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Abstract—Stealthy attacks are a major threat to cyber secu-
rity. In practice, both attackers and defenders have resource
constraints that could limit their capabilities. Hence, to develop
robust defense strategies, a promising approach is to utilize
game theory to understand the fundamental tradeoffs involved.
Previous works in this direction, however, mainly focus on the
single-node case without considering strict resource constraints.
In this paper, a game-theoretic model for protecting a system of
multiple nodes against stealthy attacks is proposed. We consider
the practical setting where the frequencies of both the attack
and the defense are constrained by limited resources, and an
asymmetric feedback structure where the attacker can fully
observe the states of nodes while largely hiding its actions
from the defender. We characterize best strategies for both the
defender and the attacker, and study the Nash Equilibria of the
game.

Index Terms—Security games, stealthy attacks

I. INTRODUCTION

Advanced cyber attacks of increased sophistication are a
major threat to cyber security [2], [6], [8]. These attacks are
often launched by highly motivated entities and are persistent
in compromising a system provided that the incentive is high
enough. Moreover, they can be highly adaptive, e.g., trading
short-term loss for long-term advantage by acting in a stealthy
way to avoid being detected. In fact, some notorious attacks
remained undetected for months or longer [2], [6]. Hence,
traditional intrusion detection and prevention techniques in
cyber security targeting one-shot and known attack types are
insufficient in the face of long-lasting and stealthy attacks.

In this paper, we study an attacker-defender game that
explicitly models stealthy attacks. In particular, we consider
a system with N nodes (components) of different values,
a covert attacker, and an overt defender. Over a continuous
time horizon, each player determines when to make a move
(i.e., an action) subject to cost for making such a move that
varies over nodes. At any time, a node is either protected
or compromised, and the payoff to a player depends on the
amount of time that the nodes are under its control, and the
total cost incurred. Critically, we assume that the attacker
is stealthy and its moves are unobservable to the defender.
On the other hand, the defender’s moves are fully observable
to the attacker. Moreover, in practice, both the attacker and
the defender have resource constraints that could limit their
capabilities, especially for a large system with many nodes.
Ignoring such constraints can lead to either over-provisioning

or under-provisioning of resources and revenue loss. In this
paper, we explicitly model the resource constraints by placing
an upper bound on the frequency of moves for each player. To
simplify the analysis, we assume in this paper that the proper
functioning of one node does not depend on other nodes. This
is a reasonable setting and serves as a first-order approximation
of the general setting of interdependent nodes. Although game
theoretical models have been extensively applied to cyber
security [4], [7], [9], [12], prior works mainly focus on attacks
of known types.

Our model is inspired by the FlipIt game [13], a two-
player non-zero-sum game recently proposed in response to
an advanced attack on RSA Data Security [3]. In the FlipIt
game, a single critical resource (a node in our model) is
considered, and each player obtains control over the resource
by “flipping” it subject to a cost. During the play of the game,
each player obtains delayed and possibly incomplete feedback
on the other player’s previous moves. Several variants of the
FlipIt game have been considered [10], [11]. However, neither
multiple independent nodes nor explicit budget constraints are
considered in prior work.

A different type of security games has also been studied
in the literature [5], [12], mainly targeting physical infras-
tructures. Essentially a mixed strategy Stackelberg game is
considered, with the defender as the leader and the attacker
the follower. A key assumption is that the defender first
decides upon a randomized defense policy, and the attacker
then observes the randomized policy of the defender but not
its realization before taking an action. While this is a useful
assumption under certain circumstances, it may not hold when
the attacker is highly adaptive, as in the setting allowed in this
paper. For instance, since the attacker can somehow observe
the defender’s previous moves, it may act before the defender
changes its policy to get more benefit.

We have made following contributions in this paper.
• We propose a two-player game model with multiple inde-

pendent nodes, an overt defender, and a stealthy attacker
where both players have strict resource constraints.

• We show that a periodic defense strategy is a best-
response against a non-adaptive i.i.d. attacking strategy,
and vice versa.

• For the above pair of strategies, we fully characterize the
set of pure strategy Nash Equilibria of the game, and
show that there is at least one equilibrium.



The remainder of this paper is organized as follows. We
present our game-theoretic model in Section II, and study best-
response strategies of both players in Section III. The analysis
of the Nash Equilibria of the game is provided in Section IV.
Due to space limitation, we omit most proofs here. The reader
is referred to [14] for the missing details.

II. GAME MODEL

In this section, we discuss our two-player game model
including its information structure, the actions spaces of of
both the defender and the attacker, and their payoffs. Our game
model extends the single node model in [11] to multiple nodes
and includes a resource constraint on each player.

A. Basic Model

We consider a system with N independent nodes and two
players, a defender that protects the whole system from attacks
and an attacker, and a continuous time horizon T . A player can
make a move at any time instance. The attacker incurs a cost
of CAi per attack towards node i, and takes a period of time wi
to compromise node i. On the other hand, when the defender
makes a move to protect node i, which incurs a cost of CDi ,
node i is recovered immediately even if the attack is still in
process. A node i has a weight ri that represents the benefit to
the attacker per unit of time when i is compromised. To model
the resource constraints of players, we place an upper bound
on the average amount of resource that is available to each
player at any time (to be formally defined below). As is typical
in security games, we assume that the values of ri, CAi , C

D
i ,

wi, and the budget constraints are all common knowledge of
the game, that is, they are known to both players. Without loss
of generality, all nodes are assumed to be protected at time
t = 0. Table I summarizes the notations used in the paper.

As in [11], we consider an asymmetric feedback structure
where the attacker’s moves are stealthy, while the defenders’
moves are observable, meaning that the attacker knows the
state of each node at any time, while the defender has no idea
about whether a node is compromised or not. Therefore, it is
reasonable to assume that the attacker will move only after it
realizes that a node i has been recovered. Let αi,k denote the
time the attacker waits from the last time node i recovered, to
the time when the attacker starts its k-th attack against node i.
The set {αi,k} is the attacker’s strategy against the defender.
Since the set of nodes are assumed to be independent, αi,k
are also independent with respect to i. However, they may be
correlated across k as in general, the attacker can employ a
time-correlated strategy. In contrast, the defender’s strategy is
to set the time interval between its (k − 1)-st move and the
k-th move for each node i, denoted as Xi,k.

In this paper, we focus on non-adaptive (but possibly
randomized) strategies, that is, neither the attacker nor the
defender base its moves on feedback received during the game.
Therefore, the values of αi,k and Xi,k can be determined by
the corresponding player before the game starts. And note
that assuming a non-adaptive strategy is not a limitation for
the defender since it does not get any feedback about the

TABLE I: List of Notations
Symbol Meaning
ri benefit per unit of time by compromising node i
wi attacking time for node i
CA

i attacker’s move cost for node i
CD

i defender’s move cost for node i
αi,k attacker’s waiting time in its k-th move for node i
Xi,k time between the (k-1)-st and the k-th defense
B budget to the defender
M budget to the attacker
mi frequency of recovery action for node i
pi probability of immediate attack on node i once it recovers

attacker’s moves anyway. Interestingly it turns out not to be a
big limitation on the attacker either, because we will show in
Section III that, periodic defense is a best-response against any
non-adaptive i.i.d. attacks (formally defined in Definition III.1)
and vice versa. Note that when the defender’s strategy is
periodic, the attacker can predict the defender’s moves before
game starts so there is no need to be adaptive.

B. Defender’s Problem

Let Li denote the number of defense moves against
node i during T . In general Li is a random variable. The
amount of time when node i is compromised is then T −∑Li

k=1 min(αi,k+wi, Xi,k). Moreover, the cost for defending
node i is LiCdi . The defender’s payoff is then defined as the
total loss plus the total defense cost over all the nodes. Given
the attacker’s strategy {αi,k}, the defender faces the following
optimization problem:

max
{Xi,k,Li}

E

 N∑
i=1

−
(
T −

∑Li

k=1 min(αi,k + wi, Xi,k)
)
· ri

T


− LiC

D
i

T

s.t.

N∑
i=1

Li
T
≤ B w.p.1

Li∑
k=1

Xi,k ≤ T w.p.1 ∀i

(1)
The first constraint requires that the average number of nodes
that can be protected at any time is upper bounded by a
constant B. The second constraint defines the feasible set
of Xi,k. Since T is given, the expectation in the objective
function can be moved into the summation in the numerator.

C. Attacker’s Problem

We again let Li denote the number of defense moves
against node i in T . The total cost of attacking i is then
(
∑Li

k=1 1αi,k<Xi,k
) ·CAi , where 1αi,k<Xi,k

= 1 if αi,k < Xi,k

and 1αi,k<Xi,k
= 0 otherwise. It is important to note that when

αi,k ≥ Xi,k, the attacker actually gives up its k-th attack
against node i (this is possible as the attacker can observe
when the defender moves). Given the defender’s strategy, the



attacker’s problem can be formulated as follows, where M
is an upper bound on the average number of nodes that the
attacker can attack at any time instance.

max
αi,k

E

[
N∑
i=1

(T −
∑Li

k=1 min(αi,k + wi, Xi,k)) · ri
T

]

− E

[
N∑
i=1

(
∑Li

k=1 1αi,k<Xi,k
) · CAi

T

]

s.t. E

[
N∑
i=1

1

T

∫ T

0

vi(t)dt

]
≤M

(2)

where vi(t) = 1 if the attacker is attacking node i at time t
and vi(t) = 0 otherwise.

Note that as in [11], we make the assumption that the
attacker has to keep consuming resources when the attack is
in progress instead of making an instantaneous move like the
defender; hence it has a different form of budget constraint.
We further have the following equation:∫ T

0

vi(t)dt =

Li∑
k=1

(min(αi,k + wi, Xi,k)−min(αi,k, Xi,k))

III. BEST RESPONSES

In this section, we analyze the best-response strategies for
the players. Our main result is that when the attacker employs
a non-adaptive i.i.d. strategy, a periodic strategy is the best
response for the defender, and vice versa.

A. Defender’s Best Response

We first observe that it suffices to consider deterministic de-
fense strategies when playing against a non-adaptive attacker.

Lemma III.1. Suppose X∗i,k and L∗i are the optimal solutions
of (1) among all deterministic strategies, then they are also
optimal among all the strategies including both deterministic
and randomized strategies.

We then show that a periodic defense is sufficient when the
attacker employs a non-adaptive i.i.d. strategy defined below.

Definition III.1. An attack strategy is called non-adaptive
i.i.d. if it is non-adaptive, and αi,k is independent across i
and is i.i.d. across k.

Theorem III.1. A periodical strategy is a best response for the
defender if the attacker employs a non-adaptive i.i.d. strategy.

The main idea of the proof is to show that the defender’s
payoff for each node i is concave with respect to Xi,k. The
optimality then follows from the KKT conditions. Intuitively,
the defender tries to equalize the expected benefits the attacker
could receive among its every moves in a deterministic way
which gives the defender the most stable system to avoid a
big loss in a short period of time.

B. Attacker’s Best Response

We first analyze the attacker’s best response against any
deterministic defense strategies.

Lemma III.2. When the defense strategies are deterministic,
the attacker’s best response among non-adaptive strategies
must satisfy the following condition

α∗i,k =

{
0 w.p. pi,k

≥ Xi,k w.p. 1− pi,k
(3)

Note that when αi,k takes the simple form given in (3), the
optimization problem to the attacker becomes a continuous
knapsack problem and the optimal solution can be found by
a simple greedy algorithm [1].

Lemma III.2 tells us that the attacker’s best response is to
either attack a node immediately after it realizes the node’s
recovery or give up its attack until the defender’s next move.
Thus, the constraint M actually determines the probability that
the attacker will attack immediately. If M is large enough, the
attacker will never wait after defender’s each move.

By utilizing the above lemma, we can show that a non-
adaptive i.i.d. attack is sufficient against periodic defense.

Theorem III.2. Among all non-adaptive attack strategies,
a non-adaptive i.i.d. strategy is the best response against a
periodic defense strategy.

C. Simplified Game

According to Theorem III.1 and Theorem III.2, periodic
defense and non-adaptive i.i.d. attack can form a pair of best-
response strategies with respect to each other. Consider such
pair of strategies. Let mi ,

Li

T = 1
Xi,k

, and let pi denote the
probability that αi,k = 0,∀k. The defender’s payoff then sim-
plifies to

∑N
i=1

[(
E[min (wi,

1
mi

)]piri − CDi
)
·mi − piri

]
.

We observe that when mi ≥ 1
wi

, the defender’s cost becomes
miC

D
i , which is minimized when mi = 1

wi
. Therefore, it

suffices to consider mi ≤ 1
wi

. The optimization problems to
the defender and the attacker can then be simplified as follows.
Defender’s problem:

max
mi

N∑
i=1

−
[
piri −mi(riwipi − CDi )

]
s.t.

N∑
i=1

mi ≤ B

0 ≤ mi ≤
1

wi
,∀i

(4)

Attacker’s problem:

max
pi

N∑
i=1

pi
[
ri −mi(riwi + CAi )

]
s.t.

N∑
i=1

miwipi ≤M

0 ≤ pi ≤ 1,∀i

(5)

IV. NASH EQUILIBRIA

In this section, we study the Nash Equilibria of the sim-
plified game discussed in Section III-C, where the defender



employs a periodic strategy, and the attacker employs a non-
adaptive i.i.d. strategy. We fully characterize the set of pure
strategy Nash Equilibria of the game and show that our game
has at least one pure strategy equilibrium.

For a pair of strategies (m, p), the payoff to the defender is
Ud(m, p) =

∑N
i=1[−piri+mi(piriwi−CDi )], while the payoff

to the attacker is Ua(m, p) =
∑N
i=1 pi[ri −mi(riwi + CAi )].

A pair of strategies (m∗, p∗) is called a (pure strategy) Nash
Equilibrium (NE) if for any pair of strategies (m, p), we have
Ud(m

∗, p∗) ≥ Ud(m, p∗) and Ua(m∗, p∗) ≥ Ua(m∗, p). In the
following, we assume that CAi > 0 and CDi > 0. The cases
where CAi = 0 or CDi = 0 or both exhibit slightly different
structures, but can be analyzed using the same approach.
Without loss of generality, we assume ri > 0 and CD

i

riwi
≤ 1 for

all i. Note that if ri = 0, then node i can be safely excluded
from the game since there is no benefit to attack i, while if
CD

i

riwi
> 1, the coefficient of mi in Ud is always negative and

it is optimal not to protect node i.
Let µi(p) , piriwi − CDi denote the coefficient of mi in

Ud, and ρi(m) , ri−mi(riwi+C
A
i )

miwi
. Note that for a given p, the

defender tends to protect more a component with higher µi(p),
while for a given m, the attacker will attack more frequently a
component with higher ρi(m). When m and p are clear from
the context, we simply let µi and ρi denote µi(p) and ρi(m),
respectively.

To find the set of NEs of our game, a key observation is that
if there is a full allocation of defense budget B to m such that
ρi(m) is a constant for all i, any full allocation of the attack
budget M gives the attacker the same payoff. Among these
allocations, if there is further an assignment of p such that
µi(p) is a constant for all i, then the defender also has no
incentive to deviate from m; hence (m, p) forms an NE. The
main challenge, however, is that such an assignment of p does
not always exist for the entire set of nodes. Moreover, there
are NEs that do not fully utilize the defense or attack budget as
we show below. To characterize the set of NEs, we first prove
some properties satisfied by any NE of the game. For a given
strategy (m, p), we define µ∗(p) , maxi µi(p), ρ

∗(m) ,
mini ρi(m), F (p) , {i : µi(p) = µ∗(p)}, and E(m, p) ,
{i ∈ F : ρi(m) = ρ∗(m)}. We omit m and p when they are
clear from the context. We then have the following properties.

Lemma IV.1. If (m, p) is a NE, we have

1) ∀i 6∈ F,mi = 0, pi = 1, ρi =∞;
2) ∀i ∈ F\E,mi ∈ [0, ri

wiri+CA
i
], pi = 1;

3) ∀i ∈ E,mi ∈ [0, ri
wiri+CA

i
], pi ∈ [

CD
i

riwi
, 1].

Lemma IV.2. If (m, p) forms a NE, then for i ∈ E, j ∈ F\E
and k 6∈ F , we have riwi−CDi ≥ rjwj −CDj > rkwk−CDk .

According to Lemma IV.2, to find all the equilibria of the
game, it suffices to sort all the nodes in a non-increasing order
of riwi − CDi , and consider each Fh consisting of the first h
nodes such that rhwh − CDh > rh+1wh+1 − CDh+1, and each
subset Ek ⊆ Fh consisting of the first k ≤ h nodes in the
list. In the following, we assume such an ordering of nodes.

Consider a given pair of F and E ⊆ F . By Lemma IV.1
and the definitions of F and E, the following conditions are
satisfied by any NE with F (p) = F and E(m, p) = E.

mi = 0, pi = 1,∀i 6∈ F ; (6)

mi ∈ [0,
ri

wiri + CAi
], pi = 1,∀i ∈ F\E; (7)

mi ∈ [0,
ri

wiri + CAi
], pi ∈ [

CDi
riwi

, 1],∀i ∈ E; (8)∑
i∈F

mi ≤ B,
∑
i∈F

miwipi ≤M ; (9)

µi = µ∗,∀i ∈ F ;µi < µ∗,∀i 6∈ F ; (10)
ρi = ρ∗,∀i ∈ E; ρi > ρ∗,∀i 6∈ E (11)

The following theorem provides a full characterization of
the set of NEs of the game.

Theorem IV.1. Any pair of strategies (m, p) with F (p) = F
and E(m, p) = E is a NE iff it satisfies the set of constraints
(6) to (11) and one of the following constraints.

1)
∑
i∈F mi = B; ρ∗ = 0;

2)
∑
i∈F mi = B; ρ∗ > 0;

∑
i∈F miwipi =M ;

3)
∑
i∈F mi = B; ρ∗ > 0; pi = 1,∀i ∈ F ;

4)
∑
i∈F mi < B; µ∗ = 0; F = FN ; ρ∗ = 0;

5)
∑
i∈F mi < B; µ∗ = 0; F = FN ; ρ∗ > 0;∑
i∈F miwipi =M ;

6)
∑
i∈F mi < B; µ∗ = 0; F = FN ; ρ∗ > 0; pi = 1,∀i ∈

F ;

In the following, NEs that fall into each of the six cases
considered above are named as Type 1 - Type 6 NEs, respec-
tively. We next show that our game always has a NE, and may
have multiple NEs of different types and different payoffs.

Theorem IV.2. The attacker-defender game always has a pure
strategy Nash Equilibrium, and may have more than one NE
of different payoffs to the defender.

Proof: The proof of the first part is given in [14]. To
show the second part, consider the following example with two
nodes where r1 = r2 = 1, w1 = 2, w2 = 1, CD1 = 1/5, CD2 =
4/5, CA1 = 1, CA2 = 7/2, B = 1/3, and M = 1/5. Then it
is easy to check that m = (1/6, 1/6) and p = (3/20, 9/10)
is a Type 2 NE, and m = (1/3, 0) and p = (p1, 1) with
p1 ∈ [1/5, 3/10] are all Type 1 NEs, and all these NEs have
different payoffs to the defender.

V. CONCLUSION

In this paper, we propose a two-player non-zero-sum game
for protecting a system of multiple nodes against a stealthy
attacker where the defender’s behavior is fully observable, and
both players have strict resource constraints. We prove that the
periodic defense and a simple non-adaptive i.i.d. attack are a
pair of best-response strategies with respect to each other. For
this pair of strategies, we further characterize the set of Nash
Equilibria of the game, and show that there is always one (and
maybe more) equilibrium, for the case when the attack times
are deterministic.
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[4] T. Alpcan and T. Başar. Network Security: A Decision and Game-
Theoretic Approach. Cambridge University Press, 2010.

[5] B. An, M. Brown, Y. Vorobeychik, and M. Tambe. Security Games with
Surveillance Cost and Optimal Timing of Attack Execution. In Proc. of
AAMAS, 2013.
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