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Abstract—In this work we study how to manage the freshness
of status updates sent from a source to a remote monitor via a
network server. A proper metric of data freshness at the mortor
is the age-of-information, which is defined as how old the freshest

update is since the moment this update was generated at the

source. A logical policy is thezero-wait policy, i.e., the source
submits a fresh update once the server is free, which achiese
the maximum throughput and the minimum average delay.
Surprisingly, this zero-wait policy does not always minimge the
average age. This motivates us to study how to optimally corul

the status updates to keep data fresh and to understand when

the zero-wait policy is optimal. We introduce a penalty fungion

to characterize the level of “dissatisfaction” on data statness,
and formulate the average age penalty minimization problem
as a constrained semi-Markov decision process (SMDP) withna
uncountable state space. Despite of the difficulty of this mblem,

we develop efficient algorithms to find the optimal status updte
policy. We show that, in many scenarios, the optimal policyd
to wait for a certain amount of time before submitting a new
update. In particular, the zero-wait policy can be far from the
optimum if (i) the penalty function grows quickly with respect

to the age, and (ii) the update service times are highly randao

and positive correlated. To the best of our knowledge, thissi
the first optimal control policy which is proven to minimize the
age-of-information in status update systems.

|. INTRODUCTION

In recent years, the proliferation of mobile devices an

applications has significantly boosted the need for readti

information updates, such as news, weather reports, enflif . : .
e§|mple zero-wait policy, also known as th&vork-conserving

notifications, stock quotes, social updates, mobile ads,

Timely status updates are also critical in network-basedimo
toring and control systems, including sensor networks used

temperature and air pollution monitoring, surround manitgp
in autonomous vehicles, and phasor data updates in poveer
stabilization systems.

A common need in these applications is to maximize t
freshness of the data at the monitor. In light of this, a metri

called theage-of-information or simply age was defined in

[1]. At time ¢, if the freshest update at the monitor has a tim
stampU (¢), the age isA(t) = ¢t — U(t). Hence, the age is the

time elapsed since the freshest packet was generated.

idle/busy

Fig. 1. System model.
enqueues these updates and forwards them later to a remote
monitor through a network. It is worth noting that the goal
of age minimization differs from those of throughput max-
imization and delay minimization: A high update frequency
improves the system throughput, but may also induce a large
waiting time in the queue which in turn increases the age;
on the other hand, a low update frequency can reduce the
gueueing delay, but the monitor may end up having stalesstatu
information due to not enough updatés [1]] [5]] [7]. A [6],
it was found that a good policy is to discard the old packets
waiting in the queue if a new sample arrives, which can gyeatl
reduce the impact of queueing delay.

In this paper, we study a “generate-at-will” model depicted
in Fig. [d. In this model, the source keeps monitoring the
network server’s idle/busy state, and in contrast(to [I]]-[7
is able to generate status updates at any time by its own will.
Iaence, no updates need to be generated when the server is
busy, which completely eliminates the waiting time in the
ue and hence the queue in Hig. 1 is always empty. A

policy in queueing theory, that submits a fresh update onee t
server becomes idle, achieves the maximum throughput and
the minimum average delay. Surprisingly, this zero-waltqyo
esnot always minimize the average age of the information
8]. The following example reveals the reason behind this

rp@enomenon:

Example: Suppose that the source submits a stream of
update packets to a remote monitor. The service times of thes
Wpdates form a periodic sequence

0,0,2,2,0,0,2,2,0,0,2,2, ...

Most existing research on the age-of-information focuses SUPPOSe that updateis generated and submitted at tia@nd

are randomly generated or arrive at a source node. The sougegerated at time and delivered at tim@. However, despite
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of its short service time, updagehas not brought any fresher
information to the monitor after updateis delivered, because
both updates are sampled at timle Therefore, the potential
benefit of the zero service time of upd&tés wasted! This

issue occurs periodically over time: Whenever two consegut
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to optimally submit update packets to maximize data fresbine
at the monitor? When is the zero-wait policy optimal? To that
end, the following are the key contributions of this paper:

« We generalize existing status update studies by introduc-
ing two new features: age penalty functions and non-
i.i.d. service processes. We define an age penalty function
g(A) to characterize the level of “dissatisfaction” for
data staleness, whekg-) is measurable, non-negative,
and non-decreasingvhich is determined by the specific
application. The update service process is modeled as
updates have zero service time, the second update of the two a stationary ergodic Markov chain with an uncountable
is wasted. Therefore, 1/4 updates in this sequence are @aste state space, which generalizes thel. service processes

in the zero-wait policy! studied in previous work [1]5[9].

For comparison, consider a non-zero-wait policy that waits « We formulate the average age penalty minimization
for ¢ seconds after each update with a zero service time, problem as a constrained semi-Markov decision process
and does not wait after each update with a service time of (SMDP) with an uncountable state space. Despite of the
2 seconds. The time-evolution of the ad€t) in the non- difficulty of this problem, we manage to solve it by a
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Fig. 2. Evolution of the agé\(t) in the non-zero-wait policy in the example.

zero-wait policy is shown in Fid.]2. Updatk is generated
and delivered at tim#®. Update2 is generated and delivered
at timee. Update3 is generated at tim&e and is delivered

divide-and-conquer approach: We first prove that there
exists a stationary randomized policy that is optimal for
this problem (Theorermll). Further, we prove that there

exists a stationary deterministic policy that is optimal
for this problem (Theoreni]2). Finally, we develop a
low-complexity algorithm to find the optimal stationary
deterministic policy (Theorerfil 3). To the best of our
knowledge, this is the first optimal control policy which
is proven to minimize the age-of-information (i.e., max-
imize data freshness) in status update systems.

« We further investigate when the zero-wait policy is opti-
mal. For the special case of proportional penalty function
andi.i.d. service times, we devise a simpler solution to
minimize the average age (Theordm 4). This solution
explicitly characterizes when the zero-wait policy is epti
mal, and when it is not. For general age penalty functions
and correlated service processes, sufficient conditions
for the optimality of the zero-wait policy are provided
(Lemmald).

« Our theoretical and simulation results demonstrate that,
in many scenarios, the optimal policy is to wait for a
certain amount of time before submitting a new update. In
particular, the zero-wait policy can be far from optimality
if (i) the penalty function grows quickly with respect
to the age, and (ii) the update service times are highly
random and positive correlated.

at time 2¢ + 2. Because the service time of updatds 2

seconds, the latest delivered update at titaet 2 is of the

age2 seconds. Hence, the aget) drops to2 seconds at time

2¢ + 2. Update4 is generated at tim@e¢ + 2 and is delivered

at time 2¢ + 4. At time2¢ + 4, the age drops to zero because

updateb is generated at this time and is delivered immediately.
The time-average age of the non-zero-wait policy is

(€2/24 €22+ 2e +42/2)/(2¢ + 4)
=(e? + 2¢ + 8)/(2¢ + 4) seconds.

If the waiting time ise = 0.5, the time-average age of the
non-zero-wait policy isl.85 seconds. If the waiting time is
e = 0, it reduces to the zero-wait policy, whose time-average
age is2 seconds. Hence, the zero-wait policy is not optimal!

Our investigation suggests that the zero-wait policy is-sub
optimal in many scenarios with various service time distrib
tions. In particular, if the sequence of service times iis #x-
ample become8.2,0.2,2,2,0.2,0.2,2,2, .. ., one can plot the
time-evolution of the agé\(¢) and show that the time-average
age of the non-zero-wait policy {82 +2.6¢ +8.88)/(2¢+4.4)
seconds. If the waiting time is = 0.5, the time-average age
of the non-zero-wait policy isl.93 seconds. If the waiting
time ise = 0, we obtain the time-average age of the zero-wait
policy, which is 2.02 seconds. Hence, the zero-wait policy
is still not optimal. More examples with continuous service
time distributions are provided in SectibnllV, where the-sub \We consider a system depicted in Fig. 1, where a source
optimality gap of the zero-wait policy can be as large asisdvegenerates status update packets and sends them to a remote
times of the optimum time-average age. monitor through a network server. This server providestFirs

These examples point out a key difference between stattsme First-Served (FCFS) service to the submitted update
update systems and data communication systems: In statusparkets. The service of an update packet is considered com-
date systems, an update packet is useful only if it carriesesoplete, when it is successfully received by the monitor. Afte
fresh information to the monitor; however, in communicatiothat, the server becomes available for sending the nexigpack
systems, all packets are equally important. While the theor The source generates and submits updates at successive
of data communications is quite mature, the optimal contriimes Sy, S1, ... Updatei, submitted at timeS;, is delivered
of status updates remains open. at time D; = S; +Y;, whereY; > 0 is the service time

For a source that can insert waiting times between updates,updatei. Suppose that update is submitted to an idle
the aim of this paper is to answer the following questionsvHoserver at timeS, = —Y; and delivered aD, = 0, as shown

Il. SYSTEM MODEL AND PROBLEM FORMULATION
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(a) An exponential age penalty functign (A) = €924 — 1.
Fig. 3. Evolution of the age-of-informatiof ().

in Fig. [3. The source has access to the idle/busy state of
the server and is able to generate updates at any time by
its own will. Hence, the source should not generate update
i+ 1 when the server is busy processing updatbecause
this will incur an unnecessary waiting time in the queueeAft
updatei is delivered at timeD;, the source may introduce a ‘ L Iy L
waiting timeZ; € [0, M| before submitting updater1 at time 05D S Do Sn-1 Dn-1 SnDn 1
Si11 = D;+ Z;, whereM represents the maximum amount of lZ JY ‘ > J > J W
waiting time allowed by the system. The source can switch to ot a2 not Anml A

a low-power sleep mode durind;, S;;+1). We assume that (b) A stair-step age penalty functiop(A) = [A].

the service proces§ly, Y1, ...) is a stationary and ergodic
Markov chainwith a possibly uncountable state space and &
positive mean0 < E[Y;] < oo, which generalizes thei.d. A%, exponential functiong(A) = e®®, and the stair-step
service processes in previous studies [1]-[9]. The erdydicfunction g(A) = |aA], wherea > 0 and |z] is the largest

of this Markov chain is assumed in the sense of ergodic theqmeger no greater tham. Two examples of age penalty
[10], which allows the Markov chain to be periodicThis functions are depicted in Figuf@ 4. Note that this age pgnalt
Markovian service process model is introduced to study thgodel is quite general, which allows-) to be discontinuous
impact of temporal-correlation on the optimality of the @erand non-convex.

wait policy. In Sectio IV, we will see that the zero wait i To analyze the average age penalty, we decompose the area
is close to the optimum when the service process is negatiygder the curvgy(A(t)) into a sum of disjoint components:
correlated; and can be far from the optimum when the serviggnsider the time intervdD, D,,], whereD,, = Z?:_OI (Y; +
process is positive correlated. More general correlatedcse Z;). In this interval, the area undef(A(t)) can be seen as

Qn

]

4. Evolutions of two age penalty functions.

process model will be considered in our future work. the concatenation of the are@s, 0 < i < n — 1, such that

At any timet, the monitor's most recently received update b el
packet is time-stamped with (t) = max{S; : D; < t}. The / ! g(A(t))dt = Z Qi,
age-of-informationA(¢) is defined as[[1] 0 =0

A(t) =t =U(t), (1) where
Yi+Yi+Z;

which is also referred to aage As shown in Fig[B, the Q; :/ g()dr.
age A(t) is a stochastic process that increases linearly with Y;

t between updates, with downward jumps occurring wherst s define
updates are delivered. Specifically, when update sent at T
time ¢ = S;, it is delivered at timeD; = S; + Y; with q(y,z,9) :/ g(7)dr. 2)
age A(D;) = D; — S; = Y;. After that, the age increases v
linearly and reachea\(D;,,) = Y; + Zi + Yiy.1 just before Then (. can be expressed a9; = q(Yi, Z;, Yii1). We
update: + 1 is delivered. Then, at timé); ;, the age drops gssume that
to A(Dl+1) = }/H»l-
We introduce an age penalty functigf)) to represent the E[q(Yi, M,Yi41)] < oo. 3)

level of “dissatisfaction” for data staleness or the “neéat’ Our goal is to minimize the average age penalty by con-
new information update, where the functign: [0,00) = yling the sequence of waiting timeo, Z1,...). Let 7 2

[0,00) is assumed to beneasurable, non-negative, and nony ;7 -~ denote a status update policy. We consider the
decreasingSome examples gf(-) are power functiog(A) = ¢jass ofcausally feasiblepolicies, in which control decisions

are made based on history and current information of the

1The results in this paper can be readily extended to a morergen system, as well as the distribution of the service process
model where the Markov chairfYp, Y1,...) has a longer memory, i.e.,

the sequenceWy, W1i,...) forms a Markov chain, with/¥; defined as (YOa_Yla_- ..). Specifically,Z; is dgtermineq based On.the. past
Wi = (Y;,Yit1,. .., Yy for some finitek. realizations of(Yy, Y1, ..., Y;), without using the realizations



of future service timegY;11,Y;+2,...); but the conditional all i = 0,1,... We usellsg (IIsg C II) to denote the set of
distribution of (Y;41,Yi42,...) based on(Yy,Yy,...,Y;) is stationary randomized policies such that
available. Lefll denote the set of all causally feasible policies

satisfying Z: e [0, M] for all i. IIsg={= : After observingY; = y;, Z; € [0, M] is chosen

The average age penalty can be represented by according to probability measuggy;, A),i =0,1,...}.
E UODn g(A(t))dt} Notg that (}Q-,Zl-,}_/iﬂ) is_ s_tationary and ergodic for all
lim sup ) stationary randomized policies. In the sequel, when werrefe
n—oo E [Dy] to the stationary distribution of a stationary randomizetiqy
Using this, the stochastic optimization problem for mirding 7 € Ilsr, we will remove subscript. In particular, the random
the average age penalty can be formulated as variables (Y;, Z;,Y;1) are replaced by(Y,Z,Y’), where
_— Z is chosen based on the conditional probability measure
E {Zizo Q(YiaZiaYiJrl)} Pr[Z € AlY = y] = p(y,A) after observing’” = y, and

Joy =Iin limsu
Jopt mell P

et ]E[Z;L:—Olm +70)] (4) (Y,Y’) have the same joint distribution &%, Y7). The first

key result of this paper is stated as follows:

n—1
. Theorem 1:(Optimality of Stationary Randomized Poli-
s.t. liminf —F Y + Z;)| > Tmin, . : .
oo 7 ;( +2Zi)| = cies) If g(-) is measurable and non-negativ&),Y1,...)

o ) L is a stationary ergodic Markov chain with; > 0 and
where gop, is the optimum objective value of Problefl (4) _ gy;) < o, condition [3) is satisfied, then there exists a

the expectatiort i_s taken over the stocha_stic servige_ proce%?ationary randomized policy that is optimal for Probldm (4
(Yo, Y1,...) for given policy m, and T,y is the minimum Proof sketch of Theorel 1For any policyr € II, define
average update period of the source due to hardware dimite horizon average occupations

physical constraints (e.g., limited power resource andicgo S _ 1
capacity). We assum@/ > T,;, such that Problem(14) is anmél[@{zq(y;’z“y;Jrl)] _ @E{Z(Yi +Zz-)], (5)
feasible andj,y, < oo. [ moLlis

Problem [(4) belongs to the class of constrained semi- no!
Markov decision processes (SMDP) with a possibly uncount- b _ (¥ + Z)
able state space, which is well-known for its difficulty. st = ST
problem,Y; is the state of the embedded Markov chafn,is L€t I'sr be the set of limit points of sequencéSin,x, bn,x),
the control action taken after observilig Y;+Z; is the update ™ = 1,2, ...) associated with stationary randomized policies
period, andy(Y;, Z;, ;1) is the reward related to both stagen ITsg. We first prove thal'sg is convex and compact. Then,
i andi + 1. The class of SMDPs include Markov decisiorV€ Show that there exists an optimal poligy, of Problem
problems (MDPs)[[13],[[15] and optimization problems of4), such that the sequend€a,, roy: bn, o), = 1,2,...)
renewal processes [16] as special cases. Most existingestud@Ssociated with policyropt has a limit point(a®, b*) satisfying
on SMDPs deal with (i) unconstrained SMDPs, e.q.,| [11{¢":b") € I'sr, a* <0, andb* > Thin. Since(a”,b") € T'sg,
[13], [17], [18], or (i) constrained SMDPs with a countabldhere exists a stationary randomized policy achieving this
state space, e.gl. [19]=]22]. However, the optimality ¢igua limit point (a*, b*). Finally, we show that policyr* is optimal
(e.g., Bellman’s equation) for solving unconstrained SDHOr Problem [(#), which completes the proof. The details are
are not applied to constrained SMDPs][23], and the studi@4dilable in AppendiXA. _ =
for problems with a countable state space cannot be directly’h® convexity and compactness properties of the set of

applied to Probleni{4), which has an uncountable state spa@gcupation measures are essential in the study of constrain
MDPs [24, Sec. 1.5], which dates back to Derman’s mono-

graph in 1970[[25]. Recently, it was used in stochastic opti-
mization for discrete-time queueing systems and renewsl pr

In this section, we develop a chain of novel theoreticgesses, e.g., [16]. [26]. The techniques in these studisota
results to solve Problerfill(4): First, we prove that theretsxis directly handle constrained SMDPs with an uncountable stat
stationary randomizegolicy that is optimal for Probleni]4). space, like Probleni{4). One crucial novel idea in our proof
Further, we prove that there existsstationary deterministic 1S to introduceg, in the definition of average occupation in
policy that is optimal for Problemi4). Finally, we develorﬁ)y which turns out to be essential in later steps for shgwin
a low-complexity algorithm to find theoptimal stationary the optimality of the stationary randomized policy.

deterministic policy that solves Problefd (4). By Theorem[]l, we only need to consider the class of
stationary randomized policiedsg. Therefore, Problem{4)

can be simplified to the following functional optimization

3

) } (6)

S|

IIl. OPTIMAL STATUS UPDATE PoLICY

A. Optimality of Stationary Randomized Policies problem (as shown in Appendix] A):

A policy 7 € II is said to be astationary randomized Elq(Y, Z,Y")]

A _ " ; min —A = J) 7
policy, if it observesY; and then chooses a waiting time py,A)  E[Y + Z]

Z; € [0, M] based only on the observed value ¥3f In this
case,Z; is determined according to a conditional probability
measurep(y, A) £ Pr[Z; € AlY; = y] that is invariant for

s.t. E[Y + Z] > Thin
0<Z<M



where p(y,A) = Pr[Z € A|Y = y] is the conditional C. A Low Complexity Solution to Proble@)
probability measure of some stationary randomized paioy, | emma 1:1f ¢(-) is measurable, non-negative, and non-

(Y,Y") have the same distribution &8p, Y1). decreasing, then the functional: L2(;y') — [0, 00) defined
b
Algorithm 1 Two-layer bisection method for Problei (8) Y E[q(Y,2(Y),Y")]
given [ = 0, sufficiently largeu > ggp, tolerance;. h(z) = E[Y + z(Y)]
repga_t (I +u)/2 iS quasi-convex.
C'.;n —uO s fficiently large 0, tolerances Proof: See Appendik L. "
g'\L G o ufficiently largec, >0, . Therefore, Problem[8) is a functional quasi-convex opti-
é(')?nglltg o Ci: (Icﬂ mization problem. In order to solve Probleii (8), we consider
. putez, () ) the following functional convex optimization problem with
if E[z,(Y)] +E[Y] < Tmin then parameter:
repeat '
C=(G+G)/2 vi=Cte fl@= min  Elg(Y,2(Y),Y")] - cE[Y +2(Y)] (10)
Computez, (-) in (11). 2()EL (ny)
if E[z,(Y)] +E[Y] > Tiin, Cu:= ¢; €lse §:= C. st E[Y +2(Y)] = Thnin
until ¢, — ¢ < €. 0<z(y) <M, Vy=>0.
end if ) _ .
if f(c) <0, u:=c elsgl:=c. It is easy to show thag,, < c if and only if f(c) < 0

[28]. Therefore, we can solve Problem] (8) by a two-layer
nested algorithm, such as AlgoritHth 1. In the inner layer, we
use bisectionto solve Problem[{J0) for given parameter
in the outer layer, we emplopisectionagain to search for
B. Optimality of Stationary Deterministic Policies Eacs Iz:jvcz otrrrﬁéicitg. It rgqiri‘rd esth:tsfr(l)gtélogs( (uAig?)r/lingg

A policy 7 € Ilsg is said to be astationary deterministic [log,((¢, — (;)/e2)] iterations to terminate. Each iteration
policy if Z; = 2(Y;) for all i = 0,1,..., wherez : [0,00) = jnvolves computingE|z,(Y)] based on[{11). The optimality
[0, M] is a deterministic function. We udésp (IIsp € IIsr)  of Algorithm[d is guaranteed by the following theorem:
to denote the set of stationary deterministic policies sheth  Theorem 3:If ¢(-) is measurable, non-negative, and non-

Hsp={r: Zi=2(Y;) for all 4,0 < 2(y) < M,¥ y > 0}. decreasing, then an optimal solutiofyy: to Problem [Z_B)
is obtained by Algorithm[J1, where the function,(-) is
Theorem 2:(Optimality of Stationary Deterministic Poli- determined by
cies) If g(-) is measurable and non-decreasing, then there ,
exists a stationary deterministic policy that is optimat fo?»(¥) = sup{z € [0, M]: E[g(y+2+Y")[Y = y] <v}. (11)
Problem (7). Proof Sketch of Theore 3We use Lagrangian duality
Proof sketch of Theorel 2Sinceg(-) is non-decreasing, theory to solve Probleni{8). Different from traditional fii
q(y,,y') is convex. Using Jensen’s inequality, we can shogimensional optimization problems [28], Problef (8) is an
that for any feasible stationary randomized policy € Ilsr, infinite dimensional functional optimization problem. Tae
there is a feasible stationary deterministic policy thah@ fore, the Karush-Kuhn-Tucker (KKT) theorem for infinite
worse than policyr;. The details are provided in AppendixXgimensional space [29] [30] and the calculus of variations
Bl - B are required in the analysis. In particular, since the Liagjian
Let ;v be the probability measure 61, then any bounded may not be strictly convex for some penalty functions, one-
measurable function: : [0,00) — [0, M] belongs to the sided Gateaux derivative (similar to sub-gradient in @nit

until uw —1 < €.
return z(-) := z,().

Lebesgue spact*(uy) [27, Section 3], because dimensional space) is used to solve the KKT conditions in
oo o0 Lebesgue spacé?(uy ). The proof details are provided in
| P ) < [ M) =0 <o pppendiD. .

The policy spacedl, Ilsg, IIsp, and the obtained optimal
By Theoremdll an@l2, we only need to consider the Clafglicyl/awop?/arsdepictedsiﬁ FigS]DS P

of stationary deterministic policieBElsp and Problem[{4) is

simplified to the following functional optimization probte IV. WHEN IS IT BETTER TOWAIT THAN TO UPDATE?

. E [q(Y,2(Y),Y")] 8  WhenT,;, <E[Y], alogical policy is thezero waitpolicy:
()el(uy) E[Y +2(Y)] the source submits a fresh update once the prior update com-
st. E[Y +2(Y)] > Tuin (9) Pletes service, i.emzero wait= (0,0, . ..). As mentioned before,

this zero wait policy is not always optimal to keep data fresh
When Ty, > E[Y], due to the constrainfl9), the minimum
wherez () is the function associated with a stationary detepossible average waiting time B[z(Y)] = Twmin — E[Y].
ministic policy = € Ilsp. The optimum objective value of However, even in this case, the optimal policy may have
Problem [(8) is equal tgp. additional waiting time such thak[z(Y)] > Tmin — E[Y].

0<z(y) <M, Vy=>0,



Fig. 5.

IIsp, and the obtained optimal policyopt.

In this section, we will study when it is optimal to submit

updates with the minimum wait and when it is not.

A. A Special Case gf(A) = A with i.i.d. Service Times
Consider the case thgtA) = A and theY;’s arei.i.d.. In

this case, Problerfi{8) has a simpler solution than that geali

by Algorithm[d. Interestingly, this solution explicitly enac-

terizes whether the optimal contre(-) can have minimum

wait such thatE[2(Y)] = Tin — E[Y].

As shown in Fig[Bg(y, z,y') is the area of a trapezoid,

computed as

1
q(y,z,9) = 5(2y+z+y')(z+y').

lllustration of the set of causally feasible polgil, the set of
stationary randomized policid$sg, the set of stationary deterministic policies

Algorithm 2 Bisection method for solving Problerin {(13)
given ! = 0, sufficiently largeu, tolerancee.

repeat
Bi:=({+u)/2.
M4Y\2
o:=E [(ﬁ)é‘,ﬁry] — max <Tmin, IE[((B)+[5)])’ where

(7)? = min[max[z, al, b].

if 0>0,u:=0;elsel:=4.
until v —1[1<e.
Computez(-) by (@5).
return z(-).

where (2)% £ min[max[z,a],b] and 8 > 0 is the root of the
following equation:

E[((ﬁ)@f”)ﬂ) 6

E [(ﬁ)i\/HY] = max (Tmim %

Proof: See AppendiXFF. [ |
Equation[[Ib) has the form of a water-filling solution, where
the water-levels is given by the root of equatiof (.6). One
can observe thaf (11) reduces[iol(15(f\) = A, theY;'s are
i.i.d., andr is replaced by3 + E[Y]. The rootg of equation
(18) can be simply solved by the bisection search method in
Algorithm[2. We note that Algorithial2 has a lower complexity
than Algorithm[1 in the special case gfA) = A andi.i.d.
service process, while Algorithfd 1 can obtain the optimal

Because th&j’s arei.i.d., Y andY’ in Problem [8) are also policy in more general scenarios.

i.i.d. Using this, we can obtain

E[q(Y,2(Y),Y")]

=K %(Y—i—z(Y))? + (Y +2(Y))Y’ (12)
=3E[(¥ + (V)] +E[Y + ()] E[Y],
where in [I2) we have used th&{Y?] = E[Y'?]. Hence,
Problem[(8) can be reformulated as
E[(Y +2(Y))?]
B Y ) T (13
st E[Y +2(Y)] > Tuin (14)

0<z2(y) <M, Vy=>0.

The following lemma tells us that Problem{13) is a function

convex optimization problem.
Lemma 2:The functionalh; : L?(uy) — R defined by

_E[(Y +2(Y))%]
m(2) = v m
is convex on the domain
dom hy = {z: z(y) € [0, M], Vy > 0,2 € L*(uy)} .

Proof: See AppendiXE. [ |

Using the KKT theorem for infinite dimensional space and the

calculus of variations, we can obtain
Theorem 4:The optimal solution to Probleni (1L3) is

2(y) = (B—y)d", (15)

Interestingly, Theoreril4 provides a closed-form criterion
on whether the optimal(-) satisfiesE[2(Y)] = Tin — E[Y].
Specifically, [I5) implieg3)y' 7 = Y +2(Y"). This and [(1b)
tell us that if Ty, > ]E[(Y%ﬂ(y))rz], then the optimal control
z(+) satisfies

2
E[Y + 2(Y)] = Tin > w’
2p
such that the optimal policy has the minimum average wait-
ing time II;:[z(Y)] = Tmin — E[Y]; otherwise, if Thin <
E[(Y%ﬁ(y)”, the optimal controk(-) satisfies

(17)

E[(Y +2(Y))?]

EY +2(Y)] = 25 > T, (18)
such that the average waiting tini&{z(Y")] of the optimal
%olicy is larger tharl},;, — E[Y].

Furthermore, we consider the ca%g;, = 0, where the
constraint[(T}) is always satisfied and can be removed. Note
that we have the same problem for &ll;, < E[Y] and hence
we can pickTy,i, = E[Y]. By substituting7,,,;, = E[Y] into
(I7) and [(1B), we can obtain the criterion on whether the zero
waiting policy is optimal.

1) Simulation ResultsWe use “Optimal policy” to refer
to the policy provided in Theoreil 3 (or its special case in
Theoreni#), and compare it with two reference policies:

« “Constant wait”: Each update is followed by a constant
wait Z; = const before submitting the next update with
const = Ty — E[Y].

o “Minimum wait”: The update waiting time is given by a
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for log-normal distributed service times, whefg,;, < E[Y].

deterministic functiorZ; = z(Y;), wherez(-) is given b

(@I5) andg is chosen to satisfE[z(Y)] = Tinin — E[Y]Ev
When E[Y] = T, both the constant wait and minimumwith equality. For smaller values dfy,;,, the constraint is
wait policies reduce to the zero wait policy. Two models d#ot active for the optimal solution. Consequently, the ager
the service processes are considered: The first one is @uiscRge achieved by the minimum wait policy deviates from the
Markov chain with a probability mass functidhx[y; = 0] = optimum for small values 0T in.
Pr[Y; = 2] = 0.5 and a transition matrix

[ p 1l-p B. General Age Penalties and Correlated Service Processes
P = :
l—-p p }

For general age penalties and correlated service progesses
Hence, theY;'s arei.i.d. whenp — 0.5, and the correlation it is essentially difficult to find closed-form charactetipa
coefficient betweert. and Vi is p ':’2p _ 1 The second ©" Whether the optimal contral(-) can have minimum wait
one is a log-normal distributed Markov chain, wheérg = such that[z(Y)] = Tiin — E[Y]. Therefore, we focus_ on the

case of Ty, < E[Y] and study when the zero wait policy

e?Xi JE[e?¥¢] and(X,, X1, . ..) is a Gaussian Markov process > ° - o
satisfying the first-order AR equation minimizes the average age penalty. Sufficient conditioms fo

the optimality of the zero wait policy are provided as folkaw
Xit1 =nX; + V1 - n?W,,
. o Lemma 3:Suppose thafi,i, < E[Y], g(-) is measurable,
wheres > 0 is the scale parameter of log-normal d'Str'bUt'OWﬁon-negative, and non-decreasing. The zero wait policy is

n € [-1,1] is the parameter of the AR model, and the . . L o
W;'s are i.i.d. Gaussian random variables with zero meaE(‘r%ptlmal for Problem[(g) if one of the following is safisfied:

and unit variance. The log-normal distributed Markov cigin +)- The correlation coefficient betwedf andYi, is —1;

normalized such thak[Y;] = 1. According to the properties 2)- TheY:'s are equal to a constant value;

of log-normal distribution, the correlation coefficientiween 3)- 9() iS @ constant function.

Y; andY;y is p = (¢” — 1)/(e — 1). Then, theY;’s arei.i.d. Proof: See Appendix G. u

whenn = 0. The value ofM is set to bel0. 1) Simulation Results\We now provide some simulation
Figured® and]7 illustrate the average ageNs, for i.i.d. results for general age penalties and/or correlated servic

discrete and log-normal distributed service times, retspelg.  Processes. Figurdd 8 afdl 9 depict the average age vs. the

In both figures, one can observe that the constant wait poligg'relation coefficienp betweeny; andY;, for discrete and

always incurs a larger average age than the optimal policy.!|Pg-normal distributed service times, respectively. 9.8, the

addition, as expected frori (117) arld](18), Bs., exceeds a regime ofp is [—1,1]. We observe that the zero wait policy

certain threshold, the optimal policy meets the constr@i@) is optimal whenp € [-1,-0.5], and the performance gap
between the optimal policy and the zero wait policy grows

2This policy was called B-minimum” in [8]. with p when p > —0.5. This is in accordance with the
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example in the introduction: A grows, the occurrence of Lemmal3 are sufficient but not necessary.
two consecutive zero service times (i.€Y;,Yi+1) = (0,0))
increases. Therefore, more and more updates are wasteel in th
zero wait policy, leading to a larger gap from the optimum. In

Fig.[@, the regime op is [(e~! —1)/(e —1),1]. In this case, e studied the optimal control of status updates from a
the sub-optimality gap of the zero wait policy also increasgource to a remote monitor via a FCFS network server. We
with p. The pointp = 1 is not plotted in these figures becausg@eneralized the existing studies on the age-of-informatio

V. CONCLUSION

the corresponding Markov chains are not ergodic. cover general age penalty functions and nad- service pro-
Figure[10 considers the average age vs. the parametegesses. We developed efficient algorithms to find the optimal
of log-normal distributed service times, whepe= (e”® —  status update policy for minimizing the average age penalty

1)/(e — 1). We observe that the zero wait policy is optimaive showed that, surprisingly, in many scenarios, the optima
for small o and is not optimal for large. Wheno = 0, the policy is to wait for a certain time before submitting a new
service times are constant, i.&; = 1 for all i, and hence ypdate. In particular, the widely-adopted zero wait poliey
by Lemma[3B, the zero wait policy is optimal. For largethe be far from the optimum if (i) the penalty function grows
time-average age of the zero wait policy is significantlgér quickly with respect to the age, and (ii) the update service
than the optimum. This implies that the sub-optimality g&p @imes are highly random and positive correlated.
the zero wait policy can be quite large for heavy-tail sexvic
time distributions.

Figures[1l[-16 show the average age penalty vs. the pa-
rametera of three types of age penalty functions, where the PROOF OFTHEOREMII]
stair-step functiong(A) = |aA] is considered in Figl11 A an Upper Bound of,
and[12, the power function(A) = A“ is considered in Fig. o ) P )
M3 and[I¥, and the exponential functighA) = e — 1 By _restrlctlngH in Problem [(4) tollsg, we obtain the
is considered in Fig—15 arid116. The correlation coefficient following problem:
p = 0.4 for discrete service times, andgs= (e"®—1)/(e—1)
for log-normal distributed service times. We find that theoze

APPENDIXA

E[X1% a(¥i i, Vi)

(19)

Jsgr = min limsup

wait policy is optimal if « = 0, in which caseg(A) is a T€Msr  n—oo E[Z?;J(Yi + Z;)]

constant function. When > 0, the zero wait policy may not n—1

be optimal. s.t. liminf —FE Z(Yi + Z;)| = Twmin,
These simulation results suggest that the conditions in nee o




B o D
o o (=3
o o o

Average age penalty
N w
o o
o o

—— Optimal policy
[ |- - -Zero wait

60

Average age penalty
iy
o

N
o

——Optimal policy
- - Zero wait

=
o
o

0 0.01 0.02 0.03 0.04 0.05
e

o

0.5

o

Fig. 14. Average age penalty vs. the parametaf power penalty functions Fig. 16. Average age penalty vs. the parameteof exponential penalty
with log-normal distributed service times, whefg,;,, < E[Y], g(A) = A%, functions with log-normal distributed service times, whér,;, < E[Y],
andp = (%5 —1)/(e — 1). g(A) =e*® —1,andp = (95 —1)/(e — 1).

16 [— — — j j A
1l sequencéa,, -, b, ) has a unique limit point in the form of
> g
il S (Ela(Y, Z,Y")] = GopBlY + ZL.E[Y + Z]) . (23)
S 10f
g g Hence I'sr is the set of all point$E[q(Y, Z, Y")]— GopE[Y +
g 6 Z],E[Y 4+ Z]), where each point is associated with a condi-
< 4 ] tional probability measure(y, A) = Pr[Z € A|Y = y], and
2 1 the measure ofY,Y”) is the same as that df;,Y7). Note
% 0.2 0.4 0.6 0.8 1 thatE[Y] = E[Y/]-
“ Step 1: We will show thdtsgis a convex and compact set

Fig. 15. Average age penalty vs. the parameteof exponential penalty Itis easy to ShOW th"fTSR IS c_onvex_by ConS'de”ng a sta-
tionary randomized policy that is a mixture of two statignar

functions with discrete service times, whéfgi, < E[Y], g(A) = e*A 1,
andp = 0.4. randomized policies.
For compactness, lef(d;,e;),7 = 1,2,---) be any se-
. . L guence of points inl'sg, we need to show that there is a
W_heregSR is the optimum o_bjectlve value of PrOblemlg)convergent subsequen(g;, , ¢;, ) whose limit is also imsg.
Sincellsg < I1, we can obtain Since (d;,e;) € Tsr, there must existY, Z(;),Y"') with
Tor = Topt (20) conditional probabilityljj(y,_A) = Pr[Z;, € A]Y = y], such
) , ] thatdj = E[q(Y, Z(j), Y )]—goptE[Y-i-Z(j)], €j = E[Y—FZ(J)]
It is easy to show that theY;, Z;, Yi11)'s are stationary | et ;,; be the joint probability measure ¥, Z;),Y"), then
and ergodic for all stationary randomized policies. Thds, t(dj,ej) is uniquely determined by.;. For anyL satisfying
gether with the condition thay(-) is measurable, tells us,> As, we can obtain '
that ¢(Y;, Z;,Y;41) is stationary and ergodi¢ [10, Theorems ,
7.1.1 and 7.1.3]. For any stationary randomized policy- pi(Y <L, Z; < LY <L)
=Pr(Y <L, Y' <L)

(Zo, Z1, . ..) € llsg, we obtain

= >Pr(Y +Y' <L)

—E }/’UZ’L?}/’L =E Y7Z7Y ) 21

o ;(I( +1) [q(Yo, Zo, Y1)] (21) Zl—E[Y+YI], v,

n—1 . .

lIE Z(Yi +7)| =E[Yo + Zo). (22) where th_e equa!lty is due to the fact tlﬁ(tj) < M <L and

no | = the last inequality is due to Markov’s inequality. Therefor
for anye, there is anl such that

Hence, Problen (19) can be reformulated as Problgm (7).
liminf p;([Y| < L,|Z(| < L,[Y'| <L) > 1 —e.
Jj—o0

B. The Upper Bound @y is Tight, i.€.,9sr = Jopt Hence, the sequence of measuges is tight. By Helly's
We will show gsg = o in 4 steps. The following selection theorem [10, Theorem 3.9.2], there is a subseguen
definitions are needed: Singg,, is finite, for each causally of measureg;, that converges weakly to a limit measyre .
feasible policyr = (Zy, Z1,...) € II we can definey, . and Let (Y, Z(x),Y') and po(y, A) = Pr[Zs € A|Y = y]
b as in [B) and[(6), respectively. denote the random vector and conditional probability cor-
Further, defind'sg as the set of limit points of sequencesesponding to the limit measure.,, respectively. We can
((@n,z,bnx),m = 1,2,...) associated with all stationarydefine do. = E[q(Y, Z(o),Y")] = GopB[Y + Z(oo)]s €00 =
randomized policiesr € IIsg. Because the renewal rewardE[Y + Z(.]. Since the functiony(y, z,y’) is in the form of
q(Y:, Z;,Y;+1) and renewal interval; + Z; are stationary and an integral, it is continuous and thus measurable. Using the
ergodic for all stationary randomized policiese Tlsg, the continuous mapping theorein |10, Theorem 3.2.4], we can ob-
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tain thatq(Y, Z(;,),Y") converges weakly tq(Y, Z(.),Y’). Hence, by[(b), we have
Then, using the conditior{(3), together with the dominated

convergence theorem (Theorem 1.6.7 [ofl [10]) and Theorem U, mop = Cn.mope ~ Goptr.mom

3.2.2 of [10], we can obtaitimy oo (d;,, €j,) = (doos €c0)- < max{cn, rop — Joptin,mopr 0}
Hence,((d;,e;),7 = 1,2,---) has a convergent subsequence. — max{ Cn,mop oo O}

Further, we can generate a stationary randomized polic¥r g 00O

by using the conditional probability..(y, A) correspond- Crymopt

ing t0 poo. Then, (dw,ex) is the limit point generated < max{ o ~ Gop 0} (M + E[Y]).

by the stationary randomized policy,sgr, Which implies
(do,€x0) € I'sr. IN summary, any sequencé;,e;) in I'sg
has a convergent subsequefiég, e;, ) whose limit(ds, €co) lim Sup @, gy < 0. (26)
is also inT'sg. Therefore'sg is a compact set. n—>00

Step 2: We will show that there exists an optimal policBecausega*,b*) is one limit point of (a,, . bn,rey), WE have
mopt € 1T of Problem(d) such that the sequenc¢e,, ., bn, o)
associated with policyrope has at least one limit point ifi'sg

Since _the sequencéyy, Y, ...) is a Maerv chain, the_: By (25)-27), we haver* < 0 andb* > Ty,

observationy;;; depends only on the immediately preceding ) . ; .

. Step 4: We will show that there exists a stationary ran-
stateY; and not on the history state and cont¥gl ..., Y; 1, . . . .

: - - domized policy that is optimal for Problenfd) and (7), and
Zo, ..., Z;—1. Therefore,Y; is the sufficient statistid13, p. Z _ . -
. ; . thus gsg = Goor- By the definition of I'sg, (a*,b*) € T'sr

252] for solving Problem({4). This tells us that there exIStrsﬁust be the Ii|Enit oint generated by a stationary randomized
an optimal policymop = (Zo, Z1, . ..) € II of Problem [(%) in P 9 y y

H * * / 5
which the control actioZ; is determined based on orily, but pf“tfiy T edn“:jR.'bL?t (¥, fZ ’f/ ) t:e_?hrandom \(ect;_)r with the
not the history state and contrdb,...,Y; 1, Zo,..., Zi1 stationary distribution of policyr™. Then, [2B) implies
[13]. We will show that the sequUeNG@y, oy, bn,ryy) aSSOC-  (a*,0%) = (E[q(Y, Z*,Y")] — G Y + Z*], E[Y + Z7]) .
ated with this policyrop has at least one limit point ifisg.

It is known thatZ; takes values in the standard Borel spa
(R,R), whereR is thg Borelo—-fi_eld. Accord.ipg to[[10, Thp_— Elq(Y,Z*,Y")] = E[Y + Z*|gopt < 0, (28)
erem 5.1.9], for each there exists a conditional probability E[Y + 2] > T (29)
measure(y, A) such thap/(y, A) = Pr(Z; € A|Y; = y) for = o
almost ally. One can use this conditional probability(y, A) By (28) andE[Y + Z*] > 0, we have
to generate a stationary randomized pobi(;)éR € Ilsg. Then, E[q(Y, Z*,Y")]
the one-stage expectatiot€[q(Y;, Z;, Yiy1)] — GopElYi + —— = < Jopt-

Z;),E[Y; + Z,]) is exactly the limit point generated by the ElY + 2]

stationary randomized POHO%,SR- Thus,(E[q(Y;, Z;,Y;4+1)]— Further, the inequalityl (29) suggests that the stationany r
JoplElYi + Zi|,E[Y; + Z;]) € T'sg for all i = 0,1,2,... domized policyr™ is feasible for Problen{{7). Hence,
Using [8), [®), and the fact thafsg is convex, we can Elq(Y, Z*,Y")]
0btain (an, rops On,moy) € I'sr fOr all n = 1,2,3... In other W > Jsr

words, the sequend@,, ryy, bn,myy) IS Within I'sp. Sincel'sg .

is a compact set, the SEqUENE., x,, bn.,,) Must have a Thereforegsg < goy. This and [(2D) suggest that
convergent subsequence, whose limit i k. E[q(Y,Z2*,Y")] _ ~

Step 3: Leta*, b*) € T'srbe one limit point of the sequence TEY 129 = 9srR = YJopt-

(@, mope> O, mope) @SSOCIAtEd with policyropt. We will show that

Taking thelim sup in this inequality and usind_(24), yields

a” <limsup ap, oy, b > liminf by, 7. (27)
n—oo n—oo

Cgsing a* <0 andb* > Tpin, We can obtain

a* <0 andb* > Thin. This completes the proof.
Policy 7o is feasible for Problem[{4) and meanwhile
achieves the optimum objective valgg,. Hence, APPENDIXB
. PROOF OFTHEOREMI[Z
lim sup 27 = g (24) Consider an arbitrarily chosen stationary randomizedcpoli

n— 00 T, Topt

m € Ilsg that is feasible for probleni]7). We will show that

liggi(gf b o = Tnin (25) there exists a feasible stationary deterministic poliat tb no
where worse than policyr;. N N
_— For anyy, we can use the conditional probabilityy, A)

. N EE{Z o(Yi, 7 Y‘+1)} associated with policyr; to compute the conditional expecta-
T, Topt — 19 2y £ .

pars tion E[Z|Y = y| by

By (@), bn, ., IS Upper bounded by BIZIY — 4] = /M (o, d2).
0
=M+E[Y] < oco. Since the conditional expectati@jZ|Y] is unique w.p.1[10,

n—1
1
bn,ﬂ'opt S EE lZ(M + Y;‘f‘l)
Section 5.1], there is a deterministic functieft) such that

=0
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z(y) = E[Z]Y = y] w.p.1. Consider the set C IIsg of all According to LemmaHME [¢(Y, 2(Y),Y”)] is a convex func-
stationary randomized policies that sati#fjZ|Y = y] = z(y) tional of z andE[Y + z(Y)] is an affine functional ot. It is
w.p.1. Then, the stationary randomized poliey is in A. It known that the ratio of a non-negative convex functional and
is also easy to show that the stationary deterministic polipositive affine functional is quasi-convex [28, p. 103]. den
(Zi=2(Y;),1=1,2,...) is also inA. h(z) is quasi-convex, which completes the proof.

Using the iterated expectation, for any policy An

APPENDIXD
E[Y +Z] =E[Y +E[Z|]Y]] = E[Y + 2(Y)]. (30) PROOF OFTHEOREM[3
Becauser; € A is feasible for problem[{7), any policy in We use the Lagrangian duality approach to solve Problem
is feasible for problen{7). (10). The Lagrangian of Probler (10) is
Sinceq(y, z,y’) is the integral of a non-decreasing function I
g, it is easy to show that the functiefiy, -, y’) is convex. For (i;C,% 7)
any policyw € A, Jensen’s inequality tells us that :/ E [q(y, 2(y), Y)Y = y] duy (v)
Elq(Y, Z,Y')|Y,Y] R
> q(Y,E[Z|Y,Y'],Y) _C/o ly + 2z(y)]dpy (y)
=q(Y,E[Z]Y]Y) (31) [ /°° }
+ C Tinin— y+z(y d,U, Y
— g(V,2(V), V), (wp.D), , Al
where [(31) is due to the fact that is determined based on —/ v(y)z(y)duy (y) +/ T(y)(z(y) — M)dpy (y)
Y, but notY”. Taking the expectation ovél,Y”), yields o0 0
— / — _
E[q(Y,2(Y),Y")] < E[q(Y, Z,Y")] —/O {E [a(y, 2(y), Y)Y =y] = (c+ Oy + 2(y)]
for any policyw € A, where equality holds i = z(Y"). This _ + M }d (T (35
and [30) suggest that the stationary deterministic pdligy= 1)z +7() [Z(y) } #y (9) F CTmin-~ (35)

2(Y;),i = 1,2,...) achieves the smallest objective value fosjnce Problem[(10) is feasible, all constraints are affine,
problem {T) among all policies in.. In conclusion, for any the refined Slater's conditior] [28, Sec. 5.2.3] is satisfied.
feasible stationary randomized poliay € Ilsr, we can find according to [29, Proposition 3.3.2] and |30, pp. 70-72k th

a feasible stationary deterministic policy that is no wdlsn g 5rush-Kuhn-Tucker (KKT) theorem remains valid for the

policy ;. This completes the proof. Lebesgue spack?(uy ). Hence, if a vectofz, ¢, v, 7) satisfies
the KKT conditions[(3B)E(42), it is an optimal solution fad)1
APPENDIXC The KKT conditions are given by
PROOF OFLEMMA [1] .
We need the following lemma: = IGIL%Y) L(@, G 7), (36)
Lemma 4:If [ : R — R is a convex function, then the o0
functionalw : L?(uy) — R defined by (> 07/0 ly + 2(y))dpy (y) = Tinin, 37)
w(z) = [ el duy ) (32) w2 0,22 0.7y 20 59
0 m(y) 2 0,2(y) < M.V y >0, (39)
is also convex. o0
Proof: For any\ € [0,1] and 21, z2 € L?(uy), we have ¢ [Tmin_ . ly + 2(y)ldpy (y)| =0, (40)
w(Azy + (1 — A)z2) Y(y)z(y) =0,V y =0, (41)
o0 - = > 0.
= [T 1010 + (0= V)i o) T =MD =07y =0 2
0 We now solve the KKT conditions (86)-(42) by using
S/ A (z1(y)) + (1 — Ni(22(9))] dpy () the calculus of variations. The one-sided Gateaux devivat
0 (similar to sub-gradient in finite dimensional space) of a
=dw(z1) + (1 — Nw(z2). (33) functionalh in the direction ofw € L?(uy) atz € L?(uy)
: . is defined as
By this, w(z) is convex.
We now prove LemmAl1. Sinegy, z,y’) is the integral of a Sh(z;w) 2 lim h(z + ew) — h(z) (43)
non-decreasing functiog, it is easy to show that the function =0t €

q(y,-,y’) is non-negative and convex. Hence, the condition#l » is a function onR, then [48) becomes the common
expectatiorE [¢(y, -, Y")|Y = y] is also convex. We can obtainone-sided derivative. Lelt(z,y, (,~,7) denote the integrand

, in @), andr(z,y) = E[q(y,2(y),Y")[Y =y]. According
E[?XEY’Z(Y)’Y ) to Lemmal4, the functiom(y, z,y’) and functionals-(z, y),
:/ E[q(y, 2(y), Y)Y = y] duy (y). (34) l(z,.y, (,’y,T), and};(z, ¢, 7—) are all convex inz. Therefore,

0 their one-sided Gateaux derivatives with respect &xist [31,
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p. 709]. Sincey(x) is right-continuous, for any givefy,y’),
the one-sided derivativéq(y, z; w, y’) of function q(y, z,y")
with respect toz is given by

obtain that for eacly > 0, z(y) must satisfy

lim Elg(y+z+Y)|Y =y]—(c+¢)—

z—z(y)~

Y(y)+7(y) <0.
(48)

Becausg(-) is non-decreasing, we can obtain froml(47) and

6q(y,z-w y')

—jjgﬁ {q vz +ew y)=aly, 2,9} (@8) that for eachy > 0, z(y) needs to satisfy
{1ggg@+x+y), Tw20; Elgly+a+Y)Y = yl=(c+)=1()+7(y) =0 (49)
- mliglf 9y + o+ yw, ifw<0. for all z > z(y), and

Next, consider the one-sided t8aux derivativesr(z; w, y) of Elg(y+z+Y)Y =y|—(c+ ) —v(y)+7(y) <0 (50)

functionalr(z, y). Since the function(y, -, y') is convex, the

functione — [q(y, z+ew,y’)—q(y, 2, y/')] /¢ is non-decreasing for all = < z(y).

and bounded from above in a neighborhood of 0. By using theWe solve the optimal primal solution(-) by considering
monotone convergence theoremI[10, Theorem 1.5.6], we dhe following three cases:

interchange the limit and integral operatorgiriz; w, y) such Case 1:y(y) = 7(y) = 0. The solutions to[(49) and(b0)

that
or (25w, y)
= lim lIE[ (y,

e—0t €

2(y) +ew(y),Y') — q(y, 2(y), Y)Y =y

(y) +ew(y),Y")—q(y, 2(y), Y’)}’Y = y}

-

[ Y+ 2+ Y )w) uwe)>0|Y = y]

V=] @

where 1 is the indicator function of evenk. By using the
monotone convergence theorem again, we have

OL(z;w,C,v,T)
:/O 0l(z;w,y, C, v, T)duy (y)
:/O or(z;w,y)duy (y)

+Awk%o+0—vwl+ﬂwMMMWW@) (45)

According to [31, p. 710]z is an optimal solution to (36) if
and only if

SL(z;w,(,y,7) >0, Ywe L (uy).

=E|1

i, ot

:E[ lim  g(y+z+ Y )wy)l w0}
z—z(y)t

+ lim gy +2+Y)0y)l{ww<o|Y

z—z(y)~

lim E

z—z(y)t

lim E

z—z(y)~

_|_

[@+x+Y%Mwhmw@}

(46)

Since w(+) is an arbitrary function inL?(uy ), considering

positive functionsw(y) > 0, we can obtain from[{44]-(46)

that for eachy > 0, z(y) must satisfy

lim Egly+z+Y")]Y =y]—(c+()—

z—z(y)t

Y(y)+7(y) > 0.
(47)

Similarly, considering negative functions(y) < 0, we can

yl—

may not be unique, if functiop is non-strictly increasing. In
particular, there may exist an intervgal(y), b(y)] such that
eachz(y) € [a(y),b(y)] satisfies [(49) and(50) for some

In this case, we choose the largest possible solution(gf

to make sure that the constrainf (9) is satisfied. The largest
solution satisfying[(47) and_(#8) is given by

2(y) = sup{z € [0, M] : E[g(y+2+Y")|Y = y] < c+(},

Vy=0,
which is exactly [(T11).
Case 2:y(y) > 0. By (1), we havez(y) = 0.
Case 3:7(y) > 0. By (42), we havez(y) = M.

In summary, the optimal primal solutiog(-) is given by
D).

Next, we find the optimal dual variable By (37) and[(4D),
the optimal( satisfies

or

¢>0,EY + 2(Y)] = Tin, (52)

where E[Y + 2(Y)] is determined by the optimal primal
solution [11). SinceéE [Y + 2(Y)] is non-decreasing ig, we

can use bisection to search for the optingal By this, an
optimal solution to[(ZI0) is obtained for any givenFinally,
according to Sections 4.2.5 and 11.4 [of1[28], the optimal

is solved by an outer-layer bisection search. Therefore, an
optimal solution to Probleni18) is given by AlgoritHth 1. This
completes the proof.

APPENDIXE
PROOF OFLEMMA 2]

Let us rewrite the functional; as
2
d
() = o y+d)]uﬂ).
Jo Iy + 2(y)lduy (v)

We need to prove that the functional is convex when
restricted to any line that intersects its domain. For any




w € L?(ny ), consider the functiom : R — R defined as

13

an optimal solution td(13). The KKT conditions are given by:

LT ) + ew(y) + ylPdpy (y) 2= min Li(z,(,7,7), (54)
u(e) = T z€L?(py)
Jo [2(y) + ew(y) + ylduy (y)) e
with domain ¢20. [+ )iy () = T (69
0

dom u = {e: z(y) + ew(y) € [0, M], Vy > 0,e € R}. Y(y) =2 0,2(y) 20,V y >0, (56)
Since the functiom — [z(y)+ecw(y)+y]? is convex, the func- 7(y) 2 0,2(y ) sM, 7y =0, (57)
tion z — {[z(y) + (e +2)w(y) +y)* - [2(y) +ew(y) +y|*} /= C|Twin— [ [+ 2())dpy ()| =0, (58)

is non-decreasing and bounded from above in a neighborhood 0
of 0. By using monotone convergence theorem [10, Theorem )2(y) =0,V y >0, (59)
1.5.6], we can interchange the limit and integral operatach T(y)(z(y) —M)=0,Yy>0. (60)

that
i o0

de Jo
/0 2[2(y) + ew(y) + ylw(y)dpy (v)-

[2(y) + ew(y) + y)*dpy (y)

Similarly,
d o0 o0
2 [ W) +ew(y) +ylduy (y) = / w(y)dpy ().
0 0
By this, we have

du fo
de fo
G

)+ ew(y) + ylw(y)dpy (y)
)+ ew(y) + yldpy (y)
y)+ew y) +y)%dpy (y) [ wy)dpy (y)
[fo ) + ew(y) + ylduy (y >]2
After some additional mampulations, we can obtain

2 Uooo y—i—z )dpy (y fo y)dpy ( )]2
Lo~ [2(y) + ew(y )+y]duy( )
y+Z(y)

/ [fo =Wy (y) o w

Sincez(y) +ew(y) > 0 for all y ondom u, we have— > 0.
Hence, the functiom is convex for allw € L?(uy). By this,
the functionalh; is convex, which completes the proof.

. (53)

d?u B
d?e

2

w(y) " dpy (y)-

y)dpy (:

APPENDIXF
PROOF OFTHEOREME4]

The Lagrangian of Problemi (1L3) is determined as

Ll('za <1777—)

() Pdpy (y) s
_2f0°°[y+2(y)]duy(y)+g[ i /0 bt (y)]dW(y)]

— /OO Y(y)z(y)dpy (y) + /OO T(y)(z(y) — M)dpy (y),
0 0

where¢ € R, v, 7 € L?(uy) are dual variables. According to

We now solve the KKT conditions by using the calculus of
variations. For any fixe{(, v, 7), the Gateaux derivative of the
LagrangeL; in the direction ofw € L?(uy) at z € L?(uy)

is defined as

Ll('z + cw, <a v, T)

€

—Ll(Z,C,’Y,T).

) A
§L1(27w7<1777—) _lli)I(l)
Similar to the derivations of (33), we can obtain

6L1 (Z; w, Ca v, T)

_ /“[ yta) ot @)y ()
o Lo v+ =@lduy(y) 2 [y + 2(y)ldpy ()]
— =) +7(y) |w(y)dpy (y), ¥V we L (uy).

Then, z(-) is an optimal solution td(34) if and only iF[31, p.
710]

6Ly (zw,¢,7,7) 20, Y we L*(uy).
By §L1(2;w7<1’77 )__6-[/1(
5L1(Z;w7<5777-):0, \V/’LUELQ(uy)

—w,(,v,7), we deduce

Sincew(-) is arbitrary, we have

y+2(y) o+ 2@)Pduy (y)
B+ 2ldny @) 2 [Ty + 2)]duy ()]
— (=Y +7(y) =0, Vy=0.
For notational simplicity, let us define

Il + 2(y)Pdpy (y)
2 [ Ty+2(y)ldpy (y)

The optimal primal solutior:(-) is obtained by considering
the following three cases:

Case 1:If v(y) = 7(y) = 0, then by [6ll) and[{82), we
obtainz(y) = 8 — y. In this case, we requir8 — y € [0, M]
by (58) and[(5F).

Case 2:If v(y) > 0, then by [59),z(y) = 0.

Case 3:If 7(y) > 0, then by [60),2(y) = M.

In summary, the optimal primal solutiog(-) is given by

(61)

B2 / 2 )y (9) + (62)

[29, Proposition 3.3.2] and [80, pp. 70-72], the KKT theorer@

remains valid for the Lebesgue spaté(uy ). Hence, if a
vector (z

The optimal dual variablg is obtained by considering two

,C,v,7) satisfies the KKT condition$ (54)-(b0), it iscases:



Case 1:¢ > 0. Then, [58) and(82) imply that

I Ty + 2(W)Pdpy (y)

2 [0 ly+z()ldpy (y)
(63)

[17]

/0 ly+2(9))dpty () =T, B .

Case 2:¢ = 0. Then, [55) and(82) imply that

I Ty + 2 (W) dpy (y)
2 [ ly+2()ldpy (y)

[19]

/0 ly+2(9))dpry () > i, B = 20

(64) |21
Combining [68) and[{84), yields
- & 2 [22]
/ [y+2z(y)]ldpy (y) =max | Tmin, fo [2(y)+y]*dpy (y)
0 2 [23]

Then, [16) is obtained by subscribifg{15) into this.

The solution in[(Ib) and_(16) satisfies the KKT conditiong4)
(54)-(60), and is thus an optimal solution to the convex
optimization problem[{13). This completes the proof.

[26]
APPENDIXG [27]
PROOF OFLEMMA 3
1). When the correlation coefficient betwe&h and Y; (28]
is —1, Y +Y" is equal a constant value with probability one[29]
Choosingz(y) =0, =0,c=gY +Y’), v(y) =7(y) =0,
one can show that the KKT conditioris {36)4(42) are satisfiedg,

2). If the Y;’s are equal to a constant valué+Y” is equal
a constant value. The remaining proof follows from part 1).131]

3). Wheng(-) is a constant function, all policies are optimal.
This completes the proof.
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