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Abstract—In this paper, we focus on the issue of stability
in multihop wireless networks under flow-level dynamics, and
explore the inefficiency and instability of the celebrated Back-
Pressure algorithms. It has been well-known that the Back-
Pressure (or MaxWeight) algorithms achieve queue stability and
throughput optimality in a wide variety of scenarios. Yet, these
results all rely on the assumptions that the set of flows is fixed, and
that all the flows are long-lived and keep injecting packets into
the network. Recently, in the presence of flow-level dynamics,
where flows arrive and request to transmit a finite amount
of packets, it has been shown that the MaxWeight algorithms
may not guarantee stability due to channel fading or inefficient
spatial reuse. However, these observations are made only for
single-hop traffic, and thus have resulted in partial solutions that
are limited to the single-hop scenarios. An interesting question
is whether straightforward extensions of the previous solutions
to the known instability problems would achieve throughput
optimality in multihop traffic setting. To answer the question,
we explore potential inefficiency and instability of the Back-
Pressure algorithms, and provide interesting examples that are
useful to obtain insights into developing an optimal solution. We
also conduct simulations to further illustrate the instability issue
of the Back-Pressure algorithms in various scenarios. Our study
reveals that new types of inefficiencies may arise in the settings
with multihop traffic due to underutilization of the link cap acity
or inefficient routing, and the stability problem becomes more
challenging than in the single-hop traffic counterpart.

I. I NTRODUCTION

It has now been two decades since the seminal work of
[1], which developed a joint routing and scheduling algo-
rithm, called the Back-Pressure algorithm (or equivalently, the
MaxWeight algorithm for single-hop traffic.) This algorithm
is throughput-optimal, i.e., it can stabilize the network under
any feasible load.The Back-Pressure algorithm computes the
weight of a link as the maximum “back-pressure” (i.e., the
queue-length or delay difference between the queues at the
transmitting node and receiving node of the link for each
flow) over all the flows, solves the well-known MaxWeight
problem, and chooses a subset of non-interfering links that
have the maximum weighted link-rate sum.Each chosen link
then transmits packets of the flow that has the maximum
“back-pressure” at the link.
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In more recent years, the Back-Pressure algorithm has
gained enormous popularity, and its distinguishing property of
guaranteeing queue stability and achieving optimal throughput
has been extended to a wide variety of scenarios (see [2],
[3] and references therein.) However, all of these fascinating
results require certain assumptions on the traffic flows, i.e., the
set of flows is fixed and all the flows arelong-lived (i.e., they
keep injecting packets into the network.) In practice, however,
flows arrive and request to deliver a finite amount of packets,
and are thusshort-lived. In the presence of these short-lived
flows, the well-knownlast packet problem[4] can occur under
the queue-length-based Back-Pressure algorithm: a queue that
lacks subsequent packet arrivals may not receive any service
for a long time, since the queue-length-based algorithms give
a higher priority to links with a larger queue length. More
importantly, the queue-length-based Back-Pressure algorithm
may not even be throughput-optimal in the presence of flow-
level dynamics. This could occur because the number of flows
may keep increasing with time, although each flow has a finite
number of packets. In the following, we briefly discuss the
known results on the inefficiency and instability of the Back-
Pressure (or MaxWeight) algorithm, and their solutions.

In [5], the authors examine the potential instability of the
MaxWeight algorithm in the presence of flow-level dynamics.
Their clever counterexamples show that in a wireless downlink
system with time-varying link rates, the MaxWeight algorithm
may fail to achieve the optimal throughput performance.
The inefficiency leading to instability essentially comes from
failure to opportunistically exploit better link rates in en-
vironments with channel fading. They have also developed
a solution based on a priori knowledge of the arrival and
channel statistics. In [6], the authors propose the Workload-
based Scheduling with Learning (WSL) algorithm, and prove
that it is throughput-optimal under flow-level dynamics. In
the WSL algorithm, all the short-lived flows are grouped
into a virtual aggregate queue, whose backlog is measured as
the total estimated workload, i.e., the number of time-slots
required to transmit the remainder of a flow based on the
best channel condition seen by the short-lived flow so far.
The WSL algorithm makes scheduling decisions by comparing
the backlog of the virtual aggregate queue with the maximum
weight (i.e., product of the link rate and the queue length)
over the long-lived flows. When the virtual aggregate queue
dominates, WSL chooses to serve a short-lived flow that either
sees its best channel condition or can completely deliver
all of its remaining packets within the current time-slot, or
arbitrarily picks a short-lived flow if no such flow exists.



When the queues for long-lived flows dominate, WSL simply
runs the MaxWeight algorithm over the long-lived flows and
chooses to serve the one that has the maximum weight. In
[7], the same authors extend the WSL algorithm to a multi-
channel system, and make it more practical than in [6] by
removing the assumptions that the type (long-lived or short-
lived) of a flow is known a priori, and that packets of a short-
lived flow arrive all at once. In contrast to the above queue-
length-based solutions, [8] proposes a delay-based MaxWeight
algorithm, which provides an intuitive way around the last
packet problem, successfully addresses the instability issue of
its queue-length-based counterpart, and achieves the optimal
throughput performance at no extra cost.

It should be noted that in the aforementioned instability
results, rate variations (along with flow-level dynamics) play
a critical role in leading to the MaxWeight algorithm being
inefficient. Interestingly, the work of [9] provides another set
of counterexamples to show that even without rate variations,
instability of the MaxWeight algorithm can still occur, due
to inefficient spatial reuse. This reveals that channel fading
and rate variations are not the only causes of inefficiency
and instability associated with flow-level dynamics. Further,
since the solutions in [5]–[8] cannot be easily extended to the
settings considered in [9], the authors develop a region-based
MaxWeight scheduling algorithm to counter the instability
effects. In the region-based MaxWeight algorithm, the entire
network is partitioned into a finite number of regions. In each
time-slot, the algorithm selects a subset of non-interfering
regions based on the aggregate backlog in each region, and
then serves a flow in each selected region. However, as
mentioned by the authors themselves in [9], it is quite difficult
for their solution to identify an adequate number of regions,
without explicit knowledge of the traffic parameters.

Without a doubt the aforementioned results have opened up
a new window, through which we can observe the flaws of
the celebrated Back-Pressure algorithm. However, all of these
known instability results and their remedies are established for
limited cases of single-hop traffic only. It has largely beenan
open question whether new types of inefficiency and instability
can occur in a broader setting of multihop traffic, and if the
known remedies can be readily extended to these more general
settings. Motivated by these questions, in this paper, we focus
on the settings with multihop traffic, and explore new types
of inefficiency and instability of the Back-Pressure algorithms
by presenting interesting counterexamples in these settings.

Our contributions are summarized as follows. First, we
focus on the inefficiency and instability in the settings of
multihop traffic with fixed routes, and present two counterex-
amples to show that both queue-length-based and delay-based
Back-Pressure algorithm may fail to guarantee stability inthe
presence of flow-level dynamics. The essential cause of the
instability comes from inefficient schedule reuse, which issim-
ilar to the spatial inefficiency identified in [9]. Second, wefo-
cus on a wireless downlink system where relay-assisted 2-hop
communications can be adopted to improve throughput perfor-
mance. In this setting, we identify new types of inefficiencies

by providing two counterexamples, in which the queue-length-
based Back-Pressure algorithm is not throughput-optimal in
the presence of flow-level dynamics. The instability issue
comes from underutilization of the link capacity or inefficient
routing due to insufficient paths information. We conduct
numerical experiments to further illustrate the instability issue
of the Back-Pressure algorithms in a variety of scenarios.
Our investigation reveals that new types of inefficiencies
and instability of the Back-Pressure algorithms can arise in
multihop network traffic settings.Moreover, to the best of
our knowledge, this is the first work showing that not only
inefficient scheduling but also inefficient routing may cause
instability under flow-level dynamics.Although it is perhaps
very challenging to combat different types of inefficiencies
in a unified solution, we believe that these examples provide
useful insights for designing a unified optimal solution in a
more general network setting.

The remainder of the paper is organized as follows. In
Section II, we present the description of our system model. In
Section III, we review the Back-Pressure algorithms that we
investigate in this paper. Then, in Sections IV and V, we show
that the Back-Pressure algorithm can lead to instability due to
different types of inefficiencies in the settings with or without
dynamic routing, respectively, by providing counterexamples
along with numerical experiments. Finally, we conclude our
paper in Section VI.

II. SYSTEM MODEL

We consider a multihop wireless network with a single
frequency channel. Time is assumed to be slotted. We use
a directed graphG(t) = (V(t), E(t)) to represent the network
in time-slot t, whereV(t) is the set of nodes andE(t) is the
set of directed links. Nodes are wireless transmitters/receivers
and links are wireless channels between two nodes if they can
directly communicate with each other. The graphG(t) is time-
varying in the presence of flow-level dynamics, as new users
(or nodes) may join the network and depart after service.

Let b(l) and e(l) denote the transmitting node and receiv-
ing node of link l = (b(l), e(l)), respectively. We consider
the binary symmetric interference model, i.e., for any links
l, k ∈ E(t), if node e(l) receives interference fromb(k), then
nodee(k) also receives interference from nodeb(l). Let cl(t)
denote the link capacity/rate1 of link l in time-slott, i.e., link
l can transmit at mostcl(t) packets during time-slott if none
of the links that interfere withl is transmitting at the same
time. Different from [5]–[8] where the instability relies on rate
variations, we assume that link rates are fixed, i.e.,cl(t) = cl
for all time-slots t = 0, 1, 2, · · · and for all links l. A set
of links M is called afeasibleschedule, if the interference
constraints are satisfied, i.e., no two links inM interfere with
each other. LetM(t) denote the set of all feasible schedules
overG(t).

A flow is a stream of packets from a source node to
a destination node. Packets are injected at the source, and

1We will use link capacity and link rate interchangeably throughout the
paper.



traverse multiple links to the destination via hop-by-hop com-
munications. LetF(t) denote the set of flows present in the
system in time-slott. A flow is “long-lived” (also called long
flow for simplicity) if its source node keeps injecting packets
into the network, and is “short-lived” (also called short flow
for simplicity) if it has only a finite number of packets. A
short flow will leave the network once all of its packets are
successfully transmitted to the destination.

We assume that each nodei maintains a First-In First-Out
(FIFO) queueQi,f for each flow2 f . In a setting with fixed
routes (e.g., Examples 1 and 2 in Section IV), each node only
needs to maintain a FIFO queue for each flow passing through
it. By slightly abusing the notation, we also letQi,f (t) denote
the queue length ofQi,f at the beginning of time-slott. By
convention, we setQi,f (t) = 0 if node i is the destination of
flow f . We let Wi,f (t) denote the waiting time (or delay) of
the head-of-line (HOL) packet ofQi,f in the network, which
is measured from the time when the HOL packet arrived to the
source node of flowf until time-slot t. Let i−(f) denote the
previous hop node for flowf before nodei. We setWi,f (t) =
Wi−(f),f (t) if Qi,f(t) = 0, and setWi−(f),f (t) = 0 if node i

is the source node of flowf . The network is said to bestable,
if the total number of packets in the system remains finite(i.e.,
the number of flows in the network remains finite, since we
assume that every flow has a finite number of packets.)

III. R EVIEW OF BACK-PRESSUREALGORITHMS

In this section, we review the well-known Back-Pressure
algorithm based on queue lengths (called Q-BP for simplicity)
[1], and its delay-based counterpart (called D-BP for simplic-
ity) for multihop traffic settings withfixed routes[4].

We start by describing the operations of the MaxWeight
algorithm with generic link weights. LetPl(t) denote the
weight of link l, then the MaxWeight algorithm chooses a
feasible scheduleM∗ such that the weighted link-rate sum is
maximized overM(t). That is,

M∗ ∈ argmax
M∈M(t)

∑

l∈M

Pl(t)cl. (1)

Ties can be broken arbitrarily if there is more than one feasible
schedule that has the same maximum weighted sum.

Next, we specify the link weight assignment rule for the
Back-Pressure algorithms.
Q-BP: Let ∆Ql,f (t) denote thequeue differentialat link l for
flow f at the beginning of time-slott. That is,

∆Ql,f (t) , Qb(l),f (t)−Qe(l),f (t).

Then, we specify the weight of linkl as

Pl(t) = max{∆Ql,fl(t)(t), 0}, (2)

wherefl(t) is an arbitrary flow that has the maximum queue
differential at link l in time-slot t, i.e.,

fl(t) ∈ argmax
f∈F(t)

∆Ql,f (t).

2The Back-Pressure algorithms will also work if each node maintains a
FIFO queue for all the flows that share the same destination node.

D-BP: Define the delayŴi,f (t) as

Ŵi,f (t) , Wi,f (t)−Wi−(f),f (t),

and define thedelay differentialas

∆Ŵl,f (t) , Ŵb(l),f (t)− Ŵe(l),f (t).

Then, we specify the weight of linkl as

Pl(t) = max{∆Ŵl,fl(t)(t), 0}, (3)

wherefl(t) is an arbitrary flow that has the maximum delay
differential at link l in time-slot t, i.e.,

fl(t) ∈ argmax
f∈F(t)

∆Ŵl,f (t).

With the link weightPl(t) specified in (2) (resp. in (3)),
Q-BP (resp. D-BP) solves the MaxWeight problem (1), and
in time-slot t, schedules all linksl in the chosen setM∗ to
transmit packets for flowfl(t) if ∆Ql,fl(t)(t) > 0 (resp. if
∆Ŵl,fl(t)(t) > 0).

Remark:Q-BP is a throughput-optimal solution to the joint
problem of routing and scheduling in a more general setting.
While D-BP has been shown to be throughput-optimal only in
a special setting of fixed routes. It is still an open question
whether delay-based scheduling algorithms like D-BP can
achieve the optimal throughput jointly with dynamic routing
[4].

IV. I NSTABILITY OF BACK-PRESSUREALGORITHMS WITH

FIXED ROUTES

For ease of exposition only, throughout this section, we con-
sider thenode-exclusiveinterference model3, where two links
sharing a common node cannot be scheduled simultaneously.
The examples of instability can be readily generalized to more
general interference models. In this section, we assume that
each flow has a single, fixed, and loop-free route, and that the
Back-Pressure algorithms maintain per-flow queues, i.e., each
node maintains a FIFO queue for every flow passing through
the node.We will later allow dynamic routing as well as per-
destination queueing in the counterexamples (Section V).

We provide two example networks, in which the Back-
Pressure algorithms may not be throughput-optimal due to
inefficient schedule reuse induced by certain traffic patterns.
Along with each example, we also provide numerical re-
sults to further illustrate the instability issue, by comparing
the scheduling performance of the Back-Pressure algorithm
and that of astable algorithm, which will be discussed in
each example. Note that these stable algorithms are used to
illustrate that the Back-Pressure algorithms cannot support
certain feasible arrival rate vector (that can be supportedby
the stable algorithms), it does not necessarily mean that the
stable algorithms are throughput-optimal, even in the particular
examples that we consider.

Example 1 (Inefficient schedule reuse under Q-BP):
We consider an “H”-type network topology as shown in

3It has been known as a good representation for Bluetooth or FH-CDMA
networks [10], and is also called asprimary or 1-hop interference model.



�

��

�

�

�

�

Class-3

Class-2Class-1

(a) An “H”-type network topology with three classes
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(b) Comparison of Q-BP and Stable algorithm 1 (i.e., the
Static Randomized scheduling algorithm as described in Ex-
ample 1), withB = 8 and ǫ = B−6

12B(2B−3)
.

Fig. 1. Example 1: Instability of Q-BP due to inefficient schedule reuse.

Fig. 1(a), where every link has a unit link capacity. We
assume that there are three classes of short flows (and no
long flows). The routes of the flows are(1 → 2 → 3) for
Class-1,(5 → 6 → 7) for Class-2, and(2 → 4 → 6) for
Class-3, respectively, each of which is represented by an
arrow in Fig. 1(a). Class-1 and Class-2 flows arrive at node
1 and node 5 with a finite number ofB packets (where
B > 6), respectively, and Class-3 flows arrive at node 2 with
one packet. The flow arrival process is as follows. At the
beginning of each time-slot, with probability13B − ǫ, two
flows arrive simultaneously, one for Class-1 and the other
for Class-2, at their respective sources, whereǫ ∈ (0, 1

3B )
is a small real number. Also, with probability13 − ǫB, one
flow for Class-3 arrives at node 2, independently of the flow
arrivals of the other two classes. We can calculate the arrival
rate vector as(13 − ǫB)[1, 1, 1].

The arrival rate vector with anyǫ ∈ (0, 1
3B ) is feasi-

ble, since every link can receive a service rate of1
3 under

the Static Randomizedscheduling algorithm, which activates
each schedule in the set of{{(1, 2), (4, 6)}, {(2, 4), (5, 6)},
{(2, 3), (6, 7)}} for 1

3 -fraction of time. Hence, the arrival rate
vector (13 − ǫB)[1, 1, 1] is feasible for anyǫ andB such that
ǫ < 1

3B .

However, the above arrival process withǫ < B−6
6B(2B−3) <

1
3B cannot be supported by the Q-BP algorithm. To see
this, we observe that when two flows arrive simultane-
ously, say at timet, each for Class-1 and Class-2, neither
max{P(1,2)(τ), P(2,3)(τ)} nor max{P(5,6)(τ), P(6,7)(τ)} is
smaller than 2 for allτ ∈ [t, t + 2B − 6]. This is because
of the operations of Q-BP as well as the fact that the packets
have to be forwarded via node 2 or node 6. On the other hand,
neither of the links(2, 4) and(4, 6) has aweighted rategreater
than 1, since all Class-3 flows have only one packet. Hence,
in this period of2B − 6 time-slots, Q-BP selects a schedule
from the set of{(1, 2), (5, 6)}, {(1, 2), (6, 7)}, {(2, 3), (5, 6)},
{(2, 3), (6, 7)} only, and activates neither link(2, 4) nor link
(4, 6). It is easy to see that if another flow pair of Class-1 and
Class-2 arrive beforet + 2B − 6, another2B − 6 time-slots
would add up to the time interval during which links(2, 4) and
(4, 6) cannot be served. Then for a large enough time period
T , the total number of time-slots in which neither link(2, 4)
nor link (4, 6) is activated is at least(2B−6)( 1

3B −ǫ)T . Thus,
the summed service rate of links(2, 4) and(4, 6) is no greater
than 1 − (2B − 6)( 1

3B − ǫ). Note that given the arrival rate
of 1

3 − ǫB at node 2, the summed service rate of links(2, 4)
and(4, 6) needs to be at least2(13 − ǫB) so that the network
is stable. Hence, the arrival rate vector cannot be supported
under Q-BP if2(13 − ǫB) > 1 − (2B − 6)( 1

3B − ǫ), which
occurs whenǫ < B−6

6B(2B−3) .
Numerical Experiment 1: We consider the system as de-

scribed in Example 1, and setB = 8 andǫ = B−6
12B(2B−3) . We

compare the performance of Q-BP and the Static Randomized
scheduling algorithm as described in Example 1. We run the
simulation for104 time-slots for each algorithm, and plot the
total queue length over time under both algorithms in Fig. 1(b).

The simulation results show that the Static Randomized
scheduling algorithm keeps the queue length bounded. How-
ever, under the Q-BP algorithm, the total queue length keeps
increasing with time, which implies instability.

Remark: In the above example, the instability of Q-BP
is essentially due to inefficient schedule reuse. The bursty
arrivals force Q-BP to distribute the amount of time for each
feasible schedule in an inefficient manner, which makes certain
“regions” (e.g., links (2, 4) and (4, 6)) receive insufficient
amount of service. This type of inefficiency is similar to the
inefficient spatial reuse identified in [9] for single-hop traffic.

As we mentioned in the introduction, the delay-based
MaxWeight algorithm [8] has been developed to combat the
instability of its queue-length-based counterpart. This delay-
based remedy is simple and incurs no extra cost. However, it is
developed only for countering the instability caused by failure
to exploit wireless diversity from time-varying link rates
associated with single-hop traffic. In the setting of multihop
traffic and no link rate variations, it is unclear whether the
delay-based algorithms can successfully solve the instability
issue of their queue-length-based counterparts or not.

To answer the above question, we present the following
example to show that the D-BP algorithm [4] can also result in
instability issue in the presence of flow-level dynamics. Tothe
best of our knowledge, D-BP is the only known throughput-
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(b) Comparison of D-BP and Stable algorithm 2 (i.e., the
Static Randomized scheduling algorithm as described in Ex-
ample 2).

Fig. 2. Example 2: Instability of D-BP due to inefficient schedule reuse.

optimal scheduling algorithm based on delay for multihop
traffic without flow-level dynamics.

Example 2 (Inefficient schedule reuse under D-BP):
We consider a size-6 ring network as shown in Fig. 2(a),
where every link has a unit link capacity. We assume that
there are two classes of short flows (and no long flows). The
routes for the two classes of flows are(1 → 2 → 3 → 4) and
(4 → 5 → 6 → 1), respectively, which are represented by the
arrows in Fig. 2(a). We assume that each short flow arrives to
the network with one packet and will leave the network when
the packet is successfully delivered to its destination node.

We let A1 and A4 denote the number of flow arrivals at
node 1 and node 4, respectively. Also, letQ̂i denote the total
number of packets (possibly from different flows) at nodei at
the endof each time-slot. We consider a specific traffic arrival
process as shown in Table I, which also illustrates the queue-
length evolution under D-BP. Specifically, the traffic arrival
pattern repeats every 5 time-slots (starting from time-slot 1),
and in each of the first two time-slots within each period, there
is a concurrent flow arrival at both node 1 and node 4. Recall
that D-BP does not activate any link with non-positive weight
to transmit packets. For example, since the HOL delays are all
0 at the beginning of time-slot 1, none of the links are activated

TABLE I
ARRIVAL PROCESS AND QUEUE-LENGTH DYNAMICS UNDER D-BP.

t A1,A4 Q̂1,Q̂2,Q̂3,Q̂4,Q̂5,Q̂6

0 0 , 0 0 , 0 , 0 , 0 , 0 , 0
1 1 , 1 1 , 0 , 0 , 1 , 0 , 0
2 1 , 1 1 , 1 , 0 , 1 , 1 , 0
3 0 , 0 1 , 0 , 1 , 1 , 0 , 1
4 0 , 0 1 , 0 , 0 , 1 , 0 , 0
5 0 , 0 0 , 1 , 0 , 0 , 1 , 0
6 1 , 1 1 , 0 , 1 , 1 , 0 , 1
7 1 , 1 2 , 0 , 0 , 2 , 0 , 0
8 0 , 0 1 , 1 , 0 , 1 , 1 , 0
9 0 , 0 1 , 0 , 1 , 1 , 0 , 1
10 0 , 0 1 , 0 , 0 , 1 , 0 , 0
11 1 , 1 1 , 1 , 0 , 1 , 1 , 0
12 1 , 1 2 , 0 , 1 , 2 , 0 , 1
13 0 , 0 2 , 0 , 0 , 2 , 0 , 0
14 0 , 0 1 , 1 , 0 , 1 , 1 , 0
15 0 , 0 1 , 0 , 1 , 1 , 0 , 1
16 1 , 1 2 , 0 , 0 , 2 , 0 , 0
17 1 , 1 2 , 1 , 0 , 2 , 1 , 0
18 0 , 0 2 , 0 , 1 , 2 , 0 , 1
19 0 , 0 2 , 0 , 0 , 2 , 0 , 0
20 0 , 0 1 , 1 , 0 , 1 , 1 , 0
21 1 , 1 2 , 0 , 1 , 2 , 0 , 1
22 1 , 1 3 , 0 , 0 , 3 , 0 , 0
23 0 , 0 2 , 1 , 0 , 2 , 1 , 0
24 0 , 0 2 , 0 , 1 , 2 , 0 , 1
25 0 , 0 2 , 0 , 0 , 2 , 0 , 0

TABLE II
DELAY DYNAMICS UNDER D-BP (FOR NODES1, 2,AND 3).

t A1 W0,1,W1,1,W2,1,W3,1,W0,2,W1,2,W2,2,W3,2 Ŵ1,1,Ŵ2,1,Ŵ3,1,Ŵ1,2,Ŵ2,2,Ŵ3,2

0 0 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 0 , 0 , 0 , 0 , 0 , 0
1 1 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 0 , 0 , 0 , 0 , 0 , 0
2 1 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 1 , 0 , 0 , 0 , 0 , 0
3 0 0 , 0 , 2 , 0 , 0 , 1 , 0 , 0 0 , 2 , 0 , 1 , 0 , 0
4 0 0 , 0 , 0 , 3 , 0 , 2 , 0 , 0 0 , 0 , 3 , 2 , 0 , 0
5 0 0 , 0 , 0 , 0 , 0 , 3 , 0 , 0 0 , 0 , 0 , 3 , 0 , 0

TABLE III
SCHEDULE DYNAMICS UNDER D-BP.

t (1, 2),(2, 3),(3, 4),(4, 5),(5, 6),(6, 1)
0 0 , 0 , 0 , 0 , 0 , 0
1 0 , 0 , 0 , 0 , 0 , 0
2 1 , 0 , 0 , 1 , 0 , 0
3 0 , 1 , 0 , 0 , 1 , 0
4 0 , 0 , 1 , 0 , 0 , 1
5 1 , 0 , 0 , 1 , 0 , 0

and no packet is transmitted. To help readers understand the
queue-length dynamics in Table I, we provide in Tables II and
III the weights (at the beginning of each time-slot) and the
chosen links for the first 6 time-slots. In Table II, for ease of
exposition, we show the weight of nodes 1, 2 and 3 for the
Class-1 flows. The weight of nodes 4, 5 and 6 for the Class-2
flows can be obtained similarly. In Table III, a link has a “1”
if the link is included in the schedule (i.e., it is activatedto
transmit packets) in the corresponding time-slot, and has a“0”
otherwise. We call the flow that arrives at node 1 in time-slot
1 (resp. in time-slot 2) as flow 1 (resp. flow 2).

It is clear from Table I that if the same arrival pattern
continues, the value of̂Q1 and Q̂4 will both increase by 1
every 15 time-slots, and will eventually become unbounded.
On the other hand, the arrival rate vector for the above arrival
process is[ 25 ,

2
5 ], which is feasible. To see this, we consider

the Static Randomizedscheduling algorithm that chooses



schedules{(1, 2), (3, 4), (5, 6)} and{(2, 3), (4, 5), (6, 1)} both
for 1

2 -fraction of time, which results in a service rate of1
2 for

every link. Clearly, the resultant service rate vector can support
the arrival rate vector of[ 25 ,

2
5 ].

Remark: Note that in the above example, we consider
deterministic arrival process for ease of illustration. However,
the example can be generalized to the case with stochastic
arrival processes. For example, consider the arrival process as
follows. In each time-slot, with probabilityǫ > 0, there is a
flow arrival with one packet at both node 1 and node 4. In this
case, any arrival rate vector withǫ ∈ (13 ,

1
2 ) is feasible, which,

similarly, cannot be supported by D-BP due to the inefficient
schedules it chooses.

Numerical Experiment 2: We consider the system as de-
scribed in Example 2, and consider the arrival process as
specified in Table I. We compare the performance of D-BP and
the Static Randomized scheduling algorithm described above.
We run the simulation for104 time-slots for each algorithm,
and plot the total queue length over time under both algorithms
in Fig. 2(b). Similarly as in the previous numerical experiment,
the simulation results show that D-BP leads to instability.

Remark: In the above example, the instability of D-BP
is also due to inefficient schedule reuse. However, unlike
in Example 1, the packet arrivals are not bursty. Instead,
the specific arrival pattern forces D-BP to always choose
“small” schedules with two links rather than better schedules
with three links. This type of scheduling inefficiency was
also investigated in similar network topologies [4], [11],[12]
for the greedy algorithms in the setting without flow-level
dynamics.

In the special cases of Examples 1 and 2, besides the Static
Randomized scheduling algorithms that require knowledge of
the arrival rates, a possible solution to the instability problem
is to use per-destination queues at each node.We can do so
in the scenarios where the network topology does not change
with the new user arrivals. However, per-destination queueing
may not help in the scenarios where new user arrivals could
potentially change the network topology (as we will consider
in Section V). Indeed, we will show that in such scenarios,
the instability problem becomes more challenging, especially
when routing needs to be integrated into the design as well.

V. I NSTABILITY OF BACK-PRESSUREALGORITHMS WITH

DYNAMIC ROUTING

In this section, we consider the downlink of a single-cell
wireless network, where mobile users arrive to the network for
downloading packets from the Base Station (BS). We assume
that relay-assisted 2-hop communications can be adopted to
improve throughput performance. We show through three
examples that new types of inefficiencies can arise for the
Back-Pressure algorithms, in particular, when some active
link is underutilized or routing has to be taken into account.
Similarly as in Section IV, along with each example, we also
illustrate the instability issue with a numerical experiment that
compares the scheduling performance of the Back-Pressure
algorithms and that of astablealgorithm.
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(a) A single-cell wireless downlink system
with a long-flow user and multiple short-flow
users.
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(b) Comparison of MaxWeight and Stable algorithm 3 (i.e.,
the WSL algorithm), under the arrival rate vector of[pl, ps] =
[0.8, 0.4].

Fig. 3. Example 3: Instability of the MaxWeight algorithm due to underuti-
lization of the link capacity.

To begin with, we first consider a single-hop traffic scenario,
and show in Example 3 that instability of the MaxWeight
algorithm can arise due to underutilization of the link capacity
in the presence of flow-level dynamics. Then, in Example 4,
we further show that this type of inefficiency can also occur
in multihop traffic scenarios, which becomes even harder to
combat.

Example 3 (Link capacity underutilization (single-hop)):
We consider a wireless downlink system with a single BS
that needs to transmit packets to multiple mobile users. As
shown in Fig. 3(a), userU0 has a long flow and is called
a long-flow user, and eachUi for i ≥ 1 has a short flow
and is called a short-flow user. The interference constraintis
such that in each time-slot, only one link can be activated.
The link capacity is labeled beside each link in Fig. 3(a).
Specifically, the link capacity is 1 for each link(BS,Ui) with
i ≥ 1, and is 2 for link (BS,U0), respectively. The arrival
process is as follows. At the beginning of each time-slot, a
short-flow user arrives with probabilityps and each user has
one packet for downloading. For the long-flow userU0, one
packet arrives with probabilitypl at the beginning of each



time-slot, independently of the short flow arrivals. NodeUi

appears in the network topology when the short flow arrives
for userUi, and disappears once it successfully downloads all
of its packets from the BS. Hence, in this system the network
topology is time-varying due to flow-level dynamics.

We now consider the MaxWeight algorithm. Whenever the
long-flow userU0 has one packet arrival, link(BS,U0) will
be activated to transmit the packet forU0, as its weighted rate
is no smaller than 2, which is greater than the weighted rate
of the other links: the weighted rate at link(BS,Ui) is at
most 1 fori ≥ 1. Only when the queue for the long flow is
empty, the MaxWeight algorithm will choose a link(BS,Ui)
for somei ≥ 1 and the BS transmits the packet toUi. This
implies that any arrival rate vector withpl + ps > 1 cannot
be supported under the MaxWeight algorithm. However, we
will show that any arrival rate vector satisfying12pl + ps <

1 is feasible. To see this, we consider the Workload-based
Scheduling with Learning (WSL) algorithm developed in [6],
where the workload is the number of time-slots required to
completely serve the remainder of a short flow. Recall that
WSL uses a virtual aggregate queue for all the short flows at
the BS, and in this specific case, makes scheduling decisions
by comparing the backlog (i.e., the summed workload of all
the short flows) of the aggregate queue and the weight of the
long flow. When the aggregate queue is chosen, the BS picks
one link (BS,Ui) for somei ≥ 1 and transmits the packet to
Ui, which completes the short flow forUi, and otherwise, the
BS chooses to serve the long user. Due to results of [6], the
arrival rate vector satisfying12pl + ps < 1 can be supported
by WSL, and is thus feasible. An example of feasible arrival
rate vectors is[pl, ps] = [0.8, 0.4], which, however, cannot be
supported by the MaxWeight algorithm.

Numerical Experiment 3: We consider the system as de-
scribed in Example 3. We compare the performance of Q-
BP and the WSL algorithm under the arrival rate vector of
[pl, ps] = [0.8, 0.4]. We run the simulation for104 time-slots
for each algorithm, and plot the total queue length over time
under both algorithms in Fig. 3(b). The simulation results
show that the WSL algorithm keeps the queue length bounded.
However, under the Q-BP algorithm, the total queue length
keeps increasing with time, which implies instability.

Remark: In the above example, the instability of the
MaxWeight algorithm is essentially due to underutilization
of the link capacity. The specific arrival pattern forces the
MaxWeight algorithm to serve first the long-flow user with
only one packet arrival while it can wait until it has at
least two packets. This is different from the known causes
of inefficiency identified in [5] and [9], as well as those
in Examples 1 and 2. That is, Example 3 relies on neither
rate variations nor selection of inefficient schedules. Note that
in the scenarios without flow-level dynamics, such type of
inefficiency could also happen.Without flow-level dynamics,
however, this inefficiencycan only occur occasionally and
does not lead to instability, because an unserved queue of
any long flow will eventually build up, and will dominate the
weight of a queue with insufficient packets.
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(a) A single-cell wireless downlink system
with relay-assisted 2-hop communications.
Note that the link betweenUi andU0 and the
link betweenUi and the BS are similar to those
for U1, and are thus not displayed.
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(b) Comparison of Q-BP and Stable algorithm 4 (i.e., the
priority algorithm that gives a priority to the short flows),
under the arrival rate vector of[pl, ps] = [0.5, 0.28].

Fig. 4. Example 4: Instability of Q-BP due to underutilization of the link
capacity.

In the following example, we revisit the inefficiency due to
underutilization of the link capacity, but with multihop traffic.

Example 4 (Link capacity underutilization (multihop)):
We consider a similar single-cell wireless downlink system
as in Example 3. The key difference from Example 3 is that
one can exploit the relay-assisted 2-hop communications to
improve throughput performance. As shown in Fig. 4(a), there
is one path between the BS and the long-flow userU0, and
there are two paths between the BS and each short-flow user
Ui for i ≥ 1: direct communications or relay-assisted 2-hop
communications (i.e., using mobile userU0 as a relay node).
The interference constraint is such that in each time-slot,
only one link, either between the BS and a mobile user or
between two mobile users, can be activated. The link capacity
is labeled beside each link in Fig. 4(a), i.e.,c(BS,U0) = 5
(packets per time-slot),c(BS,Ui) = 3 and c(U0,Ui) = 1 for all
i ≥ 1. The arrival process is as follows. At the beginning
of each time-slot, a short-flow user arrives with probability



ps and each user has three packets for downloading from
the BS. For the long-flow userU0, four packets arrive at the
BS in a burst with probabilitypl at the beginning of each
time-slot, independently of the short flow arrivals.

Note that in this example, each short flow completes its
transmission within 2 time-slots if using relay communications
via userU0. On the other hand, it needs 3 time-slots if using
the direct communication link. Hence, one cannot achieve the
optimal throughput unless by exploiting the better paths of
relay communications. In the following, we show that the Q-
BP algorithm indeed exploits the better paths of relay commu-
nications. Yet, the operations of Q-BP may be inefficient due
to underutilization of the link capacity, and lead to instability.

We now consider the Q-BP algorithm withdynamic routing.
In this case, Q-BP still uses the same algorithm specified in
Section III, except that flow routes need to be dynamically
chosen. Whenever there is a burst of four packet arrivals forthe
long-flow userU0, link (BS,U0) will be activated to transmit
packets forU0, as its weighted rate is(4 − 0) × 5 = 20,
which is greater than the weighted rate of the other links: the
weighted rate for a short flow at link(BS,U0) is at most
(3−0)×5 = 15, the weighted rate at link(BS,Ui) is at most
(3 − 0) × 1 = 3, and the weighted rate at link(U0, Ui) is at
most (3 − 0) × 3 = 9, respectively. When a short-flow user
Ui arrives and the queue at the BS for the long flow is empty,
Q-BP will route the packets of the short flow toU0, as link
(BS,U0) has a larger weighted rate of 15 versus the weighted
rate of 3 at link (BS,Ui). Hence, it needs 2 time-slots to
successfully transmit all the three packets from the BS toUi.
This implies that any arrival rate vector such thatpl+2ps > 1,
cannot be supported under Q-BP. However, we will show that
any arrival rate vector satisfying45pl + 2ps < 1 is feasible.
To see this, we consider a policy that gives a priority to short
flows. Specifically, when there is at least one short-flow user
in the system, the policy chooses to serve a short flowUi for
somei ≥ 1, by transmitting the three packets either from the
BS to U0 or from U0 to Ui. Hence, each short flow requires
2 time-slots to completely receive the three packets. Note that
in each time-slot, there is a short flow arrival with probability
ps. Then, the fraction of time remaining forU0 to download
its own packets is1 − 2ps. Therefore, the arrival rate vector
is feasible if4pl < 5(1 − 2ps), since each burst of arrivals
has 4 packets and the link(BS,U0) has a capacity of 5. For
example,[pl, ps] = [0.5, 0.28] yields a feasible arrival rate
vector, which, however, cannot be supported by Q-BP.

Numerical Experiment 4: We consider the system as de-
scribed in Example 4. We compare the performance of Q-
BP and the priority algorithm that gives a priority to short
flows, under the arrival rate vector of[pl, ps] = [0.5, 0.28]. We
run the simulation for104 time-slots for each algorithm, and
plot the total queue length over time under both algorithms in
Fig. 4(b). Similarly as in the previous numerical experiment,
the simulation results show that Q-BP leads to instability.

Remark:In the above example, the type of inefficiency is
the same as in Example 3, i.e., due to underutilization of the
link capacity. However, it is unclear how to extend the WSL
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(a) A single-cell wireless downlink system
with relay-assisted 2-hop communications.
Note that the link betweenUi andU0 and the
link betweenUi and the BS are similar to those
for U1, and are thus not displayed.
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(b) Comparison of Q-BP and Stable algorithm 5 (i.e., the
WSL algorithm with short flows using direct communications),
under the arrival rate vector of[pl, ps] = [0.5, 0.2].

Fig. 5. Example 5: Instability of Q-BP due to inefficient routing.

policy to the multihop traffic scenarios with dynamic routing.
Moreover, in the above example, one can further improve
throughput performance by letting the BS forward five packets
from different flows toU0. Also, to prevent the inefficiency
from occurring at links(U0, Ui), nodeU0 should not forward
any packets toUi until U0 receives all the three packets for
Ui from the BS.

In this example, we revisit the inefficiency due to underuti-
lization of the link capacity in the multihop traffic scenarios,
and show that it becomes more difficult to address the same
type of inefficiency for multihop traffic than for the single-hop
counterpart. In the following example, we show that even if
the capacity of an activated link is fully utilized, Q-BP may
still result in instability. This is caused by inefficient routing
due to insufficient paths information.

Example 5 (Inefficient routing): We consider a wireless
downlink system similar to that in Example 4, where there are
two paths (direct communications and relay communications
via userU0) between the BS and each short-flow userUi for



i ≥ 1. The link capacity is 2, 1 and 1, for link(BS,U0),
links (BS,Ui), and links(U0, Ui), for i ≥ 1, respectively, as
shown in Fig. 5(a). We consider the following traffic arrival
process: At the beginning of each time-slot, with probability
ps, a short-flow user arrives with two packets for downloading;
the long user has a burst of two packet arrivals with probability
pl, independently of the short flow arrivals.

Under Q-BP, when the BS needs to transmit the packets for
a short-flow userUi, it will use the relay-assisted path since
link (BS,U0) has a larger link rate and thus a larger weighted
rate than link(BS,Ui). Once it chooses link(BS,U0), the two
packets for userUi will be forwarded toU0, and need two
additional time-slots to be forwarded toUi. Hence, it requires
a total of three time-slots forUi to finish downloading. This
implies that any arrival rate vector withpl+3ps > 1 cannot be
supported under Q-BP. However, we observe that it needs only
two time-slots forUi to finish downloading the two packets
from the BS if it uses the path of direct communication, i.e.,
via link (BS,Ui). Hence, any arrival rate vector satisfying
pl+2ps < 1 is indeed feasible if the short flows are restricted
to use static routing with direct communications (combined
with the WSL scheduling algorithm.) For example, an arrival
rate vector with[pl, ps] = [0.5, 0.2] is feasible, but it cannot
be supported by Q-BP.

Numerical Experiment 5: We consider the system as de-
scribed in Example 5. We compare the performance of Q-
BP and the WSL algorithm [6] associated with a static
routing algorithm that restricts the short flows to choose direct
communication path only, under the arrival rate vector of
[pl, ps] = [0.5, 0.2]. We run the simulation for104 time-slots
for each algorithm, and plot the total queue length over time
under both algorithms in Fig. 5(b). Similarly as in the previous
numerical experiment, the simulation results show that Q-BP
leads to instability.

Remark: In the above example, the instability essentially
comes from inefficient routing due to insufficient paths infor-
mation. Specifically, the link-rate heterogeneity leads Q-BP
to choose a path that looks better, while is actually worse.
This type of inefficiency can be prevalent for the dynamic
routing schemes (e.g., Q-BP) in the presence of flow-level
dynamics, and is completely different from any known types
of inefficiencies that occur in the regime of link scheduling.

In the special cases of Examples 3 and 5, the inefficiency
can be readily fixed. For example, in Example 3, an easy
fix is to use the WSL algorithm [6], and in Example 5, one
can simply choose direct communication link for the short-
flow users and applies the WSL algorithm for scheduling. In
Example 4, however, a more sophisticated algorithm needs to
be developed for achieving throughput optimality. Further, a
more challenging question is how to develop a unified solution
to combat different types of inefficiencies in more general
settings with multihop traffic and dynamic routing.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we investigated the stability issue of the Back-
Pressure algorithms in the presence of flow-level dynamics.

Different from the previous works, we considered a more
general setting of multihop traffic, and identified different
types of inefficiencies. Although flow-level dynamics playsa
critical role in the instability problem, there are many different
types of inefficiencies that cause instability in multihop traffic
scenarios. This makes it difficult to develop a unified solution
that achieves the optimal throughput performance in a general
network setting. We now summarize the known types of
inefficiencies, including the new ones identified in this paper,
as follows.

• Failure to opportunistically exploit better link rates.
• Inefficient schedule or spatial reuse.
• Underutilization of the link capacity.
• Inefficient routing due to insufficient paths information.

It is a very interesting problem to study the stability issue
of the Back-Pressure algorithms in the presence of flow-
level dynamics, and to identify potential causes of inefficiency
in a more general setting. We believe that based on in-
depth understanding of the essential elements of instability
associated with flow-level dynamics, a unified optimal solution
(preferentially perhaps, of back-pressure-type) that supports
short-lived flows as well as long-lived flows can be developed.
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