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Abstract

In this paper, we quantify the efficiency of parallelism in systems that are

prone to failures and exhibit power law processing delays. We characterize

the performance of two prototype schemes of parallelism, redundant and split,

in terms of both the power law exponent and exact asymptotics of the delay

distribution tail. We also develop the optimal splitting scheme which ensures

that split always outperforms redundant.
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1. Introduction and model description

Parallelism is a common approach to improve reliability and efficiency in practice.

Of all the diverse forms of parallelism, two prototype schemes stand out. In one
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scheme that we call redundant, a task is processed in its entirety by each agent, and

is considered as completed when any one of the agents finishes. In the other scheme

that we call split, a task is split into multiple subtasks, each processed independently

by a different agent, and the original task is completed when all subtasks are. In both

cases, we expect better efficiency from using parallelism either because the processing

time is the minimum of all the agents or because a smaller task needs to be completed

by each agent.

In this paper, we quantify the efficiency of parallelism in mitigating power law

tails, which have been shown to be present when a job needs to be restarted after a

failure occurs [14, 10, 11, 9, 3]. For the sake of definiteness, let us consider the notion

of parallelism in the context of communication networks, where a data unit can be

transmitted using multiple paths. A data unit can be a file or a packet (which are

henceforth used interchangeably), and the transmission needs to restart after a failure

(i.e., there is no check point in the transmission). Figure 1 shows a sketch of the

multipath model that we consider in this paper, which is a generalization of the single

path model introduced in [10]. There are K independent paths between the source and

the destination. The channel dynamics of path j, 1 ≤ j ≤ K, are modeled as an on-off

process {(Aji , U
j
i )}i≥1 that alternates between available periods Aji and unavailable

periods U ji . We assume that {Aji}i≥1 are i.i.d. with common distribution Aj , and

{U ji }i≥1 are i.i.d. with common distribution U j . Moreover, the sequences {U ji }i≥1 and

{Aji}i≥1, 1 ≤ j ≤ K, are mutually independent.

destinationsource

Figure 1: Multipath transmission over K channels with failures

Let L be the random variable denoting the length of a packet, which is assumed

to be independent of the channel dynamics, i.e. {(Aji , U
j
i )}i≥1. A fragment of length

Lj = γjL (0 ≤ γj ≤ 1) of the packet is sent over path j. Packet transmissions can start
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only at the beginnings of available periods. A transmission over path j that starts at

the beginning of Aji is considered successful if Aji ≥ Lj ; otherwise, the transmission

aborts and waits for the beginning of the next available period Aji+1 to restart.

We study two multipath transmission schemes, namely, redundant transmission and

split transmission, corresponding to the two aforementioned prototypes of parallelism.

Under redundant transmission, the same packet is transmitted in its entirety over all

K paths, so γj = 1 for all j, and the transmission is successful as soon as one of the K

replicas arrives at the destination. Under split transmission, the packet is split into K

non-overlapping fragments, each sent over a different path, so
∑

1≤j≤K γj = 1, and the

transmission is complete only when the last fragment arrives at the destination. The

quantity of interest is the overall transmission delay, of which the precise definition is

given below.

Definition 1.1. The number of (re)transmissions of a packet of length Lj over path

j, 1 ≤ j ≤ K, is defined as

Nj ≜ min{i : Aji ≥ Lj},

and, the corresponding transmission delay over this path is defined as

Tj ≜
Nj−1∑
i=1

(Aji + U ji ) + Lj .

• Redundant transmission (Lj = L): the transmission is complete when the packet

is successfully transmitted over any one of the K paths. Therefore, the overall

transmission delay TR is

TR ≜ min
1≤j≤K

Tj .

• Split transmission (
∑K
j=1 Lj = L): the transmission is complete when all K

fragments of the packet are successfully transmitted. Therefore, the overall

transmission delay TS is

TS ≜ max
1≤j≤K

Tj ,

and the total number of retransmissions over the K paths is

NS ≜
K∑
j=1

Nj .

Our main contributions in this paper can be summarized as follows:
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• We characterize the asymptotic behavior of P
[
TR > x

]
and P

[
TS > x

]
, in terms

of both the power law exponent (Theorems 3.2 and 4.2) and exact asymptotics

(Theorems 3.3 and 4.3). Compared to the single path transmission on the best

path, redundant transmission does not change the power law tail exponent of the

delay distribution (Theorem 3.2), but only decreases the distribution tail by a

constant factor (Theorem 3.3). On the other hand, depending on the packet size

distribution and the manner of splitting, split transmission could either increase

or decrease the power law tail exponent (Theorem 4.2).

• We develop the optimal split transmission scheme that minimizes the power law

tail exponent of the transmission delay, which is guaranteed to be no larger than

that of redundant transmission and the best single path transmission (Theorem

4.4). The optimal split transmission scheme is effective in mitigating power law

delays if the absolute value of the logarithm of the packet size probability tail

is regularly varying with positive index, and becomes ineffective if the above

quantity is slowly varying.

Multipath transmissions have also been studied in [1] using Extreme Value theory,

with the number of paths going to infinity. In the present work, we focus on the

context of multipath transmissions in communication networks with a fixed (typically

small) number of paths, where multipath transmission has long been used to improve

reliability and efficiency (e.g., [12, 5, 6]). Here we want to emphasize that, the packet

size distribution has been assumed to have an infinite support in this study, which

contradicts the reality that all packet networks (from the Internet to wireless LANs)

impose maximum packet sizes at different layers of the protocol stack. It can be

proved that eventually the transmission delay distribution will be light-tailed under

this condition. However, as has been shown in [15], this light-tailed behavior occurs

with a power law main body of the delay distribution, and this power law behavior may

have dominating effects on the system performance since it spans over a time interval

that increases very fast with respect to the length of the longest packet. Thus, our

assumption on the infinite support of the packet size distribution allows us to study

the main body of the transmission delay distribution. While, similar to [15], we can

extend our results to the case with packets having finite support, we feel that this
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would distract from the main insights gained from the paper.

Note also that while we have chosen to cast the mathematical model in the context

of data transmission for wireless networks, especially for low-power sensor networks

where simple operations are preferred to recover failed data (for the performance with

complicated coding schemes see [16]), the model is applicable to many other scenarios

that involve parallelism and job failures, such as computing jobs in grid computing,

file downloading in peer to peer networks, parallel experiment planning, and parallel

scheduling.

The rest of the paper is organized as follows. Section 2 summarizes the known

results on single path transmission. Redundant transmission is investigated in Section

3, and split transmission in Section 4.

2. Summary of known results on single path transmission

In this section, we establish some notations that will be used throughout the paper,

and also summarize the results on single path transmission that will be used later.

Throughout the paper, we will use the following notation to denote the complemen-

tary cumulative distribution functions of Aj , 1 ≤ j ≤ K, and L,

Ḡj(x) ≜ P[Aj > x],

and

F̄ (x) ≜ P[L > x],

with F̄ (x) being continuous eventually. The K paths are said to be homogeneous if

{Aj , U j}1≤j≤K are identically distributed as {A,U} , in which case we use Ḡ(x) ≜
P[A > x]. In general, {Aj , U j}1≤j≤K are not identically distributed, and the K paths

are said to be heterogeneous.

We will use the following limit,

αj ≜ lim
x→∞

log F̄ (x)

log Ḡj(x)
,

when it exists, as a coarse quality measure of channel j relative to the packet size

distribution, with a larger value corresponding to a better channel.
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We will also assume some moment conditions on {U j}Kj=1, {Aj}Kj=1 and L. Specif-

ically, we will say the moment conditions hold with parameter α, if there exists some

θ > 0 such that

(C1) max1≤j≤K E
[
(U j)(α∨1)+θ

]
<∞,

(C2) max1≤j≤K E
[
(Aj)1+θ

]
<∞,

(C3) E
[
Lα+θ

]
<∞.

Before we proceed, recall the following definition of regularly varying function [4].

Definition 2.1. A positive measurable function f is called regularly varying (at in-

finity) with index ρ if

lim
x→∞

f(λx)

f(x)
= λρ (1)

for all λ > 0. It is called slowly varying if ρ = 0.

Also recall the standard definition of an inverse function f←(x) ≜ inf{y : f(y) > x}

for a non-decreasing function f(x); note that the notation f(x)−1 represents 1/f(x).

We will use ∨ to denote max, i.e., x ∨ y ≜ max{x, y}. For any two real functions f(x)

and g(x), the following standard notations will also be used:

• f(x) ∼ g(x) iff limx→∞ f(x)/g(x) = 1;

• f(x) = o(g(x)) iff limx→∞ f(x)/g(x) = 0;

• f(x) = O(g(x)) iff limx→∞ f(x)/g(x) <∞.

2.1. Single path transmission

For the case K = 1, i.e. there is only a single path in the system, the total number

of transmissions N = N1 and transmission delay T = TR = TS have been studied in

[10, 11, 3]. Below we quote Propositions 2.1 and 2.2 from [10, 11], which show that

both N and T can follow power law distributions regardless of how heavy or light the

tails of A and L might be.

Proposition 2.1. Suppose

lim
x→∞

log F̄ (x)

log Ḡ(x)
= α > 0.
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Then

lim
n→∞

logP[N > n]

log n
= −α. (2)

If, in addition, the moment conditions hold with parameter α, then,

lim
t→∞

logP[T > t]

log t
= −α. (3)

Proposition 2.2. Suppose

F̄ (x)−1 ∼ Φ
(
Ḡ(x)−1

)
,

where Φ(·) is regularly varying with index α > 0. Then as n→ ∞,

P[N > n] ∼
Γ(α+ 1)

Φ (n)
. (4)

If, in addition, the moment conditions hold with parameter α, then, as t→ ∞,

P[T > t] ∼
Γ(α+ 1)(E[U +A])α

Φ(t)
. (5)

Note that F̄ (x)−1 ∼ Φ
(
Ḡ(x)−1

)
implies limx→∞ log F̄ (x)/ log Ḡ(x) = α by The-

orem 1.4.1 and Proposition 1.3.6 of [4]. Thus Proposition 2.2 provides more refined

results than Proposition 2.1 under more restrictive conditions. As mentioned in the

introduction, the results in the preceding two propositions as well as those in the rest

of the paper can be readily extended to the case where packet sizes are bounded, using

similar techniques as in [15].

3. Redundant transmission

In this section we study the redundant transmission scheme. We investigate whether

redundant transmission over K paths can mitigate the power law distributed trans-

mission delay suffered by single path transmissions. We begin with the special case of

homogeneous paths, followed by the general case of heterogenous paths.

3.1. Homogeneous paths

In this section, we present the results for homogeneous paths. We first consider the

case where all packets are of the same size, and then the more realistic case where

packet sizes are variable.
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Proposition 3.1. Suppose all packets are of the same size l, and U = 0. Then

lim
t→∞

logP
[
TR > t

]
t

= −Kγ,

where γ > 0 is the solution to the equation
∫ l
0
eγxdP[A ≤ x] = 1.

This result can be derived using Corollary 3.2 in [3]. It shows that redundant trans-

mission greatly improves the performance when all packets are equal sized. As K

increases, we obtain order gains in the decay rate of the delay distribution tail.

In reality, however, packets are not equal sized due to many other considerations,

e.g., reducing communication costs and extra overhead induced from encapsulation.

We present next a theorem for the case where the packet size is a random variable.

Theorem 3.1. Suppose

lim
x→∞

log F̄ (x)

log Ḡ(x)
= α > 0,

and the moment conditions hold with parameter α. Then,

lim
t→∞

logP
[
TR > t

]
log t

= −α.

Comparing the above theorem with Proposition 2.1, we observe that, the power law

tail exponent of the delay distribution under redundant transmission is the same as

that under single path transmission. This is because the packets sent over these paths

are replicas of each other and hence T1, . . . , TK are not independent. This theorem is

a direct consequence of Theorem 3.2, which investigates a more general scenario.

3.2. Heterogenous paths

For heterogenous paths, we have the following result for redundant transmission.

Theorem 3.2. Suppose

lim
x→∞

log F̄ (x)

log Ḡj(x)
= αj > 0, j = 1, 2, . . . ,K. (6)

Let α∗ ≜ max1≤j≤K αj > 0 and Ω∗K = {j ∈ {1, 2, . . . ,K} : αj = α∗}. If the moment

conditions hold with parameter α∗ and with (C1) replaced by

(C1′) minj∈Ω∗
K
E
[(
U j
)(α∗∨1)+θ

]
<∞,
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then

lim
t→∞

logP
[
TR > t

]
log t

= −α∗. (7)

Theorem 3.2 shows that the tail behavior of the delay distribution under redundant

transmission is determined by the best paths (i.e., the paths with the largest αj).

Proof of Theorem 3.2. We first establish an upper bound. Suppose path k achieves

the minimum in (C1′). Note that Tk ≥ TR = min1≤j≤K Tj . By Proposition 2.1,

lim
t→∞

logP
[
TR > t

]
log t

≤ lim
t→∞

logP[Tk > t]

log t
= −αk = −α∗. (8)

Next, we establish a lower bound by constructing a new system with longer available

periods than all of the K paths. The new system has an on-off channel characterized

by alternating i.i.d. sequences {Āi} and {Ūi}, where

Āi = max
1≤j≤K

Aji ,

and Ūi = 0. Denote by N the number of transmissions for a packet of length L over

this newly constructed channel. Note that N ≤ min1≤j≤K Nj .

Note that

{Aji > x} ⊂ {Āi > x} =
K∪
j=1

{Aji > x}.

The monotonicity of the probability measure and the union bound yield

max
1≤j≤K

Ḡj(x) = max
1≤j≤K

P[Aji > x] ≤ P[Āi > x] ≤
K∑
j=1

P[Aji > x] ≤ K max
1≤j≤K

Ḡj(x).

Thus for x large enough so that Kmax1≤j≤K Ḡj(x) < 1, we have

max
1≤j≤K

log F̄ (x)

logK + log Ḡj(x)
≤ log F̄ (x)

logP[Āi > x]
≤ max

1≤j≤K

log F̄ (x)

log Ḡj(x)
.

Letting x→ ∞, we obtain

lim
x→∞

log F̄ (x)

logP[Āi > x]
= α∗.

Since E[(Āi)1+θ] ≤
∑K
j=1 E[(A

j
i )

1+θ] <∞, Proposition 2.1 yields

lim
n→∞

logP[N > n]

log n
= −α∗. (9)
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Now define Ai = min1≤j≤K A
j
i . Note that TR ≥

∑N−1
i=1 Ai, so

P
[
TR > t

]
≥ P

[
N−1∑
i=1

Ai > t

]
≥ P

⌊t log t⌋∑
i=1

Ai > t,N > t log t


≥ P [N > t log t]− P

⌊t log t⌋∑
i=1

Ai ≤ t

 ,
(10)

where the first two inequalities follow from the monotonicity of the probability measure

and the fact that N − 1 ≥ ⌊t log t⌋ for N > t log t, and the last inequality follows from

P[A ∩B] ≥ P[A]− P[Bc].

Using Markov inequality and the fact that the Ai’s are i.i.d,

P

⌊t log t⌋∑
i=1

Ai ≤ t

 = P
[
e−

∑⌊t log t⌋
i=1 Ai ≥ e−t

]
≤ Ee−

∑⌊t log t⌋
i=1 Ai

e−t
= et

(
Ee−A1

)⌊t log t⌋
.

Since A1 ≥ 0 and P[A1 > 0] > 0, we have 0 < Ee−A1 < 1, so P
[∑⌊t log t⌋

i=1 Ai ≤ t
]
drops

off exponentially in t log t. On the other hand, (9) shows that P[N > t log t] drops off

algebraically in t log t, so (10) yields

P
[
TR > t

]
≥ (1 + o(1))P[N > t log t].

Noting that log(t log t) ∼ log t and invoking (9) again, we obtain

lim
t→∞

logP
[
TR > t

]
log t

≥ lim
t→∞

logP[N > t log t]

log(t log t)
= −α∗. (11)

which, together with (8), establishes (7). This completes the proof of Theorem 3.2.

Theorem 3.2 characterizes the performance in terms of the logarithmic asymptotics.

Basically, it only contains information about the power law tail exponent, but yields

no information beyond. As a consequence, this result cannot distinguish between

redundant transmission and single path transmission over the best path(s). In order to

investigate the performance gain for redundant transmission, we need a more refined

asymptotic result. For a set of regularly varying functions Φj(·), 1 ≤ j ≤ K, we can

compute the exact asymptotic tail of the distribution of TR.

Theorem 3.3. Suppose F̄ (x)−1 ∼ ζjΦj
(
Ḡj(x)

−1), where ζj > 0, and Φj(·) is reg-

ularly varying with index αj > 0 such that Φi(x) ∼ Φj(x) if αi = αj. Let α∗ =
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max1≤j≤K αj and Ω∗K = {j ∈ {1, 2, . . . ,K} : αj = α∗}. If the moment conditions hold

with parameter α∗ and with (C1) replaced by

(C1′′) maxj∈Ω∗
K
E
[(
U j
)(α∗∨1)+θ

]
<∞,

then as t→ ∞,

P
[
TR > t

]
∼

Γ(α∗ + 1)(∑
j∈Ω∗

K
(E[Aj + U j ])

−1
ζ
1/α∗

j

)α∗
1

Φ∗(t)
, (12)

where Φ∗(t) ∼ Φj(t) for j ∈ Ω∗K .

This result shows that when there are multiple channels with the best quality

measure α∗, redundant transmission improves the system performance by reducing

the delay distribution tail by a constant factor, relative to the single path transmission

over any such path. Moreover, this constant factor does not depend on the non-best

paths. When the K channels are i.i.d., it is equal to Kα.

In order to prove the theorem, we need the following lemmas, which are stated for

the general case where Lj = γjL for some γj > 0, so that the results will be applicable

later to the split transmission scheme. Recall that γj = 1 for redundant transmission,

and
∑K
j=1 γj = 1 for split transmission.

Lemma 3.1. Suppose F̄ (x)−1 ∼ ζjΦj
(
Ḡj(γjx)

−1), where ζj > 0, and Φj(·) is a

regularly varying function with index αj > 0 such that Φi(x) ∼ Φj(x) if αi = αj.

Then, for ψj > 0, j = 1, 2, . . . ,K, and a nonempty subset J ⊂ {1, 2, . . . ,K},

P

∩
j∈J

{Nj > ψjt}

 ∼ Γ(α∗J + 1)(∑
j∈J∗ ψjζ

1/α∗
J

j

)α∗
J

1

Φ∗J(t)
, (13)

where α∗J = maxj∈J αj, J
∗ = {j ∈ J : αj = α∗J} and Φ∗J(t) ∼ Φj(t) for j ∈ J∗.

Proof. See Appendix A.

Lemma 3.2. Suppose E[(Aj)1+θ] < ∞. Then for ψj > 1/E[Aj ], there exists some

η > 0 and C > 0 such that

P[Tj ≤ t,Nj > ψjt] ≤ Ce−ηt.

If, in addition, E[(U j)1+θ] < ∞ for some θ > 0, then the claim is true for ψj >

1/E[Aj + U j ].
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Proof. Note that Nj > ψjt implies Nj − 1 ≥ ⌊ψjt⌋. Thus for Nj > ψjt,

Tj =

Nj−1∑
i=1

(Aji + U ji ) + Lj ≥
⌊ψjt⌋∑
i=1

(Aji + U ji ) ≥
⌊ψjt⌋∑
i=1

Aji ,

from which it follows

P[Tj ≤ t,Nj > ψjt] ≤ P

⌊ψjt⌋∑
i=1

(Aji + U ji ) ≤ t

 ≤ P

⌊ψjt⌋∑
i=1

Aji ≤ t

 .
By letting X = Aj + U j , Xi = Aji + U ji , or X = Aj , Xi = Aji , we prove both cases at

once. Given y > 0, Markov inequality implies

P

⌊ψjt⌋∑
i=1

Xi ≤ t

 = P

exp
−y

⌊ψjt⌋∑
i=1

Xi

 ≥ e−yt

 ≤ eyt
(
E[e−yX ]

)⌊ψjt⌋
.

Choose δ > 0 small enough so that (1− 2δ)ψjEX > 1. Since e−x = 1− x+ o(x), there

exists x0 > 0 such that e−x ≤ 1 − (1 − δ)x for 0 ≤ x ≤ x0. Let D = (1 − δ)x−θ0 > 0.

Then for x ≥ x0,

1− (1− δ)x+Dx1+θ = 1 + (1− δ)x

[(
x

x0

)θ
− 1

]
≥ 1 > e−x.

Thus e−x ≤ 1− (1−δ)x+Dx1+θ for all x ≥ 0. Setting x = yX and taking expectation

then yield, for small enough y > 0,

E[e−yX ] ≤ 1− (1− δ)yEX +Dy1+θEX1+θ ≤ 1− (1− 2δ)yEX ≤ e−(1−2δ)yEX .

Therefore,

P[Tj ≤ t,Nj > ψjt] ≤ P

⌊ψjt⌋∑
i=1

Xi ≤ t

 ≤ eyte−(1−2δ)yEX⌊ψjt⌋ = Ce−ηt,

where η = y[(1− 2δ)ψjEX − 1] > 0 and C = e(1−2δ)yEX .

Lemma 3.3. If E[(U j)(α∨1)+θ] < ∞, E[(Aj)1+θ] < ∞, E[Lα+θ] < ∞ for some α > 0

and θ > 0, and ψj < 1/E[Aj + U j ], then there exists ν > α such that

P[Tj > t,Nj ≤ ψjt] = O(t−ν).

Proof. See Appendix B.
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Now we prove Theorem 3.3.

Proof of Theorem 3.3. Let ψj < 1/E[Aj + U j ], j ∈ Ω∗K . Note that {TR > t} ⊂∩
j∈Ω∗

K
{Tj > t}. Thus

P
[
TR > t

]
≤ P

 ∩
j∈Ω∗

K

{Tj > t}

 ≤ P

 ∩
j∈Ω∗

K

{Nj > ψjt}

+
∑
j∈Ω∗

K

P[Tj > t,Nj ≤ ψjt].

The last term is o(1/Φ∗(t)) by Lemma 3.3 and Proposition 1.5.1 of [4]. Lemma 3.1

then yields

lim
t→∞

Φ∗(t)P[TR > t] ≤ Γ(α∗ + 1)(∑
j∈Ω∗

K
ψjζ

1/α∗

j

)α∗ . (14)

Let ψ̃j > 1/E[Aj + U j ] for j ∈ Ω∗K and ψ̃j > 1/E[Aj ] for j /∈ Ω∗K . Using union

bounds, we obtain

P
[
TR > t

]
≥ P

 K∩
j=1

{Nj > ψ̃jt}

−
K∑
j=1

P[Tj ≤ t,Nj > ψ̃jt].

The last term is o(1/Φ∗(t)) by Lemma 3.2 and Proposition 1.5.1 of [4]. Lemma 3.1

then yields

lim
t→∞

Φ∗(t)P
[
TR > t

]
≥ Γ(α∗ + 1)(∑

j∈Ω∗
K
ψ̃jζ

1/α∗

j

)α∗ . (15)

We complete the proof by combining (14) and (15) and letting ψj , ψ̃j → 1/E[Aj +U j ]

for j ∈ Ω∗K .

4. Split transmission

In this section we study the split transmission scheme, where a packet is split into

non-overlapping fragments, each sent over a different path. Recall that a fraction

γj of the packet L is sent over path j, where
∑K
j=1 γj = 1 and 0 ≤ γj ≤ 1 for

1 ≤ j ≤ K. We will assume γj > 0 except in Theorem 4.4. We begin with the case of

homogeneous paths, followed by the of heterogenous case. We also investigate which of

the two schemes, split transmission or redundant transmission, results in a lighter tail

for the transmission delay distribution. We develop the optimal splitting scheme that

minimizes the tail exponent of the delay distribution, in which case split transmission

outperforms redundant transmission.
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4.1. Homogeneous paths

We have the following theorem for split transmission over homogenous paths, where

each packet is evenly split into K fragments. It is a special case of Theorem 4.2, so

the proof is omitted.

Theorem 4.1. Suppose

lim
x→∞

log F̄ (x)

log Ḡ(x)
= α > 0,

and

lim
x→∞

log F̄ (Kx)

log F̄ (x)
= β. (16)

If the moment conditions hold with parameter βα, then,

lim
t→∞

logP
[
TS > t

]
log t

= −βα.

Note that β ≥ 1. By comparing Proposition 2.1 and Theorems 3.1 and 4.1, we ob-

serve that split transmission is no worse than redundant transmission for homogeneous

paths, when packets are split evenly. Split transmission is not beneficial when β = 1,

e.g., when log F̄ (x)−1 is a slowly varying function.

Theorem 4.1 shows that the effectiveness of split transmission is closely dependent

on the packet size distribution, as characterized by (16). We illustrate this point further

using several common distributions. For each distribution, we calculate α and β, and

the power law tail exponent is −βα.

Example 4.1. (Weibull distribution.) Suppose that both the packet size L and the

available period A follow Weibull distributions, i.e.,

F̄ (x) = P[L > x] = e−(λx)
b

,

Ḡ(x) = P[A > x] = e−(µx)
b

,

where λ > 0, µ > 0, and b > 0. Then

α = lim
x→∞

log F̄ (x)

log Ḡ(x)
= lim
x→∞

log e−(λx)
b

log e−(µx)b
=

(
λ

µ

)b
,

β = lim
x→∞

log F̄ (Kx)

log F̄ (x)
= lim
x→∞

log (e−(λKx)
b

)

log (e−(λx)b)
= Kb > 1.
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Example 4.2. (Pareto distribution.) Suppose that both the packet size L and the

available period A follow Pareto distributions, i.e.,

F̄ (x) = P[L > x] =


(
b0
x

)λ
, x ≥ b0,

1, x < b0,

Ḡ(x) = P[A > x] =


(
b1
x

)µ
, x ≥ b1,

1, x < b1,

where λ > 0, µ > 0, and b0, b1 > 0. Then

α = lim
x→∞

log F̄ (x)

log Ḡ(x)
= lim
x→∞

λ(log b0 − log x)

µ(log b1 − log x)
=
λ

µ
,

β = lim
x→∞

log F̄ (Kx)

log F̄ (x)
= lim
x→∞

λ(log b0 − logK − log x)

λ(log b0 − log x)
= 1.

Observe that β = 1 when L follows a Pareto distribution. In general, β = 1 if

log F̄ (x)−1 is slowly varying. In that case, split transmission is not beneficial compared

to single path transmission and redundant transmission in terms of tail performance.

4.2. Heterogenous paths

For heterogenous paths, we have the following result for the transmission time.

Theorem 4.2. Suppose for j = 1, 2, . . . ,K,

lim
x→∞

log F̄ (x)

log Ḡj(x)
= αj > 0, (17)

lim
x→∞

log F̄ (x)

log F̄ (γjx)
= βj . (18)

Then

lim
n→∞

logP
[
NS > n

]
log n

= −τ◦,

where τ◦ = min1≤j≤K βjαj. If, in addition, the moment conditions hold with parameter

τ◦, then

lim
t→∞

logP
[
TS > t

]
log t

= −τ◦.

When paths are heterogeneous, the delay distribution tail is determined by the best

path(s) under redundant transmission and by the worst path(s) under split transmis-

sion. On the other hand, split transmission only sends a fraction of the packet over



16 B. Jiang, J. Tan, W. Wei, N. Shroff, D. Towsley

each path. Comparing Theorems 3.2 and 4.2, we observe that, if min1≤j≤K βjαj >

max1≤j≤K αj , split transmission is more effective than redundant transmission in

minimizing the power law tail exponent; otherwise, redundant transmission is more

effective. We will show later that, by carefully choosing the way to split packets, the tail

performance of split transmission is never worse than that of redundant transmission.

Proof of Theorem 4.2. We first prove the result for NS . Since log ⌊n/K⌋ ∼ logn as

n→ ∞, Proposition 2.1 then implies

lim
n→∞

logP[Nj > n]

log n
= lim
n→∞

logP[Nj > n/K]

log n
= −βjαj , (19)

Since NS =
∑K
j=1Nj , we have

max
1≤j≤K

P[Nj > n] ≤ P
[
NS > n

]
≤

K∑
j=1

P
[
Nj >

n

K

]
≤ K max

1≤j≤K
P
[
Nj >

n

K

]
,

which yields

−τ◦ = max
1≤j≤K

lim
n→∞

logP [Nj > n]

logn
≤ lim
n→∞

logP
[
NS > n

]
log n

≤ max
1≤j≤K

lim
n→∞

logP [Nj > n/K]

log n
= −τ◦,

the desired result.

Next we prove the result for TS . Let Ω◦K = {j ∈ {1, 2, . . . ,K} : βjαj = τ◦}.

Combining (17) and (18), we obtain

lim
x→∞

logP[γjL > x]

logP[Aj > x]
= lim
x→∞

βj log F̄ (x)

log Ḡj(x)
= βjαj = τ◦, j ∈ Ω◦K ,

which, by Proposition 2.1, yields

lim
t→∞

logP[Tj > t]

log t
= −τ◦, j ∈ Ω◦K .

Since TS = max1≤j≤K Tj , we have

P
[
TS > t

]
≥ max
j∈Ω◦

K

P[Tj > t],

and hence

lim
t→∞

logP
[
TS > t

]
log t

≥ max
j∈Ω◦

K

lim
t→∞

logP
[
TS > t

]
log t

= −τ◦. (20)
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On the other hand, for 0 < ψj < 1/E[Aj + U j ],

P
[
TS > t

]
≤

K∑
j=1

P[Tj > t] ≤ K max
1≤j≤K

P[Nj > ψjt] +

K∑
j=1

P[Tj > t,Nj ≤ ψjt].

Using (19),

lim
t→∞

log (Kmax1≤j≤K P [Nj > ψjt])

log t
= max

1≤j≤K
lim
t→∞

logP [Nj > ψjt]

log t
= −τ◦,

so max1≤j≤K P[Nj > ψjt] = t−τ
◦+o(1). By Lemma 3.3, for some ν > τ◦, we have

P[Tj > t,Nj ≤ ψjt] = O(t−ν) = o (max1≤j≤K P[Nj > ψjt]). Therefore,

lim
t→∞

logP
[
TS > t

]
log t

≤ lim
t→∞

log (Kmax1≤j≤K P [Nj > ψjt])

log t
= −τ◦,

which, combined with (20), completes the proof.

Theorem 4.2 characterizes the tail performance of the split transmission scheme in

terms of the logarithmic asymptotics. Next, we present a theorem on the more refined

asymptotic result.

Theorem 4.3. Suppose

F̄ (x)−1 ∼ ζjΦj
(
Ḡj(x)

−1) , (21)

and

F̄ (x)−1 ∼ ξjΘj
(
F̄ (γjx)

−1) , (22)

where ζj, ξj > 0, and Φj(·), Θj(·) are regularly varying with indices αj > 0, βj > 0,

respectively, such that Θi(Φ(x)) ∼ Θj(Φ(x)) if βiαi = βjαj. Let τ◦ = min1≤j≤K βjαj.

If the moment conditions hold with parameter τ◦, then as t→ ∞,

Π◦(t)P
[
TS > t

]
→

∑
J:∅̸=J⊂Ω◦

K

(−1)|J|+1Γ(τ◦ + 1)(∑
j∈J (E[Aj + U j ])−1ξ

1/τ◦

j ζ
1/αj

j

)τ◦ , (23)

where Ω◦K = {j ∈ {1, . . . ,K} : βjαj = τ◦} and Π◦(t) ∼ Θj(Φj(t)) for j ∈ Ω◦K .

Note that (21) and (22) are strengthened versions of (17) and (18), respectively.

If the limit in (23) is not zero, e.g. when |Ω◦K | = 1, then we obtain an asymptotic

representation of P[TS > t].

Proof of Theorem 4.3. By (21) and (22),

F̄ (x)−1 ∼ ξjΘj
(
F̄ (γjx)

−1) ∼ ξjζ
βj

j Πj
(
Ḡj(γjx)

−1) ,
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where Πj ≜ Θj ◦ Φj is regularly varying with index τj ≜ βjαj > 0. By Lemma 3.1,

P

∩
j∈J

{Nj > ψjt}

 ∼ Γ(τ∗J + 1)(∑
j∈J∗ ψjξ

1/τ∗
J

j ζ
1/αj

j

)τ∗
J

1

Π∗J (t)
, (24)

where τ∗J = maxj∈J τj , J
∗ = {j ∈ J : τj = τ∗J}, and Π∗J(t) ∼ Πj(t) for j ∈ J∗. By the

inclusion-exclusion principle,

P

 K∪
j=1

{Nj > ψjt}

 =
∑

∅≠J⊂{1,2,...,K}

(−1)|J|+1P

∩
j∈J

{Nj > ψjt}

 ,
which, together with (24), yields that for any ψj > 0, as t→ ∞,

Π◦(t)P

 K∪
j=1

{Nj > ψjt}

→
∑

J:∅≠J⊂Ω◦
K

(−1)|J|+1Γ(τ◦ + 1)(∑
j∈J ψjξ

1/τ◦

j ζ
1/αj

j

)τ◦ . (25)

Now let ψ̂j < 1/E[Aj + U j ] < ψ̃j . By union bounds,

P

 K∪
j=1

{
Nj > ψ̃jt

}−
K∑
j=1

P
[
Tj ≤ t,Nj > ψ̃jt

]
≤ P

[
TS > t

]
= P

 K∪
j=1

{Tj > t}


≤ P

 K∪
j=1

{
Nj > ψ̂jt

}+
K∑
j=1

P
[
Tj > t,Nj ≤ ψ̂jt

]
.

By Lemma 3.2, Lemma 3.3, Eq. (25) and Proposition 1.5.1 of [4],∑
J:∅̸=J⊂Ω◦

K

(−1)|J|+1Γ(τ◦ + 1)(∑
j∈J ψ̃jξ

1/τ◦

j ζ
1/αj

j

)τ◦ ≤ lim
t→∞

Π◦(t)P
[
TS > t

]
≤

∑
J:∅≠J⊂Ω◦

K

(−1)|J|+1Γ(τ◦ + 1)(∑
j∈J ψ̂jξ

1/τ◦

j ζ
1/αj

j

)τ◦ .

Now letting ψ̂j , ψ̃j → 1/E[Aj + U j ] completes the proof.

4.3. Optimal split transmission

According to Theorem 4.2, in order to minimize the power law tail exponent of

the delay distribution, the γj ’s should be chosen in such a way that min1≤j≤K βjαj

is maximized. We may speculate that we need to choose the γj ’s so that β1α1 =

β2α2 = · · · = βKαK . The following theorem confirms that this is indeed the case

when log
(
F̄ (x)−1

)
is not slowly varying. A related work on optimal file split under a

different problem setting can be found in [7].
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Theorem 4.4. Suppose we use split transmission over K heterogeneous paths, each

satisfying (17). If the limit

β(γ) = lim
x→∞

log F̄ (x)

log F̄ (γx)

exists for all 0 < γ < 1, then there exists a unique constant ρ ≥ 0 such β(γ) = γ−ρ.

Let

αρ =


(

K∑
i=1

α
1/ρ
i

)ρ
, ρ > 0,

max
1≤i≤K

αi, ρ = 0.

(26)

If, in addition, the moment conditions hold with parameter αρ, then the minimum

power law tail exponent achievable is −αρ. The optimal splitting scheme that achieves

the minimum is as follows.

a) If ρ > 0, then

γ∗j =
α
1/ρ
j∑K

i=1 α
1/ρ
i

, j = 1, 2, . . . ,K. (27)

b) If ρ = 0, then γj = 0 for αj ̸= max1≤i≤K αi and the other γj can be any partition

of one.

In the preceding result, our objective is to minimize the power law tail exponent.

When ρ = 0, we have β(γ) = 1, and log F̄ (x)−1 is a slowly varying function. In

this case, we should only use the best paths (i.e. paths with the largest αj value),

and the scheme in (27) is to split the packet arbitrarily among the best paths. This

provides us with some unused degrees of freedom that may potentially be used to

optimize some additional objectives, but we will not pursue it here. When ρ > 0, all

the channels are utilized, and the optimal fraction over each path is specified by (27).

In this case, one can easily check that the optimal tail exponent is indeed achieved

when β1α1 = β2α2 = · · · = βKαK .

Note that αρ =
(∑K

i=1 α
1/ρ
i

)ρ
≥ α∗ with equality if and only if ρ = 0, where

α∗ = max1≤j≤K αj > 0, as defined in Theorem 3.2. Thus, under the assumption of

Theorem 4.4, split transmission achieves a better exponent than redundant transmis-

sion if ρ > 0.
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Proof of Theorem 4.4. (i) Note that β(γ) ≥ 1 on (0, 1). If β(γ) = 1 for all γ ∈ (0, 1),

then β(γ) = γ−ρ for ρ = 0. Now assume β0 = β(γ0) > 1 for some γ0 ∈ (0, 1). Observe

that β(γ1γ2) = β(γ1)β(γ2) for any γ1, γ2 ∈ (0, 1). Thus, for any positive integer m,n,

β(γ
m/n
0 ) =

(
β(γ

1/n
0 )

)n×m/n
=
(
β
(
(γ

1/n
0 )n

))m/n
= β

m/n
0 .

Since β is monotonically decreasing and the positive rationals are dense in R+,

β(γr0) = βr0 , r ∈ R+,

or, equivalently,

β(γ) = γlog β0/ log γ0 = γ−ρ, γ ∈ (0, 1),

where ρ = − log β0/ log γ0 > 0. It is clear that ρ is unique.

(ii) Let {γj} be any splitting scheme. Let

τ◦ = min
j:γj>0

αjγ
−ρ
j . (28)

If ρ = 0, then

τ◦ = min
j:γj>0

αj ≤ max
1≤j≤K

αj = αρ

with equality if and only if γj = 0 whenever αj ̸= αρ. If ρ > 0, then (28) gives

γj(τ
◦)1/ρ ≤ α

1/ρ
j , j = 1, 2, . . . ,K.

Summing over j and noting
∑
j γj = 1, we have (τ◦)1/ρ ≤

∑K
j=1 α

1/ρ
j , or τ◦ ≤ αρ,

with equality if γj = γ∗j as given by (27). In both cases, Theorem 4.2 shows that the

minimum power law tail exponent achievable is −max τ◦ = −αρ.

To illustrate the result of Theorem 4.4, we compute the optimal splitting scheme

for some typical distributions.

Example 4.3. (Weibull distribution.) Consider the heterogeneous counterpart of Ex-

ample 4.1. Suppose that the packet length L and all the available periods Aj (1 ≤ j ≤

K) follow Weibull distributions, i.e.

F̄ (x) = P[L > x] = e−(λx)
b

,

Ḡj(x) = P[Aj > x] = e−(µjx)
b

,
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where λ > 0, µj > 0, and b > 0. Then αj = (λ/µj)
b
, β(γ) = γ−b and ρ = b. Therefore,

the optimal splitting scheme is

γj =
(λ/µj)

1/b∑K
i=1 (λ/µi)

1/b
=

µ
−1/b
j∑K

i=1 µ
−1/b
i

, j = 1, . . . ,K.

Example 4.4. (Pareto distribution.) Suppose the packet size L and all the available

periods Aj follow Pareto distributions, i.e.

F̄ (x) = P[L > x] =


(
b0
x

)λ
, x ≥ b0,

1, x < b0,

Ḡj(x) = P[Aj > x] =


(
bj
x

)µ
, x ≥ bj ,

1, x < bj ,

As noted in Example 4.2, we have β(γ) = 1 and ρ = 0. Thus the optimal splitting

scheme is to use the best paths only, i.e. γj is nonzero only if αj = max1≤i≤K αi, and

the split among these paths is arbitrary as long as the tail exponent is concerned.
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Appendix A. Proof of Lemma 3.1

The proof itself is divided into several lemmas. We first recall

Lemma A.1. (Proposition 1.5.8 of [4].) Let Φ(x) be regularly varying with index

α > 0. For large enough x0, the function defined by

Ψ(x) =

∫ x

x0

αu−1Φ(u)du, x ≥ x0 (29)

satisfies Ψ(x) ∼ Φ(x).

The key step is the following lemma.
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Lemma A.2. Let Φ(x) be regularly varying with index α > 0 and continuous on

[x0,∞) for some x0 > 0. Let Ψ(x) be given by (29) and Ψ←(x) its inverse. Then

for all small enough ϵ > 0, as x→ ∞,

H(x; ϵ, C) ≜
∫ ϵ

0

exp

(
− Cx

Ψ←(v−1)

)
dv ∼ Γ(α+ 1)

Cα
1

Φ(x)
. (30)

Proof. Note that Ψ(x) is a monotonically increasing diffeomorphism from [x0,∞)

onto [0,∞). Changing variable by u = x/Ψ←(v−1), i.e. v = 1/Ψ(x/u),

H(x; ϵ, C) =

∫ c(ϵ)x

0

αu−1e−Cu
Φ(x/u)

Ψ2(x/u)
du, (31)

where c(ϵ) = 1/Ψ←(ϵ−1) > 0.

Note that Φ∗(x) = xα/2/Φ(x) is regularly varying with index −α/2 < 0. An

application of Theorem 1.5.2 of [4] to Φ∗(x) implies that there exists M0 such that

for x > M0 and 0 < u ≤ 1,

u−α/2
Φ(x)

Φ(x/u)
=

Φ∗(x/u)

Φ∗(x)
≤ uα/2 + 1 ≤ 2,

and hence
Φ(x)

Φ(x/u)
≤ 2uα/2. (32)

By Theorem 1.5.6 of [4], there existsM1 > M0 such that for x ≥M1 and 1 ≤ u ≤ x/M1,

Φ(x)

Φ(x/u)
≤ 2uα+1. (33)

Since Ψ(x) ∼ Φ(x), there exists M ≥M1 such that for all x/u ≥M ,

Φ(x/u)

Ψ(x/u)
≤ 2. (34)

Since c(ϵ) = 1/Ψ←(ϵ−1) → 0 as ϵ→ 0, there exists ϵ0 > 0 such that c(ϵ) < 1/M for all

ϵ < ϵ0. Combining (32), (33) and (34) yields

Φ(x)Φ(x/u)

Ψ2(x/u)
=

Φ(x)

Φ(x/u)
·
(
Φ(x/u)

Ψ(x/u)

)2

≤ 8uα+1 + 8uα/2, (35)

for x ≥M , ϵ < ϵ0 and 0 < u ≤ c(ϵ)x.

Note that as x→ ∞,

f(u, x) ≜ αu−1e−Cu
Φ(x)Φ(x/u)

Ψ2(x/u)
1(0 < u ≤ c(ϵ)x] → αuα−1e−Cu.
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Moreover, for x ≥M and ϵ < ϵ0, (35) yields

0 ≤ f(u, x) ≤ g(u) ≜ 8α(uα + uα/2−1)e−Cu,

where g(u) ∈ L1(0,∞) with integral∫ ∞
0

g(u)du =
8αΓ(α+ 1)

Cα+1
+

8αΓ(α/2)

Cα/2
<∞.

Therefore, by the Dominated Convergence Theorem and (31), for ϵ < ϵ0,

Φ(x)H(x; ϵ, C) =

∫ ∞
0

f(u, x)du→
∫ ∞
0

αe−Cuuα−1du =
Γ(α+ 1)

Cα
,

as x→ ∞.

Lemma A.3. Let Φ(x) be regularly varying with index α > 0 and continuous on

[x0,∞) for some x0 > 0. Let Ψ(x) be given by (29) and Ψ←(x) its inverse. If

h(x) ∼ C/Ψ←(F̄ (x)−1), then for all large enough z,

E
[
e−th(L)1(L > z)

]
∼ Γ(α+ 1)

Cα
1

Φ(t)
, as t→ ∞. (36)

Proof. Given δ ∈ (0, 1), for all large enough x,

(1− δ)C/Ψ←(F̄ (x)−1) ≤ h(x) ≤ (1 + δ)C/Ψ←(F̄ (x)−1).

Thus for all large enough z, after integrating and changing variables by v = F̄ (x), we

obtain

H
(
t; F̄ (z), (1 + δ)C

)
≤ E

[
e−th(L)1(L > z)

]
≤ H

(
t; F̄ (z), (1− δ)C

)
, (37)

where H(t; ϵ, C) is as defined in (30). When z is large enough, F̄ (z) is small enough,

so by (30),

Γ(α+ 1)

(1 + δ)αCα
≤ lim
t→∞

Φ(t)E
[
e−th(L)1(L > z)

]
≤ Γ(α+ 1)

(1− δ)αCα
.

Now letting δ → 0 yields the desired result (38).

Lemma A.4. Let Φ(x) be regularly varying with index α > 0. Let f(x) and g(x) tend

to ∞ as x→ ∞. If f(x) ∼ g(x), then Φ(f(x)) ∼ Φ(g(x)).
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Proof. Let Ψ(x) be given by (29). Given any ϵ ∈ (0, 1), for all large enough x,

(1− ϵ)g(x) ≤ f(x) ≤ (1 + ϵ)g(x),

and hence the mononicity of Ψ(x) yields

Ψ((1− ϵ)g(x)) ≤ Ψ(f(x)) ≤ Ψ((1 + ϵ)g(x)).

Since Ψ(x) is regularly varing with index α, by (1),

(1− ϵ)α = lim
x→∞

Ψ(1− ϵ)g(x))

Ψ(g(x))
≤ lim
x→∞

Ψ(f(x))

Ψ(g(x))

≤ lim
x→∞

Ψ(f(x))

Ψ(g(x))
≤ lim
x→∞

Ψ((1 + ϵ)g(x))

Ψ(g(x))
= (1 + ϵ)α.

Letting ϵ→ 0 yields Ψ(f(x)) ∼ Ψ(g(x)). Since Φ(x) ∼ Ψ(x), it follows that Φ(f(x)) ∼

Φ(g(x)).

Proof of Lemma 3.1. Replacing Φj(x) by Ψj(x) as given in (29) if necessary, we

can assume that Φj(x) is continuous on [x0,∞) for some large enough x0. Now let

Ψj(x) be given by (29) and Ψ←j (x) its inverse. By Theorem 1.5.12 of [4], Ψ←j (x) is

regularly varying with index 1/αj . Using Φj(x) ∼ Ψj(x), we obtain

Ψj(Ḡj(γjx)
−1) ∼ Φj(Ḡj(γjx)

−1) ∼ ζ−1j F̄ (x)−1,

which, by Lemma A.4, yields

Ḡj(γjx)
−1 ∼ Ψ←j (ζ−1j F̄ (x)−1) ∼ ζ

−1/αj

j Ψ←j (F̄ (x)−1),

and hence∑
j∈J

ψjḠj(γjx) ∼
∑
j∈J

ψjζ
1/αj

j /Ψ←j (F̄ (x)−1) ∼
∑
j∈J∗

ψjζ
1/α∗

J
j /Ψ←J∗(F̄ (x)−1),

where α∗J = maxj∈J αj , J
∗ = {j ∈ J : αj = α∗J} and Ψ←J∗(x) is the inverse of Ψ∗J (x),

which corresponds to Φ∗J(x) as in (29). Thus by Lemma A.3, for all large enough z,

Q(t, z) ≜ E

exp
−t

∑
j∈J

ψjḠj(L)

1(L > z)

 ∼ Γ(α∗J + 1)(∑
j∈J∗ ψjζ

1/α∗
J

j

)α∗
J

1

Φ∗J (t)
. (38)

Denote the left-hand side of (13) by R(t). Since the Nj ’s are independent condi-

tioned on L,

R(t) = E

∏
j∈J

P[Nj > ψjt | L]

 = E

∏
j∈J

(
1− Ḡj(γjL)

)⌊ψjt⌋

 . (39)
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Note that given any ϵ > 0, there exists M > 0 such that for all x > M ,

∏
j∈J

(1− Ḡj(γjx))
⌊ψjt⌋ ≥

∏
j∈J

(1− Ḡj(γjx))
ψjt ≥ (1− ϵ) exp

−t
∑
j∈J

ψjḠj(γjx)

 .

Thus for all large enough z,

R(t) ≥ E

∏
j∈J

(
1− Ḡj(γjL)

)⌊ψjt⌋
1(L > z)

 ≥ (1− ϵ)Q(t, z),

which, together with (38), yields

lim
t→∞

Φ∗J (t)R(t) ≥ (1− ϵ)
Γ(α∗J + 1)(∑

j∈J∗ ψjζ
1/α∗

J
j

)α∗
J
.

Letting ϵ→ 0,

lim
t→∞

Φ∗J(t)R(t) ≥
Γ(α∗J + 1)(∑

j∈J∗ ψjζ
1/α∗

J
j

)α∗
J
. (40)

On the other hand, the inequalities ⌊x⌋ ≥ x− 1 and 1− x ≤ e−x yield

∏
j∈J

(1− Ḡj(γjx))
⌊ψjt⌋ ≤ exp

∑
j∈J

Ḡj(γjx)

 exp

−t
∑
j∈J

ψjḠj(γjx)

 ,

whence, by splitting (39) into two parts according to L > z and L ≤ z,

R(t) ≤ exp

∑
j∈J

Ḡj(γjz)

Q(t, z) + exp

−t
∑
j∈J

ψjḠj(γjz) + |J |

 . (41)

By Proposition 1.5.1 of [4], the last term of (41) is o(t−α
∗
J−1) = o(1/Φ∗J(t)) as t→ ∞.

Using (38), we obtain, for all large enough z,

lim
t→∞

Φ∗J(t)R(t) ≤ exp

∑
j∈J

Ḡj(z)

 Γ(α∗J + 1)(∑
j∈J∗ ψjζ

1/α∗
J

j

)α∗
J
.

Now letting z → ∞,

lim
t→∞

Φ(t)R(t) ≤ Γ(α∗J + 1)(∑
j∈J∗ ψjζ

1/α∗
J

j

)α∗
J
.

which, together with (40), yields (13).
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Appendix B. Proof of Lemma 3.3

The proof is divided into several steps. We first recall the following two results from

[13].

Lemma B.1. (Corollary 1.6 of [13].) Let X1, X2, . . . , Xn be i.i.d. random variables

∼ X such that EX = 0 and a+s ≜ E[(X ∨ 0)s] < ∞ for 1 ≤ s ≤ 2. Then for

x > y > (4na+s )
1/s,

P

[
n∑
i=1

Xi ≥ x

]
≤ nP[X > y] +

(
ne2a+s
xys−1

)x/(2y)
.

Lemma B.2. (Corollary 1.8 of [13].) Let X1, X2, . . . , Xn be i.i.d. random variables

∼ X such that EX = 0, σ2 = Var[X] < ∞ and a+s ≜ E[Xs1(X ≥ 0)] < ∞ for s ≥ 2.

Then

P

[
n∑
i=1

Xi ≥ x

]
≤ csa

+
s n

xs
+ exp

(
−dsx

2

σ2n

)
.

where cs = (1 + 2/s)s and ds = 2(s+ 2)−2e−s.

We will use the two lemmas in the following combined form.

Corollary B.1. Let X1, X2, . . . , Xn be i.i.d. random variables ∼ X such that EX = 0

and E[Xs] <∞ for some s ≥ 1. If n = O(xq) for some q < s ∧ 2, then

P

[
n∑
i=1

Xi > x

]
= O

( n
xs

)
, as x→ ∞.

Proof. If 1 ≤ s ≤ 2, then (4na+s )
1/s = O(xq/s) = o(x), so x/2 > (4na+s )

1/s for large

enough x. Setting y = x/2 in Lemma B.1 and then applying Markov inequality to

P[X > x/2] yield

P

[
n∑
i=1

Xi > x

]
≤ nP[X > x/2] + n

2s−1e2a+s
xs

≤ 2s−1(2 + e2)a+s
n

xs
.

If s ≥ 2, then x2/n = Ω(x2−q) and the result follows from Lemma B.2.

The next two lemmas are the key ingredients for the proof of Lemma 3.3.

Lemma B.3. If E[(U j)s] < ∞ for some s > α ∨ 1, then there exists an ν > α such

that as t→ ∞,

P

 Nj∑
i=1

(U ji − E[U j ]) > δt,Nj ≤ ψjt

 = O

(
1

tν

)
.
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Proof. Let Ũ ji = U ji − E[U j ]. Since Nj and {U ji } are independent,

P

 Nj∑
i=1

Ũ ji > δt,Nj ≤ ψjt

 =
M∑
n=1

P[Nj = n]P

[
n∑
i=1

Ũ ji > δt

]

where M = ⌊ψjt⌋. By Corollary B.1, the right-hand side is

M∑
n=1

P[Nj = n]O(nt−s) = O

(
t−s

M∑
n=1

nP[Nj = n]

)
.

Using summation by parts,

M∑
n=1

nP[Nj = n] = 1 +
M−1∑
n=1

P[Nj > n]−MP[Nj > M ] ≤ 2 +
M∑
n=2

P[Nj > n].

If α > 1, then let θ ∈ (1, α); otherwise let θ ∈ (1 + α − s, α). By Lemma 3.1, there

exists a constant Dθ such that P[Nj > n] ≤ Dθn
−θ. Thus

M∑
n=2

P[Nj > n] ≤
M∑
n=2

Dθ

nθ
≤
∫ M

1

Dθ

xθ
dx =

Dθ

1− θ
[M1−θ − 1] = O(t(1−θ)∨0),

and

P

 Nj∑
i=1

Ũ ji > δt,Nj ≤ ψjt

 = O(t−st(1−θ)∨0) = O(t−ν),

where ν = s ∧ (s+ θ − 1) > α.

Lemma B.4. Let X,Y be positive random variables such that E[X1+θ] <∞ for some

θ > 0, and E[Y s] <∞ for some s > 0. Let {Xi} be i.i.d.∼ X. Then for any ψ < 1/EX

and δ < 1− ψEX,

P

⌊ψt⌋∑
i=1

Xi ∧ Y > (1− δ)t

 = O

(
1

ts

)
.

Proof. Choose B such that EX < B < (1 − δ)/ψ. Let η = 1 − δ − Bψ > 0. Let

{Zi} be i.i.d. exponential random variables ∼ Z that are independent of {Xi}, such

that EX < EZ < B.

By Proposition X.1.1 of [2], supn
∑n
i=1(Zi−B) is equal in distribution to the steady-

state waiting time of a D/M/1 queue with interarrival time D and service time Z.

Theorem VIII.5.8 of [2] then yields

P

[
sup
n

n∑
i=1

(Zi −B) >
1

2
ηt

]
= o(t−s).
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By Proposition X.1.1 and Theorem VIII.5.7 of [2], supn
∑n
i=1 (Xi ∧ (ϵt)− Zi) is equal

in distribution to the steady-state workload of a M/G/1 queue with interarrival time

Z and truncated service time X ∧ (ϵt). By Lemma 3.2 of [8], there exists ϵ > 0 such

that

P

[
sup
n

n∑
i=1

(Xi ∧ (ϵt)− Zi) >
1

2
ηt

]
= o(t−s).

Therefore,

P

⌊ψt⌋∑
i=1

Xi ∧ (ϵt) > (1− δ)t

 ≤ P

⌊ψt⌋∑
i=1

(Xi ∧ (ϵt)−B) > ηt


≤P

⌊ψt⌋∑
i=1

(Xi ∧ (ϵt)− Zi) >
1

2
ηt

+ P

⌊ψt⌋∑
i=1

(Zi −Bi) >
1

2
ηt

 = o(t−s).

By Markov inequality, P[Y > ϵt] ≤ E[Y s]/(ϵt)s = O(1/ts). Thus

P

⌊ψt⌋∑
i=1

Xi ∧ Y > (1− δ)t

 ≤ P

⌊ψt⌋∑
i=1

Xi ∧ (ϵt) > (1− δ)t

+ P[Y > ϵt] = O(t−s).

This completes the proof.

Proof of Lemma 3.3. Note that for Nj ≤ ψjt,

Tj =

Nj−1∑
i=1

(Aji + U ji ) + Lj

≤
Nj∑
i=1

(Aji ∧ Lj + U ji ) =

Nj∑
i=1

(Aji ∧ Lj + E[U ji ]) +
Nj∑
i=1

(U ji − E[U j ])

≤
⌊ψjt⌋∑
i=1

(Aji ∧ Lj + E[U ji ]) +
Nj∑
i=1

(U ji − E[U j ]).

Thus

P[Tj > t,Nj ≤ ψjt] ≤ P

⌊ψjt⌋∑
i=1

(Aji ∧ Lj + E[U j ]) > (1− δ)t


+P

 Nj∑
i=1

(U ji − E[U j ]) > δt,Nj ≤ ψjt

 .
For 0 < δ < 1−ψjE[Aj+U j ], the right-hand side is O(t−ν) for some ν > α by Lemma

B.3 and Lemma B.4. Note that the identity Aji∧Lj+E[U j ] = (Aji+E[U j ])∧(Lj+E[U j ])

has been used in the application of Lemma B.4.
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