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Asymptotically Optimal Downlink Scheduling
over Markovian Fading Channels

Wenzhuo Ouyang, Atilla Eryilmaz, and Ness B. Shroff

Abstract

We consider the scheduling problem in downlink wireless networks with heterogeneous, Markov-modulated,
ON/OFF channels. It is well-known that the performance of scheduling over fading channels heavily depends on
the accuracy of the available Channel State Information (CSI), which is costly to acquire. Thus, we consider the
CSI acquisition via a practical ARQ-based feedback mechanism whereby channel states are revealed at the end
of only scheduled users’ transmissions. In the assumed presence of temporally-correlated channel evolutions, the
desired scheduler must optimally balance theexploitation-exploration trade-off, whereby it schedules transmissions
both to exploit those channels with up-to-date CSI and to explore the current state of those with outdated CSI.

In earlier works, Whittle’s Index Policy had been suggestedas a low-complexity and high-performance solution
to this problem. However, analyzing its performance in the typical scenario of statistically heterogeneous channel
state processes has remained elusive and challenging, mainly because of the highly-coupled and complex dynamics
it possesses. In this work, we overcome these difficulties torigorously establish the asymptotic optimality properties
of Whittle’s Index Policy in the limiting regime of many users. More specifically: (1) we prove thelocal optimality
of Whittle’s Index Policy, provided that the initial state of the system is within a certain neighborhood of a carefully
selected state; (2) we then establish theglobal optimalityof Whittle’s Index Policy under a recurrence assumption
that is verified numerically for the problem at hand. These results establish, for the first time to the best of our
knowledge, that Whittle’s Index Policy possesses analytically provable optimality characteristics for scheduling
over heterogeneous and temporally-correlated channels.

I. INTRODUCTION

Channel fluctuation is an intrinsic characteristic of wireless communications. Such a variation calls for allocation
of the wireless resources in a dynamic manner, leading to theclassicopportunistic scheduling principle(e.g.,
[1], [2]). Under the assumption that the instantaneous channel state information (CSI) is fully available to the
scheduler, many efficient opportunistic scheduling algorithms (e.g., [3]-[5]) have been proposed and extensively
studied.

More recent works have focused on designing scheduling algorithms under imperfect CSI, where the channel
state is modeled as independent and identically distributed (i.i.d.) processes across time (e.g., [6], [7]). On the
other hand, although thei.i.d. channel model brings ease of analysis, it fails to capture the time-correlation of
the fading channels [8]. Specifically, it fails to exploit the channel memory, which is a critical resource for
making scheduling decisions. However, designing efficientscheduling schemes under time-correlated channels
with imperfect CSI is a very challenging problem. The challenge is mainly because of the difficulty in making
the classic ‘exploitation versus exploration’ trade-off,in which a scheduler needs to strike a balance between
selecting the channels with up-to-date channel memory thatguarantees high immediate gains, or to explore the
channels with outdated CSI for more informed decisions and associated future throughput gains.

We consider the downlink scheduling problem where a base station transmits to the users within its transmission
range, subject to scheduling constraints. To model the timecorrelations present over fading channels, we assume
that wireless channels evolve as Markov-modulated ON/OFF processes. The channel state information is obtained
from ARQ-based feedback, onlyafter each scheduled transmission. Nevertheless, due to time correlation, the
memory of the past channel state can be used to predict the current channel stateprior to scheduling decision.
Hence, channel memory should be intelligently exploited bythe scheduler in order to achieve high throughput
performance.
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Ohio State University (e-mail: shroff@ece.osu.edu).
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In a related work [9], a similar problem is considered under delayed CSI, where it is assumed that perfect CSI is
available within a maximum delay, which is in turn smaller than the delay experienced by the ARQ feedback used
for collision detection. These assumptions allow the scheduling decisions to be decoupled from CSI acquisition,
which leads to the development of centralized as well as distributed schedulers. However, this approach does
not use ARQ as a means of acquiring improved channel quality information. In contrast, in our setup the nature
of ARQ feedback creates an implicit impact of scheduling decisions on the CSI feedback, which completely
transforms the nature of the optimal scheduler design, and therefore requires a different approach. Under the
scenario where all the channels haveidentical Markov statistics, round-robin-based algorithms (e.g., [10]-[12])
have been shown to possess optimality properties in throughput performance. However, the round-robin-based
algorithms are no longer optimal inasymmetric scenarios, e.g., when different channels have different Markov
transition statistics, as is naturally the case in typical heterogeneous conditions.

Under the asymmetric scenarios, our downlink scheduling problem is an example of the classic Restless Multi-
armed Bandit Problem (RMBP) [13]. Low-complexity Whittle’s Index Policies [13] for the downlink scheduling
problem have been proposed in [14][15] based on RMBP theory.However, although Whittle’s Index Policy
can bring significant throughput gains by exploiting the channel memory [15], the analytical characterization
of its performance under asymmetric scenarios is very challenging and prohibitively technical. This is because
asymmetry leads to a sophisticated interplay of memory evolution among channels with heterogeneous character-
istics, which brings a significant challenge to the analysisof Whittle’s Index Policy not present in the perfectly
symmetric scenario.

For RMBP problems under general scenarios, Whittle’s IndexPolicy has been proven in [16] to be asymptoti-
cally optimal as the number of users grows, provided a non-trivial condition, known as Weber’s condition, holds.
Nonetheless, Weber’s condition concerns the global convergence of a non-linear differential equation, which is
extremely difficult to verify even numerically in our downlink scheduling scenario.

In this paper, we take significant steps in analyzing the optimality properties of Whittle’s Index Policy for
the downlink scheduling problem in the presence of channel heterogeneity. Specifically, our contributions are as
follows.

• We apply the Whittle’s index framework to our downlink scheduling problem and identify the optimal policy
for the problem with a relaxed constraint in Section III. This policy, with carefully selected randomization,
provides a performance upper bound to Whittle’s Index Policy.

• We establish the local optimality of Whittle’s Index Policyin the asymptotic regime when the number of
users scales in Section V. Specifically, we show that the performance of the index policy can get arbitrarily
close to that of the relaxed-constraint optimal policy, provided that the initial state of the system is within
a certain neighborhood of a carefully selected state.

• Based on the local optimality result, under a numerically verifiable recurrence assumption, we then establish
the global optimality of Whittle’s Index Policy in the limiting regime of many users in Section VI.

To the best of our knowledge, our work is the first to give analytical characterization of Whittle’s Index Policy
for downlink scheduling under channel heterogeneity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Downlink Wireless Channel Model

We consider a time-slotted, wireless downlink system with one base station andN users. The wireless channel
Ci[t] between base station and useri remains static within each time slott and evolves stochastically across time
slots, independently across users. We adopt the simplest non-trivial model of time-correlated fading channels by
considering two-state ON/OFF channels, where the state space of channeli is Si = {0, 1}, with the value of
each state representing the transmission rate a channel cansupport at the state.

One important component of our model is the inclusion of channel heterogeneity that the users will typically
experience in real systems. Such asymmetry creates a significant challenge to the design and analysis of optimal
scheduling schemes compared to perfectly symmetric channels. To avoid cumbersome notation and unessential
technical complications, in this work we model channel asymmetry by considering onlytwo classesof channel
statistics. Specifically, for all the channels in classk, k=1, 2, their states evolve according to the same Markov
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Fig. 1: Two state Markov chain model for channels in classk.

statistics. However, these characteristics differ between classes. The state transition of channels in classk is
depicted in Fig. 1, represented by a2× 2 probability transition matrix,

Pk =

[

pk 1− pk
rk 1− rk

]

,

where
pk := prob

(

Ci[t]=1
∣

∣ Ci[t−1]=1
)

,

rk := prob
(

Ci[t]=1
∣

∣ Ci[t−1]=0
)

.

for channeli in classk. The number of classk channels isγkN , k ∈ {1, 2} with γk being theproportion of
channels in classk with respective to the total numberN of channels.

We study the scenario where all the Markovian channels are positively correlated, i.e.,pk > rk for k=1, 2.
This assumption, which is commonly made in this domain (e.g., [12], [17]), means that the channel evolution has
a positive auto-correlation. Hence, roughly speaking, thechannel has a stronger potential to stay in its previous
state than jumping to another, which is typical especially in slow fading environment. For ease of exposition, we
shall exclude the trivial case whenrk=0 or pk=1, k = 1, 2.

B. Scheduling Model – Belief Value Evolution

We assume that the base station can simultaneously transmitto at mostαN ∈Z
+ users in a time slot without

interference, whereα∈(0, 1] stands for the maximumfraction of users that can be activated. For example, in a
multi-channel communication model,α would correspond to the fraction of all users that can be simultaneously
serviced in unit time. However, the scheduler does not know the exact channel state in the current slot when the
scheduling decision is made. Instead, the scheduler maintains a belief valueπi[t] for each channeli, which is
defined as the probability of channeli being in the ON state at the beginning of slott. The accurate channel state
is revealed via ACK/NACK feedback from the scheduled users,only at the end of each time slot after the data
is transmitted. This accurate channel state feedback is in turn used by the scheduler to update the belief values.

For useri in classk, k=1, 2, let ai[t]∈{0, 1} indicate whether the user is selected for transmission in slot t.
Then, from the definition the belief values,πi[t] evolves as follows,

πi[t+1]=











pk, if ai[t]=1, Ci[t]=1,

rk, if ai[t]=1, Ci[t]=0,

πi[t]pk+(1−πi[t])rk, if ai[t]=0.

(1)

In our setup, belief values are known to be sufficient statistics to represent the past scheduling decisions and
feedback (e.g., [11], [18]). In the meanwhile, in our ON/OFFchannel model,πi[t] also equals to the expected
throughput contributed by channeli if it is scheduled in time slott.

For a user in classk, k=1, 2, we usebkc,l to denote its belief value when the most recent observed channel
wasc ∈ {0, 1}, and isl slots in the past. From the belief update rule (1),bkc,l can be calculated as a function of
l≥1 as,

bk0,l=
rk−(pk − rk)

lrk
1 + rk − pk

, bk1,l=
rk+(1− pk)(pk − rk)

l

1 + rk − pk
.

Fig. 2 illustrates the belief value update when a channel stays idle (i.e.,ai=0). It is clear that if the scheduler
is never updated of the state of channeli (in classk), the belief value will converge to its stationary probability
of being ON, denoted by the stationary belief valuebks :=rk/(1+rk−pk).

The vector~π[t]=(π1[t], · · ·, πN [t]) denotes the belief values of all channels at the beginning ofslot t. We use
Bk to represent the set of the belief values for classk channels, whereBk={bks , b

k
c,l, c∈{0, 1}, l∈Z

+}. We assume
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Fig. 2: Belief values update when staying idle,pk = 0.8, rk = 0.2.

that the system starts to operate from slott = 0. At the beginning of slot0, for each channel the scheduler has
either observed its channel state before, or has never been updated of its channel state, i.e., with belief value
bks . It is then clear that, based on the belief update rule (1),πi[t] ∈ Bk for all t ≥ 0, i.e., each belief valueπi[t]
evolves over countably many states.

In the rest of the paper, we shall use ‘belief value’ and ‘belief state’ interchangeably.

C. Downlink Scheduling Problem – POMDP Formulation

We consider the broad classU of (possibly non-stationary) scheduling policies that makes a scheduling decision
based on the history of observed channel states and scheduling actions. The downlink scheduling problem is then
to identify a policy inU that maximizes the infinite horizon,time average expected throughput, subject to the
constraint on the number of users selected at each time slot.Given the initial state~π[0], the problem is formulated
as,

max
u∈U

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

πi[t] · a
u
i [t]

∣

∣

∣
~π[0]

]

(2)

s.t.

N
∑

i=1

aui [t] ≤ αN, ∀t. (3)

where the belief valueπi[t] evolves according to rule (1) based on the scheduling decision aui [t] under policyu.
Such an objective is standard in literature for Markov Decision Processes under the long term average reward
criteria (e.g., [19]). Noting that since the scheduling decisions are made based on incomplete knowledge of
channel states, this problem is a Partially Observable Markov Decision Process [18].

This problem is in fact an example of Restless Multiarmed Bandit Problem (RMBP) [13]. For a general RMBP,
finding an optimal solution is PSPACE-hard [20]. However, for the downlink scheduling problem at hand, a low-
complexity Whittle’s Index Policy was proposed in [14][15]based on the RMBP theory that inherently exploits
the channel memory when making scheduling decisions. For detailed descriptions of general RMBP and Whittle’s
Index Policy for downlink scheduling, please refer to [13]-[15].

For the downlink scheduling problem, we note that there is only limited analytical characterization of Whittle’s
Index Policy, which is restricted in perfectly symmetric scenarios where Whittle’s Index Policy takes a special
round-robin form [14]. In asymmetric cases, however, the scheduling decision no longer takes the form of round-
robin, bringing sophisticated complications in belief value evolutions that are tightly coupled among channels,
which significantly complicates the analysis. The main focus of this paper is to analytically characterize the
performance of Whittle’s Index Policy in the asymmetric case with two classes of channels.

III. U PPERBOUND ON ACHIEVABLE THROUGHPUT

We begin our analysis by characterizing an upper bound to thethroughput performance of all feasible downlink
scheduling policies that satisfies the constraint (3). The upper bound is obtained from a fictitious policy which
is optimal for the downlink scheduling problem under arelaxed constraint.

Note here that such relaxation is also a crucial step in the study of the general RMBP problem. Yet, our
analysis, being specific to the downlink scheduling problem, has its novelties, as we shall remark on later.
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A. Average-Constrained Relaxed Scheduling Problem

We consider an associated relaxed problem of (2)-(3) that only requires anaverage numberof users to be
activated in the long run, defined as follows

max
u∈U

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

πi[t] · a
u
i [t]

∣

∣

∣
~π[0]

]

(4)

s.t. lim sup
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

aui [t]
]

≤ αN. (5)

Note that, contrary to the stringent constraint (3), the relaxed constraint (5) allows the activation of more than
α fraction of users in each time slot, provided the long term average fraction does not exceedα. Hence the
optimal policy under this relaxed constraint, which we shall identify next, provides a throughput upper bound to
any policy that satisfies the stringent constraint.

B. Optimal Policy for the Relaxed Problem

We remark that the relaxed problem is also an important component of Whittle’s analysis of general RMBPs
[13], in which an optimal policy for the relaxed problem is developed based on theWhittle’s index values.
Following the approach of classic RMBP framework [13], in our downlink scenario, we identify an optimal
policy for the relaxed problem based on Whittle’s indices.

Specifically, for channels in classk, the Whittle’s index valueWk(π) is assigned to each belief stateπ ∈ Bk.
These index values intuitively capture the exploitation and exploration value to be gained from scheduling the
associated channel when its belief value isπ. This characteristic ofWk(π) is also illustrated in Section VII-B
via numerical investigations. While these index value functions have been expressed in closed form in various
cases (see [14][15]), the following two characteristics they possess are primarily significant for our analysis:

• Wk(π) monotonically increases withπ ∈ Bk.
• Wk(π) ∈ [0, 1] for all π ∈ Bk.
In the next proposition, we identify an index-based policy with appropriate randomizationthat is optimal for

the relaxed constraint problem. This policy schedules eachuser based on its own belief value, independently
from other users.

Proposition 1. For the problem under relaxed constraint, there exists an optimal stationary policyφ∗, parame-
terized by the thresholdω∗ and a randomization parameterρ∗∈(0, 1], such that

(i) Channeli in classk is scheduled ifWk(πi[t])>ω∗, and stays idle ifWk(πi[t])<ω∗. If Wk(πi[t])=ω∗, it is
scheduled with probabilityρ∗.

(ii) The parametersω∗ andρ∗ are such that, under policyφ∗, the relaxed constraint (5) is strictly satisfied with
equality.

Proof: This proof the proposition builds on the RMBP theory [13][14] along with optimization techniques. Details
of the proof are given in Appendix A. �

From now on, we shall denoteφ∗ as the ‘Optimal Relaxed Policy’. For technical purposes, we henceforth assume
α is such thatρ∗ 6=1. Since eachα value maps to a unique(ω∗, ρ∗) pair (see Appendix A), only countably many
α values correspond toρ∗=1, i.e., achieved by deterministic policies. Therefore, theset ofα∈(0, 1] for which
ρ∗ 6=1 has Lebesgue measure one.
Remarks:

1) Our work is the first to identify the specific form of the optimal policy for the relaxed problem in downlink
scheduling. We identify in Proposition 1 that appropriate randomization is essential to guaranteeing the optimality.
The randomization is important, because the deterministicpolicies are insufficient to guarantee optimality to
general constrained Markov Decision Processes when both the reward and constraint are in the expected average
form [19], and thus unable to provide a throughput upper bound.

2) Our objective function takes a very general form, it is notrestricted to the family of stationary policies, nor
does it require the existence of the limit (i.e.,lim inf 1

T
E[·] = lim 1

T
E[·] in (2) and (4)), whereas the existence
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of limits (with different forms) is assumed in previous literatures [13] [14] on Whittle’s Index Policy. Such an
extension not only requires a non-trivial amount of technical work, but also is important to prove optimality of
the stationary Optimal Relaxed Policy over a larger space ofpossibly non-stationary control strategies.

C. Steady State Distribution of Belief Values

We next present the transition structure of the belief values under Optimal Relaxed Policy, captured in the
following lemma. The structure will be critical in the development of our subsequent main results.

Lemma 1. For each channel in classk, under the Optimal Relaxed Policy, the structure of belief value evolution
depends on the thresholdω∗ of policy.

(i) If ω∗<Wk(b
k
s), then the belief value evolution of each classk channels is positive recurrent with a finite

recurrent class.

(ii) If ω∗≥Wk(b
k
s), the belief value evolution is transient. With probability1, ultimately no channel in classk

will transmit.

Proof: The proof of this lemma follows from the monotonic structureof belief evolution, as shown in Fig. 2.
Details are included in Appendix F. �

Thus, ifω∗≥ max{W1(b
1
s),W2(b

2
s)}, the above analysis reveals that ultimately no user transits, corresponding

to the trivial case ofαN=0. Also, if ω∗ is betweenW1(b
1
s) andW2(b

2
s), the class with the smallerWk(b

k
s) will

eventually transit into a passive mode, hence reducing the system to a well-understood scenario with a single
class of channels [10][11]. Thus, here we focus on the heterogeneous case ofω∗<Wk(b

k
s), k=1, 2, where the

steady-state belief value distribution exists for both classes under the Optimal Relaxed Policy.

D. Upper bound on achievable throughput

The throughput performance of Optimal Relaxed Policy provides an throughput upper bound for all policies
under the stringent constraint. The value of such an upper bound clearly depends on the number of users in each
classγkN , k=1, 2, as well as the fractionα of users allowed for activation. Denotingγ=[γ1, γ2], we represent
the time average expected throughput of the Optimal RelaxedPolicy asυN (γ, α). The following lemma states
that, as long asγ andα are given, theper-userthroughput is independent ofN .

Lemma 2. Givenγ andα, υN (γ,α)
N

is independent ofN , denoted henceforth asr(γ, α).

Proof: The proof follows from showing that, when the number of usersN grows, as long as the proportion
of each class of channels stays the same and the fractionα of users activated does not change, the form of
Optimal Relaxed Policy does not change. Since each user is scheduled independently, the throughputυN (γ, α)
is proportional toN , establishing the lemma. Details are provided in Appendix C. �

We hence refer to the(γ, α) pair as ‘system parameters’. ThereforeNr(γ, α) provides a throughput upper
bound to any policy in the same system under the stringent constraint (3). Equivalently,r(γ, α) provides a
per-user throughput performance upper bound to all policies that satisfies the stringent constraint.

We next describe Whittle’s Index Policy for the strictly-constrained problem (2)-(3), and later study the
closeness of its performance to the upper bound establishedhere.

IV. WHITTLE ’ S INDEX POLICY DESCRIPTION

In this section we formally introduce Whittle’s Index Policy for solving the stringently-constrained downlink
scheduling problem (2)-(3).

A. Whittle’s Index Policy

The Optimal Relaxed Policy, along with the Whittle’s index values, gives consistent ordering of belief values
with respective to the indices. For instance, under the Optimal Relaxed Policy, if it is optimal to schedule one
channel, it is then optimal to transmit to other channels with higher index values. So the Whittle’s index value
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gives an intuitive order of how attractive the channel is forscheduling. This intuition leads to Whittle’s Index
Policy [14] under the stringent constraint on the maximum number of channels that can be scheduled.

Whittle’s Index Policy: At the beginning of each time slot, the channeli in classk is scheduled if its Whittle’s
index valueWk(πi) is within the topαN index values of all channels in that slot, with arbitrary tie-breaking
while assuring a totalαN channels being scheduled.

Whittle’s Index Policy is attractive because it has very lowcomplexity, and it was observed via numerical
investigations to yield significant throughput performance gains over the scheduling strategies that does not utilize
channel memory [15]. The main focus of our work is to analytically understand the approximate or asymptotic
optimality of Whittle’s Index Policy in asymmetric scenarios.

B. Whittle’s Index Policy over Truncated State Space

Recall from Section II that the belief values evolve over a countable state space, also note that if a channel
is not scheduled for a long time, its belief value will get arbitrarily close to its stationary belief value. This
motivates us to consider a truncated version of the belief value evolution whereby the belief value is set to its
steady state if the corresponding channel is not scheduled for a large number, sayτ , slots. This mild assumption
facilitates more tractable performance analysis of the policy. Thus, if a classk user is not scheduled forτ time
slots, its channel state history is entirely forgotten and its belief value will transit to the stationary belief value
bks , where the truncationτ is assumed to be very large.

Whittle’s Index Policy is then implemented over the truncated belief state, which differs from the non-truncated
case merely in the truncated belief value evolution. We believe that, the truncated scenario can provide arbitrarily
close approximation to the original system whenτ is large. More importantly, as we shall see in the following
two sections, Whittle’s Index Policy, implemented over thetruncated belief state space, achieve asymptotically
optimal performance as long as the truncation is sufficiently large.

V. L OCAL OPTIMALITY OF WHITTLE ’ S INDEX POLICY

In this section, we study the optimality properties of Whittle’s Index Policy for downlink scheduling, over a
large truncated belief space. This result forms the basis for the subsequent global optimality result in Section VI.
We start by introducing a state space over which the local optimality will be established.

A. System State Vector

We define thesystem stateZN as a vector that represents the proportion of channels in each belief value, over
the truncated space when the total number of users isN , i.e.,ZN =

[

Z 1,N ,Z 2,N
]

, with

Z k,N = [Zk,N
0,1 , · · · , Zk,N

0,τ , Zk,N
s , Zk,N

1,τ , · · · , Zk,N
1,1 ], k = 1, 2.

whereZk,N
c,l andZk,N

s respectively denote theproportion of channels in the corresponding belief statebkc,l and
bks , with respect to the total number of usersN . Hence, each element ofZN is a multiple of1/N so thatZN

takes values in a lattice with mesh size1/N . Noting that the total number of users in each class does not change
over time, for anyN the system stateZN [t] ∈ Z where

Z := {ZN ≥ 0 : Zk,N
s +

∑

c,l

Zk,N
c,l = γk, k = 1, 2}. (6)

The system state vectorZN [t] does not distinguish users with the same belief state, thus its dimension will not
scale withN . Therefore, compared with~π[t], it provides a more convenient representation of the systembelief
state. Furthermore,ZN [t] fully determines the instantaneous throughput gain in slott under both Whittle’s Index
Policy and the Optimal Relaxed Policy (introduced in Proposition 1), because the instantaneous throughput gains
under both policies are only determined by the distributionof the channels with different belief values, not their
identities.

From Lemma 1 and the subsequent remarks, under the operationof the Optimal Relaxed Policy, the belief
state evolution of each channel is positive recurrent with asteady-state distribution. The following lemma also
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establishes the independence of this steady-state distribution from N , and defines a useful parameter for future
use.

Lemma 3. Given the system parameters(γ, α), the system state vectorZN [t] under the Optimal Relaxed Policy
converges in distribution to a random vector, denoted asZN [∞]. The distribution ofZN [∞] is independent of
N with its mean denoted as

~ζαγ :=E
[

ZN [∞]
]

.

Proof: This lemma follows from a similar principle to the one we established in Lemma 2. For details, please
refer Appendix D. �

It is easy to see that~ζαγ ∈Z and the form of~ζαγ fully determines the time average throughput of the Optimal
Relaxed Policy. Therefore, the vector~ζαγ provides an important benchmark for our asymptotic analysis. If, in the
long run under Whittle’s Index Policy, the system stateZN [t] stays close to~ζαγ , it indicates that Whittle’s Index
Policy will have throughput performance close to that of theOptimal Relaxed Policy – the throughput upper
bound. To capture the closeness, we define theδ neighborhood of~ζαγ as

Ωδ(~ζ
α
γ ) = {Z ∈ Z : ||Z − ~ζαγ || ≤ δ}, (7)

for δ > 0, where|| · || stands for Euclidean distance. We are now ready to state and prove our first main result
regarding a form of local optimality of Whittle’s Index Policy.

B. Local Optimality of Whittle’s Index Policy

Under the system parameters(γ, α), we letRN
T (γ, α,x) represent the time average throughput obtained over

the time duration0≤t<T under Whittle’s Index Policy, conditioned on the initial system stateZN [0] = x, i.e.,

RN
T (γ, α,x):=

1

T
E
[

T−1
∑

t=0

N
∑

i=1

πi[t]a
ind
i [t]

∣

∣

∣
ZN [0]=x

]

,

where(aindi [t])i denotes the scheduling decision vector made by Whittle’s Index Policy at timet.
Recall from Lemma 2 thatr(γ, α) denotes the per-user throughput under the Optimal Relaxed Policy, which

serves as an upper bound on Whittle’s Index Policy performance. The next proposition characterizes the local
convergence property of Whittle’s Index Policy performance to r(γ, α).

Proposition 2. Under the system parameters(γ, α), there exists aδ > 0 neighborhoodΩδ(~ζ
α
γ ) of ~ζαγ such that,

if the initial system statex is within Ωδ(~ζ
α
γ ) , then

lim
T→∞

lim
m→∞

RNm

T (γ, α,x)

Nm
=r(γ, α).

where{Nm}m is any increasing sequence of positive integers withαNm, γkNm ∈ Z
+, for k = 1, 2 and all m.

Proof Outline: Here, we give a high level description of the proof for an intuitive understanding, and refer the
reader to Appendix E for the rigorous derivation.

• We start by defining a fluid approximation, whereby the discrete-time evolution ofZN [t] under Whittle’s
Index Policy is modeled as a deterministic vectorz[t] ∈ Z that evolves in discrete time overZ and is independent
of N. Under this fluid approximation, the users are no longer unsplittable entities so that the state space ofz[t] is
no longer restricted to a lattice as it was forZN [t]. Also, the fluid approximationz[t] evolves in a deterministic
manner, in contrast to the stochastic transition ofZN [t]. The evolution ofz[t] is defined by a difference equation
as a function of theexpectedstate change ofZN [t] under Whittle’s Index Policy as follows

z[t+ 1]−z[t]
∣

∣

∣

z[t]=z
=E

[

ZN [t+ 1]−ZN [t]
∣

∣

∣
ZN [t]=z

]

, (8)

whereN is any integer for whichz is a feasible state.
• We then establish local convergence of the fluid approximation model whenz[0] is within a small enoughδ

neighborhoodΩδ(~ζ
α
γ ) of ~ζαγ . We show the convergence by first noting that the differential equation (8) is linear
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within a wider convex region thanΩδ(~ζ
α
γ ). Within this region, we obtain a closed form expression of the right

hand side of (8), which enables us to investigate the eigenvalue structure of the linear differential equation. We
show that each eigenvalueλ satisfies|λ| < 1 and apply standard linear system theory to establish the local
convergence.

• We then connect the fluid approximation modelz[t] to the discrete-time stochastic system stateZN [t] by
using a discrete-time extension of Kurtz’s Theorem, which can be interpreted as an extension of the strong law of
large numbers to random processes (see [21]). Essentially,it states that, over any finite time duration[0, T ], the
actual system evolutionZN [t] can be made arbitrarily close to the above fluid approximation z[t] by increasing
the number of channelsN sufficiently, with exponential convergence rate.

• The previous convergence result, together with the local convergence result of the fluid evolutionz[t] to
~ζαγ , enables us to establish the local convergence of the systemstateZN [t] to ~ζαγ as the number of usersN
grows, provided that the initial stateZN [0] ∈ Ωδ(~ζ

α
γ ). Hence the system state under Whittle’s Index Policy will

stay close (in a probabilistic sense) to the expectation~ζαγ of the system state under the Optimal Relaxed Policy,
which, in turn, indicates that the throughput performance of Whittle’s Index Policy will approach the throughput
upper boundr(γ, α), as expressed in the proposition.

We again emphasize that the technical details of the outlined steps are fairly intricate and are moved to
Appendix E. �

Proposition 2 illustrates an interesting local optimalityproperty of Whittle’s Index Policy as the number of
usersN and the time horizonT increases while the system parameters(γ, α) stay the same. It indicates that,
under Whittle’s Index Policy, as long as the initial stateZN [0] is close enough to~ζαγ , the average per-user
throughput over any finite time duration will get arbitrarily close to the Optimal Relaxed Policy performance as
the number of users scales.

Remark: We note that the sequence{Nm}m is used to guarantee that the number of channels in each class,
as well as the number of scheduled users, take integer values. In fact, our result can be generalized to allN by
slightly perturbingγ andα as a function ofN but assuring their limits are well-defined.

VI. GLOBAL OPTIMALITY OF WHITTLE ’ S INDEX POLICY

The above local optimality result heavily relies on the initial stateZN [0] being close to~ζαγ , which is difficult
to guarantee. In this section, we study the global optimality of the infinite horizon throughput performance of
Whittle’s Index Policy starting from any initial state. We begin our analysis by presenting the recurrence structure
of the system state.

Lemma 4. Under system parameters(γ, α), for any ǫ > 0, if the number of usersN is large enough,
(i) The system stateZN [t] evolves as an aperiodic Markov chain, in a state space that contains only one recurrent
class.
(ii) There exists at least one recurrent state within theǫ neighborhoodΩǫ(~ζ

α
γ ) of ~ζαγ .

Proof: We prove this lemma by constructing probability paths from any state to the neighborhoodΩǫ(~ζ
α
γ ). Details

of the proof are included in Appendix F. �

This lemma states thatZN [t] will ultimately enter any small neighborhood of~ζαγ whenN is large enough.
Together with Proposition 2, this result shows promise for establishing the global asymptotic optimality of
Whittle’s Index Policy. This is plausible because onceZN [t] entersΩδ(~ζ

α
γ ), the performance of Whittle’s Index

Policy afterwardscan get very close to its upper bound asN scales, as established in Proposition 2. However,
since we consider the infinite horizon time average throughput, this argument would break down if the time
it takes forZN [t] to enterΩδ(~ζ

α
γ ) also scales up withN . This observation motivates us to introduce a useful

assumption, which will later be justified (in Section VII-A)via numerical studies.

Assumption Ψ: For eachǫ>0, let ΓN
x (ǫ) represent the first time of reachingΩǫ(~ζ

α
γ ) starting fromZN [0] = x,

i.e.,

ΓN
x (ǫ) = min{t : ZN [t] ∈ Ωǫ(~ζ

α
γ )
∣

∣ZN [0] = x}.
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Fig. 3: Transition behavior ofZN [t] in steady state.

Then, we assume that the expected time of reachingΩǫ(~ζ
α
γ ) is bounded uniformly overN andx, i.e., there exists

Mǫ<∞ such thatE
[

ΓN
x (ǫ)

]

≤ Mǫ for all N andx.

Since for eachN , ZN [t] under Whittle’s Index Policy is recurrent and aperiodic with a finite state space, there
exists a steady-state distribution associated withZN [t]. As before, we useZN [∞] to denote the associated limiting
random vector. The next lemma establishes that, under Assumption Ψ, the distribution ofZN [∞] approaches a
point-mass at~ζαγ asN scales. Here, again, the sequence{Nm}m is defined in the same way as in Proposition 2.

Lemma 5. Under AssumptionΨ and system parameters(γ, α), for any ǫ > 0, the steady state probability of
ZN [t] under Whittle’s Index Policy satisfies

lim
m→∞

P
(

ZNm [∞] ∈ Ωǫ(~ζ
α
γ )
)

= 1.

Proof: The proof utilizes Theorem6.89 from [21], which builds on the following arguments.
Note thatǫ > 0 can be selected to be small enough for the following argument. As depicted in Fig. 3, we let

Tǫ be a random variable denoting, in steady state, the time duration betweenconsecutivehitting times into the
neighborhoodΩǫ(~ζ

α
γ ) from outside of the neighborhood. LetT 0

ǫ denote the time duration from the timeZN [t]

enters the neighborhoodΩǫ(~ζ
α
γ ) from outside until the time it leaves. Hence, the expected proportion of time

thatZN [t] stays outside this neighborhood is(E[Tǫ]− E[T 0
ǫ ])/E[Tǫ].

We know that the numeratorE[Tǫ]− E[T 0
ǫ ] is uniformly bounded for allN due to AssumptionΨ. However,

asN increases, it is more likely forZN [t] to stay within the neighborhood for a long time before exiting it
(based on the convergence of fluid approximation model and Kurtz’s Theorem in the proof of Proposition 2).
Thus,E[T 0

ǫ ], and hence the denominatorE[Tǫ], grow to infinity asN scales. Therefore, the expected proportion
of time spent outsideΩǫ(~ζ

α
γ ) vanishes asN scales up, which leads to the statement of the lemma. Detailsof the

proof can be found in Appendix G. �

Under Whittle’s Index Policy with system parameters(γ, α), we letRN
x (γ, α) be the achieved infinite horizon,

time average throughput, conditioned on the initial systemstateZN [0]=x, i.e.,

RN
x (γ, α):= lim

T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

πi[t]a
ind
i [t]

∣

∣

∣
ZN [0] = x

]

.

From Lemma 5 we know that, in steady-state, the system stateZNm [∞] is increasingly concentrated around~ζαγ
asm increases, regardless of the initial statex. We build on this to establish the global asymptotical optimality
of Whittle’s Index Policy.

Proposition 3. Under AssumptionΨ , for any initial system statex, we have

lim
m→∞

RNm

x (γ, α)

Nm
= r(γ, α).

Sincer(γ, α) is an upper bound on the maximum achievable per-user throughput by any policy, this implies that
Whittle’s Index Policy is optimal in the many user regime.

Proof: We prove this result by decomposingRN
x (γ, α) as a summation of the expected throughput conditioned

on whether the system state is within or outside an arbitrarily small ǫ neighborhood of~ζαγ . Since the latter
has diminishing probability according to Lemma 5, the expected throughput of Whittle’s Index Policy can get
arbitrarily close to that of Optimal Relaxed Policy. Details of the proof are provided in Appendix H. �

Remarks:
1) We would like to emphasize that the global optimality result is not a straight-forward extension of the

local converge result by contrasting Proposition 2 and Proposition 3. Note that in Proposition 2, the time limit is
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Fig. 4: Average time of hittingΩǫ(~ζ
α
γ ). (a) ZN [0] = x; (b) ZN [0] = y.

outside the limit of the number of usersN , where each convergence (withN ) is with respective to afixed time
duration. However, the order of limit is switched in the global optimality result of Proposition 3, as it states the
convergence withN the infinite horizonaverage throughput, which is much stronger and hence is muchmore
challenging to prove.

2) We would like to contrast AssumptionΨ with Weber’s condition [16]. For general RMBP problem, Weber’s
condition leads to the same global asymptotic optimality result. While confirming Weber’s condition may be
possible in very low-dimensional problems, in our downlinkscheduling problem, this requires one to rule out the
existence of both closed orbits and chaotic behavior of a high-dimensional non-linear differential equation, which
is extremely difficult to check - even numerically. AssumptionΨ, on the other hand, takes a much simpler form,
as it is defined over the actual stochastic system and is amenable to easy numerical verification, as is performed
in Section VII-A.

VII. N UMERICAL RESULTS

A. Verification and Interpretation of AssumptionΨ

We start by numerically verifying AssumptionΨ. We consider the asymmetric scenario with two classes of
channels with system parametersγ=[0.45, 0.55], α=0.6, with p1=0.9, r1=0.45, p2=0.8, r2=0.3.

We next examine the change of the average hitting timeΓN
x (ǫ), while maintainingα andγ.

We let x,y ∈ Z be initial values ofZN [0] that are selected to be two extreme points in the state space to
exhibit the uniformity ofΓN

x (ǫ) to the initial state. Specifically, statex corresponds to the case when all the users
have just observed their channels to be in OFF state, i.e., with belief valuebk0,1, k = 1, 2. And y corresponds
to the case when all users have no initial observation of their channels state history, i.e., with belief valuebks ,
k = 1, 2.

We examine the average value of hitting timeΓN
x (ǫ) andΓN

y (ǫ) with a very small neighborhoodǫ=0.005,
when the number of usersN grows from10×103 to 500×103. As indicated in Fig. 4, for both cases, the average
time of hitting theǫ neighborhood first decreases withN , and thenconvergesand stays almost the same asN
scales up. This is especially intriguing. The rationale behind this phenomenon is as follows. Under Whittle’s Index
Policy, a total number ofαN users are activated at each time slot. Therefore, for relatively small number of users,
the amount of probabilistic belief state transitions, as well as the amount of system states in the neighborhood,
increases withN , leading to a higher chance of hitting the desired neighborhoodΩǫ(~ζ

α
γ ) and smaller value of

hitting time. However, the belief update of each user contributes to the1/N change of the system stateZN [t],
which decreases withN . Therefore, asN further increases, thetotal amount of transitionsof the system state
ZN [t] due to channel state feedback is roughlyαN · 1/N = α, which is invariant ofN . This result, along with
many other numerical experiments we have conducted that lead to the same observation, gives verification to
AssumptionΨ.

B. ‘Exploitation versus Exploration’ Trade-off
In this section, we demonstrate how the Whittle’s index value captures the ‘exploitation versus exploration’

trade-off for ourasymmetric downlink scheduling problem.
Consider two classes of ON/OFF fading channels with belief value evolutions plotted in Fig. 5(a). Note that

both classes have the same stationary distributionbks = 0.5, k ∈ {1, 2} of being at ON state, but channels in class
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Fig. 5: The evolution of belief value and Whittle’s index value. (a) Belief value evolution (b) Whittle’s index
value evolution.

1 has a higher degree of time correlation, i.e., fades slower,than channels in class2 sincep1 > p2 andr1 < r2.
The corresponding Whittle index values of the two classes ofchannels are depicted in Fig. 5(b) as functions of
the updated belief value starting from different initial states.

To understand the nature of Whittle’s index value, we first consider the case when the channels in both classes
are observed to be ON at time0 and stay passive since then. As indicated in Fig. 5(a) the class1 channel has
a higher belief value than the class2 channel, hence scheduling the class1 channel gives a higher immediate
throughput than scheduling the class2 channel. Moreover, once a class1 channel is scheduled, it is more likely
to stay in ON state again, bringing high future gains. Accordingly, the index values in Fig. 5(b) when both state
evolutions start from ON states capture that it is more attractive to schedule the class1 channel because of the
advantage in both exploitation and exploration.

On the other hand, when the scheduler has observed channels in both classes to be OFF at time0, Fig. 5(a)
shows that the class2 channel has a higher belief value than the class1 channel. However, although the Whittle’s
index value in Fig. 5(b) of class2 channel is initially smaller than that of class1 channel, after a certain amount
of delay (around8 slots in the figure) this order is switched, which is interpreted as follows: initially, since
the class1 channel has smaller belief value than that of the class2 channel, it is more attractive to exploit the
immediate gain brought by the class2 channel. However, as the passive time grows, as indicated inFig. 5(a),
the difference between immediate gain of both classes diminishes. Then, it becomes more attractive to explore
the class1 channel because its longer memory can bring higher future gains if it turns out to be in ON state.

This investigation reveals the intricate nature of Whittle’s index value in capturing the fundamental ‘exploration
versus exploitation’ trade-off. In our scheduling problemwith asymmetric channel statistics, such a property of
Whittle’s Index Policy turns out to be crucial inachieving asymptotically optimal performance.

VIII. C ONCLUSION

In this paper, we studied the problem of downlink schedulingover ON/OFF Markovian fading channels in the
presence of channel heterogeneity. We consider the scenario where instantaneous channel state information is
not perfectly known at the scheduler, but is acquired via a practical ARQ-styled feedback after each scheduled
transmission. We analytically characterized the performance of Whittle’s Index Policy for downlink scheduling,
and proved its local and global asymptotic optimality properties as the number of users scales. Specifically,
provided that the initial system state is within a certain region, we established the local optimality of Whittle’s
Index Policy by investigating the evolution of the system belief state with a fluid approximation. We then
established the global asymptotic optimality of Whittle’sIndex Policy under a recurrence condition, which is
suitable for numerical verification. Our results establishthat Whittle’s Index Policy, which is attractive due
to its low-complexity operation, also processes strong asymptotic optimality properties for scheduling over
heterogeneous Markovian fading channels.
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APPENDIX A
PROOF OFPROPOSITION1

A. Lagrangian decomposition - Thresholdability

The constraint (5) can be written in an equivalent form that requires at least(1−α)N channels to bepassive
on average, i.e.,

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

(1−aui [t])
]

≥ (1−α)N. (9)

Associating a Lagrange multiplierω to the above constraint (9), we consider the following Lagrangian function
L(u, ω) of the relaxed problem (4)-(5),

L(u, ω)= lim inf
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

πi[t]·a
u
i [t]

∣

∣

∣
~π[0]

]

+ ω· lim inf
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

(1− aui [t])
∣

∣

∣
~π[0]

]

−ω·(1−α)N. (10)

The dual functionD(ω) is defined asD(ω) = maxu∈U L(u, ω). The following lemma provides a useful upper
bound toD(ω).

Lemma 6.

D(ω) ≤ max
u∈U

N
∑

i=1

lim sup
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
u
i [t] + ω·(1− aui [t])

]

∣

∣

∣
~π[0]

]

− ω·(1− α)N. (11)
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Proof:

D(ω) ≤max
u∈U

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

[

πi[t] · a
u
i [t] + ω · (1− aui [t])

]

∣

∣

∣
~π[0]

]

− ω·(1− α)N

≤max
u∈U

lim sup
T→∞

1

T
E
[

T−1
∑

t=0

N
∑

i=1

[

πi[t] · a
u
i [t] + ω · (1− aui [t])

]

∣

∣

∣
~π[0]

]

− ω·(1− α)N

≤max
u∈U

N
∑

i=1

lim sup
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
u
i [t] + ω · (1− aui [t])

]

∣

∣

∣
~π[0]

]

− ω·(1− α)N,

where the first and the last inequality follows from the superadditiviey and subadditivity of limit superior and
limit inferior, respectively. �

Consider the unconstrained optimization problem in the upper bound (11), it can be viewed as a composition
of N independentω-subsidy problemsinterpreted as follows. For each channeli at belief stateπi, it will receive
a rewardπi when it activates, otherwise it will receive a subsidyω for passivity. Here, for each channel, its
reward only depends on the transmissions of its own and independent of decisions for other channels. Hence,
the optimization problem in (11) can be decomposed intoN ω-subsidy problems. For channeli, theω-subsidy
problem is expressed as follows,

Vi(ω) = max
u∈Ui

lim sup
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
u
i [t] + ω · (1− aui [t])

]

∣

∣

∣
πi[0]

]

(12)

whereUi denotes the set of scheduling decisions that activate and idle the channel according to the observed
channel history. An important property for eachω-subsidy problem isthresholdability, given in the following
lemma.

Lemma 7. The optimal policy for theω-subsidy problem (12) is a threshold-based policy. Specifically, for each
channeli in classk, there exists a threshold valueθk(ω) ∈ [0, 1] such that it is optimal to transmit when its
current belief valueπi[t] > θk(ω), and to stay passive whenπi[t] < θk(ω), with tie breaking arbitrarily at
πi[t] = θk(ω).

Proof: The thresholdability has been proved in [14] assuming a different form of objective function than (12).
In fact, thresholdability holds for the general optimization problem of(12) as well, explained in details below.

It was shown in [14] that a stationary threshold-based policy u∗β with threshold valueθk(β, ω) is optimal for
the β-discountedω-subsidy problem

max
u∈Ui

E
[

∞
∑

t=0

βt
[

πi[t] · a
u
i [t] + ω · (1− aui [t])

]

∣

∣

∣
πi[0]

]

. (13)

for channels in classk, whereβ ∈ (0, 1) is the discount factor. The optimal policyu∗β for (13) activates the
channels with belief values greater thanθk(β, ω) and idles the channels whose belief values are smaller than
θk(β, ω), with tie breaking arbitrarily atθk(β, ω).

From Dutta’s paper [22], we know that if avalue boundedness conditionholds for the discounted problem
(13), and if a family of optimal policy{u∗β} converges to certain limitφ asβ → 1, thenφ is optimal for the
v-subsidy average reward problem (12) that is defined with respective to limit superior.

Indeed, it was shown in [14] that asβ → 1, θk(ω) = limβ→1 θk(β, ω) exists and the value boundedness
condition holds for the discounted problem (13). Thereforethe threshold-based policy is optimal for the problem
(12). �

In the ω-subsidy problem, we let~θ(ω) = {θk(ω), k = 1, 2} denote the optimal threshold-based policy for the
system. Because of the simple form of the threshold-based policy, we have the following lemma.

Lemma 8. Given a Lagrange multiplierω ≥ 0, the threshold-based policy~θ(ω) achieves the maximum value of
the Lagrange functionL(u, ω), i.e.,

D(ω) = L
(

~θ(ω), ω
)

. (14)
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Proof: Case (1). Suppose for channels in classk, θk(ω) ≥ bks . Due to the monotonicity behavior of belief
evolution, channels with initial beliefπi[0] < θk(v) always stay idle. Channels with initial beliefπi[0] ≥ θk(ω)
will be activated until its channel turns out to be0 and then remain idle henceforth. Therefore with probability 1,
all channels will stay in the idle mode (see proof of Lemma 1 for detailed description). Therefore, the following
limit inferior will coincide with limit superior and can be calculated,

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
~θ(ω)
i [t]

∣

∣

∣
πi[0]

]

= lim sup
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
~θ(ω)
i [t]

∣

∣

∣
πi[0]

]

= 0, (15)

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

(1− a
~θ(ω)
i [t])

∣

∣

∣
πi[0]

]

= lim sup
T→∞

1

T
E
[

T−1
∑

t=0

(1− a
~θ(ω)
i [t])

∣

∣

∣
πi[0]

]

= 1, (16)

Case (2). Suppose for channels in classk, θk(ω) < bks . From belief value evolution in Fig. 2, the belief
values of each channel evolves as a positive recurrent Markov Chain (again, see proof of Lemma 1 for detailed
description). Therefore, the limit inferior and limit superior coincides,

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
~θ(ω)
i [t]

∣

∣

∣
πi[0]

]

= lim sup
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
~θ(ω)
i [t]

∣

∣

∣
πi[0]

]

, (17)

lim inf
T→∞

1

T
E
[

T−1
∑

t=0

(1 − a
~θ(ω)
i [t])

∣

∣

∣
πi[0]

]

= lim sup
T→∞

1

T
E
[

T−1
∑

t=0

(1− a
~θ(ω)
i [t])

∣

∣

∣
πi[0]

]

, (18)

From equation (15)-(18), as well as equation (10), we have,

L
(

~θ(ω), ω
)

=

N
∑

i=1

lim
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t]a
~θ(ω)
i [t]

∣

∣

∣
πi[0]

]

+

N
∑

i=1

lim
T→∞

1

T
E
[

T−1
∑

t=0

ω(1− a
~θ(ω)
i [t])

∣

∣

∣
πi[0]

]

−ω·(1−α)N

=

N
∑

i=1

lim
T→∞

1

T
E
[

T−1
∑

t=0

[

πi[t] · a
~θ(ω)
i [t] + ω · (1− a

~θ(ω)
i [t])

]

∣

∣

∣
πi[0]

]

−ω·(1−α)N

=

N
∑

i=1

Vi(ω)−ω·(1−α)N

≥ D(ω),

where the last inequality follows from Lemma 6. Because we also knowL
(

~θ(ω), ω
)

≤ D(ω) sinceD(ω) =

maxu∈U L(u, ω), we haveD(ω) = L
(

~θ(ω), ω
)

. �

B. Theω-subsidy problem: Indexability

For each channel in classk, let Ik(ω) ⊆ Bk be the set of belief states for which, under threshold-basedpolicy
~θ(ω), it is optimal to stay idle. From the thresholdability property, it is clear thatIk(ω) includes all the belief
values inBk no greater thanθk(ω).

For class-k channels, we letakω(π) denote the optimal decision at belief valueπ ∈ Bk under subsidyω.
Following the definition in [13], the Whittle’s index valueWk(π), π ∈ Bk, is given by the infimum value of
subsidyω for which it is equally optimal activate or idle at beliefπ, i.e.,

Wk(π) = inf{ω : akω(π) = {0, 1}}. (19)

The Whittle’s Indexability condition, specific to the scheduling problem, is defined as follows.

Whittle’s Indexability condition: The downlink scheduling problem is Whittle Indexable if, asω increases from
−∞ to ∞, the setIk(ω) monotonically increases from∅ to Bk.

It was proved in [14] that the idle setIk(ω) indeed monotonically increases from∅ to Bk asω increases from
−∞ to ∞. Therefore, the downlink scheduling problem is Whittle indexable, recorded below.
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Indexability Theorem. The downlink scheduling problem is Whittle indexable.

It can be observed that, from Indexability condition, the Index valueWk(π)∈ [0, 1] andWk(π) monotonically
increases withπ ∈ Bk. The next lemma gives the closed form expression of the indexvalues.

Lemma 9. The closed form expression of Whittle’s index values is given as follows,

Wk(π) =







(bk0,l−bk0,l+1)(l+1)+bk0,l+1

1−pk+(bk0,l−bk0,l+1)l+bk0,l+1

if pk ≤ π = bk0,l < bks
rk

(1−pk)(1+rk−pk)+rk
if bks ≤ π ≤ pk

(20)

Proof: The derivation of the Whittle’s Index value is included in Appendix K. We remark that the Index expression
Wk(π) is constant whenbks ≤ π ≤ pk, which differs from the indices derived in [14]. Such a difference is due
to the definition (19) of the index value and is explained in detail in Appendix K. �

With the definition of index value and the established indexability condition, the optimal threshold-based policy
can be implemented in a more efficient manner, characterizedin Lemma 10. Here instead of maintaining different
threshold valuesθi(ω) for eachω, the scheduler simply compares the index value withω to decide weather to
transmit on the channel.

Lemma 10. Under theω-subsidized problem, at each time slot, for theith channel in classk, it is optimal to
transmit whenWk(πi)>ω, and to stay idle whenWk(πi)<ω, with tie breaking arbitrarily ifWk(πi)=ω.

Proof: If Wk(πi) > ω, from definition (19) of the Index value,Wk(πi) is the minimum subsidy required for
the belief valueπi to be within the idle set. SinceWk(πi) is higher than the actual subsidyω, it is optimal to
activate the channel at subsidyω.

If Wk(πi) < ω, similarly we know the subsidyω is higher than the minimum subsidy valueWk(πi) such that
it is optimal to stay idle atπi. Hence, from Indexability, it is optimal to stay idle atπi at subsidyω.

If Wk(πi) = ω, from the above definition (19) of Index value, it is equally optimal to activate or idle atπi. �

C. Optimal policy for the relaxed problem

We have thus far seen from Lemma 10 that the dual functionD(ω) can be achieved by a threshold-based
policy implemented over the index values. We now proceed to identify the optimal policy for the original relaxed
problem (4)-(5).

Let φ(ω, ρ) denote the policy where the channels with the index value greater thanω activate, channels with
the index value smaller thanω remain idle, and the channels with index valueω activate with probabilityρ.

Lemma 11. Givenα, there exists a unique pair(ω∗, ρ∗) such that, under policyφ(ω∗, ρ∗),

lim
T→∞

1

T
E
[

T
∑

t=1

N
∑

i=1

a
φ(ω∗,ρ∗)
i [t]

]

= αN. (21)

Proof: For a single channeli in classk, consider the policy where the channel activates if its belief valueπi > bk,
stays idle whenπi < bk, and activates with probabilityρ whenπi = bk, for some belief valuebk. From the belief
value evolution we can calculate the expected time of activion, denoted byAk(bk, ρ),

Ak(bk, ρ) =

{

1− (1−pk)(h−ρ)
ρbk

0,h+(1−ρ)bk
0,h+1

+(1−pk)(h+1−ρ)
if bk = bk0,h,

0 if π ≥ bks .
(22)

It is clear from its expression that, givenbk, Ak(bk, ρ) is continuous withρ. Also we haveAk(bk0,h, 0) =

Ak(bk0,h+1, 1). In addition, some simple algebra reveals that, givenbk0,h, Ak(bk0,h, ρ) strictly increases withρ.
Therefore, sinceAk(bk0,h, 0) = Ak(bk0,h+1, 1), givenρ Ak(bk, ρ) monotonically decreases withbk ∈ Bk.

Also, one can observe from (22) that, givenρ, limh→∞Ak(bk0,h, ρ) = 0 and Ak(bk0,1, 1) = 1. Hence by
appropriately choosingbk andρ, Ak(bk, ρ) can achieve any value within[0, 1].

Recall from the definition of indexability that the index valueWk(b
k) monotonically increases withbk ∈ Πk,

k = 1, 2. It follows from the above analysis that, asω increases, under policyφ(ω, 1), the fraction of activation
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time for each user strictly decreases from1 to 0. Therefore, there exists an unique(ω∗, ρ∗ pair, such that the
policy φ(ω∗, ρ∗) strictly satisfies activation constraint. �

We now consider the relaxed optimization problem (4)-(5) and the policyφ(ω∗, ρ∗) as specified in the previous
lemma. Clearly, the policyφ(ω∗, ρ∗) is primal feasible and the lagrange multiplierω∗ is dual feasible. From
Lemma 10,φ(ω∗, ρ∗) is optimal for theω∗-subsidy problem and henceD(ω∗) = L(φ(ω∗, ρ∗), ω∗). Furthermore,
according to (21),φ(ω∗, ρ∗) activatesαN users on average, and thus the complementary slackness condition
holds for the primal-dual pair

(

φ(ω∗, ρ∗), ω∗
)

. From the optimality condition for primal-dual optimal solution
[23],

(

φ(ω∗, ρ∗), ω∗
)

is an optimal primal-dual pair. Thereforeω∗ ∈ argminω D(ω) andφ(ω∗, ρ∗) is the optimal
solution to the relaxed problem. Lettingφ∗ representφ(ω∗, ρ∗), we thus have proved Proposition 1.

APPENDIX B
PROOF OFLEMMA 1

(i) First consider the scenario whereω∗ < Wk(b
k
s) and supposeω∗ = Wk(b

k
0,h∗

k
) for the belief statebk0,h∗

k
. If

the belief value of a channel is abovebk0,h∗

k
at the beginning of a slot, the channel will be activated. According

to the belief value evolution rule (1), in the next slot its belief value will either bepk or rk, depending on the
underlying channel state revealed at the end of a slot. Clearly, the belief evolution in this case is positive recurrent
within a finite state space, i.e., the belief state can only take the valuespk, rk, bk0,2, · · · , b

k
0,h∗

k+1. On the other
hand, if the belief value is belowbk0,h∗

k
, the channel remains idle and will activate once its belief value exceeds

bk0,h∗

k
. Fig. 6 illustrates the belief evolution in steady state under this scenario.

(ii) Consider the scenario whereω∗≥Wk(b
k
s). In this case, a channel is activated if its index value is above

ω∗. After transmission, if the channel is observed to be in OFF state, its belief value will transit tork and stays
idle until its index value crossesω∗. Sinceω∗≥Wk(b

k
s), it is clear from the belief value evolution (see Fig. 2)

that, starting fromrk, the belief value will always be smaller thanbks . Hence the channel will stay idle at all
times. On the other hand, if the channel is observed to be in ONstate after transmission, the belief value will
transit topk and the channel will keep on transmitting until the underlying channel turns out to be in OFF state.
Since we assumedpk < 1, the channel will ultimately be in OFF state and its belief value will transit tork and
stays in idle mode ever since. Therefore eventually no channel in classk will be scheduled and the belief values
will keep transit toward, but never reach, the steady state belief valuebks .

APPENDIX C
PROOF OFLEMMA 2

Consider two systems with different total number of users but identicalα andγ. Suppose the first system has
N1 total number of users while the second system hasN2 number of users. For the first system withN1 total
number of users, suppose the policyφ∗, specified in Proposition 1, is optimal for the relaxed-constraint problem.
Therefore from the proof of Proposition 1,φ∗ is optimal for each individualω∗-subsidized problem (12). For each
channel in classk, we letAk

φ∗ denote the expected fraction of time of activatoin, which isexpressed specifically
in equation (22). Then, according to Proposition 1(ii), theexpected number of activated users satisfies

γ1N1 · A
1
φ∗ + γ2N1 ·A

2
φ∗ = αN1. (23)
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Now apply the same policyφ∗ when the total number of users isN2. Sinceφ∗ schedules each channel
independently,A1

φ∗ andA2
φ∗ does not change in this scenario. Therefore, the expected number of activated users

is expressed as

γ1N2 · A
1
φ∗ + γ2N2 ·A

2
φ∗ =

N2

N1

[

γ1N1 · A
1
φ∗ + γ2N1 ·A

2
φ∗

]

= αN2, (24)

hence the complementary slackness condition for the relaxed-constraint problem is also satisfied underφ∗ and
ω∗, when the total number of users isN2. In this case, sinceφ∗ is still optimal for each individualω∗-subsidized
problem and bothφ∗ andω∗ are feasible,(φ∗, ω∗) is a primal-dual feasible pair when the total number of users
is N2, by the same argument as in the proof of Proposition 1.

Therefore, fixing system parameters(γ, α), for different numberN of users, the policyφ∗ is always optimal.
Since the policyφ∗ schedules each channel independently, we letυk(γ, α) denote the expected reward contributed
by each channel in classk. Hence we have

υN (γ, α) = Nγ1υ1(γ, α) +Nγ2υ2(γ, α).

Therefore the per-user throughput is

υN (γ, α)

N
= γ1υ1(γ, α) + γ2υ2(γ, α),

which is independent ofN . Hence the lemma is proven.

APPENDIX D
PROOF OFLEMMA 3

Given system parameters(γ, α), we know from the proof of Lemma 2 that the form of the Optimal Relaxed
Policy, denoted byφ∗, does not change with the numberN of users. Sinceφ∗ schedules each channel indepen-
dently, we let vectorεk = [εk0,1, · · · , ε

k
0,τ , ε

k
s , ε

k
1,τ , · · · , ε

k
1,1] denote the steady state distribution of the belief value

of users in classk underφ∗, with εks +
∑

c,h ε
k
c,h = 1. Therefore,

E[ZN (∞)] =
1

N
[γ1Nε1, γ2Nε2] = [γ1ε

1, γ2ε
2].

Sinceφ∗ is independent ofN , εk is independent ofN for k = 1, 2. ThereforeE[ZN (∞)] is independent of
the user numberN , which proves the lemma.

APPENDIX E
PROOF OFPROPOSITION2

A. Notations

We shall denote theith element ofZN [t] asZN
i [t], and letβi denote the corresponding belief value. The index

value corresponding toβi is denoted aswi. In this proof, since we are fixing the system parameters(γ, α), we
shall drop the suffixesα andγ to denote~ζαγ as ~ζ.

For ease of exposition, in this proof we assumeWk(b
2
0,h∗

2−1) < W1(b
1
0,h∗

1
) = ω∗ < Wk(b

2
0,h∗

2
). Hence, in the

optimal relaxed problem, channels in class1 are activated when their belief values are aboveb10,h∗

1
and stay idle

if their belief values are belowb10,h∗

1

, and activates with probabilityρ∗∈(0, 1) at b10,h∗

1

. For channels in class2,
they are activated when their belief values no smaller thanb20,h∗

2
and stay idle otherwise.
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B. Transition properties of the system state

We first investigate the belief transition structure of the system stateZN [t] under the Whittle’s Index Policy. It
is clear thatZN [t] evolves as a Markov Chain. We define theexpected drift∇ZN [t] associated with the transition
of ZN [t] as follows,

∇ZN [t] = E
[

ZN [t+ 1]−ZN [t]
∣

∣ZN [t]
]

. (25)

For a channel with belief valueβi, we let q0i,j andq1i,j be the probability that its belief state changes to state
βj under the idle and transmission actions, respectively. Forexample, ifβi corresponds to belief valueb10,l, then
q0i,i+1 = 1 if the channel stays idle, otherwiseq1i,1 = 1 − b10,l and q1i,2τ+1 = b10,l, which corresponds to the
probability of observed channel being0 or 1, respectively. Under the Whittle’s Index Policy, we letgi(z) be the
fraction of users in belief valueβi that are activated, which is expressed as,

gi(z) =















min
{[

α−
∑

wj>wi
zj>zi

zi

]+
, 1
}

, if zi 6= 0,

1, if zi = 0 andα−
∑

wj>wi
zj > 0,

0, if zi = 0 andα−
∑

wj>wi
zj ≤ 0.

(26)

where[·] = max{0, ·}. We useqi,j(z) to denote the probability that the belief value of a channel transit fromβi
to βj under system statez. Thenqij(z) is expressed as

qij(z) = gi(z)q
1
ij +

(

1− gi(z)
)

q0ij. (27)

We shall leteii = ~0, and leteij , i 6= j be a vector that has−1 at the ith element,+1 at the jth element,
and0 at all other elements. Hence if a user changes its belief state from βi to βj , the corresponding change of
the system stateZN [t] is in the direction ofeij with magnitude1/N . Therefore,∇ZN [t] is a composition of
expected changes in each directioneij . SupposeZN [t] = z, since the expected amount of change ofZN [t] in
directioneij is zi[t]qij(z[t]), the expected drift∇ZN [t] can then be written as,

∇ZN [t]
∣

∣

∣

ZN [t]=z
=

∑

i,j

ziqij(z) · eij := Q(z)z, (28)

where the(i, j)th element of matrixQ(z) is expressed as

Qij(z) =

{

−
∑

j 6=i qij(z) for i = j,

qji(z) for i 6= j.
(29)

Note that, although the system statez can only take values on a lattice that depends on N, the matrixfunction
Qij(z) is defined over more general spaceZ. Based on this, we proceed to define a fluid approximation model.

C. Fluid Approximation Model

We consider a fluid approximation modelz[t], which is defined by the following difference equation

z[t+ 1]− z[t] = Q(z[t])z[t]. (30)

Note that the right-hand-side is completely determined by equation (26)-(29), as a function ofz[t] and is
independent ofN . We denotez[t] as the ‘fluid approximation model’ becausez[t] is no longer restricted to take
values on the lattice as with the case of the original system stateZN [t], andz[t] evolves in the direction of
the expected changeof the system state1. Recall that the setZ is defined in equation (6), we proceed with the
following lemma.

Lemma 12. If z[0] ∈ Z, thenz[t] ∈ Z for all t ≥ 0.

1Note that by ‘fluid’ we mean fluid in users/channels instead offluid with respective to time.
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Proof: Since from (28) we have

z[t+ 1]− z[t]
∣

∣

∣

z[t]=z
= Q(z[t])z =

∑

i,j

zi[t]qij(z[t]) · eij .

Note that the belief values of a channel can only evolve within the belief states of class of the channel, hence
for class1,

2τ+1
∑

i=1

zi[t+ 1]−
2τ+1
∑

i=1

zi[t] = ~1T ·
∑

1≤i,j≤2τ+1

zi[t]qij(z[t])eij

=
∑

1≤i,j≤2τ+1

zi[t]qij(z[t]) · (1− 1)

= 0.

where~1 is a vector with1 in each element. Similar result holds for class2. Sincez[0]∈Z, we have

2τ+1
∑

i=1

zi[t] ≡ γ1,

2(2τ+1)
∑

i=2τ+2

zi[t] ≡ γ2, ∀t ≥ 0.

Also equation (28)-(30) indicates thatzi[t]≥0 for all t≥0 if z[0] ∈ Z. Thereforez[t]∈Z for all t ≥ 0,
establishing the lemma. �

Lemma 13. The vector~ζ is the unique fixed point of the fluid approximation model, i.e., for all z ∈ Z, Q(z)z = 0
if and only if z = ~ζ.

Proof: The proof follows from a similar line of [16]. Note that, under the Optimal Relaxed Policy,~ζ =
E
[

ZN (∞)
]

andα fraction of channels are activated on average. Therefore, in the fluid approximation model,
we havez[t+ 1]− z[t]

∣

∣

z[t]=~ζ
= 0, i.e.,Q(~ζ)~ζ = 0.

Now suppose there exists another fixed point~ζ0 ∈ Z such that~ζ0 6= ~ζ andQ(~ζ0)~ζ0 = 0. Then~ζ0 corresponds
to the stationary distribution of the system state under another policyφ(ω0, ρ0) with threshold parameterω0 and
randomization factorρ0. Furthermore, underφ(ω0, ρ0), the expected fraction of activated channels equals toα.
However, this contradicts with Lemma 11, which states that(ω∗, ρ∗) is the unique parameter pairs that strictly
satisfies the average constraint of activation. Therefore,the fixed point~ζ is unique. �

D. Convergence of the Fluid Limit Model

Define the regionJω∗ ⊆ Z as the set ofz ∈ Z such that, under the Whittle’s Index Policy defined in
Section IV, the channel is activated if and only if its index value is no smaller thanω∗, which is the threshold for
the Optimal Relaxed Policy defined in Proposition 1. This means that, at system statez ∈ Jω∗ , all channels with
index value higher thanω∗ are scheduled, and the channels with index value smaller than ω∗ stay idle, while the
channels at index valueω∗ are scheduled with certain randomization. Specifically,Jω∗ = {z∈Z :

∑

i:wi>ω∗ zi <
α,

∑

i:wi≥ω∗ zi ≥ α.}.
The following lemma characterizes the linearity property of the fluid approximation model inJω∗ .

Lemma 14. (i) The vector~ζ ∈ Jω∗ .
(ii) The fluid difference equation (30) is linear within the regionJω∗ , i.e., there exist matrixQ∗ and

vectora∗ such that

z[t+ 1]− z[t] = Q∗ · z[t] + a∗, for all z[t] ∈ Jω∗ . (31)

Proof: (i) The vector~ζ ∈ Jω∗ because, ifz[t] = ~ζ, we have
∑

i:wi≥ω∗ gi(z[t])zi[t] = α.
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(ii) Recall that, at the beginning of the section, we have assumedω∗ = W1(b
1
0,h∗

1
) for the belief valueb10,h∗

1
of

class-1 channel. The difference equation (30) becomes,

z[t+ 1]− z[t]
∣

∣

∣

z[t]=z
=

∑

i,j:i 6=h∗

1

ziqij(z) · eij + zh∗

1

∑

j

qh∗

1j(z) · eh∗

1j

=
∑

i,j:i 6=h∗

1

ziqij(z) · eij + zh∗

1

∑

j

[

gh∗

1
(z)q1h∗

1j
+ [1−gh∗

1
(z)]q0h∗

1j

]

· eh∗

1j

=
∑

i,j:i 6=h∗

1

ziqij(z) · eij + zh∗

1

∑

j

q0h∗

1j
· eh∗

1j + gh∗

1
(z)zh∗

1

∑

j

[

q1h∗

1j
− q0h∗

1j

]

· eh∗

1j. (32)

where the second equality is from (27).
Since the total fraction of users activated isα, we have

gh∗

1
(z)zh∗

1
= α−

∑

wi>ω∗

zi, (33)

Substituting the expression (33) back in (32), and noting that qij(z), i6=h∗1 stays constant forz∈Jω∗ (since the
thresholdω∗ for activation does not change forz ∈ Jω∗), the linearity property holds. �

From Lemma 12 we know thatz[t] ∈ Z for all t ≥ 0, i.e.,

2τ+1
∑

i=1

zi = γ1,

2(2τ+1)
∑

i=2τ+2

zi = γ2. (34)

Taking note of Lemma 12, instead of using a2(2τ+1) dimensional vectorz, it suffices to represent the system
state by a2 · 2τ dimension vector̃z, i.e.,

z̃ =
[

z1, · · · , zh∗

1−1, zh∗

1+1, · · · , z2τ+h∗

2−1, z2τ+h∗

2+1, · · · z2(2τ+1)].

in which elementszh∗

1
andz2τ+h∗

2
are eliminated fromz. The transition of̃z[t], whenz[t] ∈ Jω∗ , is obtained by

substituting the relationship (34) in the difference equation (32) and eliminate the elementszh∗

1
andz2τ+h∗

2
, i.e.,

z̃[t+ 1]− z̃[t] = U∗ · z̃[t] + b∗., (35)

where the matrixU∗ and vectorb∗ are obtained after the substitution. The next key lemma captures the eigen
structure of matrixU∗.

Lemma 15. Each eigen valueλ of U∗ satisfies
∣

∣λ+ 1
∣

∣ < 1.

Proof: The proof is based on explicit study of matrixU∗ and is given in Appendix I.

This lemma leads to the local convergence ofz[t].

Lemma 16. There exists a positive constantσ such that, if the initial statez[0] = x of the fluid approximation
model is within theσ neighborhoodΩσ(~ζ) of ~ζ, whereΩσ(~ζ) ⊆ Jω∗ , then

(i) z[t] ∈ Jω∗ for all t ≥ 0; (ii) z[t] → ~ζ as t → ∞.

Proof: Corresponding to~ζ, we letζ̃ represent the stationary expectation of vectorz̃[t]. Therefore, from Lemma 13,

U∗ · ζ̃ + b∗ = 0. (36)

Substituting (36) in equation (35), we have

z̃[t]− ζ̃ = (U∗ + I
)t
(x− ζ̃). (37)

Since we have assumed thatρ∗ 6= 1, there exists aσ0 neighborhoodΩσ0
(~ζ) with Ωσ0

(~ζ) ⊆ Jω∗ . Correspond-
ingly, there is a neighborhood of̃ζ for which z̃[t] evolution is linear and is described by (37). From Lemma 16,
each eigen valueλ of (U∗ + I) satisfies

∣

∣λ
∣

∣ < 1. According to the stability theory of linear systems [26],z̃[t]

converges tõζ if the initial state is close enough tõζ.
Therefore, there exists aσ < σ0 neighborhood of~ζ for which if the initial statex ∈ Ωσ(~ζ), z[t] ∈ Jω∗ and

z[t] → ~ζ as t → ∞. �
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E. Convergence of the system state

The fluid approximation model provides a good estimate for the system state evolution when the number of
users is large, captured in the following proposition, which can be viewed as adiscrete-time versionof Kurtz
theorem [24] applied to our problem.

Proposition 4. There exists a neighborhoodΩδ(~ζ) of ~ζ such that ifZN [0]=z[0]=x ∈ Ωδ(~ζ), then for anyµ > 0
and finite time horizonT there exists positive constantsC1 andC2 such that

Px

(

sup
0≤t<T

∥

∥ZN [t]− z[t]
∥

∥ ≥ µ
)

≤ C1 exp(−NC2),

whereδ < σ, andPx denotes the probability conditioned on the initial stateZN [0] = x. Furthermore,C1 and
C2 are independent ofx andN .

Proof: Consider the random variableZN [t+ 1] givenZN [t] = z,

ZN [t+ 1] = ZN [t] +

2(2τ+1)
∑

i,j=1

∑Nzi
h=1 η

h
ij(z) · eij

N
, (38)

whereηhij(z) is an indicator function representing whether the belief value of thehth user in belief valueβi
transits to belief valueβj at the next time slot. Note that, givenZN [t] = z, the scheduling action for users in
belief stateβi is independent ofN because the scheduling decision only depends on the belief state distribution
z. As N increases andz stays unchanged, more users is in belief stateβi and the contribution of each channel
to the transition ofZN scales down withN . From the law of large numbers, if the number of users scales up
while zi is kept the same, we have

lim
N→∞

∑Nzi
h=1 η

h
ij(z)

N
= lim

N→∞

Nzi
N

∑Nzi
h=1 η

h
ij(z)

Nzi
= ziqij(z) almost surely.

Lemma 17. There exists a neighborhoodΩε(~ζ) of ~ζ such that, ifZN [t] = z ∈ Ωε(ζ), there existc1 and c2 for
whichZN [t+ 1] satisfies

P
(

∥

∥ZN [t+ 1]−
(

I +Q(z)
)

z
∥

∥ ≥ µ
∣

∣

∣
ZN [t] = z

)

≤ c1 exp(−Nc2),

wherec1 and c2 are independent ofz andN .

Proof: Let ~1i be a vector with1 at theith position. From (38),

ZN [t+ 1]−
(

I +Q(z)
)

z

=

2(2τ+1)
∑

i,j=1

∑Nzi
h=1 η

h
ij(z)

N
· eij −Q(z)z

=

2(2τ+1)
∑

i,j=1

∑Nzi
h=1 η

h
ij(z)

N
· eij −

2(2τ+1)
∑

i,j=1

ziqij(z) · eij

=

2(2τ+1)
∑

i,j=1

∑Nzi
h=1 η

h
ij(z)

N
·
(

~1j − ~1i
)

−

2(2τ+1)
∑

i,j=1

ziqij(z) ·
(

~1j − ~1i
)

=
[

2(2τ+1)
∑

i,j=1

∑Nzi
h=1 η

h
ij(z)

N
· ~1j −

2(2τ+1)
∑

i,j=1

ziqij(z) · ~1j
]

−
[

2(2τ+1)
∑

i,j=1

∑Nzi
h=1 η

h
ij(z)

N
· ~1i −

2(2τ+1)
∑

i,j=1

ziqij(z) · ~1i
]

.
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Note that
2(2τ+1)
∑

i,j=1

∑Nzi
h=1 η

h
ij(z)

N
·~1i−

2(2τ+1)
∑

i,j=1

ziqij(z)·~1i=

2(2τ+1)
∑

i=1

∑Nzi
h=1

∑2(2τ+1)
j=1 ηhij(z)

N
·~1i−

2(2τ+1)
∑

i=1

zi

2(2τ+1)
∑

j=1

qij(z)·~1i

=

2(2τ+1)
∑

i=1

zi~1i −

2(2τ+1)
∑

i=1

zi~1i

= 0.

Therefore

ZN [t+ 1]−
(

I +Q(z)
)

z =

2(2τ+1)
∑

i,j=1

∑Nzi
h=1

(

ηhij(z)− qij(z)
)

N
· ~1j . (39)

Note that once a user is activated, its belief value will onlytransit topk or rk, thereforeηhij(z) 6= 0 only for
j ∈ Θ := {1, 2τ +1, 2τ +2, 2(2τ +1)}. Also note that for those channels that stay idle, there is norandomness
associated with its belief transition, i.e., for themηhij(z) = qij(z) ∈ {0, 1}. Therefore the randomness is only
associated with the channels which are activated, i.e., those with index value no smaller thanω∗. Hence, (39)
becomes

ZN [t+ 1]−
(

I +Q(z)
)

z =
∑

j∈Θ

∑

i∈Πj(z)

∑Ngi(z)zi
h=1

(

ηhij(z)− qij(z)
)

N
· ~1j,

where the summation
∑Ngi(z)zi

h=1 (·) is over all the channels in belief stateβi that are activated, andΠj(z) is the
set of belief values in which channels are scheduled within the class that corresponds to beliefj ∈ Θ, i.e.,

Πj(z) :=

{

{1 ≤ i ≤ 2τ + 1 : gi(z) > 0} if j = 1, 2τ + 1,

{(2τ + 1) + 1 ≤ i ≤ 2(2τ + 1) : gi(z) > 0} if j = 2τ + 2, 2(2τ + 1).

For eachj ∈ Θ, we have

Px

(

∥

∥ZN [t+1]−
(

I+Q(z)
)

z
∥

∥≥µ
∣

∣

∣
ZN [t]=z

)

=P
(

∥

∥

∑

j∈Θ

∑

i∈Πj(z)

∑gi(z)Nzi
h=1

(

ηhij(z)−qij(z)
)

N
·~1j

∥

∥>µ
)

≤
∑

j∈Θ

P
(
∣

∣

∣

∑

i∈Πj(z)

gi(z)Nzi
∑

h=1

ηhij(z)− qij(z)

N

∣

∣

∣
>

µ

4

)

, (40)

where the last inequality holds because
∣

∣Θ
∣

∣ = 4 and also from union bound. Specifically, the union bound holds
since

{

∥

∥

∥

∑

j∈Θ

∑

i∈Πj(z)

∑gi(z)Nzi
h=1

(

ηhij(z)−qij(z)
)

N
·~1j

∥

∥

∥
> µ

}

⊆
⋃

j∈Θ

{

∣

∣

∣

∑

i∈Πj(z)

gi(z)Nzi
∑

h=1

ηhij(z)− qij(z)

N

∣

∣

∣
>

µ

4

}

From an extension of Chebychoff’s inequality (See Excercise 1.8 in [21]) we have that, for eachj ∈ Θ, there
exists a positive continuous functionfj(µ), which does not depend onz andN , with

P
(
∣

∣

∣

∑

i∈Πj(z)

gi(z)Nzi
∑

h=1

ηhij(z) − qij(z)

N

∣

∣

∣
>

µ

4

)

< exp
(

− fj(µ)
∑

i∈Πj(z)

gi(z)Nzi
)

. (41)

Let αj be the fraction of channels activated, under thesteady stateof Optimal Relaxed Policy, in the class
corresponding to belief valueβj , i.e.,

αj =

{

∑2τ+1
i=1 gi(ζ)ζi if j= 1, 2τ + 1,

∑2(2τ+1)
i=2τ+2 gi(ζ)ζi if j= 2τ + 2, 2(2τ + 1).

(42)
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For any0 < ℓ < min{αj , j ∈ Θ}, there exists a neighborhoodΩε(~ζ) such that for allz ∈ Ωε(~ζ),
∑

i∈Πj(z)

gi(z)zi ≥ αj − ℓ, j ∈ Θ, (43)

which essentially means, under system statez ∈ Ωε(~ζ), the fraction of activated channels in each class will stay
close to the case when system state is actuallyζ. Let f(µ) = min{fj(µ)(αj − ℓ), j ∈ Θ}, then from (40)-(43),

Px

(

∥

∥ZN [t+ 1]−
(

I +Q(z)
)

z
∥

∥ ≥ µ
∣

∣

∣
ZN [t] = z

)

≤
∑

j∈Θ

P
(
∣

∣

∣

∑

i∈Πj

gi(z)Nzi
∑

h=1

ηhij(z) − qij(z)

N

∣

∣

∣
>

µ

4

)

≤ 4 exp(−f(µ)N).

It is clear from the proof thatf(µ) does not depend onz or N . Letting c1 = 4 and c2 = f(µ), the lemma
thus holds.

Lemma 18. There exists a neighborhoodΩδ(ζ) of ~ζ for which, if ZN [0] = x ∈ Ωδ(ζ), for any t ≥ 1, there
existct1 and ct2 with

Px

(

∥

∥ZN [t]− z[t]
∥

∥ ≥ µ
)

≤ ct1 exp(−Nct2),

wherect1 and ct2 are independent ofx andN .

Proof: Recall thatσ andε are defined in Lemma 16 and Lemma 17, respectively. We letδ < min{σ, ε} be
such that, ifz[0] ∈ Ωδ(ζ), z[t] ∈ Ωε−ρ(ζ) for all t ≥ 1 whereρ is a constant with0 ≤ ρ ≤ ε and satisfies

∥

∥

(

Q(x) + I
)

x−
(

Q(y) + I
)

y
∥

∥ ≤ ν, for all x,y ∈ Z with
∥

∥x− y
∥

∥ ≤ ρ. (44)

for positive constantν < µ. We proceed to prove this statement by induction.

For t = 1, if x ∈ Ωδ(ζ), from Lemma 17, there existc11 > 0 andc12 > 0,

Px(
∥

∥ZN [1]− z[1]
∥

∥ ≥ µ
)

= Px(
∥

∥ZN [1]−
(

I +Q(x)
)

x
∥

∥ ≥ µ
)

≤ c11 exp(−c12N).

Suppose the statement is true att ≥ 1, then there existdt1 anddt2 for which,

Px

(

∥

∥ZN [t+ 1]− z[t+ 1]
∥

∥ ≥ µ
)

=Px

(

∥

∥ZN [t]− z[t]
∥

∥ ≥ ρ
)

Px

(

∥

∥ZN [t+ 1]− z[t+ 1]
∥

∥ ≥ µ
∣

∣

∣

∥

∥ZN [t]− z[t]
∥

∥ ≥ ρ
)

+ Px

(

∥

∥ZN [t]− z[t]
∥

∥ < ρ
)

Px

(

∥

∥ZN [t+ 1]− z[t+ 1]
∥

∥ ≥ µ
∣

∣

∣

∥

∥ZN [t]− z[t]
∥

∥ < ρ
)

≤dt1 exp(−dt2N) + Px

(

∥

∥ZN [t+ 1]− z[t+ 1]
∥

∥ ≥ µ
∣

∣

∣

∥

∥ZN [t]− z[t]
∥

∥ < ρ
)

(45)

Now consider the second term in (45),

Px

(

∥

∥ZN [t+ 1]− z[t+ 1]
∥

∥ ≥ µ
∣

∣

∣

∥

∥ZN [t]− z[t]
∥

∥ < ρ
)

=Px

(

∥

∥ZN [t+ 1]−
(

I +Q(ZN [t])
)

ZN [t] +
(

I +Q(ZN [t])
)

ZN [t]− z[t+ 1]
∥

∥ ≥ µ
∣

∣

∣

∥

∥ZN [t]− z[t]
∥

∥ < ρ
)

≤Px

(

∥

∥ZN [t+ 1]−
(

I+Q(ZN [t])
)

ZN [t]
∥

∥+
∥

∥

(

I+Q(ZN [t])
)

ZN [t]−
(

I+Q(z[t])
)

z[t]
∥

∥ ≥ µ
∣

∣

∣

∥

∥ZN [t]−z[t]
∥

∥<ρ
)

≤Px

(

∥

∥ZN [t+ 1]−
(

I+Q(ZN [t])
)

ZN [t]
∥

∥ ≥ µ− ν
∣

∣

∣

∥

∥ZN [t]− z[t]
∥

∥ < ρ
)

.

=
∑

z∈Ωρ(z[t])

Px

(

ZN [t]=z
∣

∣

∣
ZN [t] ∈ Ωρ(z[t])

)

Px

(

∥

∥ZN [t+ 1]−
(

I+Q(z)
)

z
∥

∥ ≥ µ−ν
∣

∣

∣
ZN [t]=z

)

(46)

where the first inequality follows from triangle inequality, and the second inequality is from relationship (44).
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SinceΩρ(z[t]) ⊆ Ωε(ζ), from Lemma 17, forz ∈ Ωρ(z[t]), there exist positive constantsc1 and c2, that do
not depend onz or N , with

Px

(

∥

∥ZN [t+ 1]−
(

I+Q(z)
)

z
∥

∥ ≥ µ− ν
∣

∣

∣
ZN [t] = z

)

≤ c1 exp(−c2N). (47)

Substituting (47) to (46), we have

Px

(

∥

∥ZN [t+ 1]− z[t+ 1]
∥

∥ ≥ µ
∣

∣

∣

∥

∥ZN [t]− z[t]
∥

∥ < ρ
)

≤ c1 exp(−c2N). (48)

Hence from Equation (45) and (48), there exist constantsct+1
1 > 0 andct+1

2 > 0 that do not depend onz and
N with

Px

(

∥

∥ZN [t+ 1]− z[t+ 1]
∥

∥ ≥ µ
)

≤ ct+1
1 exp(−Nct+1

2 ).

By induction, the lemma holds.
Note that from union bound,

Px

(

sup
0≤t<T

||ZN [t]− z[t]|| ≥ µ
)

≤
T−1
∑

t=0

Px

(

||ZN [t]− z[t]|| ≥ µ
)

. (49)

Therefore, from Lemma 18, over finite time horizonT , there exist positive constantsC1 andC2, which do
not depend onx andN , such that

Px

(

sup
0≤t<T

||ZN [t]− z[t]|| ≥ µ
)

≤ C1 exp(−NC2),

which concludes the proof of Proposition 4. �

According to Proposition 4 we have just established, the system stateZN [t] behaves very close to the fluid
approximation modelz[t] when the number of usersN is large. Since we have shown the convergence ofz[t]
to ~ζ within Ωσ(~ζ) in Lemma 16, we are ready to establish the local convergence of the system stateZN [t] to ~ζ.

Lemma 19. If ZN [0] = x ∈ Ωδ(~ζ), then for anyµ > 0 there exists a timeT0 such that for eachT > T0, there
exist positive constantss1 and s2 with,

Px

(

sup
T0≤t<T

||ZN [t]− ~ζ|| ≥ µ
)

≤ s1 exp(−Ns2).

Proof: We let 0 < ν < µ. Noting thatδ < σ, from Lemma 16 we have, givenz[0] = x ∈ Ωδ(~ζ), there existsT0

such that for allt ≥ T0.
∥

∥z[t]− ~ζ
∥

∥ ≤ ν.

From Proposition 4 we know that there exist positive constants s1 ands2 such that,

Px

(

sup
T0≤t<T

∥

∥ZN [t]−~ζ
∥

∥ ≥ µ
)

≤Px( sup
T0≤t<T

∥

∥ZN [t]−z[t]
∥

∥+
∥

∥z[t]−~ζ
∥

∥ ≥ µ)

≤Px( sup
T0≤t<T

∥

∥ZN [t]−z[t]
∥

∥ ≥ µ−ν)

≤Px( sup
0≤t<T

∥

∥ZN [t]−z[t]
∥

∥ ≥ µ−ν)

≤s1 exp(−Ns2).

Hence the lemma holds. �

The previous lemma allows us to establish the local convergence result. Letv : Z → R be a mapping such that
v(z) represents the per-user average throughput under system statez. Therefore,Nv(ZN [t]) is the immediate
reward at timet and we also haver(γ, α) = v(~ζ).

For ℓ > 0, we letµ > 0 be such that for anyx ∈ Z, if ‖x− ~ζ‖ < µ, then

|v(x)− v(~ζ)| < ℓ. (50)
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Note that the per-user instantaneous throughputv(z) ≤ 1. Therefore,

∣

∣

∣

RNm

T (γ, α,x)

Nm
− r(γ, α)

∣

∣

∣
=

∣

∣

∣

1

NmT
E
[

T−1
∑

t=0

Nmv(ZNm [t])
]

− r(γ, α)
∣

∣

∣

=
∣

∣

∣

1

T

T0−1
∑

t=0

E
[

v(ZNm [t])− v(~ζ)
]

+
1

T

T−1
∑

t=T0

E
[

v(ZNm [t])− v(~ζ)
]

∣

∣

∣

≤
∣

∣

∣

1

T

T0−1
∑

t=0

E
[

v(ZNm [t])− v(~ζ)
]

∣

∣

∣
+
∣

∣

∣

1

T

T−1
∑

t=T0

E
[

v(ZNm [t])− v(~ζ)
]

∣

∣

∣

≤
T0

T
+

1

T

T−1
∑

t=T0

E
[
∣

∣v(ZNm [t])− v(~ζ)
∣

∣

]

. (51)

Letting ANm
be the event{supT0≤t≤T ||ZNm [t]− ~ζ|| ≥ µ}, we proceed to bound the second term in (51),

1

T

T−1
∑

t=T0

E
[

∣

∣v(ZNm [t])− v(~ζ)
∣

∣

]

=P~x(ANm
)
1

T

T−1
∑

t=T0

E
[

∣

∣v(ZNm [t])− v(~ζ)
∣

∣

∣

∣

∣
ANm

]

+
(

1− P~x(ANm
)
) 1

T

T−1
∑

t=T0

E
[

∣

∣v(ZNm [t])− v(~ζ)
∣

∣

∣

∣

∣
ĀNm

]

≤P~x(ANm
) + (1− P~x(ANm

))ℓ

=P~x(ANm
)(1− ℓ) + ℓ.

where the inequality if from the factv(z) ≤ 1 and the relation (50).
According to Lemma 19, whenx ∈ Ωδ(~ζ), we havelimm→∞ P~x(ANm

) = 0, therefore,

lim
m→∞

∣

∣

∣

RNm

T (γ, α,x)

Nm
− r(γ, α)

∣

∣

∣
≤

T0

T
+ ℓ.

Sinceℓ can be arbitrarily small, we have

lim
m→∞

|
RNm

T (γ, α,x)

Nm
− r(γ, α)| ≤

T0

T
.

Hence, taking limit withT in both sides,

lim
T→∞

lim
m→∞

RNm

T (γ, α,x)

Nm
=r(γ, α).

We have thus proved Proposition 2.

APPENDIX F
PROOF OFLEMMA 4

(i) Here we prove the Markov chain has one unique class by stating that, starting from any state, there exists
a possibility to reach a particular state, and hence there isonly one class of recurrent state.

Case (1). Supposeα ≤ γ1. Starting from any initial stateZN [0], the following transition can occur: whenever
the channels in class1 are activated, their states are observed to be in ON state, and whenever channels in class
2 are activated, they are revealed to be in OFF state. Then after a long enough time durationt1, α fraction of
channels, which are in class1, will be in belief valuep1, and other channels will have stationary belief value
πs. Hence the system state will beZN [t1] = [Z1,N [t1],Z

2,N [t1]] (defined in Section V-A) withZ1,N
1,1 [t1] = α,

Z1,N
s [t1] = γ1 − α, Z2,N

s [t1] = γ2, and with0 in all other positions.
Case (2). Supposeα > γ1. Starting from any initial stateZN [0], consider the following transition path. Within

the first period of time slots,0 ≤ t ≤ t0, whenever users in class1 are activated, they turn out to be in state1,
and whenever users in class2 are activated, they turn out to be in state0. Then if t0 is long enough,Z1,N [t0]
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is such thatZ1,N
1,1 [t0] = γ1, with zero in all other elements. In the second period,t0 ≤ t ≤ t1, whenever users

in class1 are activated, it will remain in state1, and whenever users in class2 are activated, it turns out to be
in state1 as well. Then after long enough of time untilt1, ZN [t1] = [Z1,N [t1],Z

2,N [t1]] with Z1,N
1,1 [t1] = γ1,

Z2,N
1,1 [t1] = α− γ1, andZ2,N

s [t1] = 1− α, with zero in all other elements .
Since the state space of the Markov ChainZN [t] is finite, there is at least one recurrent class. As we have

seen in the above cases that, starting from all states,ZN [t] can reach a particular state. Therefore there can only
be one recurrent state. We shall henceforth denote this particular state asZN

p . It is also clear from the proof that
the Markov chain is aperiodic because of the possible self-transition in stateZN

p .
(ii) Similar to the proof of Proposition 2, in this part, we drop the suffixα and γ in the notation~ζαγ , and

we assumeWk(b
2
0,h∗

2−1) < W1(b
1
0,h∗

1
) = ω∗ < Wk(b

2
0,h∗

2
). Recall that from the expression 20 of Whittle’s index

value thatWk(π) = Wk(b
k
s) for π ∈ Bk, π ≥ bks , k = 1, 2. We first characterize the structure of~ζ. From the

description in Lemma 1 we know that the non-zero elements of~ζ are

ζ10 := ζ10,1 =ζ10,2 = · · · = ζ10,h∗

1
, ζ10,h∗

1+1 = (1− ρ∗)ζ10,h∗

1
, ζ11,1 = 1−

h∗

1+1
∑

h=1

ζ10,h,

ζ20 := ζ20,1 =ζ20,2 = · · · = ζ20,h∗

2−1 = ζ20,h∗

2
, ζ21,1 = 1−

h∗

2
∑

h=1

ζ20,h.

We shall proceed to construct a path from the stateZN
p to an arbitrary neighborhood of~ζ. For ease of

exposition, in the proof we no longer consider the channels as unsplittable entities. Instead, the transition in the
each stages deals with belief state evolution of certainfraction of users. As we shall see, under this assumption,
we can construct a transition path ofZN [t] under the Whittle’s Index Policy, that transits fromZN

p to theexact
value ~ζ. Although the identified path may not be feasible in reality for small value ofN , but as the number
of usersN increases, we can find a transition path, which operates eachuser as unsplittable entities, that is
arbitrarily close to this identified path, and thus can ultimately get arbitrarily close to any neighborhood of~ζ.

Note that whenZN [t1] = ZN
p , ZN [t1] =

[

Z1,N [t1],Z
2,N [t1]

]

, where

Z1,N
1,1 [t1] + Z1,N

s [t1] = γ1, and Z2,N
1,1 [t1] + Z2,N

s [t1] = γ2.

In the following construction we shall assume that belief values are updated at the end of each slot when the
actual channel states are revealed.

Case (1). Supposeh∗1 ≥ h∗2 andWk(b
1
s) ≥ Wk(b

2
s). We shall denoteh′1 = max{l : W 1(b10,l) ≤ W 2(b2s)}. In this

case, The path is constructed with the stages below, starting from stateZN [t1] = ZN
p .

Stage 1.1. In the first slot, among theα fraction activated channels,α − ζ10,h∗

1+1 amount remains in ON state,
andζ10,h∗

1+1 amount turn out in OFF state and are in class1. Hence the end of this slot,ZN = [Z1,N ,Z2,N ] has
the following non-zero elements

Z1,N
0,1 = ζ10,h∗

1+1, Z1,N
1,1 + Z1,N

s = γ1 − ζ10,h∗

1+1, Z2,N
1,1 + Z2,N

s = γ2.

Stage 1.2. In each of the nexth∗1 slots,α − ζ10 amount in the activated channels turn out in ON state, andζ10
amount of them turn out to be in OFF state and are in class1. So at the end of the last slot of this stage, the
non-zero elements of the system stateZN = [Z1,N ,Z2,N ] satisfies

Z1,N
0,1 =Z1,N

0,2 = · · · = Z1,N
0,h∗

1

= ζ10 , Z1,N
0,h∗

1+1 = ζ10,h∗

1+1, Z1,N
1,1 = ζ11,1, Z2,N

1,1 + Z2,N
s = γ2.

Stage 2. In the next few slots, all activated channels turn out to be instate1. This stage goes on forh′1 − h∗1
slots, until those channels that reach belief stateb10,1 at the end of stage 1.1 are in belief stateb10,h′

1+1. Then by
the end of the last slot of this stage, the non-zero elements of the system stateZN satisfies

Z1,N
0,h′

1−h∗

1+1 = · · · = Z1,N
0,h′

1

=ζ10 , Z1,N
0,h′

1+1 = ζ10,h∗

1+1, Z1,N
1,1 = ζ11,1, Z2,N

1,1 + Z2,N
s = γ2.
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Stage 3. In each of the following slots, among all channel activated,only those in belief stateb10,h′

1+1 turn out
to be in OFF state. This stage goes on until those channels that transit to belief stateb10,h′

1
in stage 2 reaches

belief stateb10,h∗

1−h∗

2+1. Hence by the end of the final slot of this stage,

Z1,N
0,1 = · · · = Z1,N

0,h∗

1−h∗

2

= ζ10 , Z
1,N
0,h∗

1−h∗

2+1 = ζ10,h∗

1+1, Z
1,N
0,h′

1−h∗

2+2 = · · · = Z1,N
0,h′

1+1 = ζ10 , Z
2,N
1,1 + Z2,N

s = γ2.

Stage 4. In each of the nexth∗2 slots, among all users activated, those in belief stateb10,h′

1+1 turn out to be in
OFF state, andζ20 amount of activated channels in class2 turn out in OFF state. Then by the end of the final
slot in this stage, the system state will beZN = ~ζ, i.e.,

Z1,N
0,1 =Z1,N

0,2 = · · · = Z1,N
0,h∗

1

= ζ10 , Z1,N
0,h∗

1+1 = ζ10,h∗

1+1, Z1,N
1,1 = ζ11,1

Z2,N
0,1 =Z2,N

0,2 = · · · = Z2,N
0,h∗

2−1 = Z2,N
0,h∗

2

= ζ20 , Z2,N
1,1 = ζ21,1.

Case (2). SupposeWk(b
1
s) ≥ Wk(b

2
s) and h∗1 ≤ h∗2. We shall leth′1 = max{l : W 1(b10,l) ≤ W 2(b2s)} and

d = ⌊h∗2/(h
′
1+1)⌋. Starting from stateZN [t1] = ZN

p , the path is constructed with the stages below, where stage
1.1 and 1.2 are the same with the previous case.
Stage 1.1. In the first slot, among theα fraction of activated channels, onlyζ10,h∗

1+1 amount turn out in OFF state
and they are in class1. Therefore at the end of this slot,ZN = [Z1,N ,Z2,N ] with non-zero elements being

Z1,N
0,1 = ζ10,h∗

1+1, Z1,N
1,1 + Z1,N

s = γ1 − ζ10,h∗

1+1, Z2,N
1,1 + Z2,N

s = γ2.

Stage 1.2. In each of the nexth∗1 slots,α − ζ10 amount of activated channels are in state ‘1’, andζ10 amount
are in OFF state and are in class1. Hence at the end of the last slot of this stage, the non-zero elements of
ZN = [Z1,N ,Z2,N ] satisfies

Z1,N
0,1 =Z1,N

0,2 = · · · = Z1,N
0,h∗

1

= ζ10 , Z1,N
0,h∗

1+1 = ζ10,h∗

1+1, Z1,N
1,1 = ζ11,1, Z2,N

1,1 + Z2,N
s = γ2.

Letting t2 be the slot right after stage 1.2, the path proceeds as follows.

Stage 2.
(1) From slott2 to slot t2 + h′1 − h∗1 − 1, all activated channels in class1 turn out to be in state1. Hence at the
end of slott2 +h′1−h∗1 − 1, the channels that reach belief stateb10,h∗

1+1 at the end of stage 1.2 are in belief state
b10,h′

1+1. Next, from slott2+h′1−h∗1 to slot t2+(d+1)(h′1+1)−1, among the activated channels in class1, only
those in belief stateb10,h′

1+1 turn out to be in OFF state. Therefore, at the end of slott2 + (d+ 1)(h′1 + 1)− 1,
the system state vectorZ1,N that correspond to class-1 channels is

Z1,N
0,1 =Z1,N

0,2 = · · · = Z1,N
0,h∗

1

= ζ10 , Z1,N
0,h∗

1+1 = ζ10,h∗

1+1, Z1,N
1,1 = ζ11,1.

(2) In the meanwhile, from slott2+(d+1)(h′1 +1)−h∗2−1 to slot t2+(d+1)(h′1 +1)−1, among the activated
channels in class2, ζ20 amount turn out to be in OFF state. Hence by the end of slott2 + (d + 1)(h′1 + 1)− 1,
the vectorZ1,N that correspond to class-2 channels is

Z2,N
0,1 = Z2,N

0,2 = · · · = Z2,N
0,h∗

2−1 = Z2,N
0,h∗

2

= ζ20 , Z2,N
1,1 = ζ21,1.

Therefore, at the end of slott2 + (d+ 1)(h′1 + 1)− 1, ZN = ~ζ.

APPENDIX G
PROOF OFLEMMA 5

The proof is a discrete-time version of the proof of Theorem 6.89 from [21]. We first present a lemma which
is an extension of Lemma 19.

Lemma 20. There is a neighborhoodΩϑ(~ζ
α
γ ) of ~ζαγ , with ϑ < δ, for which if ZN [0] = x ∈ Ωϑ(~ζ

α
γ ), then for

anyµ > 0 and timeT , there exist positive constantsρ1 and ρ2 with,

Px

(

sup
0≤t<T

‖ZN [t]− ~ζαγ ‖ ≥ µ
)

≤ ρ1 exp(−Nρ2)
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whereρ1 and ρ2 are independent ofx andN .

Proof: Note that we have established, in Lemma 16, the local convergence of the fluid approximation model
z[t] in a neighborhoodΩσ(~ζ

α
γ ). We letν < µ and letϑ < δ (recall thatδ is defined in proposition 4 withδ < σ)

be such that ifz[0] ∈ Ωϑ(~ζ
α
γ ), then

‖z[t]− ~ζαγ ‖ ≤ ν, ∀t ≥ 0.

From Proposition 4, there exist positive constantsρ1 andρ2 with,

Px

(

sup
0≤t<T

∥

∥ZN [t]−~ζ
∥

∥ ≥ µ
)

≤Px( sup
0≤t<T

∥

∥ZN [t]−z[t]
∥

∥+
∥

∥z[t]−~ζ
∥

∥ ≥ µ)

≤Px( sup
0≤t<T

∥

∥ZN [t]−z[t]
∥

∥ ≥ µ−ν)

≤Px( sup
0≤t<T

∥

∥ZN [t]−z[t]
∥

∥ ≥ µ−ν)

≤ρ1 exp(−Nρ2),

which proves the lemma.

We let ǫs < ϑ be such that ifz[0] ∈ Ωǫs(
~ζαγ ), thenz[t] ∈ Ωǫ(~ζ

α
γ ) for t ≥ 0.

We let ̺N2n, n = 0, 1, · · · be the time slots ofconsecutivehitting times into the neighborhoodΩǫs(
~ζαγ ) from

outsideof the neighborhood when the total number of users isN . Similarly, we let̺N2n+1, n = 0, 1, · · · denote
the time slots ofexiting the neighborhoodΩǫ(~ζ

α
γ ) from inside of the neighborhood, when the total number of

users isN . Henceyn = ZN [̺Nn ], n = 0, 1, · · · evolves as a Markov chain. In steady state,

P
(

ZN [∞] /∈ Ωǫ(~ζ
α
γ )
)

≤
E[̺N2n+2 − ̺N2n+1]

E[̺N2n+2 − ̺N2n]
=

E[̺N2n+2 − ̺N2n+1]

E[̺N2n+2 − ̺N2n+1] + E[̺N2n+1 − ̺N2n]
. (52)

We let Tǫ(N) denote the random variable̺N2n+1 − ̺N2n. For any constantK > 0, we have

E[Tǫ(N)] =

∞
∑

t=1

t · P (Tǫ(N) = t)

≥ 2K · P (Tǫ(N) ≥ 2K)

= 2K · PZN [̺N
2n+1]

(

sup
̺N
2n+1≤t<̺N

2n+1+2K

‖ZN [t]− ~ζαγ ‖ ≤ ǫ
)

. (53)

Note that

PZN [̺N
2n+1]

(

sup
̺N
2n+1≤t<̺N

2n+1+2K

‖ZN [t]− ~ζαγ‖ > ǫ
)

=
∑

z∈Ωǫs(~ζ
α
γ
)

P
(

ZN (̺N1 ) = z
)

Pz

(

sup
0≤t<2K

‖ZN [t]− ~ζαγ ‖ > ǫ
)

. (54)

Sinceǫs < ϑ, from Lemma 20, there exist positive constantsς1 andς2 such that for anyz ∈ Ωǫs(
~ζαγ ),

Pz

(

sup
0≤t<2K

‖ZN [t]− ~ζαγ‖ > ǫ
)

≤ ς1 exp(−ς2N). (55)

Substitute (55) in (54) we have

PZN [̺N
2n+1]

(

sup
̺N
2n+1≤t<̺N

2n+1+2K

‖ZN [t]− ~ζαγ ‖ > ǫ
)

≤ ς1 exp(−ς2N).

Therefore,PZNm [̺Nm
2n+1]

(

sup̺Nm
2n+1≤t<̺

Nm
2n+1+2K

‖ZNm [t] − ~ζαγ ‖ ≤ ǫ
)

→ 1 asm → ∞. From (53), ifm is large
enough, we have

E[̺Nm

1 − ̺Nm

0 ] ≥ K.
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SinceK can be arbitrarily large,limm→∞E[̺Nm

1 −̺Nm

0 ] = ∞. Since from AssumptionΨ we knowE[̺Nm

2 −
̺Nm

1 ] ≤ Mǫs , thus from equation (52),

lim
m→∞

P
(

ZNm [∞] /∈ Ωǫ(~ζ
α
γ )
)

= 0,

which concludes the proof.

APPENDIX H
PROOF OFPROPOSITION3

For anyℓ > 0, let ǫ > 0 be such that forx ∈ Z, if ||x− ~ζαγ )|| < ǫ, then

|v(x)− r(γ, α)| < ℓ.

Consider fixedNm, for ∀ℓ > 0 denote eventENm
= {ZNm [∞] ∈ Ωǫ(~ζ

α
γ )}, then

∣

∣

∣

RNm

x (γ, α)

Nm
− r(γ, α)

∣

∣

∣

≤E
[

∣

∣v(ZNm [∞])− v(~ζαγ )
∣

∣

]

=P
(

ENm

)

E
[

∣

∣v(ZNm [∞])− v(~ζαγ )
∣

∣

∣

∣

∣
ENm

]

+ P
(

ĒNm

)

E
[

∣

∣v(ZNm [∞])− v(~ζαγ )
∣

∣

∣

∣

∣
ĒNm

]

≤P
(

ZNm [∞] ∈ Ωǫ(~ζ
α
γ )
)

· ℓ+ P
(

ZNm [∞] /∈ Ωǫ(~ζ
α
γ )
)

. (56)

Apply Lemma 5 to (56) we have

lim
m→∞

∣

∣

∣

RNm

x (γ, α)

Nm
− r(γ, α)

∣

∣

∣
≤ lim

m→∞

[

P
(

ZNm [∞] ∈ Ωǫ(~ζ
α
γ )
)

· ℓ+ P
(

ZNm [∞] /∈ Ωǫ(~ζ
α
γ )
)

]

= ℓ.

Sinceℓ can be arbitrary,

lim
m→∞

RNm

x (γ, α)

Nm
= r(γ, α),

which proves the proposition.

APPENDIX I
PROOF OFLEMMA 15

After some calculation, the matrixU∗ takes the form

U∗ =

[

Q̃1(z) B

0 Q̃2(z)

]

.

where matrixB is expressed as

B =

















0 · · · 0 b10,h∗

1
− 1 b10,h∗

1
− 1 · · · b10,h∗

1
− 1

...
...

0 · · · 0 1 1 · · · 1
...

...
0 · · · 0 −b10,h∗

1

−b10,h∗

1

· · · −b10,h∗

1

















in which only the first, last andh∗1 + 1th row have non-zero elements, and for each row, non-zero termsstart at
the h∗2

th element.
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The matricesQ̃1(z) and Q̃1(z) are expressed as,

Q̃1(z) =





























−1 0 · · · 0 b10,h∗

1
− b10,h∗

1+1 b10,h∗

1
− b10,h∗

1+2 · · · b10,h∗

1
− p1

1 −1
. .. . . .

1 −1
−1 · · · −1 −1 −1

−1
. ..

b10,h∗

1+1 − b10,h∗

1
b10,h∗

1+1 − b10,h∗

1
· · · −(1− p1)− b10,h∗

1





























Q̃2(z) =





























−1 0 · · · 0 1−b20,h∗

2
1− b20,h∗

2+1 · · · 1− p2
1 −1

. . . . . .
1 −1

−1 · · · −1 −1 −2 −1 · · · −1
−1

. . .
b20,h∗

2
b20,h∗

2+1 · · · −(1− p2)





























.

We need the following lemma to proceed.

Lemma 21. For any l ∈ Z
+,

(1− p1) + b10,l > (l − 1)(b10,l+1 − b10,l).

Proof: The proof is moved to Appendix J. �

With this lemma, we proceed to characterize the eigen valuesof matrix U∗, which are given by the solution
to equationdet(U∗ − λI) = 0, where

det(U∗ − λI) = det

[

Q̃1(z)− λI B

Q̃2(z)− λI

]

= det

[

Q̃1(z)− λI 0

Q̃2(z)− λI

]

,

where the second equality is from the property of block matrices. Therefore, we have

det(U∗ − λI) = det(Q̃1(z)− λI) det(Q̃2(z)− λI).

(1) We first study the characteristic polynomialdet(Q̃1(z) − λI). After some algebra we have

det(Q̃1(z)− λI) = (1 + λ)2τ−h∗

1

[

[λ+ (1−p1)+b10,h∗

1
](1 + λ)h

∗

1−1 −

(b10,h∗

1+1−b10,h∗

1
)
[

1 + (1 + λ) + (1 + λ)2 + · · ·+ (1 + λ)h
∗

1−2
]

]

, (1 + λ)2τ−h∗

1χ1(λ).

where

χ1(λ) = [λ+(1−p1)+b10,h∗

1
](1+λ)h

∗

1−1−(b10,h∗

1+1−b10,h∗

1
)
[

1+(1+λ)+(1+λ)2+ · · ·+(1+λ)h
∗

1−2
]

.

Consider the equationχ1(λ) = 0, i.e.,

[λ+(1−p1)+b10,h∗

1
](1+λ)h

∗

1−1 = (b10,h∗

1+1−b10,h∗

1
)
[

1+(1+λ)+(1+λ)2+ · · ·+(1+λ)h
∗

1−2
]

. (57)

Clearly, matrixQ̃1(z) has eigen value−1 of multiplicity 2τ − h∗1. Let λ be any other eigen value of̃Q1(z),
we proceed to show that

∣

∣λ+ 1
∣

∣ < 1.
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We prove this by contradiction, supposeλ is such that
∣

∣λ+1
∣

∣ ≥ 1. Then taking modulus of the left hand side
of equation (57) we have

∣

∣[λ+(1−p1)+b10,h∗

1
](1+λ)h

∗

1−1
∣

∣ =
∣

∣λ+ 1− p+ b10,h∗

1

∣

∣ ·
∣

∣1 + λ
∣

∣

h∗

1−1

≥
(
∣

∣λ+ 1
∣

∣+
∣

∣− p1 + b10,h∗

1

∣

∣

)
∣

∣1 + λ
∣

∣

h∗

1−1

≥
(

1− p1 + b10,h∗

1

)

∣

∣1 + λ
∣

∣

h∗

1−1
,

where the first equality is from triangle inequality. Applying Lemma 21 we have,
(

1− p1 + b10,h∗

1

)

∣

∣1 + λ
∣

∣

h∗

1−1

>(h∗1 − 1)(b10,h∗

1+1 − b10,h∗

1
) ·

∣

∣1 + λ
∣

∣

h∗

1−1

>(b10,h∗

1+1 − b10,h∗

1
)
[

1 +
∣

∣1 + λ
∣

∣+ · · ·+
∣

∣1 + λ
∣

∣

h∗

1−2]

≥(b10,h∗

1+1 − b10,h∗

1
)
∣

∣1+(1+λ)+ · · ·+(1+λ)h
∗

1−2
∣

∣. (58)

where the first inequality is from Lemma 21, and the second inequality is from the fact that
∣

∣λ+ 1
∣

∣>1, and the
last inequality comes from Triangle Inequality. Note that inequality (58) contradicts (57). Therefore each eigen
values of matrixQ̃1(z) must satisfy

∣

∣λ+ 1
∣

∣ < 1.

(2) We then study the characteristic polynomialdet(Q̃2(z)− λI). We derive that

det(Q̃2(z)− λI)

=(1 + λ)2τ−h∗

2

[

[

(1− p2) + (1− b20,h∗

2
)λ
]

[

1 + (1 + λ) + · · ·+ (1 + λ)h
∗

2−3
]

+

(1 + λ)h
∗

2−2
[

[

(1− p2) + λ
]

(2 + λ) + b20,h∗

2

]]

,(1 + λ)2τ−h∗

2 · χ2(λ), (59)

where

χ2(λ)=
[

(1−p2)+(1−b20,h∗

2
)λ
]

[

1+(1+λ)+ · · ·+(1+λ)h
∗

2−3
]

+(1+λ)h
∗

2−2
[

[

(1−p2)+λ
]

(2+λ)+b20,h∗

2

]

and consider

λ · χ2(λ)=
[

(1−p2)+(1−b20,h∗

2
)λ
]

λ
[

1+(1+λ)+ · · ·+(1+λ)h
∗

2−3
]

+(1+λ)h
∗

2−2λ
[

[

(1−p2)+λ
]

(2+λ)+b20,h∗

2

]

=
[

(1−p2)+(1−b20,h∗

2
)λ
]

(1+λ−1)
[

1+(1+λ)+ · · ·+(1+λ)h
∗

2−3
]

+(1+λ)h
∗

2−2λ
[

[

(1−p2)+λ
]

(2+λ)+b20,h∗

2

]

=
[

(1−p2)+(1−b20,h∗

2
)λ
][

(1+λ)h
∗

2−2 − 1
]

+(1+λ)h
∗

2−2λ
[

[

(1−p2)+λ
]

(2+λ)+b20,h∗

2

]

=−
[

(1−p2)+(1−b20,h∗

2
)λ
]

+(1+λ)h
∗

2−2
[

λ
[

(1−p2)+λ
]

(2+λ)+b20,h∗

2
λ+

[

(1−p2)+(1−b20,h∗

2
)λ
]

]

=−
[

(1−p2)+(1−b20,h∗

2
)λ
]

+(1+λ)h
∗

2−2
[

λ
[

[

(1−p2)+λ
]

(2+λ)+1
]

+ (1−p2)
]

=−
[

(1−p2)+(1−b20,h∗

2
)λ
]

+(1+λ)h
∗

2−2
[

λ
[

(1−p2)(2+λ)+(λ+ 1)2
]

+ (1−p2)
]

=−
[

(1−p2)+(1−b20,h∗

2
)λ
]

+(1+λ)h
∗

2−2
[

(1−p2)(1+λ)2+λ(λ+ 1)2)
]

=−
[

(1−p2)+(1−b20,h∗

2
)λ
]

+(1+λ)h
∗

2−2
[

(1−p2+λ)(λ+ 1)2
]

=−
[

(1−p2)+(1−b20,h∗

2
)λ
]

+(1+λ)h
∗

2 (1−p2+λ) (60)

It is clear from equation (59) that matrix̃Q2(z) has eigen value−1 with multiplicity 2τ − h∗2. Let λ be any
eigen value ofQ̃2(z), we first show the following lemma.

Lemma 22. Let λ be any eigen value of̃Q2(z), then−2 < Re(λ) < 0.
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Proof: 1) SupposeQ̃2(z) has an eigen value of0, then, from (59),χ2(0) = 0. However,

χ2(0) = (1−p2)(h
∗
2−2)+2(1−p2)+b20,h∗

2

= h∗2(1−p2)+b20,h∗

2

6= 0,

leading to a contradiction. HencẽQ2(z) does not have0 eigen value.
2) Suppose the equationχ2(λ) = 0 has a rootλ∗ = a+ bi with a > 0, or a ≤ −2, or being purely imaginary

with a = 0, b 6= 0. Hence from equation (60),

(1−p2)+(1−b20,h∗

2
)λ∗=(1+λ∗)h

∗

2 (1−p2+λ∗) (61)

Consider the modulus of the right hand side,

|(1+a+ bi)h
∗

2 | · |1− p2 + a+ bi| > |1− p2 + a+ bi|

> |1− p2 + (1−b20,h∗

2
)(a+ bi)|

= |1− p2 + (1−b20,h∗

2
)λ∗|.

The above expression contradicts the previous equation (61).

From 1) and 2) we conclude thatχ2(λ) = 0 can only have solution with real part within(−2, 0). Therefore
all eigen values of matrix̃Q2(z) have real part within(−2, 0).

We proceed to show that each eigen valueλ of Q̃2(z) needs to satisfy
∣

∣λ+ 1
∣

∣ < 1.

Suppose the equationχ2(λ) = 0 has a rootλ with
∣

∣λ+ 1
∣

∣ ≥ 1, then from equation (60),

(1−p2)+(1−b20,h∗

2
)λ=(1+λ)h

∗

2 (1−p2+λ) (62)

We let1+λ = x+yi wherex, y ∈ R, from the previous lemma we know that|x| < 1. Some derivation shows
that

|(1−p2+λ)|2 − |(1−p2)+(1−b20,h∗

2
)λ|2

=|1 + λ|2(2− b20,h∗

2
)b20,h∗

2
− 2xb20,h∗

2
(1− p2 − b20,h∗

2
) + b20,h∗

2
(2p2 − b20,h∗

2
)

>|x|(2− b20,h∗

2
)b20,h∗

2
− 2|x|b20,h∗

2
(1− p2 − b20,h∗

2
) + |x|b20,h∗

2
(2p2 − b20,h∗

2
)

=|x|b20,h∗

2

[

(2− b20,h∗

2
)− 2(1− p2 − b20,h∗

2
) + (2p2 − b20,h∗

2
)
]

=0.

where the first inequality is from the assumption that|1 + λ| ≥ 1 and the fact that|x| < 1. Therefore

|(1−p2+λ)(1 + λ)h
∗

2 | ≥ |(1−p2+λ)|

> |(1−p2)+(1−b20,h∗

2
)λ|.

The above expression contradicts the equation (62). Hence it can not be
∣

∣λ + 1
∣

∣ ≥ 1. Therefore, each eigen
valueλ of U∗ satisfies

∣

∣λ+ 1
∣

∣ < 1, concluding the proof.
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Proof: From the belief value evolution (1) we know

b10,l =
r1 − r1(p1 − r1)

l

1 + r1 − p1
, b10,l+1 − b10,l = r1(p1 − r1)

l.
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Therefore

(1− p1) + π1
0,l − (l − 1)(π1

0,l+1 − π1
0,l)

=(1− p1) +
r1 − r1(p1 − r1)

l

1 + r1 − p1
− (l − 1)r1(p1 − r1)

l

=(1− p1) +
r1 − r1(p1 − r1)

l

1 + r1 − p1
− (l − 1)r1(p1 − r1)

l

=(1− p1) + r1

[1− (p1 − r1)
l

1 + r1 − p1
− (l − 1)(p1 − r1)

l
]

=(1− p1) + r1

[1 + (l − 1)(p1 − r1)
l+1 − l(p1 − r1)

l

1 + r1 − p1

]

=(1− p1) + r1

[1 + (l − 1)(p1 − r1)
l(p1 − r1 − 1)− (p1 − r1)

l

1 + r1 − p1

]

=(1− p1) + r1

[(l − 1)(p1 − r1)
l(p1 − r1 − 1)− (p1 − r1 − 1)(1 + (p1 − r1) + · · ·+ (p1 − r1)

l−1)

1 + r1 − p1

]

=(1− p1) + r1

[

(1 + (p1 − r1) + · · ·+ (p1 − r1)
l−1)− (l − 1)(p1 − r1)

l
]

(63)

Since(p1 − r1)
j ≥ (p1 − r1)

l for l = 1, · · · , j − 1, therefore from equation (63),

(1− p1) + π1
0,l − (l − 1)(π1

0,l+1 − π1
0,l) ≥ (1− p1) + r1 > 0,

which proves the lemma.

APPENDIX K
DERIVATION OF INDEX VALUES

Here we derive the Whittle’s indices according to Definition(19), by studying the relationship between the
threshold value and the subsidy value.

(Case 1)π = bk0,l < bks . We letV (ω, bk0,l) denote the reward-plus-subsidy for theω-subsidy problem when the
threshold for activation is atbk0,l, i.e., the channel transmits when the belief is no smaller than bk0,l and stays idle
otherwise. Some algebra (of studying the steady state belief transition) shows that

V (ω, bk0,l) =
bk0,l + ω(1− pk)(l − 1)

bk0,l + (1− pk)(l)
. (64)

From the definition (19) of the Whittle’s index value, it is equally optimal to activate or idle the channel with
the belief valuebk0,l at the subsidy valueWk(b

k
0,l). From thresholdability, the belief valuebk0,l is at the boundary

of the idle setIk(Wk(b
k
0,l)). Therefore the reward obtained by setting the threshold foractivation atbk0,l equals

that with thresholdbk0,l+1, i.e.,

V (Wk(b
k
0,l), b

k
0,l) = V (Wk(b

k
0,l), b

k
0,l+1),

where V (Wk(b
k
0,l), b

k
0,l) represents the reward corresponding toa∗

Wk(bk0,l)
(bk0,l) = 1, and V (Wk(b

k
0,l), b

k
0,l+1)

represents the reward corresponding toa∗
Wk(bk0,l)

(bk0,l) = 0.
Substitute expression (64) in the previous relationship leads to the expression of the Whittle’s index value,

Wk(b
k
0,l) =

(bk0,l − bk0,l+1)(l + 1) + bk0,l+1

1− pk + (bk0,l − bk0,l+1)l + bk0,l+1

, (65)

which is the same as in [14].
(Case 2)π ≥ bks . In this case, we first present the following claim. This claim states that, if the threshold for

activation is abovebks , then it is optimal to always stay idle.

Claim 1. If θk(ω) ≥ bks , thenIk(ω) = Bk.
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This claim is indeed true because, from Lemma 1, ifθk(ω) ≥ bks , then eventually all users will be idle, hence
it is optimal to always stay idle. Hence, for all belief states π ≥ bks , their Whittle’s index value, according to
the definition, equals to the infimum subsidy value for which the channel always staying idle. Note thatWk(π)
monotonically increases withπ for π < bks , therefore,

Wk(π) = lim
l→∞

Wk(b
k
0,l).

From (65) we get

Wk(π) =
rk

(1− pk)(1 + rk − pk) + rk
.
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