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Abstract—Recent studies have shown that retransmis-
sions can cause heavy-tailed transmission delays even when
packet sizes are light-tailed. Moreover, the impact of heavy-
tailed delays persists even when packets size are upper
bounded. The key question we study in this paper is
how the use of coding techniques to transmit information,
together with different system configurations, would affect
the distribution of delay. To investigate this problem, we
model the underlying channel as a Markov modulated binary
erasure channel, where transmitted bits are either received
successfully or erased. Erasure codes are used to encode
information prior to transmission, which ensures that a fixed
fraction of the bits in the codeword can lead to successful
decoding. We use incremental redundancy codes, where the
codeword is divided into codeword trunks and these trunks
are transmitted one at a time to provide incremental redun-
dancies to the receiver until the information is recovered.
We characterize the distribution of delay under two different
scenarios: (I) Decoder uses memory to cache all previously
successfully received bits. (II) Decoder does not use memory,
where received bits are discarded if the corresponding
information cannot be decoded. In both cases, we consider
codeword length with infinite and finite support. From a
theoretical perspective, our results provide a benchmark to
quantify the tradeoff between system complexity and the
distribution of delay.

I. INTRODUCTION

Retransmission is the basic component used in most
medium access control protocols and it is used to ensure
reliable transfer of data over communication channels
with failures [2]. Recent studies [3][4][5] have revealed
the surprising result that retransmission-based protocols
could cause heavy-tailed transmission delays even if the
packet length is light tail distributed, resulting in very long
delays and possibly zero throughput. Moreover, [6] shows
that even when the packet sizes are upper bounded,
the distribution of delay, although eventually light-tailed,
may still have a heavy-tailed main body, and that the
heavy-tailed main body could dominate even for relatively
small values of the maximum packet size. In this paper
we investigate the use of coding techniques to transmit
information in order to alleviate the impact of heavy tails,
and substantially reduce the incurred transmission delay.

In our analysis, we focus on the Binary Erasure Channel.
Erasures in communication systems can arise in different
layers. At the physical layer, if the received signal falls

The preliminary version of this paper has appeared in [1]

outside acceptable bounds, it is declared as an erasure. At
the data link layer, some packets may be dropped because
of checksum errors. At the network layer, packets that
traverse through the network may be dropped because
of buffer overflow at intermediate nodes and therefore
never reach the destination. All these errors can result in
erasures in the received bit stream.

In order to investigate how different transmission tech-
niques would affect the delay distribution, we use a
general coding framework called incremental redundancy
codes. In this framework, each codeword is split into
several pieces with equal size, which are called codeword
trunks. The sender sends only one codeword trunk at
a time. If the receiver cannot decode the information,
it will request the sender to send another piece of the
codeword trunk. Therefore, at every transmission, the re-
ceiver gains extra information, which is called incremental
redundancy.

In order to combat channel erasures, we use erasure
codes as channel coding to encode the information. Era-
sure codes represent a group of coding schemes which
ensure that even when some portions of the codeword
are lost, it is still possible for the receiver to recover
the corresponding information. Roughly speaking, the en-
coder transforms a data packet of l symbols into a longer
codeword of lc symbols, where the ratio β = l/lc is called
the code-rate. A lower β indicates a larger redundancy
in the codeword. An erasure code is said to be near
optimal if it requires slightly more than l symbols, say
(1 + ε)l symbols, to recover the information, where ε can
be made arbitrary small at the cost of increased encoding
and decoding complexity. Many elegant low complexity
erasure codes have been designed for erasure channels,
e.g., Tornado Code [7], LT code [8], and Raptor code
[9]. For the sake of simplicity, throughout the paper, we
assume ε = 0. In other words, any β fraction of the
codeword can recover the corresponding information.

We specify two different scenarios in this paper. In
the first scenario, as shown in Fig. 1, the entire code-
word is transmitted as a unit, and received bits are
simply discarded if the corresponding information cannot
be recovered. Note that in this scenario, the decoder
memory is not exploited for caching received bits across
different transmissions. This scenario occurs in some
random access protocols such as 802.11a/b [13][14],
where the base station cannot control who can transmit
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Fig. 1. Decoder that does not use memory scenario

or retransmit a packet and when a transmission can be
initiated, and may not have the requisite computation
power/storage to keep track of all the undecodable pack-
ets from many different users, especially when the base
station is responsible for handling a very large number
of flows simultaneously. In the second scenario, we as-
sume that the receiver has enough memory space and
computational power to cache received bits from different
(re)transmissions, which enables the use of incremental
redundancy codes, where a codeword of length lc is
split into r codeword trunks with equal size, and these
codeword trunks are transmitted one at a time. At the
receiver, all successfully received bits from every trans-
mission are buffered at the receiver memory according
to their positions in the codeword. If the receiver cannot
decode the corresponding information, it will request the
sender to send another piece of codeword trunk. At the
sender, these codeword trunks are transmitted in a round-
robin manner. We call these two scenarios decoder that
does not use memory and decoder that uses momery,
respectively.

Given the above two different types of decoder, there
are two more factors that can affect the distribution of
delay. (I) Channel Dynamics: In order to capture the time
correlation nature of the wireless channels, we assume
that the channel is Markovian modulated. More specifi-
cally, we assume a time slotted system where one bit can
be transmitted per time slot, and the current channel state
distribution depends on channel states in the previous
k time slots. When k = 0, it corresponds to the i.i.d.
channel model. (II) Codeword length distribution: We
assume throughout the paper that the codeword length
is light tail distributed, which implies that the system
works in a benign environment. We consider two different
codeword length distributions, namely, codeword length
with infinite support and codeword length with finite
support, respectively. For the former, the codeword length
distribution has an exponentially decaying tail with decay
rate λ, for the latter, the codeword length has an upper
bound b.

Contribution

The main results of this work are the following:
• When decoder memory is not exploited, the tail of

the delay distribution depends on the code rate.
Specifically, we show that when the coding rate is
above a certain threshold, the delay distribution is
heavy tailed, otherwise it is light tailed. This shows
that substantial gains in delay can be achieved over
the standard retransmission case (no forward error
correction) by adding a certain amount of redun-
dancy in the codeword. As mentioned earlier, prior
work has shown that plain ARQ without FEC results
in heavy tailed delays even when the packet size are
light tailed.

• When decoder memory is exploited, the tail of the
delay distribution is always light-tailed. This implies
that the use of receiver memory results in a substan-
tial reduction in the transmission delay.

• The aforementioned results are for the case when
the codeword size can have infinite support. We
also characterize the transmission delay for each of
the above cases when the codeword size has finite
support (zero-tailed), and show similar impact of the
coding rate and the use of receiver memory in terms
of the main body of the delay distribution (rather
than the eventual tail).

The remainder of this paper is structured as follows: In
Section II, we describe the system model. In Section III
we consider the scenario where the decoder memory is
exploited. Then, in Section IV we investigate the situation
where the decoder does not use memory. Finally, in
Section V, we provide numerical studies to verify our main
results.

II. SYSTEM MODEL

The channel dynamics are modeled as a slotted system
where one bit can be transmitted per slot. Furthermore,
we assume that the slotted channel is characterized by
a binary stochastic process {Xn}n≥1, where Xn = 1
corresponds to the situation when the bit transmitted at
time slot n is successfully received, and Xn = 0 when the
bit is erased (called an erasure).

Since, in practice, the channel dynamics are often
temporarily correlated, we investigate the situation in
which the current channel state distribution depends on
the channel states in the preceding k time slots. More
precisely, for Fn = {Xi}i≤n and fixed k, we define
Hn = {Xn, . . . , Xn−k+1} for n ≥ k ≥ 1 with Hn = {∅,Ω}
for k = 0, and assume that P[Xn = 1|Fn−1] = P[Xn =
1|Hn−1] for all n ≥ k. To put it another way, the aug-
mented state Yn , [Xn, . . . , Xn−k], n ≥ k forms a Markov
chain. Let Π denote the transition matrix of the Markov
chain {Yn}n≥k+1, where

Π = [π(s, u)]s,u∈{0,1}k ,

with π(s, u) being the one-step transition probability from
state s to state u. Throughout this paper, we assume that
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Π is irreducible and aperiodic, which ensures that this
Markov chain is ergodic [10]. Therefore, for any initial
value Hk, the parameter γ is well defined and given by

γ = lim
n→∞

P[Xn = 1],

and, from ergodic theorem (see Theorem 1.10.2 in [10])

P
[

lim
n→∞

∑n
k=1Xi

n
= γ

]
= 1,

which means the long-term fraction of the bits that can
be successfully received is equal to γ. Therefore, we call
γ the channel capacity.

In the degenerated case when k = 0, we have a
memoryless binary erasure channel (i.i.d. binary erasure
channel). Correspondingly, Hn = {∅,Ω} and Π = [γ].

We focus on erasure codes with code rate β. Further-
more, we assume that the erasure codes considered are
optimal, in the sense that any β fraction of bits in the
codeword can lead to a successful decoding. In other
words, for any code rate β that is less than the channel
capacity γ, an arbitrarily small error probability can be
achieved given a sufficiently large codeword size.

We let Lc denote the number of bits in the codeword
with infinite support, and assume that there exist λ > 0
and z > 0 such that

lim
x→∞

logP[x < Lc < x+ z]

x
= −λ. (1)

The above equation implies that the distribution of the
codeword length Lc has an exponentially decaying tail
with decay rate λ. This assumption is quite general since
it captures a group of distributions such as gamma distri-
bution, hyperbolic distribution, Laplace distribution, etc.

Note that in reality, transmitted packet sizes are often
bounded by the maximum transmission unit (MTU). This
means that the distribution of the codeword size often
has finite support. We let Lc(b) denote codeword size
with finite support, with b being the maximum codeword
length, and let P[Lc(b) > x] = P[Lc > x|Lc < b] for any
x > 0.

As mentioned in the introduction, we study two dif-
ferent scenarios in this paper, namely decoder that uses
memory and decoder that does not use memory. In the first
scenario, the sender splits a codeword into r codeword
trunks with equal size and transmits them one at a time
in a round-robin manner, while the receiver uses memory
to cache all previously successfully received bits according
to their positions in the codeword. In the second scenario,
the sender transmits the entire codeword as a unit, and
the receiver discards a received codeword if it cannot
recover the original information.

Formal definitions of the number of retransmissions and
the delays are given as follows:

Definition 1 (Decoder that uses memory). The total num-
ber of transmissions for a codeword with variable length Lc
and number of codeword trunks r when the decoder uses

memory is defined as

N (r)
m , inf

{
n :

r∑
l=1

(Lc/r)l∑
i=(Lc/r)(l−1)+1

1

b(n−l)/rc+1∑
j=1

X(j−1)Lc+i ≥ 1

 > βLc

 .

The transmission delay is defined as T (r)
m = N

(r)
m Lc/r.

Definition 2 (Decoder that does not use memory). The
total number of transmissions for a codeword with variable
length Lc when the decoder does not use memory is defined
as

Nf , inf

{
n :

Lc∑
i=1

X(n−1)Lc+i > βLc

}
.

The transmission delay is defined as Tf = NfLc.

For a codeword with variable length Lc(b), the corre-
sponding numbers of transmissions and delays are de-
noted as N (r)

m (b), T
(r)
m (b), Nf (b), and Tf (b), respectively.

Notations

In order to present the main results, we introduce some
necessary notations here.

Notation 1. Let ρ(M) denote the Perron-Frobenius eigen-
value (see Theorem 3.11 in [11]) of the matrix M , which
is the largest eigenvalue of M .

Notation 2. For k ≥ 1, let {si}1≤i≤2k = {0, 1}k denote
the state space of {Yn}n≥k+1, where si = [si1, si2, . . . , sik]
and sij ∈ {0, 1} ∀i, j. Then, we define a mapping f from
{si}1≤i≤2k to {0, 1} as

f(si) = 1− sik.

Notation 3. Let Λn(β,Π) denote the large deviation rate
function, which is given by

Λn (β,Π) = sup
θ
{θ(1− β)− log ρn(θ,Π)} ,

where1

ρn(θ,Π) =

{
ρ
(
eθD

⊗n
Π⊗n

)
k ≥ 1

(1− γ)n + (1− (1− γ)n) eθ k = 0
,

D = diag [f(s1), f(s2), . . . , f(s2k)] for k ≥ 1.

Notation 4. Let µn denote the root of the rate function
Λn(β,Π). More precisely,

Λn(µn,Π) = 0.

1For a matrix A, A⊗n is the n-fold Kronecker product of A with itself,
or we can call it the nth Kronecker power of A.
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Notation 5.

α = inf {n : µn ≥ β}

Λo1 = inf
n∈N

λ+ Λn(β,Π)1(n ≥ α)

n+ 1

Λo2 = inf
n∈N

λ+ Λn+1(β,Π)1(n ≥ α− 1)

n+ 1

Λ̃o3 = min
drβ/γe≤m≤r−1

λ+ Λ1

(
rβ
m ,Π

)
(m+ 1)/r

Λo3 =

{
λ if β > γ

min
{

λr
drβ/γe , Λ̃

o
3

}
if β ≤ γ .

III. DECODER THAT USES MEMORY

When the decoder uses memory to cache all previously
successfully received bits, we can apply incremental re-
dundancy codes, where the sender splits a codeword into
r codeword trunks and transmits one codeword trunk at
a time. If the receiver, after receiving a codeword trunk, is
not able to decode the corresponding information, it will
use memory to cache this codeword trunk and request the
sender to send another codeword trunk. In this way, at
every transmission, the receiver gains extra information,
which we call incremental redundancy. The sender will
send these codeword trunks in a round-robin manner,
meaning that if all of the codeword trunks have been
requested, it will start over again with the first codeword
trunk.

Similar to the definition of the error exponent in [12],
here we define the error exponent after n transmissions
as

− lim
lc→∞

P
[
N

(r)
m > n|Lc = lc

]
lc

.

This error exponent represents the decay rate of the
decoding error probability after n (re)transmissions, as
we increase the codeword length lc. In the special case
when r = 1, for every transmission, the whole code-
word is transmitted as a unit. Since the decoder retains
all the previously received codewords, the retransmis-
sion under r = 1 can be seen as additional repeti-
tion coding. The following lemma shows that after n
(re)transmissions of a codeword with rate β, the error
exponent is Λn(β,Π)1(n ≥ α), where Λn(β,Π) and α are
defined in Notation 3 and 5.

Lemma 1. For any n ∈ N, we have,

P[N (1)
m > n|Lc = lc] = e−lcΛn(β,Π)1(n≥α)+gn(lc),

where

gn(lc) ∈
{
o(lc) if n ≥ α
o(1) otherwise .

Proof: see Appendix A.
For more general cases when r > 1, the error exponents

are characterized in the following lemma.

Lemma 2. For any n,B ∈ N with 0 < B < r, we have,

− lim
lc→∞

logP
[
N

(r)
m > nr|Lc = lc

]
lc

= Λn(β,Π)1(n ≥ α),

− lim
lc→∞

logP
[
N

(r)
m > B|Lc = lc

]
lc

= Λ1

(
βr

B
,Π

)
1

(
βr

B
< γ

)
,

− lim
lc→∞

logP
[
N

(r)
m > nr +B|Lc = lc

]
lc

= min
z1>0,z2>0
z1+z2<β

{
Λn+1

(z1r

B
,Π
)

1
(z1r

B
< µn+1

)
+

Λn

(
z2r

r −B
,Π

)
1

(
z2r

r −B
< µn

)}
. (2)

Proof: see Appendix B.

A. Codeword with infinite support

When the distribution of the codeword length Lc has
an exponentially decaying tail with decay rate λ, as
indicated by Equation (1), we find that the delay will
always be light-tailed, and we characterize the decay rate
in Theorem 1.

Theorem 1. In the case when the decoder uses memory,
when we apply an incremental redundancy code with pa-
rameter r to transmit a codeword with variable length Lc,
we obtain a lower and upper bound on the decay rate of
the delay,

− lim inf
t→∞

logP
[
T

(r)
m > t

]
t

≤ min{Λo2,Λo3},

− lim sup
t→∞

logP
[
T

(r)
m > t

]
t

≥ min{Λo1,Λo3}.

In the special case when r = 1,

− lim
n→∞

logP
[
T

(1)
m > t

]
t

= min{Λo1, λ}.

The definitions of Λo1,Λ
o
2 and Λo3 can be found in Notation 5.

Proof: see Appendix E.

Remark 1.1. Although it is possible to characterize the
exact decay rate of the delay for any r, from Lemma 2
we know that the expression of that decay rate contains a
combinatorial optimization problem (as can be seen from
Equation (2)) which is hard to evaluate and does not give
useful insights. Therefore, in Theorem 1, instead of giving
the exact decay rate of the delay, we obtain an upper
bound and an lower bound on the delay rate, which are
much easier to evaluate.

Remark 1.2. From the definitions of Λo1,Λ
o
2 and Λo3 in

Notation 5 we observe that firstly, the decay rate of the
delay when r = 1 is no greater than the decay rate
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of the delay when r > 1 (min{Λo1, λ} ≤ min{Λo1,Λo3}),
which means that incremental redundancy codes (r > 1)
outperform fixed rate erasure codes (r = 1); secondly,
the decay rate of the delay increases with the increase of
r, which means we can reduce delay by increasing the
number of codeword trunks r; thirdly, when Λo1 > Λo3
and Λo2 > Λo3, the two bounds on the decay rate of the
delay coincide. These observations are verified through
Example 1 in Section V.

B. Codeword with finite support

In practice, codeword length is bounded by the maxi-
mum transmission unit (MTU). Therefore, we investigate
the case when the codeword has variable length Lc(b),
with b being the maximum codeword length, and charac-
terize the corresponding delay distribution in Theorem 2.

Theorem 2. In the case when the decoder uses memory,
when we apply an incremental redundancy code with pa-
rameter r to transmit a codeword with variable length
Lc(b), for any η, δ > 0, we can find b(η, δ) > 0 such that
for any b > b(η, δ), we have
1) ∀t ∈ [no2(b− δ), no2b],

(1− η)Λb1 ≤ −
logP

[
T

(r)
m (b) > t

]
t

≤ (1 + η)Λb2.

2) in the special case when r = 1, ∀t ∈ [no1(b− δ), no1b],

1− η ≤ −
logP

[
T

(1)
m (b) > t

]
t

1

Λb
≤ 1 + η,

where

no1 = arg inf
n∈N

(λ+ Λn(β,Π)1(n ≥ α))/(n+ 1),

no2 = arg inf
n∈N

(λ+ Λn+1(β,Π)1(n ≥ α− 1))/(n+ 1),

Λb1 = Λo1 + min{0,Λo3 − Λo1}1(no2 = 1),

Λb2 = Λo2 + min{0,Λo3 − Λo2}1(no2 = 1),

Λb = Λo1 + min{0, λ− Λo1}1(no1 = 1).

Proof: see Appendix F.

Remark 2.1. This theorem shows that even if the code-
word length has an upper bound b, the distribution of
the delay still has a light-tailed main body whose decay
rate is similar to the decay rate under the infinite support
scenario. The waist of this main body is at least no2b
when r > 1 and no1b when r = 1. Since both no2 and
no1 are independent of b, we know that the waist of this
light-tailed main body scales linearly with respect to the
maximum codeword length b. This theorem is verified
through Example 2 in Section V.

IV. DECODER THAT DOES NOT USE MEMORY

There are a number of systems that use hybrid ARQ
and perform soft combing to improve the probability
of successful decoding. However, there are also several
systems that use plain ARQ. For example, in the IEEE

802.11a/b [13][14] protocol family, whenever an unde-
codable packet arrives, the receiver simply discards it and
asks for a retransmission by sending a feedback message.
The reason is that 802.11 uses a random access MAC layer
protocol and thus the base station has no control of ex-
actly who can use the channel to transmit or retransmit a
packet and when a transmission can be initiated. In other
words, if the decoder at the 802.11 base station were
to use hybrid ARQ to combine different transmissions, it
would have to keep track of which packets came from
which users in the physical layer all the time in order
to combine the right packets. Hence, a lot of decoder
memory would have to be allocated to store packets from
many different users, especially when the number of users
is large.

Therefore, in this section, we study the case when the
decoder does not use memory, as illustrated in Fig. 1.
Since the decoder simply discards a received packet after
a failed decoding attempt, we do not need to consider the
case when a codeword is divided into several codeword
trunks before transmission, because a codeword trunk
will be discarded if itself cannot recover the original
information. For example, if we divide a codeword with
rate β into two codeword trunks and transmit them one
after the other, then the transmission is successful only
when either one of codeword trunks itself can be decoded.
Therefore, it will be equivalent to transmitting an entire
codeword with rate 2β.

The following lemma shows that when the code rate β
is less than the channel capacity γ, after n transmissions,
the error exponent is nΛ1(β,Π).

Lemma 3. 1) if β > γ, then

P [Nf > n|Lc = lc] =
(

1− e−lcΛ1(β,Π)(1+g(lc))
)n

,

where g(lc) ∈ o(1) as lc →∞.
2) if β < γ, then

P [Nf > n|Lc = lc] = e−nlcΛ1(β,Π)(1+s(lc)),

where s(lc) ∈ o(1) as lc →∞.

Proof: see Appendix C.

A. Codeword with infinite support
Interestingly, we observe an intriguing threshold phe-

nomenon. We show that when the codeword length dis-
tribution is light-tailed and has an infinite support, the
transmission delay is light-tailed (exponential) only if
γ > β, and heavy-tailed (power law) if γ < β.

Theorem 3 (Threshold phenomenon). In the case when
the decoder does not use memory and the codeword has
variable length Lc, we get

1) if β > γ, then

lim
n→∞

logP [Nf > n]

log n
.

= lim
t→∞

logP [Tf > t]

log t
= − λ

Λ1(β,Π)
.
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2) if β < γ, then

lim
t→∞

logP [Tf > t]

t
= −min {λ,Λ1(β,Π)} .

The definition of Λ1(β,Π) can be found in Notation 3.

Proof: see Appendix G.

Remark 3.1. The tail distribution of the transmission
delay can follow either power law or exponential distribu-
tion, depending on the relationship between code-rate β
and channel capacity γ. When β > γ and λ/Λ1(β,Π) < 1,
the system even has a zero throughput.

B. Codeword with finite support

Under the heavy-tailed delay case when β > γ, we
can further show that if the codeword length is upper
bounded, the delay distribution still has a heavy-tailed
main body, although it eventually becomes light-tailed.

Theorem 4. In the case when the decoder does not use
memory and the codeword has variable length Lc(b), if β >
γ, for any η > 0, we can find n(η) > 0 and b(η) > 0 such
that for any b > b(η) we have,
1) ∀n ∈ [n(η), nb] and ∀t ∈ [n(η)b, nbb],

1− η ≤ − logP [Nf (b) > n]

log n

Λ1(β,Π)

λ
≤ 1 + η,

1− η ≤ − logP [Tf (b) > t]

log t

Λ1(β,Π)

λ
≤ 1 + η.

where

nb = (P[Nf = 1|Lc = b])
−1
, (3)

and the definition of Λ1(β,Π) can be found in Notation 3.
2)

lim
n→∞

logP [Nf (b) > n]

n
= log (P [Nf > 1|Lc = b]) ,

lim
n→∞

logP [Tf (b) > t]

t
=

1

b
log (P [Tf > 1|Lc = b]) .

Proof: see Appendix H.

Remark 4.1. From Equation (3) and by Lemma 3, we can
obtain

lim
b→∞

log nb
b

= Λ1(β,Π), (4)

which implies that nb increases exponentially fast with
the increase of the maximum codeword length b. Since
the waist of the heavy-tailed main body of the delay
distribution is nbb, we know that the waist also increases
exponentially fast as we increase the maximum codeword
length b.

From Theorem 4 we know that even if the codeword
length is bounded, the heavy-tailed main body could still
play a dominant role. From Theorem 3 we know that
when λ < Λ1(β,Π) and β > γ, the throughput will vanish
to zero as b approaches infinity. Now we explore how fast
the throughput vanishes to zero as b increases.

Let {Li}i≥1 be the i.i.d. sequence of codeword lengths
with distribution Lc(b). Denote Ti as the transmission
delay of Li. The throughput of this system is defined as
∆(b) = limn→∞

∑n
i=1 βLi/

∑n
i=1 Ti.

Theorem 5 (Throughput). In the case when the decoder
does not use memory and the codeword has variable length
Lc(b), if β > γ and λ < Λ1(β,Π), we have

− lim sup
b→∞

log ∆(b)

b
≥ Λ1(β,Π)− λ.

The definition of Λ1(β,Π) can be found in Notation 3.

Proof: see Appendix I.

Remark 5.1. Theorem 5 indicates that when code-rate β
is greater than channel capacity γ and λ < Λ1(β,Π), as
the maximum codeword length b increases, the through-
put vanishes to 0 at least exponentially fast with rate
Λ1(β,Π)− λ.

V. SIMULATIONS

In this section, we conduct simulations to verify our
main results. As is evident from the following figures, the
simulations match theoretical results well.

Example 1. In this example, we study the case when the
decoder uses memory and the codeword length has infi-
nite support. We assume that the channel is i.i.d.(k = 0).
As shown in Theorem 1, under the above assumptions,
the delay distribution is always light-tailed. In order to
verify this result, we assume that Lc is geometrically dis-
tributed with mean 100 (λ = 0.01), and choose code-rate
β = 0.25 and channel capacity γ = 0.50. By Theorem 1
we know that when r = 1, the decay rate of the delay
is min{Λo1, λ} = 0.0025; when r = 3, the decay rate of
the delay is min{Λo1,Λo3} = min{Λo2,Λo3} = 0.0037; when
r = 5, the decay rate of the delay is min{Λo1,Λo3} =
min{Λo2,Λo3} = 0.0042. From Fig. 2 we can see that the
decay rate of the delay increases when r increases from
1 to 5, and the theoretical result is quite accurate.

This example shows that when the code rate is less than
the channel capacity, the delay distribution can benefit
from an increased rate of feedback. In other words, by
increasing the number of codeword trunks r, the tail of
delay distribution can become lighter.

Example 2. In this simulation, we study the case when
the decoder uses memory and the codeword length has
a finite support. We assume that the channel is i.i.d.
(k = 0), code-rate β = 0.75, λ = 0.01, r = 1, and channel
capacity γ = 0.1. From these system parameters we can
calculate no1 = 14 and Λb = min{Λo1, λ} = 7.1429 × 10−4.
We choose four sets of maximum codeword length b
as 200, 400, 600, 800. Theorem 2 indicates that the delay
distribution has a light-tailed main body with decay rate
Λb = 7.1429 × 10−4 and waist nbb = 14 × b. In Fig. 3 we
plot the delay distributions when b = 200, 400, 600, 800
together with the infinite support case when b = ∞,
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Fig. 2. Illustration for Example 1

and we use a short solid line to indicate the waist of
the light-tailed main body. As we can see from Fig. 3,
the theoretical waists of the main bodies, which are
nbb = 14 × b = 2800, 5600, 8400, 11200, are close to the
simulation results.
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Fig. 3. Illustration for Example 2

Example 3. Now we use simulations to verify Theorem 4.
Theorem 4 says that when the decoder does not use mem-
ory, if code rate β is greater than channel capacity γ and
the codeword length has a finite support, the distribution
of delay as well as the distribution of number of retrans-
missions have a heavy-tailed main body and an exponen-
tial tail. The waist of the main body increases exponen-
tially fast with the increase of maximum codeword length
b. In this experiment, we set code-rate β = 0.25, channel
capacity γ = 0.20, k = 0, and λ = 0.01. From these
parameters we can get Λ1(β,Π) = 0.0074. We choose four
sets of maximum codeword length b as 200, 400, 600, 800.

As Equation (4) indicates, the waist of the heavy-tailed
main bodies of the number of retransmissions is nb ≈
ebΛ1(β,Π) = 4.3772, 19.1595, 83.8641, 367.0865. In Fig. 4,
we plot the distribution of the number of retransmissions
when b = 200, 400, 600, 800 together with the infinite
support case when b = ∞, and we use a short solid line
to indicate the waist of the heavy-tailed main body. As
can be seen from Fig. 4, the simulation matches with our
theoretical result.

The above two examples show that when the decoder
does not use memory, the choice of the code rate has
a dramatic effect on the delay distribution, even if the
codeword length is upper-bounded. More specifically, as
we increase the code rate, the main body of the tail of the
distribution of the delay could change from an exponen-
tial decay function which spans just proportionally to the
maximum codeword size, to a much slower power-law de-
cay function which spans exponentially to the maximum
codeword size. This emphasizes the importance of rate
adaptation when the decoder does not use memory.
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100
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n]
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Fig. 4. Illustration for Example 3

VI. CONCLUSION

In this paper, we characterize the delay distribution
in a point-to-point Markovian modulated binary erasure
channel with variable codeword length. Erasure codes are
used to encode information such that a fixed fraction
of bits in the codeword can recover the information.
We use a general coding framework called incremental
redundancy codes. In this framework, the codeword is
divided into several codeword trunks and these codeword
trunks are transmitted one at a time to the receiver. There-
fore, after each transmission, the receiver gains extra
information, which is called incremental redundancy. At
the receiver end, we investigate two different scenarios,
namely decoder that uses memory and decoder that does
not use memory. In the decoder that uses memory case,
the decoder caches all previously successfully transmitted
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bits. In the decoder that does not use memory case, re-
ceived bits are discarded if the corresponding information
cannot be decoded. In both cases, we first assume that
the distribution of the codeword length is light-tailed and
has an infinite support. Then, we consider a more realistic
case when the codeword length is upper bounded.

Our results show the following. The transmission delay
can be dramatically reduced by allowing the decoder to
use memory. This is true because the delay is always light-
tailed when the decoder uses memory, while the delay can
be heavy-tailed when the decoder does not use memory.
Secondly, analogously to the non-coding case, the tail ef-
fect of the delay distribution persists even if the codeword
length has a finite support. When the codeword length
is upper bounded, the light-tailed delay distribution will
turn into a delay distribution with light-tailed main body
whose decay rate is similar to that in the infinite support
scenario. Further, we show that the waist of this main
body scales linearly with respect to the increase of the
maximum codeword length; the heavy-tailed delay distri-
bution will turn into a delay distribution with heavy-tailed
main body, whose waist scales exponentially with the
increase of the maximum codeword length. Our results
provide a benchmark for quantifying the tradeoff between
system complexity (which is determined by code-rate β,
number of codeword trunks r, maximum codeword length
b and whether to use memory at the receiver or not) and
the distribution of the delay.

APPENDIX A
PROOF OF LEMMA 1

First we consider the case when k ≥ 1. By Definition 1,
we have

P
[
N (1)
m > n|Lc = lc

]
= P

[
Lc∑
i=1

1

(
n∑
j=1

X(j−1)Lc+i ≥ 1

)
≤ βLc

∣∣∣∣∣Lc = lc

]

= P

[
Lc∑
i=1

1

(
n∑
j=1

X(j−1)Lc+i = 0

)
> (1− β)Lc

∣∣∣∣∣Lc = lc

]

= E

[
P

[
Lc∑
i=1

n∏
j=1

1

(
X(j−1)Lc+i = 0

)

> (1− β)Lc

∣∣∣∣∣Lc,
n⋃
j=1

Ej

]∣∣∣∣∣Lc = lc

]
, (5)

where Ej ,
{
X(j−1)Lc+1, . . . , X(j−1)Lc+k

}
, 1 ≤ j ≤ n.

Let Yin =
[
Yi, YLc+i, . . . , Y(n−1)Lc+i

]
and

fn (Yin) =

n∏
j=1

f
(
Y(j−1)Lc+i

)
.

If Lc > k, then given
⋃n
j=1 Ej , {Yin}k<i≤Lc forms a

Markov chain with state space {{0, 1}k}n and probability
transition matrix Π⊗n. We further observe that if Lc > k,

we have the following relationship{
Lc∑

i=1+k

n∏
j=1

1

(
X(j−1)Lc+i = 0

)
> (1− β)Lc

}

⊆

{
Lc∑
i=1

n∏
j=1

1

(
X(j−1)Lc+i = 0

)
> (1− β)Lc

}

⊆

{
Lc∑

i=1+k

n∏
j=1

1

(
X(j−1)Lc+i = 0

)
> (1− β)Lc − k

}
.

Using the above observation, we can construct upper and
lower bounds as follows.

P

[
Lc∑
i=1

n∏
j=1

1

(
X(j−1)Lc+i = 0

)
> (1− β)Lc

∣∣∣∣∣Lc,
n⋃
j=1

Ej

]

≥ P

[
Lc∑

i=1+k

fn(Yin) > (1− β)Lc

∣∣∣∣∣Lc,
n⋃
j=1

Ej

]
,

P

[
Lc∑
i=1

n∏
j=1

1

(
X(j−1)Lc+i = 0

)
> (1− β)Lc

∣∣∣∣∣Lc,
n⋃
j=1

Ej

]

≤ P

[
Lc∑

i=1+k

fn(Yin) > (1− β)Lc − k

∣∣∣∣∣Lc,
n⋃
j=1

Ej

]
. (6)

By a direct application of Theorem 3.1.2 in [11], we know
that for a given ε > 0 and any values of

⋃n
j=1 Ej , we can

find lε such that

P

[
Lc∑

i=1+k

fn(Yin) > (1− β)Lc

∣∣∣∣∣Lc = lc

]
≥ e− inf1−ω>1−β Λn(ω,Π)(1+ε)lc , (7)

P

[
Lc∑

i=1+k

fn(Yin) > (1− β)Lc − k

∣∣∣∣∣Lc = lc

]
≤ e− inf1−ω>1−β Λn(ω,Π)(1−ε)lc , (8)

whenever lc > lε. Since Λn(ω,Π) is a large deviation rate
function, from [11] we know that

inf
1−ω>1−β

Λn(ω,Π) =

{
Λn(β,Π) if µn < β
0 otherwise

= Λn(β,Π)1(n ≥ α). (9)

The upper and lower bounds in Equation (8) and (7),
together with Equation (5), (6) and (9), imply that

− lim inf
lc→∞

logP
[
N

(1)
m > n|Lc = lc

]
lc

≤ (1 + ε)Λn(β,Π)1(n ≥ α),

− lim sup
lc→∞

logP
[
N

(1)
m > n|Lc = lc

]
lc

≥ (1− ε)Λn(β,Π)1(n ≥ α),

which, with ε→ 0, completes the proof when k ≥ 1.
Next, let us consider the case when k = 0. In this mem-

oryless channel case, for any single bit in the codeword,
after the nth transmission, the probability that the bit is
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successfully received is 1−(1−γ)n. Therefore, for a certain
packet, the probability of the number of transmissions
being greater than n is equal to the probability of the
number of transmissions being greater than 1 under
a memoryless erasure channel with erasure probability
(1− γ)n.

Then, by a direct application of Gärtner-Ellis theorem
(Theorem 2.3.6 in [11]), we have, for any n ≥ 1,

lim
lc→∞

logP[N
(1)
m > n|Lc = lc]

lc
= −Λn(β,Π)1 (n ≥ α) ,

where Λn(β,Π) and α can be written in closed-forms,
which are

Λn(β,Π) = sup
θ

{
θ(1− β)− log

(
E
[
Xie

θXi
])}

= sup
θ
{θ(1− β)− log

(
1− (1− γ)n + (1− γ)neθ

)
}

= β log
β

1− (1− γ)n
+ (1− β) log

1− β
(1− γ)n

,

and α =
⌈

log(1−β)
log(1−γ)

⌉
.

APPENDIX B
PROOF OF LEMMA 2

The first equation in Lemma 2 follows directly from the
fact that

P
[
N (r)
m > nr|Lc = lc

]
= P

[
N (1)
m > n|Lc = lc

]
.

Next, let us focus on the last two equations in Lemma 2.
Denote

Z1(n, lc, B)

=

B∑
l=1

(lc/r)l∑
i=(lc/r)(l−1)+1

1

n+1∑
j=1

X(j−1)lc+i ≥ 1

 ,

Z2(n, lc, B)

=

r∑
l=B+1

(lc/r)l∑
i=(lc/r)(l−1)+1

1

 n∑
j=1

X(j−1)lc+i ≥ 1

 .

By Definition 1, it is easy to see that

P
[
N (r)
m > B|Lc = lc

]
= P

[
Z1(0, lc, B)

lc
< β

]
,

and

P
[
N (r)
m > nr +B|Lc = lc

]
=

∑
z1≥0,z2≥0
z1+z2<β
z1lc,z2lc∈N

P
[
Z1(n, lc, B)

lc
= z1,

Z2(n, lc, B)

lc
= z2

]
.

Then based on the above two equations, the last two
equations in Lemma 2 can be proven using the same
technique as that used in the proof of Lemma 1.

APPENDIX C
PROOF OF LEMMA 3

From Definition 2 we know

P[Nf > n|Lc]

=P

 ⋂
1≤j≤n


jLc∑

i=(j−1)Lc+1

Xi ≤ βLc


∣∣∣∣∣Lc


=E

P
 ⋂

1≤j≤n


jLc∑

i=(j−1)Lc+1

Xi ≤ βLc


∣∣∣∣∣
n⋃
j=1

Ej , Lc

 ∣∣∣∣∣Lc


=E

 n∏
j=1

P

 jLc∑
i=(j−1)Lc+1

Xi ≤ βLc

∣∣∣∣∣
n⋃
i=1

Ei, Lc

 ∣∣∣∣∣Lc
 , (10)

where Ej ,
{
X(j−1)Lc+1, . . . , X(j−1)Lc+k

}
, 1 ≤ j ≤ n.

The last equation is due to the Markov property of the
channel states. Observe that if Lc > k, for any 1 ≤ j ≤ n,

jLc∑
i=(j−1)Lc+1+k

Xi ≤ βLc


⊆


jLc∑

i=(j−1)Lc+1

Xi ≤ βLc


⊆


jLc∑

i=(j−1)Lc+1+k

Xi ≤ βLc − k

 ,

which further yields

P

 jLc∑
i=(j−1)Lc+1+k

Xi ≤ βLc − k

∣∣∣∣∣
n⋃
i=1

Ei, Lc


≥P

 jLc∑
i=(j−1)Lc+1

Xi ≤ βLc

∣∣∣∣∣
n⋃
i=1

Ei, Lc


≥P

 jLc∑
i=(j−1)Lc+1+k

Xi ≤ βLc

∣∣∣∣∣
n⋃
i=1

Ei, Lc

 .
Similarly as the proof of Lemma 1, by Theorem 3.1.2 in
[11], we obtain, for any 1 ≤ j ≤ n

lim
lc→∞

logP
[∑jLc

i=(j−1)Lc+1Xi > βLc
∣∣⋃n

i=1 Ei, Lc = lc

]
lc

= −Λ1(β,Π)1(β > γ),

lim
lc→∞

logP
[∑jLc

i=(j−1)Lc+1Xi ≤ βLc
∣∣⋃n

i=1 Ei, Lc = lc

]
lc

= −Λ1(β,Π)1(β < γ),

which, by combining Equation (10), completes the proof.

APPENDIX D
LEMMA 4

In order to prove the theorems, we need the following
lemma.
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Lemma 4. Assume b is a function of t, which satisfies b ,
b(t) > t

y . Then, for any x, y ∈ N we have

lim
t→∞

logP
[
N

(1)
m > x, t

y+1 < Lc(b) <
t
y

]
t

= −λ+ Λx(β,Π)1(x ≥ α)

y + 1
.

Proof: Observe that

P
[
N (1)
m > x,

t

y + 1
< Lc(b) <

t

y

]
=

bt/yc∑
lc=dt/(y+1)e

P
[
N (1)
m > x

∣∣∣∣Lc(b) = lc

]
P [Lc(b) = lc] .

(11)

Let us first consider the case when x ≥ α. From
Lemma 1 we know that when x ≥ α, for lc large enough,
P
[
N

(1)
m > x|Lc(b) = lc

]
is a decreasing function of lc.

Therefore, for t large enough,

P
[
N (1)
m > x,

t

y + 1
< Lc(b) <

t

y

]
≤P
[
N (1)
m > x

∣∣∣∣Lc(b) =

⌈
t

y + 1

⌉]
P
[

t

y + 1
< Lc(b) <

t

y

]
.

(12)

Since b = b(t) > t
y , by the definition of Lc(b), we can

easily obtain

lim
t→∞

logP
[

t
y+1 < Lc(b) <

t
y

]
t

= − λ

y + 1
. (13)

Combining Equation (13) and (12), and by Lemma 1, we
get, for x ≥ α

lim sup
t→∞

logP
[
N

(1)
m > x, t

y+1 < Lc(b) <
t
y

]
t

≤− (λ+ Λx(β,Π))/(y + 1).

The lower bound can be constructed in a similar manner
by noting that

P
[
N (1)
m > x,

t

y + 1
< Lc(b) <

t

y

]
≥P
[
N (1)
m > x

∣∣∣∣Lc(b) =

⌈
t

y + 1

⌉]
P
[
Lc(b) =

⌈
t

y + 1

⌉]
.

Next, let us consider the case when x < α. From Lemma
1 we know that for any ε > 0, we can find a large enough
lε such that for all lc > lε,

1− ε ≤ P
[
N (1)
m > x

∣∣∣∣Lc(b) = lc

]
≤ 1,

which, by combining Equation (11) and (13), yields, for
x < α,

lim
t→∞

logP
[
N

(1)
m > x, t

y+1 < Lc(b) <
t
y

]
t

= −λ/(y + 1).

APPENDIX E
PROOF OF THEOREM 1

Observe that

P
[
T (r)
m > t

]
=

∞∑
h=r

P
[
T (r)
m > t,

tr

h+ 1
< Lc ≤

tr

h

]
+ P

[
T (r)
m > t, Lc > t

]

=

∞∑
n=1

(n+1)r−1∑
h=nr

P
[
N (r)
m > h,

tr

h+ 1
< Lc ≤

tr

h

]
+ P

[
T (r)
m > t, Lc > t

]
. (14)

Let us first focus on the first part of Equation (14). Denote
Pntr =

∑(n+1)r−1
h=nr P

[
N

(r)
m > h, tr

h+1 < Lc ≤ tr
h

]
, then it is

easy to check that

Pntr ≤ P
[
N (1)
m > n,

t

n+ 1
< Lc ≤

t

n

]
,

Pntr ≥ P
[
N (1)
m > n+ 1,

t

n+ 1
< Lc ≤

t

n

]
,

which, by Lemma 4 in Appendix D, yields

lim sup
t→∞

logPntr
t

≤ −λ+ Λn(β,Π)1(n ≥ α)

n+ 1
,

lim inf
t→∞

logPntr
t

≥ −λ+ Λn+1(β,Π)1(n ≥ α− 1)

n+ 1
. (15)

Now let us focus on the second part of Equation (14).
Observe that

P
[
T (r)
m > t, Lc > t

]
=

r−1∑
n=1

P
[
T (r)
m > t,

rt

n+ 1
< Lc ≤

rt

n

]
+ P

[
T (r)
m > t, rt < Lc

]
=

r−1∑
n=1

P
[
N (r)
m > n,

rt

n+ 1
< Lc ≤

rt

n

]
+ P

[
N (r)
m > 0, rt < Lc

]
.

From Lemma 2 we know that, for 1 ≤ n ≤ r − 1,

− lim
lc→∞

logP
[
N

(r)
m > n|Lc = lc

]
lc

= Λ1

(
βr

n
,Π

)
1

(
βr

n
< γ

)
.

By combining the above two equations, we get

− lim
t→∞

logP
[
T

(r)
m > t, Lc > t

]
t

=− lim
t→∞

logP[Lc > t]

t
= λ, (16)
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when β > γ, and

− lim
t→∞

logP
[
T

(r)
m > t, Lc > t

]
t

= min
{
− lim
t→∞

logP[Lc > tr/
⌈
rβ
γ

⌉
]

t
,

− lim
t→∞

log
(∑r−1

n=drβ/γe P
[
N

(r)
m > n, rt

n+1 < Lc ≤ rt
n

])
t

}
= min

{
λr

drβ/γe
, Λ̃o3

}
= Λo3, (17)

when β < γ. Combining Equation (14), (15), (16), and
(17), we get

lim sup
t→∞

logP
[
T

(r)
m > t

]
t

= max
{

lim sup
t→∞

log
∑∞
n=1 Pntr
t

,

lim
t→∞

logP
[
T

(r)
m > t, Lc > t

]
t

}
(a)

≤ max

{
− inf

n

λ+ Λn(β,Π)1(n ≥ α)

n+ 1
,−Λo3

}
=−min{Λo1,Λo3}. (18)

The lower bound can be found in a similar manner.
Notice that inequality (a) in the preceding equation is
true because Pntr is nonzero only for a finite number of
n, due to the fact that Lc cannot be less than 1.

In the special case when r = 1, by Lemma 4 and the
definition of Lc, we have

lim
t→∞

logPntr
t

= −λ+ Λn(β,Π)1(n ≥ α)

n+ 1
,

lim
t→∞

logP
[
T

(1)
m > t, Lc > t

]
t

= −λ, (19)

which, by combining Equation (14), completes the proof.

APPENDIX F
PROOF OF THEOREM 2

From the definition of no2, Λo1 and Λo2 in Notation 5 and
by Lemma 4, we can obtain, for any δ > 0,

lim sup
t→∞

−
logP

[
T

(r)
m > t, t

no2+1 < Lc

(
t
no2

+ δ
)
≤ t

no2

]
t

≤ Λo2,

lim inf
t→∞

−
logP

[
T

(r)
m > t, t

no2+1 < Lc

(
t
no2

+ δ
)
≤ t

no2

]
t

≥ Λo1.

Then, for any η > 0 and for any δ > 0, we can find t(η)
such that

−
logP

[
T

(r)
m > t, t

no2+1 < Lc

(
t
no2

+ δ
)
≤ t

no2

]
t

≤ (1 + η)Λo2,

−
logP

[
T

(r)
m > t, t

no2+1 < Lc

(
t
no2

+ δ
)
≤ t

no2

]
t

≥ (1− η)Λo1,

whenever t > t(η). We denote b(η) , t(η)
no2

+ δ. In other
words, for any b > b(η), whenever t ∈ [(b− δ)no2, bno2],

−
logP

[
T

(r)
m > t, t

no2+1 < Lc (b) ≤ t
no2

]
t

≤ (1 + η)Λo2,

−
logP

[
T

(r)
m > t, t

no2+1 < Lc (b) ≤ t
no2

]
t

≥ (1− η)Λo1,

which, by using the same technique as in Equation (18),
completes the proof of the first part. The second part of
Theorem 2 follows by noting that

lim
t→∞

−
logP

[
T

(1)
m > t, t

no1+1 < Lc

(
t
no1

+ δ
)
≤ t

no1

]
t

= Λo1,

where the definition of no1 can be found in Notation 5.

APPENDIX G
PROOF OF THEOREM 3

1) If β > γ, by Lemma 3, for any ε > 0, we can find lε
such that

P[Nf > n|Lc = lc] ≥
(

1− e−lcΛ1(β,Π)(1−ε)
)n

,

whenever lc > lε. Then we have, for n large enough,

P[Nf > n] = E [P[Nf > n|Lc]]

≥ E
[
Lc > lε,

(
1− e−Λ1(β,Π)(1−ε)Lc

)n]
≥ E

[ log n

Λ1(β,Π)(1− ε)
< Lc <

log n

Λ1(β,Π)(1− ε)
+ z,(

1− e−Λ1(β,Π)(1−ε)Lc
)n ]

≥ E
[ log n

Λ1(β,Π)(1− ε)
< Lc <

log n

Λ1(β,Π)(1− ε)
+ z,(

1− e−(logn)
)n ]

≥ e−λ(1+ε) logn
Λ1(β,Π)(1−ε)

(
1− e−(logn)

)n
.

Taking logarithms on both sides of the preceding inequal-
ity, we get

lim inf
n→∞

logP[Nf > n]

log n
≥ − λ(1 + ε)

Λ1(β,Π)(1− ε)
,

which, when ε→ 0, results in the lower bound.
Next, we prove the upper bound. Using the same

technique as in the proof of the lower bound, and by the
definition of Lc, we can find lε such that

P[Nf > n] ≤ P
[
Lc > lε,

(
1− e−Λ1(β,Π)(1+ε)Lc

)n]
+ P[Nf > n,Lc ≤ lε]

≤
∞∑
l=lε

(
1− e−Λ1(β,Π)(1+ε)l

)n
P[Lc = l] +O(e−ξn)

≤ O
(∫ ∞

0

(
1− e−Λ1(β,Π)(1+ε)x

)n
e−λ(1−ε)xdx

)
+O(e−ξn),
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for some ξ > 0. Computing the integral in the preceding
inequality, we obtain

lim sup
n→∞

logP[Nf > n]

log n
≤ − λ(1− ε)

Λ1(β,Π)(1 + ε)
,

which, with ε→ 0, proves the upper bound.
Now, we prove the result for P[Tf > t]. The upper

bound follows by noting that, for any h > 0,

P[Tf > t] ≤ P[NfLc > t, Lc ≤ h log t] + P[Lc > h log t]

≤ P[Nf > t/(h log t)] + P[Lc > h log t],

where limt→∞ logP[Nf > t/(h log t)]/ log t =
−λ/Λ1(β,Π), and P[Lc > h log t] = o (P[Nf > t/(h log t)])
for h large enough.

The lower bound follows by noting that, for some l2 >
l1 > 0 with P[l1 < Lc < l2] > 0,

P[Tf > t] ≥ P[NfLc > t, l1 < Lc < l2]

≥ P[Nf > t/l1]P[l1 < Lc < l2].

2) Observe that

P[Tf > t]

=P[Lc > t] +

∞∑
n=1

P
[
Tf > t,

t

n+ 1
< Lc ≤

t

n

]
=P[Lc > t] +

∞∑
n=1

P
[
Nf > n,

t

n+ 1
< Lc ≤

t

n

]
. (20)

By Lemma 3 we know that P [Nf > n|Lc = lc] has a rate
function of nΛ1(β,Π) with respect to the increase of lc
when β > γ. By using the same technique as that used in
the proof of Lemma 4, we can easily get, when β < γ,

lim
t→∞

logP
[
Nf > n, t

n+1 < Lc ≤ t
n

]
t

= −nΛ1(β,Π) + λ

n+ 1
,

lim
t→∞

logP[Lc > t]

t
= −λ,

which, by combining Equation (20) and using the same
technique as in Equation (18), yields

lim
t→∞

logP[Tf > t]

t
= −min

{
inf
n∈N

{
nΛ1(β,Π) + λ

n+ 1

}
, λ

}
= −min{Λ1(β,Π), λ}.

APPENDIX H
PROOF OF THEOREM 4

1) By Lemma 3 we know that when β > γ

P [Nf > n|Lc = lc] =
(

1− e−lcΛ1(β,Π)(1+g(lc))
)n

,

with g(lc) ∈ o(1) as lc →∞. Let us denote ln as the root
of the function lc(1 + g(lc))− logn

Λ1(β,Π) . In other words,

ln(1 + g(ln)) =
log n

Λ1(β,Π)
.

For any b0 > 0, we have

P [Nf > n, ln − z < Lc(ln + b0) ≤ ln]

≥P [Nf > n|Lc = ln]P [ln − z < Lc(ln + b0) ≤ ln] . (21)

Note that, by Lemma 3,

lim
n→∞

logP [Nf > n|Lc = ln]

log n

= lim
n→∞

log
(
1− e−lnΛ1(β,Π)(1+g(lc))

)n
log n

= lim
n→∞

n log(1 + 1
n )

log n
= 0. (22)

Also, by the definition of Lc(b),

lim
n→∞

logP [ln − z < Lc(ln + b0) ≤ ln]

log n

= lim
n→∞

logP [ln − z < Lc(ln + b0) ≤ ln]

ln

ln
log n

=− λ 1

Λ1(β,Π)
. (23)

Combining Equation (21), (22) and (23), we get

lim
n→∞

logP [Nf > n, ln − z < Lc(ln + b0) ≤ ln]

log n

=− λ

Λ1(β,Π)
.

Therefore, for any η > 0, we can find a n1(η) such that

lim
n→∞

logP [Nf > n, ln − z < Lc(ln + b0) ≤ ln]

log n

≥− λ

Λ1(β,Π)
(1 + η), (24)

whenever n > n1(η). Also, by Theorem 3, we can find
n2(η) such that

lim
n→∞

logP [Nf > n]

log n
≤ − λ

Λ1(β,Π)
(1− η). (25)

Let n(η) , max{n1(α), n2(α)} and b(η) , ln(η) + b0. By
combining Equation (24) and (25), we know that for any
η > 0, we can find b(η) such that for any b > b(η),

lim sup
n→∞

logP [Nf (b) > n]

log n
≤ lim
n→∞

logP [Nf > n]

log n

≤ − λ

Λ1(β,Π)
(1− η),

and

lim inf
n→∞

logP [Nf (b) > n]

log n

≥ lim
n→∞

logP [Nf > n, ln − z < Lc(ln + b0) ≤ ln]

log n

≥− λ

Λ1(β,Π)
(1 + η),

whenever n ∈ [n(η), nb], where nb satisfies b(1 + g(b)) =
lognb

Λ1(β,Π) . From Lemma 3, we know that

nb = eΛ1(β,Π)b(1+g(b)) = (P [Nf = 1|Lc = b])
−1
. (26)
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2) Note that

lim
n→∞

logP [Nf (b) > n]

n

= max
lc

{
lim
n→∞

log (P [Lc(b) = lc, Nf (b) > n])

n

}
= max

lc

{
lim
n→∞

log (P [Lc(b) = lc])

n
,

log (P [Nf (b) > 1|Lc(b) = lc])

}
= log (P [Nf (b) > 1|Lc(b) = b]) .

The characterization of P [Tf (b) > t] follows by noting
that Tf (b) = Nf (b)Lc(b).

APPENDIX I
PROOF OF THEOREM 5

Observe that

∆(b) = lim
n→∞

∑n
i=1 βLi
n

n∑n
i=1 Ti

= β
E[Li]

E[Ti]
.

From Theorem 4 we know that for a given η > 0, we can
find n(η) and b large enough such that

E[Ti] ≥
∫ nbb

n(η)b

P[Tf (b) > t]dt

≥
∫ nbb

n(η)b

t
− λ

Λ1(β,Π)
(1+η)

dt,

which, by combing the definition of nb in Equation (26),
yields

− lim sup
b→∞

log ∆(b)

b
= lim inf

b→∞

logE[Ti]

b
≥ Λ1(β,Π)− λ.
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