µ, β). (26)

Proof. For the convenience, we use superscript M to denote
the system state and decision variables of such feasible control
policy that satisfies Eq. (26). Recall that in each time-slot t,
given the system energy consumption EM (t), once dM (t) is
determined, bM (t) = EM (t) − dM (t) is fixed. In this proof,
dM (t) is referred to as the energy control decision. We prove
this lemma by constructing a policy (µM , βM ) that satisfies
Eq. (26).

In each time-slot t, the energy control policy βM chooses
the value dM (t) such that

dM (t) , min{d(t), EM (t) + EM (t), dmax − EM (t)}. (27)

From Eq. (27), we can see that, βM modifies the given energy
control policy β by keeping track of β and making it feasible
in each time-slot. According to the definition of dM (t), we
have dM (t) ≤ d(t), which implies Eq. (26). The next step

is to show that (µM , βM ) is feasible for P2. Before that, we
make the following claim.

Claim: The expected time-average energy consumption
EM (t) under online policy (µM , βM ), is no larger than the
expected time-average energy consumption E(t) under any
given policy (µ, β), i.e.,

lim
T→∞

1

T

T∑
t=1

EM (t) ≤ lim
T→∞

1

T

T∑
t=1

E(t) (28)

Please see our technical report [15] for the detailed proof
of Eq. (28). Essentially, Eq. (28) says that the proposed server
on-off control µM achieves the smallest amount of average
energy consumption among all online policies.

With the assumption dmax ≤ bmax, we have b(t) = E(t)−
d(t) ≥ −bmax, and Eq.(13) becomes:

E(t+ 1) = max{0, E(t) + [E(t)− d(t)]− λ(t)}.

Since the given policy (µ, β) is feasible for P2, Eq. (14) holds,
and we have:

lim sup
T→∞

1

T

T∑
t=1

[E(t)− d(t)] ≤ λ̄.

We then focus on the long-term average of EM (t)−dM (t),
and have:

lim sup
T→∞

1

T

T∑
t=1

[
EM (t)− dM (t)

]
= lim sup

T→∞

1

T

T∑
t=1

[
EM (t)− d(t)

]
= lim sup

T→∞

1

T

T∑
t=1

EM (t)− lim sup
T→∞

1

T

T∑
t=1

d(t)

≤ lim sup
T→∞

1

T

T∑
t=1

E(t)− lim sup
T→∞

1

T

T∑
t=1

d(t)

≤ lim sup
T→∞

1

T

T∑
t=1

[E(t)− d(t)] ≤ λ̄.

Thus, Eq.(14) holds under the control policy (µM , βM ). We
then conclude that (µM , βM ) is feasible for P2, and it satisfies
Eq. (26).

Using Lemmas 1 and 2, we are ready to obtain the following
theorem.

Theorem 1. Let dmax denote the maximum amount of en-
ergy to be purchased from the grid in each time-slot, i.e.,
dmax = supt d(t). If dmax ≤ bmax, given any feasible control
policy (µ, β) to P2, the proposed joint server on-off and energy
control policy (µM , βL) achieves:

G(µM , βL) ≤ G(µ, β) + C/K.

Proof. With Lemma 2, we know that there exists a control
policy (µM , βM ) ∈ ΠM which satisfies Eq. (26). Then we let
µ be µM and β be βM in Eq. (18), and together with Eq. (26)
it completes the proof.



Since Theorem 1 holds for any feasible control policy, we
can easily obtain the following corollary.

Corollary 1.1. Let dmax denote the maximum amount of
energy to be purchased from the grid in each time-slot. When
dmax ≤ bmax, the proposed joint server on-off and energy
control policy (µM , βL) achieves a cost arbitrarily close to
the optimal average cost, by increasing the control parameter
K, with the gap shrinking in O(1/K).

Complexity: To analyze the time complexity of the proposed
algorithm (µM , βL), we note that the server on-off decisions
are computed offline using Algorithm 2, while in each iteration
the time complexity is O(|S1|2n), with n = Nmax and
|S1| = (Lmax − Lmin)Nmax. Although the time complexity
to compute it offline is not low, once the potential function
h is obtained with sufficiently small difference, to make the
decision in each time-slot, µM maps the sub system state to the
decision by looking at a decision table, with time complexity
O(1). Since energy control policy βL has a threshold structure
with linear threshold value, the complexity of βL is also O(1).

We note that the proposed control policy (µM , βL) and its
performance results presented here are for solving P2, which
does not have finite battery capacity constraint. In reality,
a battery, however, does have finite capacity. However, by
carefully choosing the value of the control parameter K, the
proposed control policy (µM , βL) can be applied to the case
with finite battery capacity.

Recall that when E(t) is greater than the value KP (t), the
battery is charged, which means that E(t) is never greater than
KPmax+Emax. Therefore, given the maximum battery capacity
Bmax, if the control parameter K is chosen such that Bmax ≥
Emax + KPmax, the emptiness of battery E(t) is bounded by
Bmax under the policy (µM , βL) with such K, which means
that the proposed control policy is also feasible for P1 with
finite battery capacity.

Although the theoretical results of (µM , βL) do not hold
for P1, in Section V, we will show via simulations that the
proposed policy (µM , βL) actually achieves good performance
with reasonably large battery capacity.

V. NUMERICAL RESULTS

A. Simulation Setup

We summarize the system parameter values in Table I. We
conduct our simulation over a cloud system with 30 identical
servers. Each time-slot is set to be 10 minutes, so that the
wear-and-tear of power cycling matches that of operating cost
[6]. In each time-slot, the number of task arrivals is uniformly
distributed from 11 to 20, and the number of time-slots needed
for each job follows a geometric distribution, with success
probability p. To limit the number of tasks served in each
time-slot, Lmin and Lmax are set to be 11 to 100 respectively.
The amount of harvesting energy λ(t) is uniformly distributed
from λmin = 10 to λmax = 100. We carry out our simulation
with the real market electricity price obtained from [16], as
shown in Fig. 2.
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Fig. 2: Real-time Energy Price (10/5/2017-10/17/2017) in [16]

TABLE I: Simulation Parameter Settings
Parameters Value
a time-slot 10 minutes
λ(t) U(10, 100) Wh/time-slot

on-cost Con 10 Wh/time-slot
turn-on cost Ct/o 60, 120 Wh

service cost function f(L) = L3 Wh
maximum charging rate −bmax = 3000 Wh/time-slot

traffic departure probability p 0.25
Lmin, Lmax 10, 100

Benchmark control policies: We compare our control policy
with the following three benchmark policies.

Baseline policy: This policy makes a myopic server on-off
decision that minimizes the current energy consumption E(t).
The battery is only charged with the renewable energy, and
the rest of required energy is purchased from the power grid.

Server on-off control only policy: In this control policy, the
proposed server on-off control component µM is activated,
while in each time-slot, the system first uses the energy stored
in the battery, and if it is not sufficient, the rest of the energy
demand is met by purchasing energy from the power grid.

Energy control only policy: In this control policy, the
proposed energy control component βL is activated, while in
each time-slot, the system chooses to turn on the number of
servers which minimizes the instantaneous energy consump-
tion, without considering the future energy cost or utilizing
the statistic information of tasks.

In both our proposed joint policy and energy control only
policy, we choose K such that KPmax+Emax = Bmax, which
exploits the maximum potential of the battery as mentioned
in Section IV.

B. Key Results

Fig. 3 shows the percentage reduction in electricity bill of
three policies with respect to the battery capacity, compared
with the baseline policy, with two different turn-on cost values.
As shown in these figures, the gain of energy control only
policy increases as the size of the battery increases, and
reaches 20% under both cases with battery capacity 200
kWh [17]1. This is because with larger battery capacity Bmax,
the capability of the battery to smooth the electricity price, i.e.,
the capability to avoid purchasing expensive energy from the
power grid, becomes stronger. The server on-off only policy,

1From [17], small cloud systems are usually equipped with 200 kWh battery.



however, does not consider the battery as a buffer to take
advantage of the fluctuation of the electricity price, and its
performance remains the same regardless of the battery size.

Meanwhile, the server on-off only policy utilizes the history
information of tasks to minimize the energy consumption. By
comparing Figs. 3(a) and 3(b), we can see that, with larger
turn-on energy cost, the gain obtained by the server on-off
policy becomes larger. With the prediction of the number of
unit tasks in the future, the server on-off only policy avoids to
turn on servers in the future, by keeping more servers on in the
current time-slot. It saves more turn-on energy consumption
by sacrificing less instantaneous energy cost, which becomes
more crucial with larger turn-on energy consumption. To
obtain the same cost savings as the proposed policy, the energy
only control policy needs a much larger battery capacity, which
incurs higher costs. The simulation results also show that,
the actual energy consumption of the policies with server
on-off control under small and large turn-on cost cases are
504Wh and 525Wh per time-slot, which reduce 13% and 24%
compared with the policies without server on-off control.

Our proposed joint policy, by both activating energy control
and server on-off control, not only reduces the overall energy
consumption, but also exploits the battery buffer, to store
energy when the price is relatively low, and thus leads to a
monetary cost savings of 33% and 43% with small and large
turn-on costs respectively, under a reasonable battery capacity
of 200 kWh.

VI. CONCLUSION

In this work, we focus on cloud systems with renewable
resources and batteries, with the aim of designing a joint server
on-off and energy control algorithm to reduce the electricity
cost of cloud systems. Our proposed online policy is proven to
achieve electricity cost that is arbitrarily close to that of an op-
timal online algorithm when the battery capacity is unbounded.
In addition, we show via simulations that the proposed server
on-off control and energy control policy reduces both the
electricity cost and energy consumption dramatically under
reasonable battery capacity.

REFERENCES

[1] Y. Shi, B. Xu, B. Zhang, and D. Wang, “Leveraging Energy Storage to
Optimize Data Center Electricity Cost in Emerging Power Markets,” in
Proc. of ACM E-energy, 2016, p. 18.

[2] Z. Iverson, A. Achuthan, P. Marzocca, and D. Aidun, “Optimal Design
of Hybrid Renewable Energy Systems (HRES) Using Hydrogen Storage
Technology for Data Center Applications,” Renewable energy, vol. 52,
pp. 79–87, 2013.

[3] C. Li, A. Qouneh, and T. Li, “iSwitch: Coordinating and Optimizing
Renewable Energy Powered Server Clusters,” in Proc. of IEEE ISCA.
IEEE, 2012, pp. 512–523.

[4] Y. Zhang, Y. Wang, and X. Wang, “Greenware: Greening Cloud-
scale Data Centers to Maximize the Use of Renewable Energy,” in
ACM/IFIP/USENIX International Conference on Distributed Systems
Platforms and Open Distributed Processing. Springer, 2011, pp. 143–
164.

[5] L. A. Barroso and U. Hölzle, “The Case for Energy-Proportional
Computing,” IEEE Computer, vol. 40, no. 12, 2007.

[6] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic Right-
sizing for Power-Proportional Data Centers,” IEEE/ACM Transactions
on Networking (TON), vol. 21, no. 5, pp. 1378–1391, 2013.

100 150 200 250 300 350 400
Battery Size (kWh)

0

5

10

15

20

25

30

35

40

R
ed

uc
tio

n 
of

 E
le

ct
ric

ity
 B

ill
 (

%
)

Server on-off only policy 7M

Energy control only policy -L

Proposed joint policy (7M,-L)

(a) Percentage reduction in electricity cost compared to Baseline
with small turn-on cost, Ct/o = 60Wh per time.

100 150 200 250 300 350 400
Battery Size (kWh)

0

10

20

30

40

50

R
ed

uc
tio

n 
of

 E
le

ct
ric

ity
 B

ill
 (

%
)

Server on-off only policy 7M

Energy control only policy -L

Proposed joint policy (7M,-L)

(b) Percentage reduction in electricity cost compared to Baseline
with large turn-on cost, Ct/o = 120Wh per time.

Fig. 3: Performance v.s. Battery Capacity.

[7] C. Hasan and Z. J. Haas, “Deadline-aware Energy Management in Data
Centers,” in Proc. of IEEE CloudCom, 2016, pp. 79–84.

[8] W. Zhang, Y. Wen, L. L. Lai, F. Liu, and R. Fan, “Electricity Cost
Minimization for Interruptible Workload in Datacenter Servers,” IEEE
Transactions on Services Computing, 2017.

[9] H. Zhou, J. Yao, H. Guan, and X. Liu, “Comprehensive Understanding
of operation Cost Reduction Using Energy Storage for IDCS,” in Proc.
of IEEE INFOCOM, 2015, pp. 2623–2631.

[10] Y. Guo and Y. Fang, “Electricity Cost Saving Strategy in Data Centers by
Using Energy Storage,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 6, pp. 1149–1160, 2013.

[11] M. Dayarathna, Y. Wen, and R. Fan, “Data Center Energy Consumption
Modeling: A Survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 732–794, 2016.

[12] M. Bramson et al., “Stability of Queueing Networks,” Probability
Surveys, vol. 5, pp. 169–345, 2008.

[13] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[14] M. J. Neely, “Energy Optimal Control for Time-Varying Wireless
Networks,” IEEE transactions on Information Theory, vol. 52, no. 7,
pp. 2915–2934, 2006.

[15] J. Liu, J. Lee, N. B. Shroff, and P. Sinha. “A Near-Optimal
Control Policy in Cloud Systems with Renewable Sources and Time-
dependent Energy Price.” Technical Report. [Online]. Available: https:
//www.dropbox.com/s/hxqfkgsmvfmx4g2/TechnicalReport.pdf?dl=0

[16] ISO New England Inc, “Real-Time Maps and Charts,” http://www.iso-
ne.com/isoexpress/, 2017.

[17] APC by Schneider Electric, “Data Center and Facility 3 Phase UPS,”
http://www.apc.com/us/en/, 2018.


