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Asymptotically Optimal Downlink Scheduling
over Markovian Fading Channels
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Abstract

We consider the scheduling problem in downlink wirelesswoeks with heterogeneous, Markov-modulated,
ON/OFF channels. It is well-known that the performance dfestuling over fading channels heavily depends on
the accuracy of the available Channel State Information)(@®ich is costly to acquire. Thus, we consider the
CSI acquisition via a practical ARQ-based feedback medmanihereby channel states are revealed at the end
of only scheduled users’ transmissions. In the assumeeipcesof temporally-correlated channel evolutions, the
desired scheduler must optimally balancedkploitation-exploration trade-gffvhereby it schedules transmissions
both to exploit those channels with up-to-date CSI and tdaerpthe current state of those with outdated CSI.

In earlier works, Whittle’s Index Policy had been suggesied low-complexity and high-performance solution
to this problem. However, analyzing its performance in ffpdal scenario of statistically heterogeneous channel
state processes has remained elusive and challengindyrbagause of the highly-coupled and complex dynamics
it possesses. In this work, we overcome these difficultiegtmously establish the asymptotic optimality propestie
of Whittle’s Index Policy in the limiting regime of many useiMore specifically: (1) we prove tHecal optimality
of Whittle’s Index Policy, provided that the initial statétbe system is within a certain neighborhood of a carefully
selected state; (2) we then establish giebal optimalityof Whittle’s Index Policy under a recurrence assumption
that is verified numerically for the problem at hand. Thesilts establish, for the first time to the best of our
knowledge, that Whittle’s Index Policy possesses anailfiqorovable optimality characteristics for scheduling
over heterogeneous and temporally-correlated channels.

. INTRODUCTION

Channel fluctuation is an intrinsic characteristic of wesd communications. Such a variation calls for allocation
of the wireless resources in a dynamic manner, leading tcclmsicopportunistic scheduling principlée.g.,

[1], [2])- Under the assumption that the instantaneous wlhstate information (CSlI) is fully available to the
scheduler, many efficient opportunistic scheduling atbars (e.g.,[[3]{[5]) have been proposed and extensively
studied.

More recent works have focused on designing schedulingitiges under imperfect CSI, where the channel
state is modeled as independent and identically distrib(ited.) processes across time (e.@., [6], [7]). On the
other hand, although thig.d. channel model brings ease of analysis, it fails to captueetithe-correlation of
the fading channels [8]. Specifically, it fails to exploitetthannel memory, which is a critical resource for
making scheduling decisions. However, designing efficeatteduling schemes under time-correlated channels
with imperfect CSl is a very challenging problem. The chadje is mainly because of the difficulty in making
the classic ‘exploitation versus exploration’ trade-aff, which a scheduler needs to strike a balance between
selecting the channels with up-to-date channel memorygbatantees high immediate gains, or to explore the
channels with outdated CSI for more informed decisions as@ated future throughput gains.

We consider the downlink scheduling problem where a basest@ansmits to the users within its transmission
range, subject to scheduling constraints. To model the tioneelations present over fading channels, we assume
that wireless channels evolve as Markov-modulated ON/OBEgsses. The channel state information is obtained
from ARQ-based feedback, onbfter each scheduled transmission. Nevertheless, due to timelaton, the
memory of the past channel state can be used to predict thentwhannel statprior to scheduling decision.
Hence, channel memory should be intelligently exploitedts scheduler in order to achieve high throughput
performance.
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In a related work([B], a similar problem is considered undsaged CSI, where it is assumed that perfect CSl is
available within a maximum delay, which is in turn smalleainithe delay experienced by the ARQ feedback used
for collision detection. These assumptions allow the sahed decisions to be decoupled from CSI acquisition,
which leads to the development of centralized as well agilliged schedulers. However, this approach does
not use ARQ as a means of acquiring improved channel qualityrnation. In contrast, in our setup the nature
of ARQ feedback creates an implicit impact of schedulingiglens on the CSI feedback, which completely
transforms the nature of the optimal scheduler design, hatetore requires a different approach. Under the
scenario where all the channels hadentical Markov statisticsround-robin-based algorithms (e.d., [10]{12])
have been shown to possess optimality properties in thputgberformance. However, the round-robin-based
algorithms are no longer optimal imsymmetric scenario®.g., when different channels have different Markov
transition statistics, as is naturally the case in typiatelbgeneous conditions.

Under the asymmetric scenarios, our downlink schedulioglem is an example of the classic Restless Multi-
armed Bandit Problem (RMBP) [13]. Low-complexity Whitdefndex Policies [13] for the downlink scheduling
problem have been proposed In [14][15] based on RMBP thedoyvever, although Whittle’s Index Policy
can bring significant throughput gains by exploiting the ratel memory [[15], the analytical characterization
of its performance under asymmetric scenarios is very ehgihg and prohibitively technical. This is because
asymmetry leads to a sophisticated interplay of memoryutiasl among channels with heterogeneous character-
istics, which brings a significant challenge to the analgsi8Vhittle’s Index Policy not present in the perfectly
symmetric scenario.

For RMBP problems under general scenarios, Whittle’s Irélebcy has been proven if [16] to be asymptoti-
cally optimal as the number of users grows, provided a nieiaticondition, known as Weber's condition, holds.
Nonetheless, Weber’'s condition concerns the global cgevere of a non-linear differential equation, which is
extremely difficult to verify even numerically in our downk scheduling scenario.

In this paper, we take significant steps in analyzing thenagiity properties of Whittle’s Index Policy for
the downlink scheduling problem in the presence of chanatdrbgeneity. Specifically, our contributions are as
follows.

« We apply the Whittle’s index framework to our downlink schiédg problem and identify the optimal policy
for the problem with a relaxed constraint in Section Ill. §ipolicy, with carefully selected randomization,
provides a performance upper bound to Whittle’s Index Bolic

« We establish the local optimality of Whittle’s Index Poliay the asymptotic regime when the number of
users scales in Sectigd V. Specifically, we show that theopmdnce of the index policy can get arbitrarily
close to that of the relaxed-constraint optimal policy,yided that the initial state of the system is within
a certain neighborhood of a carefully selected state.

« Based on the local optimality result, under a numericallgifizdle recurrence assumption, we then establish
the global optimality of Whittle’s Index Policy in the linitg regime of many users in SectignlVI.

To the best of our knowledge, our work is the first to give anedy characterization of Whittle’s Index Policy
for downlink scheduling under channel heterogeneity.

[I. SYSTEM MODEL AND PROBLEM FORMULATION
A. Downlink Wireless Channel Model

We consider a time-slotted, wireless downlink system witle base station an users. The wireless channel
C;[t] between base station and useemains static within each time slofand evolves stochastically across time
slots, independently across users. We adopt the simplestriveal model of time-correlated fading channels by
considering two-state ON/OFF channels, where the stateespichannel is S; = {0, 1}, with the value of
each state representing the transmission rate a channsupport at the state.

One important component of our model is the inclusion of clehmeterogeneity that the users will typically
experience in real systems. Such asymmetry creates a sagnifihallenge to the design and analysis of optimal
scheduling schemes compared to perfectly symmetric clenhe avoid cumbersome notation and unessential
technical complications, in this work we model channel aswtry by considering onlywo classeof channel
statistics. Specifically, for all the channels in classt=1, 2, their states evolve according to the same Markov
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Fig. 1: Two state Markov chain model for channels in class

statistics. However, these characteristics differ betwelasses. The state transition of channels in class
depicted in Fig[1l, represented by2a< 2 probability transition matrix,
Pk 1 —Dg
[Pk: [Tk 1—Tk:| ’

where

pr = prob(C;[t]=1 | C;[t—1]=1),

TE = pl’Ob(CZ[t]:l | Cz[t—l]:())
for channeli in classk. The number of clasé channels isy, N, k € {1,2} with v, being theproportion of
channels in clasg with respective to the total numbé¥ of channels.

We study the scenario where all the Markovian channels asé@iyely correlated, i.e.px > ry for k=1, 2.
This assumption, which is commonly made in this domain (§1&], [17]), means that the channel evolution has
a positive auto-correlation. Hence, roughly speaking,d@nnel has a stronger potential to stay in its previous
state than jumping to another, which is typical especiallglow fading environment. For ease of exposition, we
shall exclude the trivial case whep=0 or p,=1, k =1, 2.

B. Scheduling Model — Belief Value Evolution

We assume that the base station can simultaneously trats@atitmosta/N € Z* users in a time slot without
interference, where e (0, 1] stands for the maximurfraction of users that can be activated. For example, in a
multi-channel communication model, would correspond to the fraction of all users that can be kanaously
serviced in unit time. However, the scheduler does not krieweixact channel state in the current slot when the
scheduling decision is made. Instead, the scheduler nirénéebelief valuer;[t] for each channel, which is
defined as the probability of channebeing in the ON state at the beginning of sloThe accurate channel state
is revealed via ACK/NACK feedback from the scheduled usendy at the end of each time slot after the data
is transmitted. This accurate channel state feedback isrinused by the scheduler to update the belief values.

For useri in classk, k=1,2, let a;[t]€{0,1} indicate whether the user is selected for transmissionantsl
Then, from the definition the belief values;[t] evolves as follows,

Pk if a;[t]=1, Ci[t]=1,
7Ti[t+1]: Tk, if ai[t]zl, Ci[t]:O, (1)
Ti[tlpe+(1=mi[t])rr, if aft]=0.

In our setup, belief values are known to be sufficient staigb represent the past scheduling decisions and
feedback (e.g./[11]/[18]). In the meanwhile, in our ON/O&frannel models;[t] also equals to the expected
throughput contributed by channglf it is scheduled in time slot.

For a user in clas$, k=1,2, we useb}, to denote its belief value when the most recent observednetian

wasc € {0,1}, and is/ slots in the past. From the belief update rdle @Tg)l, can be calculated as a function of
[>1 as,

O el () )" et (1= pr) ok — Tk)l.
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Fig.[2 illustrates the belief value update when a channgkstile (i.e.,a;=0). It is clear that if the scheduler
is never updated of the state of chanhéh classk), the belief value will converge to its stationary probébil
of being ON, denoted by the stationary belief vallie=ry,/(1-+r,—py).

The vectorr[t|]=(m[t], - -, n[t]) denotes the belief values of all channels at the beginnirgjaft. We use

B, to represent the set of the belief values for clashannels, wher,={b* ¥, cc{0,1},1€ Z+}. We assume

c,l’
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Fig. 2: Belief values update when staying idlg,= 0.8, r; = 0.2.

that the system starts to operate from slet 0. At the beginning of sloD, for each channel the scheduler has
either observed its channel state before, or has never heaatad of its channel state, i.e., with belief value
b’;. It is then clear that, based on the belief update fiule A1}] € B for all ¢t > 0, i.e., each belief value;|t]
evolves over countably many states.

In the rest of the paper, we shall use ‘belief value’ and dfeditate’ interchangeably.

C. Downlink Scheduling Problem — POMDP Formulation

We consider the broad claésof (possibly non-stationary) scheduling policies that ssmé scheduling decision
based on the history of observed channel states and schgdultions. The downlink scheduling problem is then
to identify a policy inU that maximizes the infinite horizoime average expected throughpsubject to the
constraint on the number of users selected at each timeGilen the initial stater[0], the problem is formulated
as,

~
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where the belief value;[t] evolves according to rulél(1) based on the scheduling aetigi[t] under policyu.
Such an objective is standard in literature for Markov DiecisProcesses under the long term average reward
criteria (e.g., [[18]). Noting that since the scheduling idiens are made based on incomplete knowledge of
channel states, this problem is a Partially Observable Matxecision Process$ [18].

This problem is in fact an example of Restless Multiarmeddiaroblem (RMBP)[[1B]. For a general RMBP,
finding an optimal solution is PSPACE-hald [20]. However, tfte downlink scheduling problem at hand, a low-
complexity Whittle’s Index Policy was proposed [n [14][1Bdsed on the RMBP theory that inherently exploits
the channel memory when making scheduling decisions. Railee descriptions of general RMBP and Whittle’'s
Index Policy for downlink scheduling, please refer [tol [{B5].

For the downlink scheduling problem, we note that there Ig bmited analytical characterization of Whittle’s
Index Policy, which is restricted in perfectly symmetricerarios where Whittle’s Index Policy takes a special
round-robin form[[14]. In asymmetric cases, however, tHeedaling decision no longer takes the form of round-
robin, bringing sophisticated complications in beliefualevolutions that are tightly coupled among channels,
which significantly complicates the analysis. The main ®oaif this paper is to analytically characterize the
performance of Whittle’s Index Policy in the asymmetric eagth two classes of channels.

[11. UPPERBOUND ON ACHIEVABLE THROUGHPUT

We begin our analysis by characterizing an upper bound tthtteeighput performance of all feasible downlink
scheduling policies that satisfies the constrdint (3). Tpeeu bound is obtained from a fictitious policy which
is optimal for the downlink scheduling problem underetaxed constraint

Note here that such relaxation is also a crucial step in thdysof the general RMBP problem. Yet, our
analysis, being specific to the downlink scheduling problbeas its novelties, as we shall remark on later.



A. Average-Constrained Relaxed Scheduling Problem

We consider an associated relaxed problem of (2)-(3) thit @guires anaverage numbepf users to be
activated in the long run, defined as follows

| I

lim inf = E - e[| 7 4

max lim in [H;m ay11)|7[0] @)
| (TN

s.t. limsup—E[ Za?[t]} < aN. (5)
T—=00 =0 i=1

Note that, contrary to the stringent constraidt (3), thexetl constrain{{5) allows the activation of more than
« fraction of users in each time slot, provided the long terrarage fraction does not exceed Hence the
optimal policy under this relaxed constraint, which we siggntify next, provides a throughput upper bound to
any policy that satisfies the stringent constraint.

B. Optimal Policy for the Relaxed Problem

We remark that the relaxed problem is also an important compioof Whittle’s analysis of general RMBPs
[13], in which an optimal policy for the relaxed problem isve®oped based on th@/hittle’s index values
Following the approach of classic RMBP framework1[13], inr @ownlink scenario, we identify an optimal
policy for the relaxed problem based on Whittle's indices.

Specifically, for channels in clags the Whittle’s index valuéVy () is assigned to each belief statec B.
These index values intuitively capture the exploitatioml @xploration value to be gained from scheduling the
associated channel when its belief valuerisThis characteristic oiVy () is also illustrated in Section VI[iB
via numerical investigations. While these index value fioms have been expressed in closed form in various
cases (see [14][15]), the following two characteristiosytipossess are primarily significant for our analysis:

o Wy (m) monotonically increases with € Bj.

o Wi(m) €10,1] for all = € By,.

In the next proposition, we identify an index-based poligyhvappropriate randomizatiothat is optimal for
the relaxed constraint problem. This policy schedules agdr based on its own belief value, independently
from other users.

Proposition 1. For the problem under relaxed constraint, there exists atinogl stationary policyg*, parame-
terized by the threshold* and a randomization parameter<(0, 1], such that

(i) Channeli in classk is scheduled iV, (7;[t]) >w*, and stays idle if Wy (m;[t]) <w*. If Wi (m;[t])=w*, it is
scheduled with probability*.

(i) The parametersv* and p* are such that, under policy*, the relaxed constrainf]5) is strictly satisfied with
equality.

Proof: This proof the proposition builds on the RMBP thedry!|[L3][&#bng with optimization techniques. Details
of the proof are given in Append[x]A. |

From now on, we shall denotg as the Optimal Relaxed PolicyFor technical purposes, we henceforth assume
« is such thap*#1. Since eachy value maps to a uniquev*, p*) pair (see AppendikJA), only countably many
a values correspond tp*=1, i.e., achieved by deterministic policies. Therefore, $le¢ of ac(0, 1] for which
p*#1 has Lebesgue measure one.

Remarks:

1) Our work is the first to identify the specific form of the apél policy for the relaxed problem in downlink
scheduling. We identify in Propositiéh 1 that approprigedomization is essential to guaranteeing the optimality.
The randomization is important, because the determinmtitcies are insufficient to guarantee optimality to
general constrained Markov Decision Processes when betretiiard and constraint are in the expected average
form [19], and thus unable to provide a throughput upper doun

2) Our objective function takes a very general form, it is resttricted to the family of stationary policies, nor
does it require the existence of the limit (i.&m inf %E[.] = lim%E[-] in (Z) and [4)), whereas the existence



of limits (with different forms) is assumed in previous i@éures [[18] [[14] on Whittle’s Index Policy. Such an
extension not only requires a non-trivial amount of techhigork, but also is important to prove optimality of
the stationary Optimal Relaxed Policy over a larger spageostibly non-stationary control strategies.

C. Steady State Distribution of Belief Values

We next present the transition structure of the belief valueder Optimal Relaxed Policy, captured in the
following lemma. The structure will be critical in the degpment of our subsequent main results.

Lemma 1. For each channel in clask, under the Optimal Relaxed Policy, the structure of belatig evolution
depends on the threshold® of policy.

(i) If w*<W(b¥), then the belief value evolution of each cldsshannels is positive recurrent with a finite
recurrent class.

(i) If w*>W,(b), the belief value evolution is transient. With probability ultimately no channel in class
will transmit.

Proof: The proof of this lemma follows from the monotonic structafebelief evolution, as shown in Fi@l 2.
Details are included in AppendiX F. |

Thus, if w* > max{W;(bl), W5 (b?)}, the above analysis reveals that ultimately no user trnsitresponding
to the trivial case ofvNV =0. Also, if w* is betweeniV; (b}) and W5 (b?2), the class with the smalléi, (b*) will
eventually transit into a passive mode, hence reducing yeeis to a well-understood scenario with a single
class of channel$ [10][11]. Thus, here we focus on the hgéreous case af* < W, (b*), k=1,2, where the
steady-state belief value distribution exists for botrssks under the Optimal Relaxed Policy.

D. Upper bound on achievable throughput

The throughput performance of Optimal Relaxed Policy piesian throughput upper bound for all policies
under the stringent constraint. The value of such an uppendbalearly depends on the number of users in each
classvyy NV, k=1, 2, as well as the fraction: of users allowed for activation. Denoting=[v1,v2], we represent
the time average expected throughput of the Optimal Rel®daity asv’¥ (v, o). The following lemma states
that, as long asy and« are given, theper-userthroughput is independent d¥.

Lemma 2. Given~ and a, W is independent ofV, denoted henceforth ag~, «).

Proof: The proof follows from showing that, when the number of usdrgrows, as long as the proportion
of each class of channels stays the same and the fraatioh users activated does not change, the form of
Optimal Relaxed Policy does not change. Since each usehedated independently, the throughput (v, «)

is proportional toN, establishing the lemma. Details are provided in Appefdix C |

We hence refer to théy, «) pair as System parametersTherefore Nr(~, «) provides a throughput upper
bound to any policy in the same system under the stringenstcint [3). Equivalentlyy (v, «) provides a
per-user throughput performance upper bound to all pslitiat satisfies the stringent constraint.

We next describe Whittle’s Index Policy for the strictlyrstrained problem[{2)=(3), and later study the
closeness of its performance to the upper bound establiséed

IV. WHITTLE’S INDEX PoLICY DESCRIPTION

In this section we formally introduce Whittle’s Index Pglifor solving the stringently-constrained downlink
scheduling probleni{2}3).

A. Whittle’s Index Policy

The Optimal Relaxed Policy, along with the Whittle's indexlues, gives consistent ordering of belief values
with respective to the indices. For instance, under ther@gitiRelaxed Policy, if it is optimal to schedule one
channel, it is then optimal to transmit to other channel$iiigher index values. So the Whittle’s index value



gives an intuitive order of how attractive the channel is $oheduling. This intuition leads to Whittle’s Index
Policy [14] under the stringent constraint on the maximurmhbar of channels that can be scheduled.

Whittle's Index Palicy: At the beginning of each time slot, the chanhéi classk is scheduled if its Whittle's
index valueWy(m;) is within the topaV index values of all channels in that slot, with arbitrary-beeaking
while assuring a totabh N channels being scheduled.

Whittle’s Index Policy is attractive because it has very loamplexity, and it was observed via numerical
investigations to yield significant throughput performagains over the scheduling strategies that does not utilize
channel memory [15]. The main focus of our work is to anablticunderstand the approximate or asymptotic
optimality of Whittle’s Index Policy in asymmetric scenasi

B. Whittle’s Index Policy over Truncated State Space

Recall from Sectiof ]l that the belief values evolve over artable state space, also note that if a channel
is not scheduled for a long time, its belief value will getiadyily close to its stationary belief value. This
motivates us to consider a truncated version of the belikfevavolution whereby the belief value is set to its
steady state if the corresponding channel is not schedateal farge number, say, slots. This mild assumption
facilitates more tractable performance analysis of thécpoThus, if a class: user is not scheduled far time
slots, its channel state history is entirely forgotten aisdbelief value will transit to the stationary belief value
b¥, where the truncation is assumed to be very large.

Whittle’s Index Policy is then implemented over the trurechbelief state, which differs from the non-truncated
case merely in the truncated belief value evolution. Weebelithat, the truncated scenario can provide arbitrarily
close approximation to the original system wheiis large. More importantly, as we shall see in the following
two sections, Whittle’s Index Policy, implemented over thencated belief state space, achieve asymptotically
optimal performance as long as the truncation is suffigyelatige.

V. LocCAL OPTIMALITY OF WHITTLE'S INDEX POLICY

In this section, we study the optimality properties of Whi#t Index Policy for downlink scheduling, over a
large truncated belief space. This result forms the basithfosubsequent global optimality result in Secfioh VI.
We start by introducing a state space over which the locahaity will be established.

A. System State Vector

We define thesystem stateZ¥ as a vector that represents the proportion of channels i leelef value, over
the truncated space when the total number of user§,ise., Z" = [Z 1V, Z 2V], with

Zk7N = [Zgle" Z(I]gi\[vZkN Zfivv"' >Zf’1N]>k7: 172-
WhereZk N and zBN respectively denote thproportion of channels in the corresponding belief stafg and

k. with respect to the total number of use¥s Hence, each element &” is a multiple of1/N so thatZ™
takes values in a lattice with mesh siz@V. Noting that the total number of users in each class doesharige
over time, for anyN the system stat&V [t] € Z where

2:={2Z" >0: 28N+ 28N =y k=1,2}. (6)

c,l

The system state vectd” [t] does not distinguish users with the same belief state, thuirnension will not
scale withN. Therefore, compared with[¢], it provides a more convenient representation of the systelief
state. FurthermoreZ ™ [t] fully determines the instantaneous throughput gain intslotder both Whittle's Index
Policy and the Optimal Relaxed Policy (introduced in Prajpars(I]), because the instantaneous throughput gains
under both policies are only determined by the distributéthe channels with different belief values, not their
identities.

From Lemmdll and the subsequent remarks, under the opeddtitie Optimal Relaxed Policy, the belief
state evolution of each channel is positive recurrent wititeady-state distribution. The following lemma also



establishes the independence of this steady-state distribfrom N, and defines a useful parameter for future
use.

Lemma 3. Given the system parametdrg, ), the system state vectd” [t] under the Optimal Relaxed Policy
converges in distribution to a random vector, denotedZds|oo]. The distribution ofZ” [co] is independent of
N with its mean denoted as

$o:=E[Z" 0]
Proof: This lemma follows from a similar principle to the one we &dighed in Lemmal2. For details, please
refer Appendi{D. . . [
It is easy to see thaffe€ 2z and thg form of¢S fully determines the time average throughput of the Optimal
Relaxed Policy. Therefore, the veci¢ff provides an important benchmark for our asymptotic anslykiin the
long run under Whittle’s Index Policy, the system sta#&|[t] stays close tcf?;, it indicates that Whittle’s Index

Policy will have throughput performance close to that of @ptimal Relaxed Policy — the throughput upper
bound. To capture the closeness, we definestneighborhood ol as

() ={zez:||Zz-E) <o}, 7)

for § > 0, where|| - || stands for Euclidean distance. We are now ready to state @wve pur first main result
regarding a form of local optimality of Whittle’s Index Poji

B. Local Optimality of Whittle’s Index Policy

Under the system parametdrg, o), we let R (v, o, z) represent the time average throughput obtained over
the time duratiord <t <T under Whittle’s Index Policy, conditioned on the initialstgm stat@N[O] =z, ie.,

1 _
BY (v, a0@)i= B[ 303" miltlal 1) 2V (0] ==,
where (ai"?[t]); denotes the scheduling decision vector made by WhittlelexrPolicy at time.

Recall from Lemmal2 that(~, «) denotes the per-user throughput under the Optimal RelagédyPwhich
serves as an upper bound on Whittle’s Index Policy perfooceahe next proposition characterizes the local
convergence property of Whittle’s Index Policy performaneo (v, «).

Proposition 2. Under the system parametefs, o), there exists & > 0 neighborhood)(;(ff;) of EE; such that,
if the initial system state: is within Q(;(C_:C;) , then

N
lim lim —RT (v, 0,2)

T— 00 M—00 Ny,

=r(v,a).
where{N,, }., is any increasing sequence of positive integers wift,,, 7, NV,, € Z*, for k = 1,2 and all m.

Proof Outline: Here, we give a high level description of the proof for an itite understanding, and refer the
reader to Appendik]E for the rigorous derivation.

e We start by defining a fluid approximation, whereby the dietane evolution ofZ™V[¢] under Whittle's
Index Policy is modeled as a deterministic vectft € Z that evolves in discrete time ovérand is independent
of N. Under this fluid approximation, the users are no longer uttaple entities so that the state space:ff is
no longer restricted to a lattice as it was 8f" [t]. Also, the fluid approximatior[t] evolves in a deterministic
manner, in contrast to the stochastic transitiorZdf[t]. The evolution ofz[t] is defined by a difference equation
as a function of theexpectedstate change o™V [t] under Whittle’s Index Policy as follows

z[t + 1]—z[t]

2 [ZN[t + 1]—ZN[t](zN[t]:z} , @)
where N is any integer for whichz is a feasible state.

e We then esta_t;lish qucal convergence of the fluid approxonatiodel whernz[0] is within a small enougl
neighborhood?2;s(¢5) of ¢5. We show the convergence by first noting that the differéeiimation [(8) is linear



within a wider convex region thaﬁg(fE;). Within this region, we obtain a closed form expression & tight
hand side off(B), which enables us to investigate the eideearucture of the linear differential equation. We
show that each eigenvalue satisfies|\| < 1 and apply standard linear system theory to establish thal loc
convergence.

e We then connect the fluid approximation model] to the discrete-time stochastic system stZt&[t] by
using a discrete-time extension of Kurtz's Theorem, whiah be interpreted as an extension of the strong law of
large numbers to random processes (seé [21]). Esseniiadlgtes that, over any finite time durati@h 77, the
actual system evolutioZ " [t] can be made arbitrarily close to the above fluid approximatig] by increasing
the number of channel sufficiently, with exponential convergence rate.

e The previous convergence result, together with the localemence result of the fluid evolutiofit] to
5?;, enables us to establish the local convergence of the systat@Z" [t] to 5,3‘ as the number of use®
grows, provided that the initial statg’¥ [0] € Qg(&‘;). Hence the system state under Whittle’s Index Policy will
stay close (in a probabilistic sense) to the expectafi{prmf the system state under the Optimal Relaxed Policy,
which, in turn, indicates that the throughput performantc&vbittle’s Index Policy will approach the throughput
upper bound-(v, ), as expressed in the proposition.

We again emphasize that the technical details of the odtlsteps are fairly intricate and are moved to
Appendix[E. [ |

Proposition(® illustrates an interesting local optimaliyoperty of Whittle’s Index Policy as the number of
usersN and the time horizorf" increases while the system parameteysa) stay the same. It indicates that,
under Whittle’s Index Policy, as long as the initial sta#é' [0] is close enough tcf;”, the average per-user
throughput over any finite time duration will get arbitrgritlose to the Optimal Relaxed Policy performance as
the number of users scales.

Remark: We note that the sequendév,, },, is used to guarantee that the number of channels in each class
as well as the number of scheduled users, take integer vaiuéact, our result can be generalized to allby
slightly perturbingy anda as a function ofN but assuring their limits are well-defined.

VI. GLOBAL OPTIMALITY OF WHITTLE'S INDEX PoLIcYy

The above local optimality result heavily relies on theialistate Z"V [0] being close ttff;, which is difficult
to guarantee. In this section, we study the global optimalitthe infinite horizon throughput performance of
Whittle’s Index Policy starting from any initial state. Wedin our analysis by presenting the recurrence structure
of the system state.

Lemma 4. Under system paramete(s, «), for anye > 0, if the number of userd’ is large enough,

(i) The system stat&” [¢] evolves as an aperiodic Markov chain, in a state space thatagos only one recurrent
class.

(i) There exists at least one recurrent state within meeighborhoodze(fg) of fg‘.

Proof: We prove this lemma by constructing probability paths framg state to the neighborhodd(fg). Details
of the proof are included in AppendiX F. |

This lemma states thaZ 'V [¢t] will ultimately enter any small neighborhood (fﬁ when N is large enough.
Together with Propositiof] 2, this result shows promise fstaklishing the global asymptotic optimality of
Whittle’s Index Policy. This is plausible because or&# [t] enterng(ff;), the performance of Whittle’s Index
Policy afterwardscan get very close to its upper bound sscales, as established in Proposifién 2. However,
since we consider the infinite horizon time average throughinis argument would break down if the time
it takes for ZN[t] to enterQ(;(fE;) also scales up withV. This observation motivates us to introduce a useful
assumption, which will later be justified (in Section VII-Aja numerical studies.

Assumption W: For eache>0, let TY (¢) represent the first time of reachirﬁg(ff;) starting fromZV[0] = =,
i.e.,

Y (€) = min{t : ZV[t] € Q(¢9)| 27 (0] = =}
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Fig. 3: Transition behavior oZ[t] in steady state.

Then, we assume that the expected time of reacﬁ'u@;“) is bounded uniformly oveN andx, i.e., there exists
M.<oo such thatE [I'Y (e)] < M, for all N and .

Since for eachV, Z"[t] under Whittle’s Index Policy is recurrent and aperiodichnat finite state space, there
exists a steady-state distribution associated #itht]. As before, we us&’ [co] to denote the associated limiting
random vector. The next lemma establishes that, under Astsum¥, the distribution ofZ” [cc] approaches a
point-mass af,‘? as N scales. Here, again, the sequefi®g, },, is defined in the same way as in Proposifidn 2.

Lemma 5. Under Assumptionl and system paramete(s, o), for any e > 0, the steady state probability of
ZN[t] under Whittle’s Index Policy satisfies

W%gnoop(sz [oo] € Q(C5)) = 1.
Proof: The proof utilizes Theorermi.89 from [21], which builds on the following arguments.

Note thate > 0 can be selected to be small enough for the following argunfendepicted in Figl 13, we let
T. be a random variable denoting, in steady state, the timetidarhetweenconsecutivenitting times into the
neighborhoocﬂe(&) from outside of the neighborhood. L& denote the time duration from the tin@" [¢]
enters the neighborhooﬁe(fﬁ) from outside until the time it leaves. Hence, the expectambortion of time
that ZV[t] stays outside this neighborhood(iB[T.] — E[T"])/E[T.].

We know that the numeratdt[7,] — E[T] is uniformly bounded for allV due to Assumptionl. However,
as N increases, it is more likely foZV[t] to stay within the neighborhood for a long time before exjtih
(based on the convergence of fluid approximation model andziSuTheorem in the proof of Propositidd 2).
Thus, E[T"], and hence the denominatéif7.], grow to infinity asN scales. Therefore, the expected proportion
of time spent outsidéze(fg“) vanishes agV scales up, which leads to the statement of the lemma. Detailse
proof can be found in Appendx]G. |

Under Whittle's Index Policy with system parametéss o), we let RY (v, «) be the achieved infinite horizon,
time average throughput, conditioned on the initial systtate Z" [0]==, i.e.,

Ry (v, a):= i Lp Ty [t [t]| ZN[0] =

From Lemmdb we know that, in steady-state, the system gtdteoo] is increasingly concentrated arouﬁﬁ
asm increases, regardless of the initial stateWe build on this to establish the global asymptotical optitya
of Whittle’s Index Policy.

Proposition 3. Under Assumption?, for any initial system state, we have

hm Rijlivm (77 OZ)

m—0o Ny,

=r(vy,a).

Sincer(v, «) is an upper bound on the maximum achievable per-user thipuigby any policy, this implies that
Whittle’s Index Policy is optimal in the many user regime.

Proof: We prove this result by decomposii)) (v, «) as a summation of the expected throughput conditioned
on whether the system state is within or outside an arbigramall ¢ neighborhood offf;. Since the latter
has diminishing probability according to Lemrh 5, the exeédhroughput of Whittle’s Index Policy can get
arbitrarily close to that of Optimal Relaxed Policy. Desadlf the proof are provided in AppendiX H. |

Remarks:
1) We would like to emphasize that the global optimality te$sl not a straight-forward extension of the
local converge result by contrasting Proposifibn 2 and &sitipn[3. Note that in Propositidd 2, the time limit is
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Fig. 4: Average time of hitting2(2). (a) ZV[0] = z; (b) ZV[0] = y.

outside the limit of the number of usefg, where each convergence (witfi) is with respective to dixed time
duration However, the order of limit is switched in the global optiityaresult of Propositioi 13, as it states the
convergence withV the infinite horizonaverage throughput, which is much stronger and hence is Tk
challenging to prove.

2) We would like to contrast Assumptioh with Weber’s condition[[16]. For general RMBP problem, Webe
condition leads to the same global asymptotic optimalityule While confirming Weber’s condition may be
possible in very low-dimensional problems, in our downlgdheduling problem, this requires one to rule out the
existence of both closed orbits and chaotic behavior of A-lighensional non-linear differential equation, which
is extremely difficult to check - even numerically. Assuropti¥’, on the other hand, takes a much simpler form,
as it is defined over the actual stochastic system and is deettaeasy numerical verification, as is performed
in Section VII-A.

VIlI. NUMERICAL RESULTS
A. Verification and Interpretation of Assumptian

We start by numerically verifying Assumptiofi. We consider the asymmetric scenario with two classes of
channels with system parameters[0.45, 0.55], a=0.6, with p;=0.9, r;=0.45, p2=0.8, r2=0.3.

We next examine the change of the average hitting fiiffiée), while maintaininge: and~.

We letx,y € Z be initial values ofZV[0] that are selected to be two extreme points in the state space t
exhibit the uniformity of"'Y (¢) to the initial state. Specifically, statecorresponds to the case when all the users
have just observed their channels to be in OFF state, i.¢h, élief valueb’g,l, k = 1,2. And y corresponds
to the case when all users have no initial observation of ttieannels state history, i.e., with belief valbfg
k=1,2.

We examine the average value of hitting tifi¢ (¢) and Fg(e) with a very small neighborhooe=0.005,
when the number of user§ grows from10x10? to 500x10. As indicated in Figl}, for both cases, the average
time of hitting thee neighborhood first decreases with, and thenconvergesand stays almost the same &s
scales up. This is especially intriguing. The rationaleibeithis phenomenon is as follows. Under Whittle’s Index
Policy, a total number oft/V users are activated at each time slot. Therefore, for velsitsmall number of users,
the amount of probabilistic belief state transitions, adl we the amount of system states in the neighborhood,
increases withV, leading to a higher chance of hitting the desired neighlmxdme(&;) and smaller value of
hitting time. However, the belief update of each user cbatds to thel /N change of the system sta@" [¢],
which decreases wittv. Therefore, agV further increases, thital amount of transition®f the system state
ZN[t] due to channel state feedback is roughly - 1/N = a, which is invariant ofN. This result, along with
many other numerical experiments we have conducted thdttedhe same observation, gives verification to
Assumptionw.

B. ‘Exploitation versus Exploration’ Trade-off

In this section, we demonstrate how the Whittle's index gataptures the ‘exploitation versus exploration’
trade-off for ourasymmetric downlink scheduling problem

Consider two classes of ON/OFF fading channels with bel@fie evolutions plotted in Fid.] 5(a). Note that
both classes have the same stationary distributios 0.5, k& € {1,2} of being at ON state, but channels in class



12

@)

(b)
Belief value evolution Index value evolution

o

©

o4

©
T

= @ —0= 0= @ —Q—

4
ek Sy SR
—e— Class 1, CI[O]:l 1

_e_ Class 1, CI[O]ZO

- o = Class 2, C[0]=1
- ¢ - Class 2, C[0]=0

o
)
T
o
o

Belief value
Index value
o
=
.

—e— Class 1, C‘[O]:1
—— Class 1, C[0]=0
- @ = Class 2, C‘[O]:l
- ¢ = Class 2, C[0]=0

o
CaX

[N
w |-
(3}

1 3 5 7 15 17 19 21 17 19 21

! Timge ofsléyinglisdle 1
Fig. 5: The evolution of belief value and Whittle’s index wal (a) Belief value evolution (b) Whittle's index
value evolution.

9 11 13
Time of staying idle

1 has a higher degree of time correlation, i.e., fades sloilvan channels in classsincep; > p, andr; < ro.
The corresponding Whittle index values of the two classeshainels are depicted in Fig. 5(b) as functions of
the updated belief value starting from different initichtsts.

To understand the nature of Whittle’s index value, we firstsider the case when the channels in both classes
are observed to be ON at tinteand stay passive since then. As indicated in Fig. 5(a) thesdla&hannel has
a higher belief value than the clagschannel, hence scheduling the cldasshannel gives a higher immediate
throughput than scheduling the classhannel. Moreover, once a classhannel is scheduled, it is more likely
to stay in ON state again, bringing high future gains. Acomty, the index values in Fid.]5(b) when both state
evolutions start from ON states capture that it is more @titra to schedule the clagschannel because of the
advantage in both exploitation and exploration.

On the other hand, when the scheduler has observed channetshi classes to be OFF at time Fig.[8(a)
shows that the classchannel has a higher belief value than the claskannel. However, although the Whittle’s
index value in Fig[b(b) of clasa channel is initially smaller than that of classchannel, after a certain amount
of delay (around slots in the figure) this order is switched, which is intetpdeas follows: initially, since
the classl channel has smaller belief value than that of the ctasbannel, it is more attractive to exploit the
immediate gain brought by the clag8schannel. However, as the passive time grows, as indicatédgiri3(a),
the difference between immediate gain of both classes @ires. Then, it becomes more attractive to explore
the classl channel because its longer memory can bring higher futuirgsdghit turns out to be in ON state.

This investigation reveals the intricate nature of Whitiadex value in capturing the fundamental ‘exploration
versus exploitation’ trade-off. In our scheduling problarith asymmetric channel statistics, such a property of
Whittle’s Index Policy turns out to be crucial @chieving asymptotically optimal performance

VIIl. CONCLUSION

In this paper, we studied the problem of downlink schedutimgr ON/OFF Markovian fading channels in the
presence of channel heterogeneity. We consider the soewaere instantaneous channel state information is
not perfectly known at the scheduler, but is acquired viaactwal ARQ-styled feedback after each scheduled
transmission. We analytically characterized the perforceaof Whittle’s Index Policy for downlink scheduling,
and proved its local and global asymptotic optimality pmbipe as the number of users scales. Specifically,
provided that the initial system state is within a certaigioa, we established the local optimality of Whittle’'s
Index Policy by investigating the evolution of the systenlidiestate with a fluid approximation. We then
established the global asymptotic optimality of Whittléslex Policy under a recurrence condition, which is
suitable for numerical verification. Our results establiat Whittle’s Index Policy, which is attractive due
to its low-complexity operation, also processes strongmggtic optimality properties for scheduling over
heterogeneous Markovian fading channels.
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APPENDIXA
PROOF OFPROPOSITION]

A. Lagrangian decomposition - Thresholdability

The constraint{{5) can be written in an equivalent form tlegjuires at leastl — «) N channels to b@assive
on average, i.e.,

nminf%E[i >-(1-atf)] = (1-a)N. ©)

T—o00

Associating a Lagrange multiplier to the above constrairitl(9), we consider the following Lagian function
L(u,w) of the relaxed probleni{4)45),

T-1 N T-1 N

L(u, w)—hTHi)loIéf l [Z Zm - [t]‘ﬁ"[()]} + w- hmmf = [Z Z (1-— aﬂt])‘ﬁ[O]] —w-(1—a)N. (10)

t=0 i=1 t=0 i=1

The dual functionD(w) is defined ad)(w) = max,cy L(u,w). The following lemma provides a useful upper
bound toD(w).

Lemma 6.

T—o00

T—1
D(w) < max thsup E[Z it t] + w-(1 —a'[t])] ‘7?[0]} —w-(1 —a)N. (11)
i= =0
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Pr oof:

T-1 N

< max h;“n—?olip —E[ 2 ; [mlt] - af[t] + w - (1 — a}'[t])] ‘7’(‘[0]] —w-(1—a)N
N , Il

<mgx 3 limsup =E| > [l i)+ (1= i) |#[0]] = w-(1 = a),

where the first and the last inequality follows from the sapelitiviey and subadditivity of limit superior and
limit inferior, respectively. |
Consider the unconstrained optimization problem in theengmund [(Il1), it can be viewed as a composition
of N independent-subsidy problemsiterpreted as follows. For each channeit belief stater;, it will receive
a rewardm; when it activates, otherwise it will receive a subsidyfor passivity. Here, for each channel, its
reward only depends on the transmissions of its own and gm#gnt of decisions for other channels. Hence,
the optimization problem in(11) can be decomposed iNta,-subsidy problemsFor channel, the w-subsidy
problem is expressed as follows,
T-1
Vi(w) = max limsup iE{X: [mlt] - af[t] + w - (1 — a}'[t])]
uelU; T—00 T =0 ¢ !
where U; denotes the set of scheduling decisions that activate dadthé channel according to the observed
channel history. An important property for eacghsubsidy problem ighresholdability given in the following
lemma.

i[0] (12)

Lemma 7. The optimal policy for thes-subsidy problem{12) is a threshold-based policy. Spedificfor each
channel: in classk, there exists a threshold valu& (w) € [0, 1] such that it is optimal to transmit when its
current belief valuer;[t] > 6x(w), and to stay passive whenlt] < 6x(w), with tie breaking arbitrarily at
mi[t] = O (w).

Proof: The thresholdability has been proved inl[14] assuming auifft form of objective function thaf (12).
In fact, thresholdability holds for the general optiminatiproblem of(12)) as well, explained in details below.
It was shown in[[14] that a stationary threshold-based palit with threshold value, (3, w) is optimal for

the $-discountedu-subsidy problem

max E{Zﬁt [m’[t] cafft] +w- (1 — a;*‘[t])]
t=0

uel;

s [0]} . (13)

for channels in clasg, wheres € (0,1) is the discount factor. The optimal poliay; for (13) activates the
channels with belief values greater théy(5,w) and idles the channels whose belief values are smaller than
0r(5,w), with tie breaking arbitrarily ady(5,w).

From Dutta’s paper [22], we know that if walue boundedness conditidiolds for the discounted problem
(@3), and if a family of optimal polic{u%} converges to certain limi$ as 3 — 1, then¢ is optimal for the
v-subsidy average reward problem|(12) that is defined witheetve to limit superior.

Indeed, it was shown in_[14] that @8 — 1, 0;(w) = limg_,; 6(5,w) exists and the value boundedness
condition holds for the discounted problein](13). Theretbeethreshold-based policy is optimal for the problem

2. [

—

In the w-subsidy problem, we leff(w) = {6x(w), k = 1,2} denote the optimal threshold-based policy for the
system. Because of the simple form of the threshold-baskdypwe have the following lemma.

Lemma 8. Given a Lagrange multipliew > 0, the threshold-based polic@(w) achieves the maximum value of
the Lagrange functior.(u,w), i.e.,

—

D(w) = L(0(w),w). (14)
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Proof: Case (1). Suppose for channels in classd,(w) > b%. Due to the monotonicity behavior of belief
evolution, channels with initial belief;[0] < 6;(v) always stay idle. Channels with initial belief[0] > 0 (w)
will be activated until its channel turns out to beand then remain idle henceforth. Therefore with probapbilit
all channels will stay in the idle mode (see proof of Lenitha ridetailed description). Therefore, the following
limit inferior will coincide with limit superior and can beatculated,

1 0(w) . 1 [ 0(w)
11TIH_>10I<1Jf TELZ; [mlt] - a; (] m[()]} = 11;11_)8;1}) TELZ; [mlt] - a; [t] Wi[O]} =0, (15)
T-1 T-1

lim inf lE[ (1 - a?“p) m[O]} — lim sup lE[z:(l p0)

T—
* t=0 T—oo t=0

m[o]} —1, (16)

Case (2). Suppose for channels in class9*(w) < b%. From belief value evolution in Fidl2, the belief
values of each channel evolves as a positive recurrent Matkain (again, see proof of Lemrha 1 for detailed
description). Therefore, the limit inferior and limit suf® coincides,

T-1 T-1

o1 0(w) o 1 4 6(w) |
thigéf TE[EE [milt] - a; " [t] m[O]} = ll;n_folip TE[ 2 [milt] - a; " [t] m[o]}, (17)
T-1 B
IITHLIOIéf E[Z (1-— a Z[O]} = li;njolip %E[ t:O(l _ a?(w) [t]) 77,-[0]], (18)

From equation[(I5)-(18), as well as equatibn] (10), we have,

. N 1 T-1 g N 1 T-1 g
L(O(w).w)=) tim 7B 37 [mifflaf ) 1)m(0] + 3 tim B| 3w — o) mi[0] ~w-(1-a)N

]:Vl 1 c;:_01 9 i=1 ] t=0

:ZT%}TE[ [mift] - a? [ +w- (1 — ¥ )] m[oﬂ —w-(1-a)N
2;1 t=0

= Vi(w)-w-(1-a)N
i=1

> D(w),

—

where the last inequality follows from Lemnia 6. Because v &now L (6(w),w) < D(w) since D(w) =
maxyey L(u,w), we haveD(w) = L(g(w),w). [ |

B. Thew-subsidy problem: Indexability

For each channel in clags let Z,(w) C By be the set of belief states for which, under threshold-baséidy
67(w), it is optimal to stay idle. From the thresholdability profyeit is clear thatZ,(w) includes all the belief
values inB; no greater tham(w).

For classk channels, we let” () denote the optimal decision at belief valaec B* under subsidyw.
Following the definition in[[1B], the Whittle's index valud/;(7), = € B*, is given by the infimum value of
subsidyw for which it is equally optimal activate or idle at belief i.e.,

Wi(m) = inf{w : afy(m) = {0, 1}}. (19)
The Whittle’s Indexability condition, specific to the sclidg problem, is defined as follows.

Whittle’s Indexability condition: The downlink schedgliproblem is Whittle Indexable if, as increases from
—o0 to oo, the setZ,(w) monotonically increases froffh to Bj.

It was proved in[[14] that the idle s&.(w) indeed monotonically increases frdirto B, asw increases from
—o0 to oo. Therefore, the downlink scheduling problem is Whittleexdble, recorded below.
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Indexability Theorem. The downlink scheduling problem is Whittle indexable.

It can be observed that, from Indexability condition, thddr valueW(r) [0, 1] and Wy (7) monotonically
increases withr € B*. The next lemma gives the closed form expression of the ivades.

Lemma 9. The closed form expression of Whittle’s index values isngagefollows,

(br,?,z_bg,z+1)(l+1)+bg,z+1
Wk(ﬂ') — 1_pk+(bg,z_b§,1+1)l+b§,z+1

ifpkgﬂ:bé”’l<b§

. (20)
if b’;f <7< p

Tk
(I—pr)(I4+re—pr)+ri

Proof: The derivation of the Whittle’s Index value is included inpgndiXK. We remark that the Index expression
Wy () is constant whem” < 7 < pg, which differs from the indices derived in_[14]. Such a diéface is due
to the definition[(IP) of the index value and is explained itaden Appendix[K. [

With the definition of index value and the established indditgt condition, the optimal threshold-based policy
can be implemented in a more efficient manner, characteiizeedmma10. Here instead of maintaining different
threshold value9,(w) for eachw, the scheduler simply compares the index value witto decide weather to
transmit on the channel.

Lemma 10. Under thew-subsidized problem, at each time slot, for #e channel in class, it is optimal to
transmit whenW(m;) >w, and to stay idle whefl, (;) <w, with tie breaking arbitrarily if W (m;) =w.

Proof: If Wy(m;) > w, from definition [19) of the Index valudy(r;) is the minimum subsidy required for
the belief valuer; to be within the idle set. Sinc®(;) is higher than the actual subsidy it is optimal to
activate the channel at subsidy

If Wi(m) < w, similarly we know the subsidy is higher than the minimum subsidy valli, (r;) such that
it is optimal to stay idle atr;. Hence, from Indexability, it is optimal to stay idle at at subsidyw.

If Wi(m;) = w, from the above definitior_.(19) of Index value, it is equallgtimal to activate or idle at;. B

C. Optimal policy for the relaxed problem

We have thus far seen from Lemrhal 10 that the dual funciigw) can be achieved by a threshold-based
policy implemented over the index values. We now proceedéatify the optimal policy for the original relaxed

problem [4){(5).

Let ¢(w, p) denote the policy where the channels with the index valuatgrehanw activate, channels with
the index value smaller than remain idle, and the channels with index valuectivate with probabilityp.

Lemma 11. Givena, there exists a unique paiw®, p*) such that, under policy(w*, p*),

T N
. (w07
lim = [ b } — aN.
Jim TE ZZ&Z [t]| = aN (21)
t=1 i=1

Proof: For a single channélin classk, consider the policy where the channel activates if itsdfetaluer; > b*,
stays idle whenr; < b*, and activates with probability whenr; = b*, for some belief valué”. From the belief
value evolution we can calculate the expected time of awtivilenoted byA* (b*, p),

Ak(bkvp) = {

It is clear from its expression that, givefi, A%(b¥,p) is continuous withp. Also we haveA*(bf; ,,0) =
AR (b 1,1, 1). In addition, some simple algebra reveals that, giugp, A*(bf,,p) strictly increases withp.
Therefore, sinced”(bf ;,,0) = A*(bf;,, 1, 1), givenp A*(b*, p) monotonically decreases witlt € By..

Also, one can observe froni (22) that, given limy, o A%(bf,,p) = 0 and A¥(bf,,1) = 1. Hence by
appropriately choosing® and p, A*(b*, p) can achieve any value withijd), 1].

Recall from the definition of indexability that the index wallV; (b*) monotonically increases with® € T1*,
k =1,2. It follows from the above analysis that, asincreases, under poliay(w, 1), the fraction of activation

(I1=px)(h—p) o1k _ 1k
L= o a e, rapotiy 10 =0

0 if ™ > bk,

(22)
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Fig. 6: Belief value transition in steady state wheh= W}, (bk hz)

time for each user strictly decreases framo 0. Therefore, there exists an uniq@e*, p* pair, such that the
policy ¢(w*, p*) strictly satisfies activation constraint. |
We now consider the relaxed optimization probléin [4)-(5) e policyo(w*, p*) as specified in the previous
lemma. Clearly, the policys(w*, p*) is primal feasible and the lagrange multiplier is dual feasible. From
Lemmal10,¢(w*, p*) is optimal for thew*-subsidy problem and hende(w*) = L(¢(w*, p*),w*). Furthermore,
according to [(21)¢(w*, p*) activatesaN users on average, and thus the complementary slacknesgi@ond
holds for the primal-dual pai(qﬁ(w*,p*),w*). From the optimality condition for primal-dual optimal stibn
, (¢(w*,p*),w*) is an optimal primal-dual pair. Therefotg € arg min,, D(w) and¢(w*, p*) is the optimal
solution to the relaxed problem. Letting represent(w*, p*), we thus have proved Propositibh 1.

APPENDIX B
PROOF OFLEMMA [I]

(i) First consider the scenario whege' < W (b%) and suppose* = Wi (bf ,,.) for the belief stateyg . . If
the belief value of a channel is abo&/@h at the beginning of a slot, the channel will be activated. dxdmg
to the belief value evolution rulél(1), in “the next slot itsidBvalue will either bepy or r,, depending on the
underlying channel state revealed at the end of a slot. I@le¢ae belief evolution in this case is positive recurrent
within a finite state space, i.e., the belief state can onkg tihe valuesak,rk,b’g,z,--- ,b’&hzﬂ. On the other
hand, if the belief value is beIO\Ng’hZ, the channel remains idle and will activate once its belafig exceeds
blg,h,’;' Fig.[8 illustrates the belief evolution in steady state emithis scenario.

(ii) Consider the scenario whete* > W, (b%). In this case, a channel is activated if its index value isvabo
w*. After transmission, if the channel is observed to be in Ofaftes its belief value will transit te;, and stays
idle until its index value crossas*. Sincew* > W, (b%), it is clear from the belief value evolution (see Fig. 2)
that, starting fromry, the belief value will always be smaller thafi. Hence the channel will stay idle at all
times. On the other hand, if the channel is observed to be ins@M after transmission, the belief value will
transit top, and the channel will keep on transmitting until the undedychannel turns out to be in OFF state.
Since we assumeg, < 1, the channel will ultimately be in OFF state and its beliefueawill transit tor; and
stays in idle mode ever since. Therefore eventually no oblainrclassk will be scheduled and the belief values
will keep transit toward, but never reach, the steady statkeibvalueb’; .

APPENDIXC
PROOF OFLEMMA [2]

Consider two systems with different total number of usensitenticalc and~. Suppose the first system has
N7 total number of users while the second system Nasnumber of users. For the first system witf total
number of users, suppose the polit$; specified in Propositioh] 1, is optimal for the relaxed-¢oaist problem.
Therefore from the proof of Propositidh &% is optimal for each individual*-subsidized probleni(12). For each
channel in clas&, we let A%, denote the expected fraction of time of activatoin, whickxpressed specifically
in equation[(2R). Then, according to Propositidn 1(ii), thepected number of activated users satisfies

Y1 N7 - A(}b* + v N7 - Ai* = alNy. (23)
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Now apply the same policy* when the total number of users i§;. Since ¢* schedules each channel
independentIyA}z’* and Ai* does not change in this scenario. Therefore, the expectatheof activated users
is expressed as

-
VN2 - Ay + 72Ny - A5 = ﬁ? [ViN1 - A + 72Ny - AS.] = aNa, (24)

hence the complementary slackness condition for the rétagastraint problem is also satisfied undgérand
w*, when the total number of users. In this case, since* is still optimal for each individuakb*-subsidized
problem and both* andw* are feasible(¢*, w*) is a primal-dual feasible pair when the total number of users
is No, by the same argument as in the proof of Proposition 1.

Therefore, fixing system parametdrg, o), for different numberN of users, the policy)* is always optimal.
Since the policyp* schedules each channel independently, wejéf, o) denote the expected reward contributed
by each channel in clags Hence we have

N(y,a) = Nyoi(v, @) + Nyva (v, ).

Therefore the per-user throughput is
vN (v, )

N
which is independent oiV. Hence the lemma is proven.

= mnv1(7, @) + v (v, @),

APPENDIXD
PROOF OFLEMMA
Given system paramete(s, «), we know from the proof of Lemmia 2 that the form of the Optimaldxed
Policy, denoted byy*, does not change with the numh¥T of users. Sincey* schedules each channel indepen-
dently, we let vectoe® = [gf - -- 5§T,e§,e’fT, -+ e 1] denote the steady state distribution of the belief value
of users in clasg underg¢*, with & + >enen = 1. Therefore,

1
N[71N€17’Y2N€2] = [ne', 1€’

Since¢* is independent ofV, ¥ is independent ofV for k = 1,2. ThereforeE[Z" (c0)] is independent of
the user numbelN, which proves the lemma.

E[Z" (o)) =

APPENDIXE
PROOF OFPROPOSITIONZ]

A. Notations

We shall denote the" element ofZV [t] as ZV[t], and let3; denote the corresponding belief value. The index
value corresponding tg; is denoted asv;. In this proof, since we are fixing the system parametetsy), we
shall drop the suffixes and~ to denoteca asc

For ease of exposition, in this proof we assum’@(bg hs—1) < Wl(bOh ) =w' < Wk(b0 5+ ). Hence, in the
optimal relaxed problem, channels in cldsare activated ‘when their belief values are ab IR and stay idle
if their belief values are below(l]h , and activates with probability*<(0,1) at b, pe- FOT channels in clasg,
they are activated when their belief values no smaller ﬂ%qp and stay idle otherwise.
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B. Transition properties of the system state

We first investigate the belief transition structure of tlgstem stateZ ™V [t] under the Whittle’s Index Policy. It
is clear thatZV[t] evolves as a Markov Chain. We define thepected driftv Z [¢] associated with the transition
of ZV[t] as follows,

VZN[t]| = E[ZV[t +1] - ZV ]| ZV[H)]. (25)
For a channel with belief valug;, we let q” and qZJ be the probability that its belief state changes to state

ﬁ_, under the idle and transmission actions, respectively.eixample, n‘B2 corresponds to belief valuﬁ%l, then
4,1 = 1 if the channel stays idle, otherwisg, = 1 — b})l andgjy, ., = boz- which corresponds to the
probablllty of observed channel beitigor 1, respchver Under the Whittle’s Index Policy, we lgtz) be the
fraction of users in belief valug; that are activated, which is expressed as,

« z;>z T .

mln{[ﬂ} ,1}, if z; #£0,

9i(z) =<1, if zz=0anda—3", _,, 2 >0, (26)
0, if zi=0anda—3, ., 2 <0.

where[-] = max{0, -}. We useg; ;(z) to denote the probability that the belief value of a chanraidit from;
to 5; under system state. Theng;;(z) is expressed as

4i;(2) = gi(2)al; + (1 — 9i(2)) q;- (27)

We shall lete;; = 0, and lete;;,7 # j be a vector that has-1 at thei'" element,+1 at thejth element,
and0 at all other elements. Hence if a user changes its belied $tain 3; to 3;, the corresponding change of
the system stat& ' [¢] is in the direction ofe;; with magnitudel/N. Therefore,VZ™[t] is a composition of
expected changes in each directiey. SupposeZ” [t] = z, since the expected amount of changeZsf [¢] in
directione;; is z;[t]q;;(2[t]), the expected drifV ZV[t] can then be written as,

N R
vVZ ‘ZN[t = Z’Zlql_] c €45t Q(Z)Z, (28)

where the(i, 7)™ element of matrixQ(z) is expressed as
Quz) =~ ZptalZ) T, 29)
45i(2) for i # j.

Note that, although the system statean only take values on a lattice that depends on N, the nfainotion
Qi;(z) is defined over more general spa€eBased on this, we proceed to define a fluid approximation mode

C. Fluid Approximation Model
We consider a fluid approximation mode}t], which is defined by the following difference equation

z[t +1] = 2[t] = Q(=[t])=[t]. (30)

Note that the right-hand-side is completely determined gyadgion [26){(ZP), as a function of[t] and is
independent ofV. We denotez[t] as the ‘fluid approximation model’ becausg] is no longer restricted to take
values on the lattice as with the case of the original systete &'V [¢], and z[t] evolves in the direction of
the expected changef the system sta®. Recall that the seg is defined in equatiori{6), we proceed with the
following lemma.

Lemma 12. If z[0] € Z, thenz[t] € Z for all ¢ > 0.

INote that by ‘fluid’ we mean fluid in users/channels insteadlwifl with respective to time.
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Proof: Since from [28) we have

z[t +1] — z[t] = Q(z[t)z = Zzi[t]%’j('z[t]) - €ij.

i?j

z[t|l==

Note that the belief values of a channel can only evolve withe belief states of class of the channel, hence
for classl,

27+1 27+1 B
Z zift+1] — Z [t =17 - Z zi[t)qij(=[t])ei;
i=1 i=1 1<i,j<2r+
= > zltlg(z) - (1-1)
1<ij<2r41
= 0.

wherel is a vector withl in each element. Similar result holds for classSincez[0]e Z, we have

27+1 2(27+1)
Z zi[t] =, Z 2i[t] = 72, Vt > 0.
=1 1=27+2
Also equation [(ZB)E(30) indicates thaf[t]>0 for all t>0 if z[0] € Z. Thereforez[tjeZ for all ¢ > 0,
establishing the lemma. |

Lemma 13. The vgctofis the unique fixed point of the fluid approximation model, far all z € Z, Q(z)z =0
if and only if z = ¢.

Proof: The proof follows from a similar line of[[16]. Note that, undéhe Optimal Relaxed PoIicy(f =
E[ZN(oo)] and « fraction of channels are activated on average. Therefaréhe fluid approximation model,
we havez[t + 1] — z[t]| s = 0, i.e, Q¢ =0.

Now suppose there exists another fixed pgint Z such thaty # ¢ andQ(¢o)¢o = 0. Then(, corresponds
to the stationary distribution of the system state undethargolicy ¢(wq, pp) with threshold parametes, and
randomization factop,. Furthermore, undep(wq, pp), the expected fraction of activated channels equals.to

However, this contradicts with Lemnlal11, which states that p*) is the unique parameter pairs that strictly
satisfies the average constraint of activation. Thereftie fixed point¢ is unique. |

D. Convergence of the Fluid Limit Model

Define the region7,- C Z as the set ofz € Z such that, under the Whittle’s Index Policy defined in
Sectio 1V, the channel is activated if and only if its indeaue is no smaller than*, which is the threshold for
the Optimal Relaxed Policy defined in Propositidn 1. This nsethat, at system statec 7., all channels with
index value higher thaw* are scheduled, and the channels with index value smallarudhatay idle, while the
channels at index value* are scheduled with certain randomization. Specificdlly, = {z€Z : > 2 <
&, Zi:wi>w* Zi 2 Oé.}.

The following lemma characterizes the linearity propertythe fluid approximation model iy,..

LW >wW*

Lemma 14. (i) The vector¢ € J,,-.
(i) The fluid difference equatiof (BO) is linear within thegion 7, i.e., there exist matri@Q* and
vectora™ such that

z[t + 1] — z[t] = Q" - z[t] + @™, for all z[t] € J,-. (31)

Proof: (i) The vector¢ € - because, itz[t] = ¢, we haveY, - . gi(2[t])z[t] = o
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(i) Recall that, at the beginning of the section, we havaiasdw* = Wl(b(l]h ) for the belief valueb(l) bt of
classi channel. The difference equatidn{30) becomes,

2t +1] -2l = D zai(2) e+ Y ani(2) - enyy
A== fing j
= > (= )'eij+2h*z [ans (2)ap; j + [1=gn: (2)]ans;] - ens;
i,jiith:
= Z quU = + Zhy ZQh j T €hrj +gh*( )Zh{‘ Z [Q}qj - QQLT]‘] *€hyj- (32)
i,jii#hy J

where the second equality is frofn {27).
Since the total fraction of users activatedniswe have

g (2)zns =a— Yz, (33)
Wi >w*
Substituting the expression_(33) backlinl(32), and notirag 4}}(2), ih] stays constant foec 7.~ (since the
thresholdw* for activation does not change ferc 7,,-), the linearity property holds. |

From Lemmd_IR we know that[t] € Z for all t > 0, i.e.,

27+1 2(27+1)
Yoa=m, Y, n=n (34)
i=1 1=27+2

Taking note of Lemm&2, instead of using@r + 1) dimensional vectog, it suffices to represent the system
state by & - 27 dimension vectog, i.e.,

z= [21,"' y Ry —1s Rhi+1y """ 7z27+h;—17z27'+h3+17“'z2(27+1)]‘

in which elements;,: andzy,,; are eliminated frone. The transition ofz[t], whenz[t] € 7., is obtained by
substituting the relationship_(B4) in the difference etra{32) and eliminate the elements; andzy ., i.e.,

E[t+1]— 2] = U* - 2[t] + b, (35)

where the matrixXJ* and vectorb* are obtained after the substitution. The next key lemmaucaptthe eigen
structure of matrixU*.

Lemma 15. Each eigen value\ of U* satisfies\A + 1| < 1.

Proof: The proof is based on explicit study of matiix* and is given in Appendik I. ]
This lemma leads to the local convergencez@f.

Lemma 16. There exists a positive cogstaﬂt§uch that, if}he initial statez[0] = « of the fluid approximation
model is within thes neighborhood?,(¢) of ¢, whereQ,(¢) C J.-, then

(i) z[t] € T, forall t > 0; (i) z[t] —» C ast — oco.

Proof: Corresponding tqf, we let¢ represent the stationary expectation of veetof. Therefore, from Lemmial3,

U ¢+b"=0. (36)
Substituting [(3B) in equatioh (B5), we have
2] - C= (U + D) (x - (). (37)

Since we have assumed tht= 1, there exists ary neighborhood?,, (¢) with Q,(¢) C J..-. Correspond-
ingly, there is a neighborhood df for which z[t] evolution is linear and is described By {37). From Lenima 16,
each eigen valua of (U* + 1) satlsflesw < 1. According to the stability theory of linear systems|[26]¢]
converges ta if the initial state is close enough t;)

Therefore, there exists @ < o neighborhood of for which if the initial statex € Q,({), z[t] € J.- and
z[t]—)fast—>oo. |
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E. Convergence of the system state

The fluid approximation model provides a good estimate fer djzstem state evolution when the number of
users is large, captured in the following proposition, whean be viewed as discrete-time versionf Kurtz
theorem [[24] applied to our problem.

—.

Proposition 4. There exists a neighborhodts (&) of ¢ such that ifZY [0]=z[0]=z € Q5(¢), then for anyu > 0
and finite time horizorl” there exists positive constant§ and C> such that

Py( sup [|ZV[1) — 2[t]]| > 1) < Crexp(—NCy),
o<t<T

whered < o, and P, denotes the probability conditioned on the initial steﬂéf[o] = z. Furthermore,C; and
C, are independent o and N.

Proof: Consider the random variab8 [t + 1] given ZV[t] = z,

2(27+1) B
ZN[t+1 =2+ Le- “77V( e (38)

,j=1

wherenfj(z) is an indicator function representing whether the belidiiwaof the ht" user in belief value3;
transits to belief values; at the next time slot. Note that, giveZi’¥ [t] = z, the scheduling action for users in
belief stateg; is independent ofV because the scheduling decision only depends on the b#lief distribution
z. As N increases ané stays unchanged, more users is in belief statand the contribution of each channel
to the transition ofZ” scales down withV. From the law of large numbers, if the number of users scabes u
while z; is kept the same, we have

Zh 1772]( ) . Nz Zh 17723( )

lim =1 = 2;Q;; almost surely.
N TN NN Na #i4ij(2) y

Lemma 17. There exists a neighborhodel (¢) of ¢ such that, ifZV[t] = z € Q.(¢), there existe; and ¢, for
which ZV [t + 1] satisfies

P(HZN[t+ 1] - (I+Q(2)z] > M‘ZN = z) < c1exp(—Ney),
wherec; andc, are independent of and N.
Proof: Let I; be a vector withl at the:*" position. From [(3B),

ZNit+1] - (I +Q(2))=
2(274+1) Nz, h(2)

= Y e Qs

ij=1
2(27+41) Nz; n ( ) 2(27+41)
= > T e X uu(a) ey
ij=1 =1
2(27+1) 2(27+1)
ISE ) L -
= > EVU (I -1) — ) zaz) - (- 1)
=1 ij=1
2(27+1) SNVE b () 2(27+1) 2(27+1) =Nz, h(2) 2(27+1)

:{ Z = ;\7” 'Ij— Z ZiQij(z)'Ij}_{ Z %'11‘— Z Zin’j(Z)']_:i:|.

1,j=1 i,j=1 1,j=1 1,j=1
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Note that
2(27+1) <—~Nz _h 2(2741) 2(2741) N¢7 2r+1) h 2(274+1)  2(27+1)
h:lnf(z) - - Ej Uz(
> EEEL Y e Y S X a3 e
ij=1 ij=1 i=1
2(27+1) 2(27+1)
= Z ziii_ Z Ziii
i=1 i=1
=0.
Therefore
2(2741) <Nz
N h= 1(771( ) — Qij(z)) -
ZV[t+1]) - (I +Q(2))z = Zl JN 1. (39)
1,]=—

Note that once a user is activated, its belief value will am&nsit top; or 7, thereforenf‘j(z) # 0 only for
jeo:={1,2r+1,27 +2,2(27 + 1)}. Also note that for those channels that stay idle, there isandomness
associated with its belief transition, i.e., for theyjj(z) = ¢;j(2) € {0,1}. Therefore the randomness is only

associated with the channels which are activated, i.esethvath index value no smaller than*. Hence, [(3P)
becomes

(2)= .
21— (14QE) =Y 3 (5 (2) — i ))-Ij,

N
JEO i€ll;(z)

where the summatloENgl(z)ZT( -) is over all the channels in belief state that are activated, and;(z) is the
set of belief values in which channels are scheduled withéndlass that corresponds to beljef O, i.e.,

P @r+ 1) 4+1<i<2@2r+1):gi(z) >0} if j=27+2,2027r +1).
For eachj € ©, we have

()N 2 sz
P21 (142l 2|2V =) =P (| 3 30 Himt UG g )

N
JEO iell; (z)

<> r Z Z (=)~ au(2) q” (> 5. o

jEO 1€11;(

where the last inequality holds becaqm = 4 and also from union bound. Specifically, the union bound $old
since

(z)Nz; ( z)Nz;

g 3 BEemty ). ey 3 TSRy

JEO® iell;( JEO  iell;(z)

From an extension of Chebychoff’s inequality (See Excerdi8 in [21]) we have that, for eaghe O, there
exists a positive continuous functiqf;( ), which does not depend onand N, with

(‘ Z Z ) aylz) q” ‘> )<exp(—fj(u) > gi(z)Nz). (41)

1€115( i€ll; (=)

Let a; be the fraction of channels activated, under ¢heady stateof Optimal Relaxed Policy, in the class
corresponding to belief valug;, i.e.,

a6 =L 2,
Qj = 22(27'4-1) (C)C if i=92 9 9(9 1
i=2742 9i i =27 + 2, ( T+ )

(42)
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—.

For any0 < ¢ < min{ay, j € ©}, there exists a neighborhodit (¢) such that for allz € Q.(¢),

Y gi(z)z=a;—t, jeO, (43)
ZEH](Z)

which essentially means, under system sba@Qe(f), the fraction of activated channels in each class will stay
close to the case when system state is actuallyet f(x) = min{ f;(u )(a- - 6) J € O}, then from [(4D){(4B),

Pm(HZN[H—l] (I+Q(= )H>#‘ZN => ZP(‘Z Z gl qm()‘>%)

i€ll;  h=1
< 4exp( f(p)N).

It is clear from the proof thayf(x) does not depend om or N. Lettingc; = 4 andey = f(u), the lemma
thus holds. |

Lemma 18. There exists a neighborhodds(¢) of ¢ for which, if ZN[0] = = € Q4(¢), for anyt > 1, there
existc! and ¢} with

P (1271 - 214]| > ) < ¢ exp(~Neh),
wherec! and ¢, are independent of and N.

Proof: Recall thatc ande are defined in Lemmia_16 and Lemind 17, respectively. We fetmin{o,c} be
such that, ifz[0] € Q5(C), 2[t] € Q.—_,(¢) for all t > 1 wherep is a constant witl) < p < ¢ and satisfies

[(Q(z) + Iz — (Qy) + Iy|| < v, forallz,y e Z with ||z — y|| < p. (44)

for positive constant < p. We proceed to prove this statement by induction.
Fort =1, if = € Q5(¢), from LemmallV, there exis§ > 0 andc} > 0,

Po(|| 2] - 21| > ﬂ) — P(|ZV[1] - (T + Q(=))z| > M) < ¢l exp(—chN).
Suppose the statement is truetat 1, then there exist! andd} for which,
Py (|12t +1) - 2t + 1] = )
=P (12710 = 21| = p) Pu (| 27T + 1] - 2l + 1)]| = u]| 27] - =[] = o)
+ Po (]| 2710 = 21| < ) Pa (1271t + 1] = 21t + 1] = 1| Z2V18] - 202]]| < p)
<di exp(~dyN) + Pp (| 2]t +1) = 2[t + 1] u‘HZN[t] ~ 2l < p) (45)
Now consider the second term {0 {45),
Py (|21t + 1] = 2t +1][| = u| 12711 - 21| < o)

=P, (| 2N+ 1]~ (1 -+ QZ™ 1) 278 + (1 + Q(ZN(1) 2¥ (1) — =t + 1) > | 12718 - =[] < o)

<Py (1271 + 11~ (1+Q(ZV D) ZV |+ (1+Q(Z™ 1) 2V~ (T+Q(2lt) 2[t] | = | [| 2V -214)|<p)
Py (|21t + 1] = (1+Q(Z™ 1) 2| 2 1 v| |2V11 — 21| < »).

= > Pu(ZV1=2|2V1H € Q=) P (| 27T + 11~ (1+Q(2)) 2| = pv| 2V [t]=2) (46)
z€Q,(z[t])

where the first inequality follows from triangle inequalignd the second inequality is from relationsHipl (44).
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SinceQ,(z[t]) C Q.(¢), from Lemma[ 1V, forz € Q,(z[t]), there exist positive constants and ¢, that do
not depend orx or N, with

&Qmwu+u—uﬂwapuzu—4ZNm:z)gqmm—QNy (47)
Substituting [(4]7) to[(46), we have
P ([| 2%+ 1] - 2ft + 1] > #| (|27 - 2[)]| < ) < c1exp(—c2). (48)

Hence from Equatiori{45) anf[{48), there exist constafits > 0 and ;™' > 0 that do not depend oa and
N with

Po (1277 +1] — 2lt 1) > ) < i exp(~Ne™).

By induction, the lemma holds. [ |
Note that from union bound,
T-1
Py sup 1210 = 2[t)ll = 1) < 7 Po(112VE - 211 > 1), (49)
0<t<T =0

Therefore, from Lemm&_18, over finite time horiz@h there exist positive constant$, and C», which do
not depend orx and NV, such that

Po( sup [1Z7[1) = 2[t)l| = 1) < Crexp(~NCa),
o<t<T
which concludes the proof of Propositibh 4. |

According to Propositiof]4 we have just established, theéesysstateZ'¥ [t] behaves very close to the fluid
approximation modek|[t] when the number of users’ is large. Since we have shown the convergence[tf
to ¢ within Q,(¢) in LemmalI6, we are ready to establish the local convergehtteesystem state&Z N [¢] to ¢.

Lemma 19. If ZN[0] = € Q5(¢), then for anyu > 0 there exists a timéj, such that for each” > Ty, there
exist positive constants; and s, with,

Po(_sup (1ZV[1) =l = 1) < s1exp(~Nso).
To<t<T

Proof: We let0 < v < u. Noting thatd < o, from Lemmd_1b we have, gives|0] = = € Q5(¢), there existd)
such that for allt > Tj.

=10 - &l <.
From Propositiom4 we know that there exist positive coristanand s, such that,

127 (1) —=[t][|+ ][] —C]| = )

Po( sup [ 2V10)-C| = 1) <Pu(_sup
To<t<T To<t<T
<Pul s (2] 2 )
<Py( sup HZN[t]—z[t]” > pj—v)
0<t<T

<syexp(—Nso).

Hence the lemma holds. [ |

The previous lemma allows us to establish the local convegeesult. Lev : Z — R be a mapping such that
v(z) represents the per-user average throughput under systen:strherefore, Nv(Z"|[t]) is the immediate
reward at timet and we also have(y, a) = v({).

For ¢ > 0, we lety > 0 be such that for any € 2, if ||z — ¢|| < p, then

-,

(@) — ()] < £ (50)
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Note that the per-user instantaneous throughya} < 1. Therefore,

Nom o, T -1
%ﬁn’) —1(v,0)| = %E [t; N (Z¥[1)] = (v, 0)|
1 To—1 N B 1 T-1 N B
T E[v(Z™[t]) = v(C)] +Tt;)E[U(Z m[t]) — o )H
1 Tl N . = . )
S |7 2 E[v(Z7[t]) = v(C)] +‘Tt:TOE[v(Z m[t]) — v(&)]
Dy ls E[Jo(Z"[t]) = v({)]] (51)
ST T A& :

Letting Ay,, be the even{supy, <7 || ZV"[t] — ¢|| > p}, we proceed to bound the second term[il (51),

£2 el -]

t=T,
:P@»(ANM)% jil E[\v(sz 1)) — v(&)| ‘ANM] (1- Ps(Ax,) i [\v ZNe1t]) — v(E)] ‘ANm}
t=Ty t=T,

<Pz(An,)+ (1 — Pg(An,))!
—Pg(Ay (1 =€) + 1.

where the inequality if from the faat(z) < 1 and the relation[(30).
According to Lemma&9, whem € Q5(¢), we havelim,,,_,., Pz(An,,) = 0, therefore,

R T
i [FEREE ] < e
Since/ can be arbitrarily small, we have
RN (7>a>m) TO
n}gnoo ‘N—m —r(y,a)] < T
Hence, taking limit withT" in both sides,
Ry (v, o, @)
lim lim L~ """ — .
Jim lim » (v, )
We have thus proved Propositibh 2.
APPENDIXF

PROOF OFLEMMA [4]

(i) Here we prove the Markov chain has one unique class bingt#tat, starting from any state, there exists
a possibility to reach a particular state, and hence theoalis one class of recurrent state.

Case (1). Suppose < ;. Starting from any initial stateZ’V[0], the following transition can occur: whenever
the channels in clask are activated, their states are observed to be in ON stadeywhanever channels in class
2 are activated, they are revealed to be in OFF state. Thenafi@ng enough time duratiofi, « fraction of
channels, which are in clags will be in belief valuep;, and other channels will have statlonary belief value
5. Hence the system state will B8V [t,] = [ZVV[t1], Z%V[t1]] (defined in Sectiol V=) W|ch1 V] =
ZEN ] =y — o, Z2V[t1] = 2, and with0 in all other positions.

Case (2). Suppose > v;. Starting from any initial stateZ’V[0], consider the following transition path. Within
the first period of time slotd) < ¢ < ty, whenever users in cladsare activated, they turn out to be in state
and whenever users in clagsare activated, they turn out to be in stateThen if ¢, is long enoughZ [t
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is such thatle,’fV[to] = 71, with zero in all other elements. In the second peried< ¢ < ¢, whenever users
in class1 are activated, it will remain in state and whenever users in cla8sare activated, it turns out to be
in statel as well. Then after long enough of time until, ZV[t,] = [ZVN[t1], Z>N [t1]] with lejfv[tl] =7,
Z3\ ] = a — 1, and 22V [t1] = 1 — o, with zero in all other elements .

Since the state space of the Markov ChaY [¢] is finite, there is at least one recurrent class. As we have
seen in the above cases that, starting from all st&#€d¢] can reach a particular state. Therefore there can only
be one recurrent state. We shall henceforth denote thigplart state aﬂlﬂv. It is also clear from the proof that
the Markov chain is aperiodic because of the possible satisition in stateZI])V.

(i) Similar to the proof of Propositiofil2, in this part, weagr the suffixa: and~ in the notationf;“, and
we assumeVy (b ,,. 1) < Wi(bg,.) = w* < Wi(b5 ,,.). Recall that from the expressignl20 of Whittle’s index
value thatWy,(r) = W, (b%) for = € By, = > bk, k = 1,2. We first characterize the structure ¢f From the
description in Lemmall we know that the non-zero element§ afe

hitl
S S e | 1 _ 1 1 1
G =Coq1=C2=""=Copns» Conr41 =1 =pops» C1=1- Z o,
h=1
hs
9.2 .o o e 9 9
@ =G1=CGa=""=Cn—1 = Gny» Gi=1-Y G
h=1

We shall proceed to construct a path from the stﬂﬁé to an arbitrary neighborhood of. For ease of
exposition, in the proof we no longer consider the channglsresplittable entities. Instead, the transition in the
each stages deals with belief state evolution of ceffraiction of users. As we shall see, under this assumption,
we can construct a transition path 8f¥[t] under the Whittle’s Index Policy, that transits froﬂﬁf to theexact
value ¢. Although the identified path may not be feasible in realiy $§mall value of N, but as the number
of usersN increases, we can find a transition path, which operates esehas unsplittable entities, that is
arbitrarily close to this identified path, and thus can udtiely get arbitrarily close to any neighborhoodfof

Note that whenz™V[t,] = ZY, ZN[t,] = [Z"V[t1], Z*N[t1]], where

Z0 [t + Z5N ) = v, and 277 [t] + 22N [t] = .

In the following construction we shall assume that belidiiga are updated at the end of each slot when the
actual channel states are revealed.
Case (1). Supposehj > hi and Wi (by) > W (b3). We shall denoté; = max{l : W (bg,) < W?(b2)}. In this
case, The path is constructed with the stages below, gjdrtim stateZV[t;] = ZZ],V .

Stage 1.1. In the first slot, among thex fraction activated channels, — ¢; ..., amount remains in ON state,
and(; ., amount turn out in OFF state and are in classience the end of this slog” = [Z"", Z*"] has
the following non-zero elements
LN _ 1 LN | 1N _ 1 2N | 2N _
Zoh =CQomi+1s L1 T4 =N —CQonirr, i1 T4 =7

Stage 1.2. In each of the next;} slots,a — ¢} amount in the activated channels turn out in ON state, @nd
amount of them turn out to be in OFF state and are in clasSo at the end of the last slot of this stage, the
non-zero elements of the system sta#t& = [Z1V, Z2V] satisfies
LN _ 1N LN 1 LN 1 LN _ 1 2,N 2N _
Zo,l :Zo,z == Zo,h; = (o> Zo,h;+1 = Co,h;+1a Z1,1 = C1,1a Z1,1 + Z37 = .

Stage 2. In the next few slots, all activated channels turn out to bstatel. This stage goes on fdr; — h}
slots, until those channels that reach belief stgteat the end of stage 1.1 are in belief stajg, ,,. Then by
the end of the last slot of this stage, the non-zero elemdiitseosystem stat&”V satisfies

1,N o _ 71N _ -1 1,N -1 LN 1 2,N 2,N __
ZO,h’l—h’{—i-l = ... = ZO,h/l —Coa Zo,h/1+1 - Co,h;+1a Z1,1 - C1,1a Zl71 + Zs = 72-
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Stage 3. In each of the following slots, among all channel activatualy those in belief staté(l] n 41 turn out
to be in OFF state. This stage goes on until those channeligréimsit to belief state] h in stage 2 reaches
belief stateb] n:—nz+1- Hence by the end of the final slot of this stage,

LN _ _ LN _ 1 N _ A 1L,N _  _ LN _ 1 2N 2N _
Zon == Zopi—n; = 0> Zong—hg+1 = Ohi+1 Loy —nz+2 = = Lo = S00 Z11 + 2450 =

Stage 4. In each of the next; slots, among all users activated, those in belief skgje ., turn out to be in

OFF state, an(z[g amount of activated channels in cladgurn out in OFF state. Then by the end of the final

slot in this stage, the system state will &' = ¢, i.e.,

LN _,1,N 1IN LN A LN A1
ZO,l —Zo72 - = Zo,h; - COa Zo,h;+1 - Co,h’;+1a Zl,l - C1,1

2N 2N 2N 2N .2 2N .2
ZO,l —Zo72 - = Zo,h;—l - Zo,h; - Co, Zl,l - C1,1-

Case (2). SupposeWy(bl) > Wi (b2) and b < hj. We shall leth, = max{l : W'(b},) < W2(+?)} and

d = |h3/(hy +1)]. Starting from statez™[t;] = Z[¥, the path is constructed with the stéges below, where stage
1.1 and 1.2 are the same with the previous case.

Stage 1.1. In the first slot, among the fraction of activated channels, ondy ;.. ., amount turn out in OFF state
and they are in class. Therefore at the end of this slag”Y = [Z1"V, Z2"] with non-zero elements being

1,N 1,N N _ 2,N N _
Zyy = C&hﬁla Ziy + ZWN =y — C&,h;ﬂ’ Ziy + Z2N = .
Stage 1.2. In each of the next slots, o — ¢} amount of activated channels are in state ‘1’, @jdamount
are in OFF state and are in classHence at the end of the last slot of this stage, the non-zZements of
ZN = [ZVWN | z%N] satisfies
1,N 1,N 1,N 1 LN 1 1,N 1 2,N 2N _
Zo,l :Zo,z == ZO,h;‘ = Co> Zo,h;+1 = CO,hT—i-l’ Zl,l = Cl,la ZLl + 257 =.
Letting t» be the slot right after stage 1.2, the path proceeds as fellow

Stage 2.

(1)?:rom slott, to slotty + A} — h — 1, all activated channels in cladsturn out to be in staté. Hence at the
end of slott, + k) — h} — 1, the channels that reach belief stéé’e;lﬁ1 at the end of stage 1.2 are in belief state
b57h3+1. Next, from slotty + k) — h to slotta+ (d+1)(h) +1) — 1, among the activated channels in classnly
those in belief statéah,lﬂ turn out to be in OFF state. Therefore, at the end of slot (d + 1)(h} + 1) — 1,
the system state vect@ !V that correspond to classehannels is

1,N 1,N 1,N 1,N 1N
ZO,I :Zo,2 == Zo,h; = C&» Zo,h;url = C&,h{-ﬁ-b Z1,1 = 411,1-
(2) In the meanwhile, from slat, + (d+ 1)(h} +1) — 5 —1 to slotta + (d+1)(h} +1) — 1, among the activated
channels in clasg, ¢ amount turn out to be in OFF state. Hence by the end oftglat (d + 1)(h] + 1) — 1,
the vectorZ'" that correspond to clagsehannels is
QN _ 2N _ 2N  _ 2N _ 2 2N _ 2
Zo,l - Zo,z - = Zo,h;—l - Zo,h; = €0 Zl,l - 41,1-

Therefore, at the end of slot + (d + 1)(h} +1) — 1, ZV = (.

APPENDIX G
PROOF OFLEMMA [§

The proof is a discrete-time version of the proof of TheoreB86rom [21]. We first present a lemma which
is an extension of Lemnial19.

Lemma 20. There is a neighborhoot, (%) of %, with ¢ < &, for which if ZV[0] = & € Qy(¢%), then for
any ¢ > 0 and timeT’, there exist positive constants and p, with,

Py sup [1Z711) = &5l = 1) < prexp(~Npo)
0<t<T
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wherep; and p, are independent o and .

Proof: Note that we have established, in Lemima 16, the local coeweryof the fluid approximation model
z[t] in a neighborhood, (¢9). We letr < p and letd < § (recall thato is defined in propositionl4 witd < o)
be such that itz[0] € Q,(¢%), then

=[] — Bl < v, Ve 0.
From Propositioli 4, there exist positive constamtsaand ps with,
Py sup |2V -Cl| = 1) <Pu( sup_ || 2710~ 2(1]]|+]|2-C]| > )
0<t<T 0<t<T

<Pa( sup |1ZN [t]—=[t)]| > p—v)

<P sup 12Nt =z [t = p—v)

<prexp(—Np2),

which proves the lemma. [ |
We lete, < ¢ be such that itz[0] € Q. ((2), thenz[t] € Q.(¢Y) for ¢ > 0.
We let o), n = 0,1,--- be the time slots ofonsecutivenitting times into the neighborhooﬁes(fﬁ) from

outsideof the neighborhood when the total number of user&/isSimilarly, we Ietgé\fwrl, n=0,1,--- denote
the time slots ofexiting the neighborhood..(¢5) from inside of the neighborhood, when the total number of
users isN. Hencey,, = ZV o], n=0,1,--- evolves as a Markov chain. In steady state,
El0dn 1o — oon] _ Elo5n+2 — 09n 1]

E[Q%H — 0dy,] E[Qé\;-ﬁ-Q - @%H] + E[Q%H — 03

We letT,(N) denote the random variablg), ,; — ¢%,. For any constani > 0, we have

< (52)

P(Z"[oo] ¢ Q(C5)) <

E[T.N)] =Y t- P(T.(N) =1t)
t=1

> 2K - P(T.(N) > 2K)
—2K Py (s 12V -Gl <) (53)

Qévn+1 St<9é\;+1+2k

Note that
Povoyot( . w12V -Gl >
o, <t<el, 1 +2K
- X pEte) = ap( e 12V > ) )
z2eQ., ({2) 0<t<2K

Sincee; < ¥, from Lemma& 2D, there exist positive constantsaandc, such that for any: € Qﬁs(fg‘),
P sup (210 = & > €) < i exp(—eN). (55)
0<t<2K
Substitute [(5b) in[(34) we have

PZN[QéVn+1} ( sup ||ZN[t] - 53” > E) < exp(_g2N)‘
9¥n+1 St<9é}il+1+2K

[927

Nm - . .
Therefore,P,, ., o (S“Pemlsmmw |Z%[t] — ¢S < e) — 1 asm — oco. From [53), ifm is large
enough, we have
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Since K can be arbitrarily largeim,, o, E[o}™" — 0)"] = co. Since from Assumptio® we know E[o}" —
o] < M., thus from equation(52),
. N, Fay)

which concludes the proof.

APPENDIXH
PROOF OFPROPOSITION3

For any? > 0, let e > 0 be such that forc € Z, if ||z — fg“)H < ¢, then
() —r(v,0)] <L
Consider fixedN,,, for ¥/ > 0 denote evently, = {ZV"[x] € Qe(f?;)}, then

‘ Ry (v, )
N

<E|[v(2V" [oc]) - v(&5)] |

:p(ENm)E[\U(ZNm[oo]) - v(ff;)\(ENm] + P(Ey

<P(Z""[oc] € Qe(E2)) - £+ P(ZN"[o0] ¢ Qe(E2)). (56)
Apply Lemmalb to[(5b) we have

N’V?‘L
m—00 Ny,

Since/ can be arbitrary,

- T(’% a)

which proves the proposition.

APPENDIX |
PrROOF OFLEMMA [15

After some calculation, the matrik* takes the form
. [@(2) B
ve [ 0 Qe))

where matrixB is expressed as

[0 - 0 by =1 Dope—1 o bgpe —1]
B= 0 0 1 1 1
0 o 0 =bop “hour o —bou |

in which only the first, last and] + 1" row have non-zero elements, and for each row, non-zero tstansat
the 3t element.
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The matrices)!(z) andQ'(z) are expressed as,

-1 0 - 0 b(lJ,h;_b(l),h;url btl),h;_b(l),h;+2 b(l),h;_pl |
1 -1
~ 1 -1
1 _
@) =1, 1 -1 1
—1
L bé,hHl_b(th’{ b(1)7h’{+1_bé,h; _(1_p1)_b(1)7h’{_
1 0 - 0 1-bgg 1=b,.yy 0 1-po
1 -1
1 -1
2 _
@) =1, ~1 -1 -2 ~1 ~1
—1
L bg,h; b(z),h;+1 o —(1=p2)

We need the following lemma to proceed.
Lemma 21. For anyl € Z™,
(1—p1)+ b(l),l > (1 - 1)(b(1),l+1 - b(l),l)'

Proof: The proof is moved to Append[X J. |
With this lemma, we proceed to characterize the eigen vadfi@satrix U*, which are given by the solution
to equationdet(U* — AI) = 0, where

B et Q'(z)—AI 0
@(2) — M| @ (z) — M|
where the second equality is from the property of block mati Therefore, we have

det(U* — M) = det(Q'(z) — M) det(Q?(2z) — \I).

(1) We first study the characteristic polynomiadt(Q'(z) — \I). After some algebra we have

det(U* — \I) = det [Ql(z) M

det(Q'(z) — M) = (1 4+ N> | [X + (1=p1)+bh ] (1 + )7 —
B0 1—bop) [T+ T +X) + A+ A+ + (1 + /\)hT‘z]]
£ (1407 M.
where
X1(A) = A (L=p1) 400 1 (A7 = (05 s 41— g ) [T (LX) (LA P (LA 2.
Consider the equatiog;(\) =0, i.e.,
A (L=p1) 05,1 J (LAY = (0 g 11 =00 1) [1H(LHA) +(14A) 24 - (14N 2] (57)

Clearly, matrixQ'(z) has eigen value-1 of multiplicity 27 — h*. Let A be any other eigen value @}'(z),
we proceed to show thah + 1| < 1.
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We prove this by contradiction, supposes such thanJr 1| > 1. Then taking modulus of the left hand side
of equation[(5l7) we have

[IA+HA=p1) 408 AN = A+ 1= p 4Bl e | - [T+ A"
> (A + 1]+ | =1+ bh )L+ A
> (1 — i+ b}m> 1+ A"
where the first equality is from triangle inequality. Applgi Lemmd 2l we have,

(1 —p1+ b}m) 1+
>(hi — 1)(b(1),h;+1 - b(l),h;) : |1 + )‘|
> (O pear — b ) [LH LA+ [T+ A7
> (0 z 41 — Do s ) [1H(LHN)+ -+ (14172 (58)

hi—1

where the first inequality is from Lemnial21, and the seconduaéty is from the fact thap\ + 1|>1, and the
last inequality comes from Triangle Inequality. Note tha¢quality [58) contradict$ (57). Therefore each eigen
values of matrixQ'(z) must satisfy|A + 1| < 1.

(2) We then study the characteristic polynomiat(Q?(z) — A\I). We derive that
det(Q?(2z) — )
=(1+\)?7 "2 [[(1 —p2) + (1= 3 15)A] [1 FA+N)+- 4+ 1+ A)h3—3] +
(L 072 [(1 = p2) + A2+ A) + .
£+ 077 xa(N), (59)
where
X2(N)=[(1=p2)+(1—=bp 45 )A] [1+(1+>\)+ e +(1+>\)h5‘3} +(14N)h2—2 {[(1—p2)+A] (2+)\)+b3,h3}

and consider

A xo(N)=[(1—p2)+(1- bOh)A]A[1+(1+A)+ ()| (14020 [(1=p2) +A] (24) 403 1 |
=[(1=pa2)+(1-b ))\](1+)\ 1)[ F (14N + - (1N } (1+N)" _2)\“(1—]?2)4-)\](2+)\)+b(2)7h;}
= [(L=p2)+H(=0)A] (140572 = 1 (1) 2A[[(1=p2)+A] 2+ A)+83 1 |
= — [(1—pa)+(1— bOh))\]+(1+)\)h2 A[(1=p2) 4N (24 )88 s A [(1=p2)+(1=83 ) |
= — [(1=p2)+(1=05  )A] +(14+A)" 72 )\“1 p2) +A](2+>\)+1} —|—(1—p2)}
= = [P+t A0 2 N[ (=p) A+ 1] + (1)
= — [(1=p2)+ (18 )N+ (142572 [ (1=p2) LA PHA N + 1)2)]
— [(1p2)+ (108 DA+ (L4 A) 52 (1—p2+A)(A+1)2}
— [(A=p2)+(1=85 o)A +(1+1)" (1—pa+)) (60)

It is clear from equation (59) that matri®?(z) has eigen value-1 with multiplicity 27 — hi. Let X be any
eigen value ofQ?(z), we first show the following lemma.

Lemma 22. Let A be any eigen value ap?(z), then—2 < Re()\) < 0.
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Proof: 1) Suppose?(z) has an eigen value @ then, from [GP),x2(0) = 0. However,
X2(0) = (1=p2) (h5—2)+2(1=p2)+b5 s
= hZ(l_pZ)"‘bg,h;
# 0,
leading to a contradiction. Heneg?(z) does not havé eigen value.
2) Suppose the equatiop(A) = 0 has a root\* = a + bi with a > 0, or a < —2, or being purely imaginary
with @ = 0,b # 0. Hence from equatiori (60),
(1=p2)+(1=b5 s )N =(1+A")"2 (1—pa+X¥) (61)
Consider the modulus of the right hand side,
|(14-a + b)) | - [1 — pa + a + bi| > |1 — pa + a + b
> 1= p2 + (103 j3) (a + bi))|
= [1 = pa+ (1=b5 5 )\
The above expression contradicts the previous equdiidn (61

From 1) and 2) we conclude thab(A) = 0 can only have solution with real part withi+-2, 0). Therefore
all eigen values of matrix)?(z) have real part within—2,0). [

We proceed to show that each eigen valuef Q%(z) needs to satisfj//\ + 1\ <1
Suppose the equatiop;(\) = 0 has a root\ with |A + 1| > 1, then from equatior{60),
(1=p2)+(1=b3 45 ) A=(1+X)"2 (1—pa+A) (62)

We letl+ \ = x+yi wherex, y € R, from the previous lemma we know thatl < 1. Some derivation shows
that

[(1=pa+A)|* = [(1=p2)+(1=b5 )M
=1+ P2~ bg,h;)b(z),h; - 2wb(2),h;(1 — D2 — b(z),h;) + bg,h;(sz - b(z),h;)
>|z](2 — bg,h;)bah; -2 w‘bg,h; (1—p2— bg,h;) + ’w‘bah; (2p2 — bg,h;)
=[albf ;| (2 = D) — 201 = p2 — B 1) + (292 — B 1)
=0.

where the first inequality is from the assumption that- \| > 1 and the fact thatz| < 1. Therefore
|(1=p2+A) (1 +2)" | > |(1—p2+))|
> |(1=p2) (105 3 )Al-

The above expression contradicts the equafioh (62). Henzaninot be|>\ + 1| > 1. Therefore, each eigen
value \ of U* satisfies| A + 1| < 1, concluding the proof.

APPENDIX J
PROOF OFLEMMA 21

Proof: From the belief value evolutiof](1) we know

1 ri—ri(pr— 1)

S TP

b(1)71+1 - bé,l = 7“1(291 - 7”1)l-
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Therefore

(1 —p1) +mg, — (L= 1)(mh 41 — 7o)

™ — Tl(pl - Tl)l

ST o e )

~(1 )+ PP

g+ [Py ]

—(1—-p1)+m :1 + (- 1)(1911 J::)i“ —U(p1 — n)l]

(1)t :1 + (= D(pr — rll)jr(: e e Tl)l}

(1)t :(l D =) —m = 1) — (plljrrrll_—l)(l ti—r) 4t e - ) 1)}

=1 —p) 7|1+ 1 =)+ 4 (1= 10) ) = (= D)oy 1)’ (63)

Since(py —r)? > (p1 —ry)! fori=1,--- ,j — 1, therefore from equation (63),
(1—p1) +7T(1J,l — (- 1)(7Té,l+1 7701) (1—=p1)+7r1 >0,
which proves the lemma. [ |

APPENDIX K
DERIVATION OF INDEX VALUES
Here we derive the Whittle’s indices according to Definiti@@), by studying the relationship between the
threshold value and the subsidy value.
(Case 1)r = b’gl < bk We letV (w, b’gl) denote the reward-plus-subsidy for thesubsidy problem when the

threshold for activation is &f;, i.e., the channel transmits when the belief is no smallan tt, and stays idle
otherwise. Some algebra (of studying the steady stateflrdiesition) shows that

b, + w1 —pr)(l —1)
b, + (1= pr)(0)
From the definitionlﬂg) of the Whittle’s index value, it isuedly optimal to activate or idle the channel with

the belief valueb ; at the subsidy vaIuéVk(b ;). From thresholdability, the belief valuél is at the boundary

of the idle setZk(Wk(b’gl)) Therefore the reward obtained by setting the thresholchtivation atbf 0, equals
that with thresholdyf,, ,, i.e.,

V(w’ blg,l) -

(64)

V(Wi (b6, b6.0) = V(Wi(56,1), 06 141)+
where V(W (bf,), b)) represents the reward correspondinga@k(bél)(b’gJ) = 1, and V(Wi (b ), bf141)
represents the reward correspondlngz;p (05.) ’gl) 0.

Substitute expression _(64) in the prewous relatlonsrmisheto the expression of the Whittle’s index value,
(blg,z b§l+1)(l +1) +bf J+1
L= pr+ (b6, = b6 1)L+ 0640

Wi(bG,) = (65)
which is the same as in [14].

(Case 2)r > b~. In this case, we first present the following claim. This wiastates that, if the threshold for
activation is above”, then it is optimal to always stay idle.

Claim 1. If 6, (w) > b¥, thenZ"(w) = BF.

— Ys
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This claim is indeed true because, from Lenimha Hifw) > b’;, then eventually all users will be idle, hence
it is optimal to always stay idle. Hence, for all belief state > b*, their Whittle's index value, according to
the definition, equals to the infimum subsidy value for whisl thannel always staying idle. Note th&j(r)
monotonically increases with for = < v%, therefore,

Wi(r) = lim W (bf,).
l—00 ’
From [6%) we get

Tk
(1—pp)(X+7%—pr) + 11

Wi (m) =
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