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Abstract— In this paper, we aim to obtain the optimal tradeoff
between the average delay and the average power consumption in
a communication system. In our system, the arrivals occur at each
timeslot according to a Bernoulli arrival process, and are buffered
at the transmitter waiting to be scheduled. We consider a finite
buffer and allow the scheduling decision to depend on the buffer
occupancy. In order to capture the realism in communication
systems, the transmission power is assumed to be an increasing
and convex function of the number of packets transmitted in
each timeslot. This problem is modeled as a constrained Markov
decision process (CMDP). We first prove that the optimal policy
of the Lagrangian relaxation of the CMDP is deterministic and
threshold-based. We then show that the optimal delay-power
tradeoff curve is convex and piecewise linear, and the optimal
policies of the original problem are also threshold-based. Based
on the results, we propose an algorithm to obtain the optimal
policy and the optimal tradeoff curve. We also show that the
proposed algorithm is much more efficient than using general
methods. The theoretical results and the algorithm are validated
by linear programming and simulations.

Index Terms— Cross-layer design, joint channel and buffer
aware scheduling, markov decision process, queueing, energy effi-
ciency, average delay, delay-power tradeoff, linear programming.

I. INTRODUCTION

SCHEDULING for minimizing delay or power has been
studied widely and is getting increasingly important, as

many delay sensitive applications are emerging, such as instant
messenger (IM), social network service (SNS), streaming
media and so on. On the other hand, the requirements of
mobility and portability for communication terminals incur
stringent energy constraints.

In typical communication systems, for fixed channel con-
ditions, the power efficiency (per bit transmitted) rapidly
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Fig. 1. Energy/Transmission versus Bit/Transmission with adaptive M-PSK
(Target ber=10−5, Noise Power Spectral Density N0 =−150 dBm/Hz).

decreases as the transmission rate is increased. In other words,
the power cost is convex in transmission rate. Below are two
canonical examples of communication systems that demon-
strate this convex behavior.

1) The information-theoretically optimal transmission rate
R = 1

2 log2(1 + P
N ). Therefore the power to transmit

s bit(s) is �s = N(4s − 1), which is strictly increasing
and convex.

2) Consider an adaptive M-PSK transmission system with
a fixed bit error rate (ber). The ber expression for
M-PSK is shown in [1, eq(8.31)]. We fix the ber =
10−5 and the one-sided noise power spectral density
N0 = −150 dBm/Hz. The energy-bit curve is shown
in Fig. 1, which is strictly increasing and convex.

The convexity of power cost in transmission rate brings a
natural tradeoff between power and delay. As we increase the
transmission rate, the delay becomes shorter with the cost
of low power efficiency, and vice versa. Our main goal is
to characterize the optimal delay-power tradeoff and obtain
an optimal scheduling policy for a given average power
constraint.

The optimal delay-power tradeoff and the optimal schedul-
ing policy in the point-to-point communication scenario have
been studied in [2]–[12], under the convexity assumption for
power cost. Among these works, the power cost is mod-
eled based on Shannon’s formula in [3]–[7]. Since there
is no interference in the point-to-point scenario, the power
cost is convex in the transmission rate (bits/transmission),
similar to the information-theoretical example we introduced
above. Lagrange multiplier method has been applied in these
works, in order to transform the constrained optimization to
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unconstrained optimization to simplify the problem. Based on
this, the properties of the delay-power tradeoff curve have
been studied in [3], [6], [7], and [9], and the monotonicity
of the optimal scheduling policy is investigated in [2], [4],
[6], and [8]–[12]. However, most papers neither trace back to
the original constrained problem, nor prove the equivalence
between the original and the Lagrangian relaxation problems.
Only in [4] and [9]–[11], properties of the optimal policy
for the constrained problem are tackled based on the results
from the unconstrained problem. However, in [4], the power
cost is fixed by Shannon’s formula, thus the results cannot be
applied to more generalized power models. In [9], necessary
properties for proof such as the unichain property of policies,
the multimodularity of costs, and stochastically increasing
buffer transition probabilities are not proven, but just assumed
to be correct. In [10] and [11], binary control is considered,
i.e., the scheduler only determines to transmit or not to
transmit.

We studied the optimal scheduling in [13]–[15], considering
a single-queue single-server system with fixed transmission
rate, and obtained analytical solutions. Interestingly, in these
cases, the monotonicity of the optimal policy can be directly
obtained by steady-state analysis of the Markov Process and
linear programming formulation. Similar approaches have
been applied in [16] and [17]. We generalized our model
and included the adaptive transmission assumption in [18],
which is much harder to analyze because of the more com-
plicated state transition of the Markov chain. In this paper,
we continue this line of research, analyze the problem within
the CMDP framework, and present our thorough analysis and
results. We first consider its Lagrangian relaxed version. In the
unconstrained MDP problem, we prove that the optimal policy
is deterministic and threshold-based. Then, in the CMDP prob-
lem, we fully characterize the optimal delay-power tradeoff.
We prove that the tradeoff curve is convex and piecewise
linear, whose vertices are obtained by the optimal policies in
the relaxed problem. Moreover, the neighboring vertices of the
tradeoff curve are obtained by policies which take different
actions in only one state. These discoveries enable us to show
that the solution to the overall CMDP problem is also of a
threshold form, and devise an algorithm to efficiently obtain
the optimal tradeoff curve.

The remainder of this paper is organized as follows. The
system model is described in Section II, where the delay-power
tradeoff problem is formulated as a Constrained Markov Deci-
sion Process. In Section III, based on the Lagrangian relaxation
of the CMDP problem, it is proven that the optimal policy
for the average combined cost is deterministic and threshold-
based. Then we conduct steady-state analysis in Section IV,
based on which we can prove that the optimal delay-power
tradeoff curve is piecewise linear, and the optimal policies
for the CMDP problem are also threshold-based. Moreover, in
this section, we propose an efficient algorithm to obtain the
optimal delay-power tradeoff curve, and an equivalent Linear
Programming problem is formulated to confirm the validity
and efficiency of the theoretical results and the algorithm.
Simulation results are given in Section V, and Section VI
concludes the paper.

Fig. 2. System Model.

II. SYSTEM MODEL

We consider the system model shown in Fig. 2. Time is
divided into timeslots. Assume that at the end of each timeslot,
data arrive as a Bernoulli Process with parameter α. Each data
arrival contains A packets. Define A = {0, 1}. Define a[n] ∈ A
where a[n] = 1 or 0 as whether or not there are data arriving in
timeslot n, hence Pr{a[n] = 1} = α and Pr{a[n] = 0} = 1−α.

Let s[n] denote the number of data packets transmitted
in timeslot n. We assume that at most S packets can be
transmitted in each timeslot because of the constraints of the
transmitter. We force S ≥ A. Define S = {0, 1, · · · , S}, thus
s[n] ∈ S.

Let p[n] denote the power consumption in timeslot n.
Transmitting s packet(s) incurs power consumption �s , where
0 ≤ s ≤ S. Therefore p[n] = �s[n]. Transmitting 0 packet
will cost no power, hence �0 = 0. Based on the analysis in
the Introduction, being able to capture the convex relationship
between power and bits transmitted is important. Therefore we
assume that �s is strictly increasing and convex in s.

The arrivals can be stored in a finite buffer up to a maximum
of Q packets. For a typical communication system, the buffer
size should be larger than the data size of an arrival, thus we set
Q ≥ A. Define Q = {0, 1, · · · , Q}. Let q[n] ∈ Q denote the
number of packets in the buffer at the beginning of timeslot n.
The amount of transmission s[n] will be decided according to
our scheduling policy, based on the historical information of
the buffer states and the data arrivals. The dynamics of the
buffer is given as

q[n + 1] = q[n] − s[n] + Aa[n]. (1)

To avoid overflow or underflow, the number of transmitted
packets in each timeslot n should satisfy 0 ≤ q[n] − s[n] ≤
Q − A.

For each timeslot n, respectively consider the queue length
q[n] and the transmission s[n] as the state and the action of
the system. According to (1), the transition probability

Pr{q[n + 1] = j |q[n] = q, s[n] = s}

=

⎧
⎪⎨

⎪⎩

α j = q − s + A,

1− α j = q − s,

0 else.

(2)

It shows that the probability distribution of the next state is
determined by the current state and the chosen action. The
queue length q[n] and the transmission power p[n] can be
treated as two immediate costs, which are determined by
the current state and the current action respectively. There-
fore, this system can be considered as a Markov Decision
Process (MDP). In the following, we will show that the queue
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Fig. 3. Markov Chain of q[n] (Q = 7, A = 2, S = 3).

length cost corresponds to the average delay, hence there is a
tradeoff between these two costs.

A decision rule δn : Q × A × Q × · · · × A × Q
︸ ︷︷ ︸

n state(s) and (n−1) action(s)

→ P(S)

can specify the action s[n] at timeslot n according to a
probability distribution pδn(·)(·) on the set of actions S, i.e.,

Pr{s[n] = s|q[1] = q1, s[1] = s1, · · · , q[n] = qn}
= pδn(q1,s1,··· ,qn)(s). (3)

Define a transmission policy γ = (δ1, δ2, · · · ), which is a
sequence of decision rules. Define Eγ

q0{·} as the notation of the
expectation when policy γ is applied and the initial state is q0.
Therefore the average power consumption under policy γ

Pγ = lim
N→∞

1

N
Eγ

q0

{
N∑

n=1

p[n]
}

. (4)

Let Dγ denote the average delay under policy γ . According
to Little’s Law, the average queueing delay is the quotient
of the average queue length divided by the average arrival
rate, i.e.,

Dγ = 1

αA
lim

N→∞
1

N
Eγ

q0

{
N∑

n=1

q[n]
}

. (5)

Therefore, policy γ will determine Zγ = (Pγ , Dγ ), which
is a point in the delay-power plane. Define Zγ Zγ ′ as the
line segment connecting Zγ and Zγ ′ . Let � denote the set
of all feasible policies which can guarantee no overflow or
underflow. Define R = {Zγ |γ ∈ �} as the set of all feasible
points in the delay-power plane. Intuitively, since the power
consumption for each data packet increases if we want to trans-
mit faster, there is a tradeoff between the average queueing
delay and the average power consumption. Define the optimal
delay-power tradeoff curve L = {(P, D) ∈ R |∀(P ′, D′) ∈ R ,
either P ′ ≥ P or D′ ≥ D}.

Since there are two costs in the MDP, by minimizing the
average delay given an average power constraint Pth, we obtain
a CMDP problem.

min
γ∈� Dγ (6a)

s.t. Pγ ≤ Pth. (6b)

By varying the value of Pth, the optimal delay-power tradeoff
curve L can be obtained. In the following, we show that
optimizing over a simpler class of policies will minimize the
objective in (6).

A. Reduction to Stationary Policies
Here, we show that in order to solve our problem, it is

enough to restrict our class of policies to a stationary class
of policies. A stationary policy for an MDP means that the
probability distribution to determine s[n] is only a function
of state q[n], i.e. δn : Q → P(S), and the decision rules
for all timeslots are the same. For a CMDP, it is proven
in [19, Th. 11.3] that stationary policies are complete, which
means stationary policies can achieve as good performance
as any other policies. Therefore we only need to consider
stationary policies in this problem.

Let fq,s denote the probability to transmit s packet(s) when
q[n] = q , i.e.

fq,s = Pr{s[n] = s|q[n] = q}. (7)

Therefore we have
∑S

s=0 fq,s = 1 for all q = 0, · · · , Q.
We guarantee the avoidance of overflow or underflow by
setting fq,s = 0 if q−s < 0 or q−s > Q− A. Let F denote a
(Q+1)×(S+1) matrix whose element in the (q+1)th row and
the (s+1)th column is fq,s . Therefore matrix F can represent
a decision rule, and moreover a stationary transmission policy.
As explained above, we only need to consider stationary
policies. Therefore, we will use F to represent a stationary
policy in the rest of the paper. Let PF and DF denote the
average power consumption and the average queueing delay
under policy F. Let F denote the set of all feasible stationary
policies which can guarantee no overflow or underflow. Let FD

denote the set of all stationary and deterministic policies which
can guarantee no overflow or underflow. Thus the optimization
problem (6) is equivalent to

min
F∈F

DF (8a)

s.t. PF ≤ Pth. (8b)

B. Reduction to Unichains
Given a stationary policy for a Markov Decision Process,

there is an inherent Markov Reward Process (MRP) with q[n]
as the state variable. Let λi, j denote the transition probability
from state i to state j . An example of the transition diagram
is shown in Fig. 3, where λi,i for i = 0, · · · , Q are omitted
to keep the diagram legible.

The Markov chain could have more than one closed commu-
nication class under certain transmission policies. For example,
in the example in Fig. 3, if we apply the scheduling policy
f0,0 = 1, f1,0 = 1, f2,2 = 1, f3,2 = 1, f4,2 = 1, f5,2 = 1,
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f6,2 = 1, f7,2 = 1, and fi, j = 0 for all others, it can be
seen that states 4, 5, 6 and 7 are transient, while states {0, 2}
and states {1, 3} are two closed communication classes. Under
this circumstance, the limiting probability distribution and the
average cost are dependent on the initial state and the sample
paths. However, the following theorem will show that we only
need to study the cases with only one closed communication
class.

Theorem 1: If the Markov chain generated by policy F
has more than one closed communication class, named as
C1, · · · , CL , where L > 1, then for all 1 ≤ l ≤ L, there
exists a policy Fl such that the Markov chain generated by
Fl has Cl as its only closed communication class. Moreover,
the limiting distribution and the average cost of the Markov
chain generated by F starting from state c ∈ Cl are the same
as the limiting distribution and the average cost of the Markov
chain generated by Fl .

Proof: See Appendix A.
According to Theorem 1, the constructed policy Fl and

the original policy F will have the same average power
and average delay for any closed communication class Cl

which policy F converges to. Therefore, without loss of
generality, we can focus on the Markov chains with only one
closed communication class, which are called unichains. For
a unichain, the initial state or the sample path won’t affect
the limiting distribution or the average cost, which means the
parameter q0 in Eγ

q0{·} won’t affect the value of the function.
As we will demonstrate in the following two sections, the

optimal policies for the Constrained MDP problem and its
Lagrangian relaxation problem are threshold-based. Here, we
define that, a stationary policy F is threshold-based, if and
only if there exist (S + 1) thresholds 0 ≤ qF(0) ≤ qF(1) ≤
· · · ≤ qF(S) ≤ Q, such that fq,s > 0 only when qF(s − 1) ≤
q ≤ qF(s) (we set qF(−1) = −1 for the inequality when
s = 0). It means that, under policy F, when the queue state
is larger than threshold qF(s − 1) and smaller than qF(s),
it transmits s packet(s). When the queue state is equal to
threshold qF(s), it transmits s or (s + 1) packet(s). Note
that under this definition, probabilistic policies can also be
threshold-based.

III. OPTIMAL DETERMINISTIC THRESHOLD-BASED

POLICY FOR THE LAGRANGIAN RELAXATION PROBLEM

In (8), we formulate the optimization problem as a Con-
strained MDP, which is difficult to solve in general. Therefore,
we first study the Lagrangian relaxation of (8) in this section,
and prove that the optimal policy for the relaxation problem
is deterministic and threshold-based. We will then use these
results to show that the solution to the original non-relaxed
CMDP problem is also of a threshold type.

Let μ ≥ 0 denote the Lagrange multiplier. Thus the
Lagrangian relaxation of (8) is

min
F∈F

lim
N→∞

1

N
EF

q0

{
1

αA

N∑

n=1

(q[n]+αAμp[n])
}

−μPth. (9)

In (9), the term −μPth is constant. Therefore, the Lagrangian
relaxation problem is minimizing a constructed combined

average cost (q[n] + αAμp[n]). This is an infinite-horizon
Markov Decision Process with an average cost criterion,
for which it is proven in [20, Th. 9.1.8] that, there exists
an optimal stationary deterministic policy. For a stationary
deterministic policy F ∈ FD , let sF(q) denote the packet(s) to
transmit when q[n] = q . In other words, we have fq,sF(q) = 1
for all q . Define η = αAμ. Therefore (9) is equivalent to

min
F∈FD

lim
N→∞

1

N
EF

q0

{
N∑

n=1

(
q[n] + η�sF(q[n])

)
}

. (10)

The optimal policy for (10) has the following property.
Theorem 2: An optimal policy F for (10) should satisfy

that sF(q+ 1)− sF(q) = 0 or 1 for all 0 ≤ q < Q. Therefore
F is a threshold-based policy.

Proof: See Appendix B.
The proof applies a nested induction method to the policy

iteration algorithm for the Markov Decision Process. Theo-
rem 2 indicates a very intuitive conclusion that more data
should be transmitted if the queue is longer. More specifically
speaking, for an optimal deterministic policy F, there exists
(S + 1) thresholds qF(0) ≤ qF(1) ≤ · · · ≤ qF(S), such
that

{
fq,s = 1 qF(s − 1) < q ≤ qF(s), s = 0, · · · , S

fq,s = 0 else
(11)

where qF(−1) = −1. The form of the optimal policy satisfies
our definition of threshold-based policy in Section II.

Moreover, we can have the following two corollaries.
Corollary 1: Under any optimal threshold-based policy F,

there will be no transmission only when q[n] = 0. In other
words, threshold qF(0) = 0.

Proof: This is an intuitive result, because every data
packet will be transmitted sooner or later, which costs at
least �1 power, thus not transmitting when there are back-
logs is just a waste of time. The following is its rigorous
proof.

If there exists an optimal threshold-based policy F ∈ FD

where sF(q1) = 0, q1 > 0. Since sF(q) has the threshold-
based property, we have sF(1) = 0. Construct a policy F′
where sF′(q) = sF(q + 1) for 0 ≤ q < Q and sF′(Q) = A.
It can be seen that F′ ∈ FD . State 0 is a transient state under
policy F, and state Q is a transient state under policy F′.
States 1, · · · , Q under policy F and states 0, · · · , Q−1 under
policy F′ have the exactly same state transition, except that
the states for F′ are 1 smaller than the states for F. Therefore
the average power consumption under two policies is the same
and the average queue length for F′ is 1 smaller, which means
the average delay for F′ is strictly smaller. Therefore F is not
an optimal policy, which conflicts with the assumption. Hence
the optimal threshold-based policy should have that there will
be no transmissions only when q[n] = 0.

Corollary 2: For an optimal threshold-based policy F,
there is no need to transmit more than A packets. In other
words, threshold qF(A) = qF(A + 1) = · · · = qF(S) = Q.

Proof: If there exists an optimal threshold-based policy
F ∈ FD where q1 is the smallest state such that sF(q1) > A.
Since sF(q) has the threshold-based property, for all q ≥ q1,
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we have s(q) > A. Also, for all q < q1, we have s(q) ≤ A.
Construct a policy F′ where sF′(q) = sF(q) for q < q1 and
sF′(q) = A for q ≥ q1. It can be seen that F′ ∈ FD . Since
q1, · · · , Q are transient states under both policies, and the
transmission for recurrent states of the two policies is exactly
the same, policy F′ has the same performance as policy F.
Therefore, for an optimal threshold-based policy, there is no
need to transmit more than A packets.

IV. OPTIMAL THRESHOLD-BASED POLICY

FOR THE CMDP

In Section III, we prove that the optimal policy to mini-
mize the combined cost is deterministic and threshold-based.
We will now prove that the solution to the overall CMDP
problem also takes on a threshold form. We first conduct
steady-state analysis for the Markov Decision Process, dis-
cover that the feasible average delay and power region is a
convex polygon and the optimal delay-power tradeoff curve
is piecewise linear, whose neighboring vertices are obtained
by deterministic policies which take different actions in only
one state. Based on this, the optimal threshold-based policy
obtained in Section III will be shown to correspond to the
vertices of the piecewise linear curve. Therefore, the optimal
policy for the CMDP problem, which is the convex com-
bination of two deterministic threshold-based policies, will
be proven to also take a threshold form. Then, we will
provide an efficient algorithm to obtain the optimal delay-
power tradeoff curve, and a Linear Programming will be
formulated to confirm our results.

Based on Theorem 1, without loss of generality, we can
focus on unichains, in which case the steady-state probability
distribution exists. Let πF(q) denote the steady-state prob-
ability for state q when applying policy F. Define π F =
[πF(0), · · · , πF(Q)]T . Let �F denote a (Q + 1) × (Q + 1)
matrix whose element in the (i+1)th column and the ( j+1)th
row is λi, j , which is determined by policy F. Let I denote the
identity matrix. Define 1 = [1, · · · , 1]T , and 0 = [0, · · · , 0]T .
We won’t specify the size of I , 1 or 0 if there is no ambiguity.

Define G F = �F − I . Define H F =
[

1T

G F(0 : (Q − 1), :)
]

and c =
[

1
0

]

.

From the definition of the steady-state distribution, we have
G Fπ F = 0 and 1T π F = 1. For a unichain, the rank of G F
is Q. Therefore, we can conclude that H F is invertible and

π F = H−1
F c. (12)

We can express the average power consumption PF and
the average delay DF using the steady-state probability
distribution. For state q , transmitting s packet(s) will cost
�s with probability fq,s . Define pF = [

∑S
s=0 �s f0,s , · · · ,∑S

s=0 �s fQ,s ]T , which is a function of F, thus the average
power consumption

PF =
Q∑

q=0

πF(q)

S∑

s=0

�s fq,s = pT
Fπ F . (13)

Similarly, define d = [0, 1, · · · , Q]T , thus the average delay

DF = 1

αA

Q∑

q=0

qπF(q) = 1

αA
dT π F . (14)

A. Partially Linear Property of Scheduling Policies
The mapping from F to Z F = (PF, DF) has a partially

linear property shown in the following lemma.
Lemma 1: F and F′ are two scheduling policies that are

different only when q[n] = q , i.e. the two matrices are
different only in the (q+1)th row. Define F′′ = (1−ε)F+ε F′
where 0 ≤ ε ≤ 1. Then
1) There exists 0 ≤ ε′ ≤ 1 so that PF′′ = (1− ε′)PF + ε′PF′
and DF′′ = (1−ε′)DF+ε′DF′ . Moreover, it should hold that
ε′ is a continuous nondecreasing function of ε.
2) When ε changes from 0 to 1, point Z F′′ moves on the line
segment Z F Z F′ from Z F to Z F′ .

Proof: See Appendix C.
Lemma 1 indicates that the convex combination of schedul-

ing policies which take different actions in only one state will
induce the convex combination of points in the delay-power
plane. Furthermore, we can have the following two results.

Theorem 3: The set of all feasible points in the delay-power
plane, R , is a convex polygon whose vertices are all obtained
by deterministic scheduling policies. Moreover, the policies
corresponding to neighboring vertices of R take different
actions in only one state.

Proof: See Appendix D.
Corollary 3: The optimal delay-power tradeoff curve L is

piecewise linear, decreasing, and convex. The vertices of
the curve are obtained by deterministic scheduling policies.
Moreover, the policies corresponding to neighboring vertices
of L take different actions in only one state.

Proof: See Appendix E.

B. Optimal Threshold-Based Policy for the CMDP
In the last section, we prove in Theorem 2 that the optimal

policy for the combined cost is deterministic and threshold-
based. Based on the steady-state analysis, the objective func-
tion in the unconstrained MDP problem (10)

lim
N→∞

1

N
EF

q0

{
N∑

n=1

(
q[n] + η�sF(q[n])

)
}

= αADF + ηPF = 〈(η, αA), Z F〉 (15)

can be seen as the inner product of vector (η, αA) and Z F .
Since R is a convex polygon, the corresponding Z F mini-
mizing the inner product will be obtained by vertices of L,
as demonstrated in Fig. 4. Since the conclusion in Theorem 2
holds for any η, the vertices of the optimal tradeoff curve
are all obtained by optimal policies for the relaxed problem,
which are deterministic and threshold-based. Moreover, from
Corollary 3, the neighboring vertices of L are obtained by poli-
cies which take different actions in only one state. Therefore,
we have the following theorem.

Theorem 4: Given an average power constraint, the
scheduling policy F to minimize the average delay takes
the following form that, there exists (S + 1) thresholds



2922 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 7, JULY 2017

Fig. 4. The minimum inner product of points on L and the weighted vector
can always be obtained by vertices of L.

qF(0) ≤ qF(1) ≤ · · · ≤ qF(S), one of which we label as
qF(s∗), such that
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fq,s = 1 qF(s−1)<q≤qF(s), s �=s∗

fq,s∗ = 1 qF(s∗ − 1) < q < qF(s∗)
fqF(s∗),s∗+ fqF(s∗), s∗+1 = 1

fq,s = 0 else

(16)

where qF(−1) = −1. Therefore F is a threshold-based
policy.

Proof: According to Corollary 3, the policies corre-
sponding to neighboring vertices of L are deterministic and
take different actions in only one state. In other words,
according to (11), the thresholds for F and F′ are all the
same except one of their thresholds are different by 1. Define
the thresholds for F as qF(0), qF(1), · · · , qF(s∗), · · · , qF(S),
and the thresholds for F′ as qF(0), qF(1), · · · , qF(s∗) −
1, · · · , qF(S), which means the two policies are different only
in state qF(s∗). Since the policy to obtain a point on Z F Z F′ is
the convex combination of F and F′, it should have the form
shown in (16). This form satisfies our definition of threshold-
based policies in Section II.

According to Theorem 4, policies corresponding to the
points between vertices of the optimal tradeoff curve, as the
mixture of two deterministic threshold-based policies different
only in one state, also satisfies our definition of threshold-
based policy in Section II. When qF(s − 1) < q[n] < qF(s),
we transmit s packet(s). Any optimal scheduling policy F has
at most two decimal elements fqF(s∗),s∗ and fqF(s∗),s∗+1, while
the other elements are either 0 or 1.

C. Algorithm to Obtain the Optimal Tradeoff Curve

Here, we propose Algorithm 1 to efficiently obtain the
optimal delay-power tradeoff curve. This algorithm is based
on the results that the optimal delay-power tradeoff curve is
piecewise linear, whose vertices are obtained by deterministic
threshold-based policies, and policies corresponding to two

Algorithm 1 Constructing the Optimal Delay-Power Tradeoff
1: Construct F whose thresholds qF(s) = s for s < A and qF(s) =

Q for s ≥ A
2: Calculate DF and PF
3: Fc ← [F], Dc ← DF , Pc ← PF
4: while Fc �= ∅ do
5: Fp ← Fc , Dp ← Dc , Pp ← Pc
6: Fc ← ∅, slope←+∞
7: while Fp �= ∅ do
8: F=Fp .pop(0)
9: for all 0 < s∗ < A do

10:
Construct F′ where qF′ (s

∗) = qF(s∗)+ 1
and qF′ (s) = qF(s) for s �= s∗

11: NewPolicyProbing()
12: // Probing all possible candidates
13: end for
14: end while
15:

Draw the line segment connecting (Pp, Dp) and
(Pc, Dc)

16: end while

1: procedure NEWPOLICYPROBING( )
2: if F′ is feasible and threshold-based then
3: Calculate DF′ and PF′
4: if DF′ = Dp and PF′ = Pp then
5: Fp .append(F′)
6: // Z F′ coincides with Z p
7: else if DF′ ≥ Dp and PF′ < Pp then

8: if DF′−Dp
Pp−PF′

< slope then

9: Fc ← [F′], slope← DF′−Dp
Pp−PF′

10: Dc ← DF′ , Pc ← PF′
11: // Z F′ has the best performance

12: else if DF′−Dp
Pp−PF′

= slope then

13: if PF′ = Pc then
14: Fc .append(F ′)
15:

// Z F′ has the same performance
as the current best candidate(s)

16: else if PF′ > Pc then

17: Fc ← [F′], slope← DF′−Dp
Pp−PF′

18: Dc ← DF′ , Pc ← PF′

19:
// Z F′ has the same slope

as the current best candidate(s)
but is closer to Z p

20: end if
21: end if
22: end if
23: end if
24: end procedure

adjacent vertices take different actions in only one state. With
the optimal tradeoff curve obtained, the minimum delay given
a specific power constraint can also be obtained.

The basic idea of the algorithm is as follows. We start
from the bottom-right vertex of the optimal tradeoff curve,
which corresponds to the highest power consumption and the
smallest average delay. Therefore the corresponding policy is
to transmit as much as possible in any state. According to
Corollary 2, there is no need to transmit more than A packets.
Thus the policy is sF(q) = q when q < A and sF(q) = A
when q ≥ A. The thresholds for this policy are qF(s) = s
when s < A and qF(s) = Q when s ≥ A. Then we enumerate
all the candidates for the next vertex of the curve, which
are different in only one threshold from the current policy,
based on the conclusion that policies corresponding to adjacent



CHEN et al.: DELAY-OPTIMAL BUFFER-AWARE SCHEDULING WITH ADAPTIVE TRANSMISSION 2923

vertices take different actions in only one state. The next vertex
will be determined by the policy candidate whose connecting
line with the current vertex has the minimum absolute slope
and the minimum length. Note that a vertex can be obtained
by more than one policy, therefore we use lists Fp and Fc

to restore all policies corresponding to the previous and the
current vertices. When conducting the complexity analysis, we
assume the situation where a vertex is obtained by multiple
policies rarely happens. In total, there are (A − 1) alterable
thresholds, and the maximum varying range of each threshold
is Q. Every time we get to the next vertex, one of the
thresholds of the policy will be increased by 1. Therefore,
the maximum iteration number for new vertices is O(AQ).
Within each iteration, there are A candidates we need to
test to determine next vertex, hence the computation times
is O(A2 Q). For each candidate, the most time-consuming
operation, the matrix inversion, costs O(Q3). Therefore the
complexity of the algorithm is O(A2 Q4). In the next section,
we will see that this algorithm is much more efficient than
using the general LP method to solve the problem.

D. Linear Programming Formulation
In the following, we demonstrate that the CMDP problem

can also be formulated as a Linear Programming, which can be
solved for a certain power constraint. We compare Algorithm 1
and Linear Programming, and demonstrate that our algorithm
is superior to the Linear Programming based approach. In the
next section, we will use Linear Programming to confirm the
properties of the optimal tradeoff curve and the algorithm we
have demonstrated.

Based on the steady-state analysis (12) (13) and (14), the
optimization problem (8) can be transformed into

min
F,π

1

αA
dT π F (17a)

s.t. pT
Fπ F ≤ Pth (17b)

H Fπ F = c (17c)
π F � 0 (17d)
fq,s = 0 ∀q − s < 0 or q − s > Q − A (17e)

where π F � 0 means π is componentwise nonnegative.
Define xq,s = π(q) fq,s . By substituting the variables

in (17), the optimization problem can be transformed into

min
1

αA

Q∑

q=0

q
S∑

s=0

xq,s (18a)

s.t.
Q∑

q=0

S∑

s=0

�s xq,s ≤ Pth (18b)

q−1∑

l=max{0,q−A}

l+A−q∑

s=0

αxl,s

=
min{q+S−1,Q}∑

r=q

S∑

s=r−q+A+1

xr,s

+
min{q+S−1,Q}∑

r=q

r−q+A∑

s=r−q+1

(1− α)xr,s q = 1, · · · , Q

(18c)

Q∑

q=0

S∑

s=0

xq,s = 1 (18d)

xq,s = 0 ∀q − s < 0 or q − s > Q − A (18e)
xq,s ≥ 0 ∀0 ≤ q − s ≤ Q − A. (18f)

It can be observed that this is a Linear Programming
problem. Given a feasible solution to (17), F and π , it can
be checked that xq,s = π(q) fq,s for all q and s is a feasible
solution to (18) with the same objective value. On the other
hand, given a feasible solution to (18), xq,s for all q and s, it
can be proven that π(q) =∑S

s=0 xq,s and

fq,s =

⎧
⎪⎪⎨

⎪⎪⎩

xq,s

π(q)
π(q) > 0

1 π(q) = 0, s = min{q, S}
0 π(q) = 0, s �= min{q, S}

is a feasible solution to (17) with the same objective value.
This means Linear Programming (18) is equivalent with (17),
thus also equivalent with (8).

In (18), there are (Q + 1)(S + 1) variables in total. From
the conclusion in Corollary 2, the number can be reduced to
(A + 1)(Q + 1). If we apply the ellipsoid algorithm to solve
the Linear Programming (18), the computational complexity
is O(A4 Q4). It means that the complexity of applying Linear
Programming to obtain only one point on the optimal tradeoff
curve is larger than that of obtaining the entire curve with
Algorithm 1. Moreover, when the average energy constraint
is dynamically changing, Linear Programming needs to be
solved for each constraint, while the constructed delay-power
tradeoff from Algorithm 1 can adapt to the changed constraint
instantly. This demonstrates the inherent advantage in using
the revealed properties of the optimal tradeoff curve and the
optimal policies.

V. NUMERICAL RESULTS

In this section, we validate our theoretical results by con-
ducting numerical computation and simulations. The convex
feasible delay-power region and the generated polygons will
be demonstrated in a small-scale example. The delay-power
tradeoff curves will be obtained in a practical scenario. It will
be confirmed that Algorithm 1 can obtain the optimal delay-
power tradeoff curve for both cases.

In Fig. 5, we plot all the delay-power points generated
by deterministic policies, and connect the points whose cor-
responding policies take different actions in only one state.
By conducting this operation, any generated polygon, a con-
cept introduced in Appendix D, is contained in the figure.
For any two deterministic policies, there is a convex polygon
generated by them. Any point inside a generated polygon
can be obtained by a policy. As we can see, the feasible
delay-power region is made up of all the generated polygons.
According to our proof in Appendix D, the feasible region
is covered by basic polygons. The parameters for this figure
are Q = 6, A = 3, M = 3, α = 0.4, �0 = 0, �1 = 1,
�2 = 4, �3 = 9. As proven in Theorem 3, the feasible delay-
power region is the convex hull of all the points obtained by
deterministic policies. The optimal delay-power tradeoff curve
is obtained by Algorithm 1. Therefore the vertices of the curve
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Fig. 5. Points Corresponding to Deterministic Policies
and Generated Polygons in the Delay-Power Plane.

Fig. 6. Optimal Delay-Power Tradeoff Curves.

are all corresponding to threshold-based deterministic policies,
and neighboring vertices are obtained by policies different in
only one state. Policies to obtain the points between vertices of
the optimal tradeoff curve are the mixture of two deterministic
policies.

The optimal delay-power tradeoff curves are demonstrated
in Fig. 6, which are validated by Linear Programming and
simulations. We consider a more practical scenario with
adaptive M-PSK transmissions. The optional modulations are
BPSK, QPSK, and 8-PSK. Assume the bandwidth = 1 MHz,
the length of a timeslot = 10 ms, and the target bit error
rate ber=10−5. Set a data packet contains 10,000 bits. Then
by adaptively applying BPSK, QPSK, or 8-PSK, we can
respectively transmit 1, 2, or 3 packets in a timeslot, which
means S=3. Assume the one-sided noise power spectral den-
sity N0=−150 dBm/Hz. Then the transmission power for
different transmission rates can be calculated as �0=0 J,
�1=9.0 ∗ 10−14 J, �2=18.2 ∗ 10−14 J, and �3=59.5 ∗ 10−14 J.
Assume in a timeslot, data arrive as a Bernoulli process. Each
data arrival contains A=3 packets. Set the buffer size Q=100.
The optimal delay-power tradeoff curves are shown in Fig. 6,
with α = 0.3, 0.4, and 0.5 respectively. It is demonstrated that
the optimal delay-power tradeoff curves obtained by Linear
Programming completely overlap the optimal tradeoff curves
generated by Algorithm 1. The results are further validated by

simulations, which are shown in “*” markers. As proven in
Corollary 3, the optimal tradeoff curves are piecewise linear,
decreasing, and convex. The vertices of the curves are marked
by squares. The corresponding optimal policies can be checked
as threshold-based. With α increasing, the curve gets higher
because of the heavier workload. The minimum average delay
is 1 for all curves, because when we transmit as much as we
can, all data packets will stay in the queue for exactly one
timeslot. The curve gets very steep when the power constraint
decreases. This is because, when the power constraint gets
tighter, we will mainly transmit with BPSK and QPSK. Since
�1 ≈ �2

2 , different policies will have similar average power
consumption.

VI. CONCLUSION

In this paper, we analyzed the optimal tradeoff between
the average delay and the average power consumption in a
communication system. The transmission for each timeslot
is scheduled according to the buffer state, considering an
average power constraint. This problem is formulated as a
CMDP. We first study the Lagrangian relaxation of the CMDP
problem, and prove that it has deterministic threshold-based
optimal policies. Then we show that the feasible delay-power
region is a convex polygon, and the optimal delay-power
tradeoff curve is piecewise linear, whose vertices are obtained
by the optimal solution to the relaxation problem, and the
neighboring vertices of which are obtained by policies taking
different actions in only one state. Based on these results,
the optimal policies for the original problem are proven to be
threshold-based. We also propose an algorithm to efficiently
obtain the optimal delay-power tradeoff. The theoretical results
and the proposed algorithm are validated by Linear Program-
ming and simulations. In the future, we will study a more
generalized model combining adaptive transmission and fading
channels.

APPENDIX A
PROOF OF THEOREM 1

Define the set of transient states which have access to Cl

as C t
l . Define the set of transient states which don’t have access

to Cl as C t
nl . Therefore {C1, · · · , CL , C t

l , C t
nl } is a partition of

all the states. It is straightforward that there should be at least
one state c ∈ ⋃+∞

i=1,i �=l Ci ∪ C t
nl which is adjacent to a state

c′ ∈ Cl∪C t
l , which means |c−c′| = 1. If c−c′ = 1, we transmit

1 packet in state c; if c′−c = 1, we transmit (A−1) packet(s)
in state c. Therefore we can always modify the transmission
policy for state c so that state c can access Cl ∪ C t

l . Then c
will be a transient state which has access to Cl , and so are the
states which communicate with c.

Renew the partition according to the modification of the
transmission policy. According to the above operation, the set
Cl won’t change, but C t

l will be strictly increasing. Therefore,
by repeating the same operation finite times, all the states will
be partitioned in Cl and C t

l . Therefore Cl is its only closed
communication class and the corresponding transmission pol-
icy is the Fl we request.

Since F and Fl still have the same policy for the states in Cl ,
the limiting distribution and the average cost of the Markov
chain generated by F starting from state c ∈ Cl are the same
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Algorithm 2 Policy Iteration Algorithm for Markov Decision
Processes
1: m ← 0
2: for all q do
3: h(0)(q)← arbitrary value // Initialization
4: end for
5: repeat
6: for all q do
7: // Policy Improvement
8: s(m+1)(q)← arg mins{h(m+1)(q, s)}
9: end for

10: for all q do
11: // Policy Evaluation
12: h(m+1)(q)← h(m+1)(q, s(m+1)(q))
13: end for
14: m ← m + 1
15: until s(m)(q) = s(m−1)(q) holds for all q
16: s(q)← s(m)(q) for all q

as the limiting distribution and the average cost of the Markov
chain generated by Fl .

APPENDIX B
PROOF OF THEOREM 2

For the simplicity of notations, in the proof we use s(q)
instead of sF(q). We call that s(q) satisfies the threshold-based
property, if sF(q + 1) − sF(q) = 0 or 1 for all 0 ≤ q < Q.
For a deterministic policy s(q) which satisfies the threshold-
based property, it can be seen that this policy also satisfies our
definition of a threshold-based policy. Define

h(m+1)(q, s)

= q + η�s + α[h(m)(q − s + A)− h(m)(A)]
+ (1− α)[h(m)(q − s)− h(m)(0)]. (19)

We will prove the theorem by applying a nested induction
method to policy iteration algorithm for the Markov Decision
Process. In Markov Decision Processes with an average cost,
policy iteration algorithm can be applied to obtain the optimal
scheduling policy, which is shown in Algorithm 2. In the
algorithm, the function h(m)(q) converges to h(q), which is
called the potential function or bias function for the Markov
Decision Process. The bias function can be interpreted as
the expected total difference between the cost starting from
a specific state and the stationary cost. The policy iteration
algorithm can converge to the optimal solution in finite steps,
which is proven in [20, Th. 8.6.6] and [21, Proposition 3.4].

The sketch of the proof is as follows. Because of the
mechanism of the policy iteration algorithm, we can assign
h(0)(q) as strictly convex in q . In Part I, we will demonstrate
by induction that, for any m, if h(m)(q) is strictly convex in q ,
then s(m+1)(q) has the threshold-based property. In Part II,
we will demonstrate that if s(m+1)(q) has the threshold-based
property, then h(m+1)(q) is strictly convex in q . Therefore, by
mathematical induction, we can prove the theorem.

Part I (Convexity of h(m)(q) in q → Threshold-Based
Property of s(m+1)(q)): Assume h(m)(q) is strictly convex in q .

In this part, we are going to prove s(m+1)(q) has the threshold-
based property.

1) Because of the requirements of a feasible policy, we
have s(m+1)(0) = 0, and s(m+1)(1) = 0 or 1. Therefore
s(m+1)(q + 1)− s(m+1)(q) = 0 or 1 when q = 0.

2) We define s1 = s(m+1)(q1) for a specific q1. From
the Policy Improvement step in the policy iteration
algorithm, we have the following inequalities:

h(m+1)(q1, s1) ≤ h(m+1)(q1, s1−δ), ∀0 ≤ δ ≤ s1,

(20)

h(m+1)(q1, s1) ≤ h(m+1)(q1, s1+δ), ∀0 ≤ δ ≤ S − s1.

(21)

Since h(m)(q) is strictly convex in q ,

h(m)(q1 + 1− s1 + A)− h(m)(q1 − s1 + A)

< h(m)(q1 + 1− (s1 − δ)+ A)

− h(m)(q1 − (s1 − δ)+ A), (22)

h(m)(q1 + 1− s1)− h(m)(q1 − s1)

< h(m)(q1 + 1− (s1 − δ))

− h(m)(q1 − (s1 − δ)). (23)

Since �s is strictly convex,

�s1+1 −�s1 < �s1+1+δ −�s1+δ. (24)

By computing (20)+α×(22)+(1− α)×(23), we have

h(m+1)(q1 + 1, s1)

< h(m+1)(q1 + 1, s1 − δ), ∀0 ≤ δ ≤ s1. (25)

By computing (21) and (24), we have

h(m+1)(q1 + 1, s1 + 1)

< h(m+1)(q1 + 1, s1 + 1+ δ), ∀0 ≤ δ ≤ S − s1 − 1.

(26)

From (25) and (26), we can see that s(m+1)(q1+ 1) can
only be s1 or s1+1. In other words, we have s(m+1)(q1+
1)− s(m+1)(q1) = 0 or 1.

From above, by mathematical induction, we can have that
s(m+1)(q) has the threshold-based property.

Part II (Threshold-Based Property of s(m+1)(q)→ Convex-
ity of h(m+1)(q) in q): Assume s(m+1)(q) has the threshold-
based property. We still use the same notation as in the
previous part that s1 = s(m+1)(q1) for a specific q1, and
s(m+1)(q1 + 1) = s1 or s1 + 1.

1) If s(m+1)(q1 + 1) = s1,

h(m+1)(q1 + 1)− h(m+1)(q1)

≤ h(m+1)(q1 + 1, s1 + 1)− h(m+1)(q1, s1) (27)

= (q1 + 1)+ η�s1+1

+ α[h(m)((q1 + 1)− (s1 + 1)+ A)− h(m)(A)]
+ (1− α)[h(m)((q1 + 1)− (s1 + 1))− h(m)(0)]
− [q1 + η�s1 + α[h(m)(q1 − s1 + A)− h(m)(A)]
+ (1− α)[h(m)(q1 − s1)− h(m)(0)]] (28)
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= 1+ η(�s1+1 −�s1). (29)

On the other hand,

h(m+1)(q1 + 1)− h(m+1)(q1)

> h(m+1)(q1 + 1, s1)− h(m+1)(q1, s1 − 1) (30)

= (q1 + 1)+ η�s1

+ α[h(m)((q1 + 1)− s1 + A)− h(m)(A)]
+ (1− α)[h(m)((q1 + 1)− s1)− h(m)(0)]
− [q1 + η�s1−1]
− [α[h(m)(q1 − (s1 − 1)+ A)− h(m)(A)]
+ (1− α)[h(m)(q1 − (s1 − 1))− h(m)(0)]] (31)

= 1+ η(�s1 −�s1−1). (32)

2) If s(m+1)(q1 + 1) = s1 + 1,

h(m+1)(q1 + 1)− h(m+1)(q1)

= (q1 + 1)+ η�s1+1

+ α[h(m)((q1 + 1)− (s1 + 1)+ A)− h(m)(A)]
+ (1− α)[h(m)((q1 + 1)− (s1 + 1))− h(m)(0)]
− [q1 + η�s1 + α[h(m)(q1 − s1 + A)− h(m)(A)]
+ (1− α)[h(m)(q1 − s1)− h(m)(0)]] (33)

= 1+ η(�s1+1 −�s1). (34)

To conclude, 1 + η(�s1 − �s1−1) < h(m+1)(q1 + 1) −
h(m+1)(q1) ≤ 1 + η(�s1+1 − �s1) holds for any specific q1.
Therefore h(m+1)(q + 1) − h(m+1)(q) is strictly increasing,
which means h(m+1)(q) is strictly convex in q .

Based on the assumption for initial h(0)(q) and the deriva-
tions in Part I and II, by mathematical induction, we can prove
that s(m)(q) has the threshold-based property for all m ≥ 1.
Since s(m)(q) will converge to the optimal policy s(q) in finite
steps, the optimal policy s(q) has the threshold-based property.

APPENDIX C
PROOF OF LEMMA 1

We will prove the two conclusions one by one.
1) From the definition of H F and pF , we can see that if

F′′ = (1 − ε)F + ε F′, then H F′′ = (1− ε)H F + ε H F′ and
pF′′ = (1 − ε) pF + ε pF′ . Define �H = H F′ − H F and
� p = pF′ − pF . Since F and F′ are different only in the
(q+1)th row, it can be derived that �H has nonzero element
only in the (q+1)th column, and the (q+1)th element of � p
is its only nonzero element. Therefore �H can be expressed
as

[
0, · · · , δq , · · · , 0

]
, where δq is its (q + 1)th column. � p

can be defined as
[
0, · · · , ζq , · · · , 0

]T , where ζq is its (q+1)th
element. Also, we set

H−1
F =

⎡

⎢
⎢
⎢
⎣

hT
0

hT
1
...

hT
Q

⎤

⎥
⎥
⎥
⎦

.

Hence

(H−1
F �H)H−1

F =

⎡

⎢
⎢
⎢
⎣

(hT
0 δq)hT

q

(hT
1 δq)hT

q
...

(hT
Qδq)hT

q

⎤

⎥
⎥
⎥
⎦

.

By mathematical induction, we can have that for i ≥ 1,

(H−1
F �H)i H−1

F

=

⎡

⎢
⎢
⎢
⎣

(hT
0 δq )(hT

q δq)i−1hT
q

(hT
1 δq )(hT

q δq)i−1hT
q

...

(hT
Qδq)(hT

q δq)i−1hT
q

⎤

⎥
⎥
⎥
⎦

(35)

= (hT
q δq)i−1(H−1

F �H)H−1
F , (36)

and � pT H−1
F (H−1

F �H)i−1 = ζq(hT
q δq)i−1 hT

q .
Therefore the expansion (H F + ε�H)−1 = H−1

F +∑+∞
i=1 (−ε)i (hT

q δq)i−1(H−1
F �H)H−1

F .
From (12), (13) and (14), we have PF = pT

F H−1
F c and

DF = 1
αA dT H−1

F c. Therefore

PF′′ − PF

PF′ − PF

= ( pF + ε� p)T (H F + ε�H)−1c− pT
F H−1

F c

( pF +� p)T (H F +�H)−1c− pT
F H−1

F c
(37)

=
pT

F

[
(H F + ε�H)−1 − H−1

F

]
c

+ε� pT (H F + ε�H)−1c

pT
F

[
(H F +�H)−1 − H−1

F

]
c

+� pT (H F +�H)−1c

(38)

=

pT
F

[∑+∞
i=1 (−ε)i (hT

q δq)i−1(H−1
F �H)H−1

F

]
c

−� pT
[∑+∞

i=1 (−ε)i (H−1
F �H)i−1 H−1

F

]
c

pT
F

[∑+∞
i=1 (−1)i(hT

q δq)i−1(H−1
F �H)H−1

F

]
c

−� pT
[∑+∞

i=1 (−1)i(H−1
F �H)i−1 H−1

F

]
c

(39)

=

∑+∞
i=1 (−ε)i (hT

q δq)i−1 pT
F(H−1

F �H)H−1
F c

−∑+∞
i=1 (−ε)iζq(hT

q δq)i−1hT
q c

∑+∞
i=1 (−1)i (hT

q δq)i−1 pT
F(H−1

F �H)H−1
F c

−∑+∞
i=1 (−1)iζq(hT

q δq)i−1hT
q c

(40)

=
∑+∞

i=1 (−ε)i(hT
q δq )i−1

∑+∞
i=1 (−1)i (hT

q δq)i−1
(41)

= ε + εhT
q δq

1+ εhT
q δq

(42)

and
DF′′ − DF

DF′ − DF

= dT (H F + ε�H)−1c− dT H−1
F c

dT (H F +�H)−1c− dT H−1
F c

(43)

= dT (
∑+∞

i=1 (−ε)i (hT
q δq)i−1(H−1

F �H)H−1
F )c

dT (
∑+∞

i=1 (−1)i (hT
q δq)i−1(H−1

F �H)H−1
F )c

(44)
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=
∑+∞

i=1 (−ε)i (hT
q δq)i−1

∑+∞
i=1 (−1)i (hT

q δq)i−1
(45)

= ε + εhT
q δq

1+ εhT
q δq

. (46)

Hence PF′′−PF
PF′−PF

= DF′′−DF
DF′−DF

= ε+εhT
q δq

1+εhT
q δq
= ε′, so that

PF′′ = (1 − ε′)PF + ε′PF′ and DF′′ = (1 − ε′)DF + ε′DF′ .

Moreover, it can be observed that ε′ = ε+εhT
q δq

1+εhT
q δq

is a continuous

nondecreasing function.
2) From the first part, we know PF′′−PF

PF′−PF
= DF′′−DF

DF′−DF
= ε′

and ε′ is a continuous nondecreasing function of ε. When
ε = 0, we have ε′ = 0. When ε = 1, we have ε′ = 1.
Therefore when ε changes from 0 to 1, the point (PF′′ , DF′′)
moves on the line segment from (PF, DF) to (PF′ , DF′). The
slope of the line is

DF′ − DF

PF′ − PF

=
1

αA dT (H F +�H)−1c− 1
αA dT H−1

F c

( pF +� p)T (H F +�H)−1c− pT
F H−1

F c
(47)

=
1

αA dT (
∑+∞

i=1 (−1)i(hT
q δq)i−1(H−1

F �H)H−1
F )c

∑+∞
i=1 (−1)i (hT

q δq)i−1 pT
F(H−1

F �H)H−1
F c

−∑+∞
i=1 (−1)iζq(hT

q δq)i−1hT
q c

(48)

=
1

αA dT H−1
F �H H−1

F c

pT
F H−1

F �H H−1
F c− ζq hT

q c
(49)

= dT H−1
F δq

αA( pT
F H−1

F δq − ζq)
. (50)

APPENDIX D
PROOF OF THEOREM 3

Define C = conv {Z F|F ∈ FD} as the convex hull of
points in the delay-power plane corresponding to deterministic
scheduling policies. By proving R = C , we can have that
R is a convex polygon whose vertices are all obtained by
deterministic scheduling policies.

The proof contains three parts. In the first part, we will prove
R ⊆ C by the construction method. In the second part, we
define the concepts of basic polygons and compound polygons,
and prove that they are convex, based on which R ⊇ C can
be proven. By combining the results in these two parts, we
will have R = C . Finally, in the third part, we will prove
the policies corresponding to neighboring vertices of R are
different in only one state.

Part I (Prove R ⊆ C ): For any specific probabilistic policy
F where 0 < fq∗,s∗ < 1, we construct

F′ =

⎧
⎪⎨

⎪⎩

f ′q,s = 1 q = q∗, s = s∗

f ′q,s = 0 q = q∗, s �= s∗

f ′q,s = fq,s else

(51)

and

F′′ =

⎧
⎪⎪⎨

⎪⎪⎩

f ′′q,s = 0 q = q∗, s = s∗

f ′′q,s =
fq,s

1− fq∗,s∗
q = q∗, s �= s∗

f ′′q,s = fq,s else.

(52)

Since 0 ≤ fq,s
1− fq∗,s∗ ≤ 1, and whenever fq,s = 0, we have

f ′q,s = f ′′q,s = 0, the constructed policies F′ and F′′ are
feasible. It can be seen that F = fq∗,s∗F′ + (1 − fq∗,s∗)F′′.
Since F is a convex combination of F′ and F′′, also F′ and
F′′ are only different in the (q∗+1)th row, from Lemma 1, we
know that Z F is a convex combination of Z F′ and Z F′′ . Note
that f ′q∗,s∗ and f ′′q∗,s∗ are integers. Also, in F′ and F′′, no new
decimal elements will be introduced. Hence we can conclude
that, in finite steps, the point Z F can be expressed as a convex
combination of points in the delay-power plane corresponding
to deterministic scheduling policies, which means Z F ∈ C .
From the arbitrariness of F, we can see R ⊆ C is proven.

Part II (Prove R ⊇ C ): In the second part, we will first
define the concepts of basic polygons and compound polygons
in Part II.0. Then basic polygons and compound polygons will
be proven convex in Part II.1 and Part II.2 respectively. Based
on these results, we will prove R ⊇ C in Part II.3.

Part II.0 (Introduce the Concepts of Basic Polygons and
Compound Polygons): For two deterministic policies F and
F′ which are different in K states, namely q1, · · · , qK , define

Fb1,b2,··· ,bK (q, :)

=
{

(1− bk)F(q, :)+ bk F′(q, :) q = qk,

F(q, :) q �= q1, · · · , qK ,

(53)

where 0 ≤ bk ≤ 1 for all k. Thus F0,0,··· ,0 = F, and
F1,1,··· ,1 = F′. With more bk equal to 0, the policy is
more like F. With more bk equal to 1, the policy is more
like F’. For policies Fb1,··· ,bk,··· ,bK and Fb1,··· ,b′k,··· ,bK

where
bk �= b′k , since they are different in only one state, according to
Lemma 1, the delay-power point corresponding to their convex
combination Zε Fb1,··· ,bk ,··· ,bK +(1−ε)Fb1,··· ,b′k ,··· ,bK

is the convex
combination of Z Fb1,··· ,bk ,··· ,bK

and Z Fb1,··· ,b′k ,··· ,bK
. However, for

policies different in more than one state, the delay-power point
corresponding to their convex combination is not necessarily
the convex combination of their own delay-power points.
Therefore, we introduce the concept of generated polygon to
demonstrate the delay-power region of convex combinations of
two policies. We plot Z Fb1,··· ,bK

, where bk = 0 or 1 for all 1 ≤
k ≤ K , and connect the points whose corresponding policies
are different in only one state. Therefore any point on any line
segment can be obtained by a certain policy. We define the
figure as a polygon generated by F and F′. The red polygon
in Fig. 7a and the polygon in Fig. 8a are demonstrations where
F and F′ are different in 2 and 3 states respectfully. If K = 2,
we call the polygon a basic polygon. If K > 2, we call it a
compound polygon. As demonstrated in Fig. 8a, a compound
polygon contains multiple basic polygons.

Part II.1 (Prove a Basic Polygon Is Convex and Any Point
Inside a Basic Polygon can be Obtained by a Policy): For
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Fig. 7. Demonstration for Basic Polygons.

Fig. 8. Demonstration for Compound Polygons.

better visuality, in Fig. 7, we simplify the notation Z Fb1,b2
as b1, b2. According to different relative positions of Z F0,0 ,
Z F0,1 , Z F1,0 , and Z F1,1 , there are in total 3 possible shapes
of basic polygons, as shown in Fig. 7a-7c respectfully. We
name them as the normal shape, the boomerang shape, and
the butterfly shape. The degenerate polygons such as triangles,
line segments and points are considered included in the above
three cases. Besides Fb1,b2 with integral b1, b2 and the line
segments connecting them, we also plot the points correspond-
ing to policy Fb1,b2 where one of b1, b2 is integer and the
other one is decimal. We connect the points corresponding

to policies with the same b1 or b2 in dashed lines. As
demonstrated in Fig. 7, we draw line segments Z Fb1,0 Z Fb1,1

where b1 = 0.1, 0.2, · · · , 0.9 and Z F0,b2
Z F1,b2

where b2 =
0.1, 0.2, · · · , 0.9. For any specific b1 and b2, the point Z Fb1,b2

should be on both Z Fb1,0 Z Fb1,1 and Z F0,b2
Z F1,b2

. Because
of the existence of Z Fb1,b2

, line segments Z Fb1,0 Z Fb1,1 and
Z F0,b2

Z F1,b2
should always have an intersection point for

any specific b1 and b2. However, if there exist line segments
outside the polygon, there exist b1 and b2 whose line segments
don’t intersect. Therefore, in the boomerang shape, there will
always exist b1 and b2 whose line segments don’t intersect.
In the butterfly shape, there will exist b1 and b2 whose line
segments don’t intersect except the case that all the line
segments are inside the basic polygon, as shown in Fig. 7d,
which is named as the slender butterfly shape. In the slender
butterfly shape, there exists a specific b∗1 such that Z Fb∗1 ,0

Z Fb∗1 ,1

degenerates into a point, or there exists a specific b∗2 such
that Z F0,b∗2

Z F1,b∗2
degenerates into a point. Without loss of

generality, we assume it is the b∗1 case. It means that under
policy Fb∗1,b2 , state q2, the state corresponding to b2, is a
transient state. For b1 ∈ (b∗1 − ε, b∗1 + ε) when ε is small
enough, the Markov chain applying policy Fb1,b2 also has q2
as a transient state, therefore Z Fb1,0 Z Fb1,1 also degenerates
into a point. Thus Z F0,0 Z F1,0 and Z F0,1 Z F1,1 overlap, which
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means the slender butterfly shape always degenerates to a line
segment, which can also be considered as a normal shape.
Since the normal shape is the only possible shape of a basic
polygon, the basic polygon is convex. Since the transition from
the point Z F0,0 to Z F1,1 is termwise monotone and continuous,
every point inside the basic polygon can be obtained by a
policy.

Part II.2 (Prove a Compound Polygon Is Convex): For
any two deterministic policies F and F′, if their generated
compound polygon is not convex, then there exist two vertices
whose connecting line is outside the compound polygon,
as demonstrated by Z1 Z2 in Fig. 8b. Thus, there must exist two
vertices who are connecting to the same point such that their
connecting line is outside the compound polygon, as demon-
strated by Z1 Z3. The policy corresponding to these two
vertices must be different in only two states, therefore there
must be a basic polygon generated by them, as demonstrated
by the filled polygon. Since Z1 Z3 is outside the compound
polygon, it is outside the basic polygon too, which is not
possible because basic polygons are always convex. Therefore
all generated compound polygons are convex.

Part II.3 (Prove R ⊇ C ): For any point C ∈ C , it will surely
fall into one of the compound polygons. Because otherwise,
there will be at least one point corresponding to a determin-
istic policy which is outside any compound polygons, which
is impossible. Any compound polygon is covered by basic
polygons, therefore C is inside at least one basic polygon.
Since any point inside a basic polygon can be obtained by a
policy, the point C ∈ R . From the arbitrariness of C , we have
R ⊇ C .

From Part II.1 and Part II.2, it can be seen that R = C .
Since there are only finite deterministic policies in total, the
set R is a convex polygon whose vertices are all obtained by
deterministic scheduling policies.

Part III. (Neighboring Vertices of R ): For any two neigh-
boring vertices Z F and Z F′ of R , if F and F′ are different
in more than one state, their generated polygon is convex.
If the line segment Z F Z F′ is inside the generated polygon,
Z F and Z F′ are not neighboring vertices. If the line segment
Z F Z F′ is on the boundary of the generated polygon, there
will be other vertices between them, such that Z F and Z F′
are not neighboring, neither. Therefore, policies F and F′ are
deterministic and different in only one state.

APPENDIX E
PROOF OF COROLLARY 3

Monotonicity: Since L = {(P, D) ∈ R |∀(P ′, D′) ∈
R , either P ′ ≥ P or D′ ≥ D}, for any (P1, D1), (P2, D2) ∈
L where P1 < P2, we should have D1 ≥ D2. Therefore L is
decreasing.

Convexity: Since R is a convex polygon, for any
(P1, D1), (P2, D2) ∈ L, their convex combination is (θ P1 +
(1 − θ)P2, θ D1 + (1 − θ)D2) ∈ R . Therefore, there should
be a point (Pθ , Dθ ) on L where Pθ = θ P1 + (1 − θ)P2, and
Dθ ≤ θ D1 + (1− θ)D2. Therefore L is convex.

Piecewise Linearity: Since R is a convex polygon, it can be
expressed as the intersection of a finite number of halfspaces,

i.e., R =⋂I
i=1{(P, D)|ai P+bi D ≥ ci }. We divide (ai , bi , ci )

into 2 categories according to the value of ai and bi as
(a+i , b+i , c+i ) for i = 1, · · · , I+ if ai > 0 and bi > 0, and
(a−i , b−i , c−i ) for i = 1, · · · , I− if ai ≤ 0 or bi ≤ 0. We have

I = I++ I− and I+, I− > 0. Then R =⋂I+
i=1{(P, D)|a+i P+

b+i D ≥ c+i } ∩
⋂I−

i=1{(P, D)|a−i P + b−i D ≥ c−i }. For 1 ≤
l ≤ I+, define Ll = {(P, D)|a+l P + b+l D = c+l } ∩⋂I+

i=1,i �=l {(P, D)|a+i P + b+i D ≥ c+i } ∩
⋂I−

i=1{(P, D)|a−i P +
b−i D ≥ c−i }.

For all (P, D) ∈ Ll , immediately we have (P, D) ∈ R . For
all (P ′, D′) ∈ R , since a+l P ′ + b+l D′ ≥ c+l = a+l P + b+l D,
it should hold that P ′ ≥ P or D′ ≥ D. According to the
definition of L, we have (P, D) ∈ L. Therefore Ll ⊆ L.

For all (P, D) ∈ L, we investigate three cases: 1) If a+i P+
b+i D > c+i for all 1 ≤ i ≤ I+ and a−i P + b−i D > c−i
for all b−i > 0, set ε = minbi>0

ai P+bi D−ci
bi

so that ai P +
bi (D − ε) ≥ ci for all bi > 0. Since (P, D) ∈ R , for all
bi ≤ 0 ai P + bi D ≥ ci , therefore ai P + bi (D − ε) ≥ ci

for all bi ≤ 0. Hence (P, D − ε) ∈ R , which is against the
definition of L. 2) If a+i P+b+i D > c+i for all 1 ≤ i ≤ I+ and
a−i P+b−i D > c−i for all a−i > 0, set ε = minai>0

ai P+bi D−ci
ai

so that ai(P−ε)+bi D ≥ ci for all ai > 0. Since (P, D) ∈ R ,
for all ai ≤ 0 ai P+bi D ≥ ci , therefore ai (P−ε)+bi D ≥ ci

for all ai ≤ 0. Hence (P − ε, D) ∈ R , which is against the
definition of L. 3) If a+i P + b+i D > c+i for all 1 ≤ i ≤ I+,
and there exists i∗ and j∗ such that a−i∗ ≤ 0, b−i∗ > 0, a−j∗ > 0,
b−j∗ ≤ 0, a−i∗ P + b−i∗D = c−i∗ , a−j∗P + b−j∗D = c−j∗ . For all
(P ′, D′) ∈ R , either P ′ ≥ P , D′ ≥ D or P ′ ≤ P , D′ ≤ D.
If there exists P ′ < P and D′ < D, then (P, D) is against the
definition of L. If P ′ ≥ P and D′ ≥ D for all (P ′, D′), since
for all 1 ≤ i ≤ I+, we have a+i P + b+i D > c+i , therefore
a+i P ′ + b+i D′ > c+i . Hence Li ∩ R = ∅, which is against
the condition. From the above three cases, for all (P, D) ∈ L,
there exists at least one certain l∗ such that a+l∗ P+b+l∗D = c+l∗ ,
which means (P, D) ∈ Ll∗ .

From above we can see that L = ⋃I+
l=1 Ll . Therefore L is

piecewise linear.
Properties of Vertices of L: The vertices of L are also

the vertices of R , and neighboring vertices of L are also
neighboring vertices of R . From the results in Theorem 3,
vertices of L are obtained by deterministic scheduling policies,
and the policies corresponding to neighboring vertices of L are
different in only one state.
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