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Abstract— Recently, a new precoding-based intersession net-
work coding (NC) scheme has been proposed, which applies
the interference alignment technique, originally devised for
wireless interference channels, to the 3-unicast problem of
directed acyclic networks. Motivated by the graph-theoretic
characterizations of classic linear NC results, this paper in-
vestigates several key relationships between the point-to-point
network channel gains and the underlying graph structure.
Such relationships are critical when characterizing graph-
theoretically the feasibility of precoding-based solutions. One
example of the applications of our results is to answer (at
least partially) the conjectures of the 3-unicast interference
alignment technique and the corresponding graph-theoretic
characterization conditions.

Index Terms— Asymptotic interference alignment, interfer-
ence channels, intersession network coding, 3-unicast networks.

I. INTRODUCTION

Characterizing the capacity or the feasibility of satisfying

the network traffic demands between multiple coexisting

source-destination pairs (sessions) has been a long-standing

challenge. Recently, allowing the coding operation at the

intermediate network nodes, namely network coding, has

emerged and shown to achieve the information-theoretic

capacity for the single multicast [2] even when considering

only linear network codes [3]. Several papers have since

studied the network code construction problem for the above

single multicast setting [4]–[7].

On the other hand, when there are multiple coexisting

sessions in the network, the corresponding network code

design/analysis problem, also known as intersession network

coding (INC), becomes notoriously challenging due to the

potential interference within the network. For example, linear

network coding no longer achieves the capacity [10]. Decid-

ing the existence of a (linear) network code that satisfies

general traffic demands becomes an NP-hard problem [5],

[9]. Thus, the recent INC studies have focused on the optimal

characterizations over some restrictive networks or limited

rate constraints, including the capacity regions for directed

cycles [14], degree-2 three-layer directed acyclic networks

(DAG) [15], and for networks with integer link capacity and

two coexisting rate-1 multicast sessions [8].

This work was supported in parts by NSF grants CCF-0845968, CNS-
0905331, CNS-0905408, CNS-1012700, and ARO MURI grant W911NF-
08-1-0238.

Recently, the authors in [12], [13] applied the interference

alignment (IA) technique, originally developed in wireless

interference channel [11], to 3-unicast coexisting sessions

in the name of 3-unicast Asymptotic Network Alignment

(3-ANA). Their application of the interference-aligning idea

brings a new perspective to the INC problems, which enables

us to focus only on designing the precoding and decoding

mappings at the sources and destinations while allowing ran-

domly generated local encoding kernels [7] within the net-

work. Compared to the classic algebraic framework that fully

controls the encoder, decoder, and local encoding kernels [5],

this precoding-based framework can tradeoff the ultimate

achievable throughput with a distributed, implementation-

friendly structure that allows pure random linear NC in the

interior of the network. Their initial study on 3-unicast net-

works shows that, by performing precoding across multiple

time slots and applying the IA technique, the precoding-

based NC can perform strictly better than the pure routing in

some networks, and even better than any linear NC solutions

in some networks. Such results thus demonstrate a new bal-

ance between practicality and throughput enhancement. Fur-

ther development of the precoding-based framework could

thus have significant impact on the practical NC design.

In this work, we first study several basic properties of the

precoding-based framework, and then apply our results to

the 3-ANA scheme proposed in [12], [13], which derives the

certain algebraic but computationally intractable conditions

for the 3-ANA scheme to achieve asymptotically half of the

interference-free throughput for each transmission pair. Note

that in the wireless interference channels where the IA tech-

nique was originally developed, those algebraic feasibility

conditions can be satisfied with high probability provided the

channel gains are independent and continuously distributed

random variables [11]. For comparison, the “network channel

gains” are generally correlated and the correlation depends

heavily on the underlying network topology [12], [13]. As

a result, we need new efficient ways to decide whether the

network of interest admits a 3-ANA scheme that achieves

half of the interference-free throughput asymptotically as

promised in the wireless interference channels. The results

in this work answer this question by developing new graph-

theoretic conditions which are equivalent (at least partially)

to the feasibility of the 3-ANA scheme. The proposed graph-

theoretic conditions can be easily computed and checked

within polynomial time.
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II. PRECODING-BASED INTERSESSION NC

A. System Model and Some Graph-Theoretic Definitions

Consider a DAG G=(V,E) where V is the set of nodes

and E is the set of directed edges. Each edge e ∈ E is

represented by e=uv, where u= tail(e) and v=head(e) are

the tail and head of e, respectively. For any node v∈V , use

In(v)⊆E to denote the collection of incoming edges uv∈E.

Similarly, Out(v)⊆E contains all vw∈E.

A path P is a series of adjacent edges e1e2 ··· ek where

head(ei)= tail(ei+1) ∀ i∈ {1, ···, k−1}. We say that e1 and

ek are the starting and ending edges of P , respectively. For

any path P , we use e∈P to indicate that an edge e is used

by P . For a given path Q, xQy denotes the path segment of

Q from node x (edge x) to node y (edge y). A path starting

from edge e1 and ending at edge ek is denoted by Pe1ek
.

When u = tail(e1) and v = head(ek), we sometimes use

Puv to emphasize the starting and ending nodes of Pe1ek
.

We say a node u is an upstream node of a node v (or v
is a downstream node of u) if there exists a path Puv and

denote it as u ≺ v. If neither u ≺ v nor u ≻ v, then we

say that u and v are not reachable with each other. Edge

e1 is an upstream edge of e2 if head(e1) � tail(e2), and

denoted as e1 ≺ e2. Similarly, e1 and e2 are not reachable

with each other, if neither e1≺e2 nor e1≻e2. A k-edge cut

(sometimes just the “edge cut”) separating node sets U⊆V
and W ⊆ V is a collection of k edges such that any path

from u∈U to w∈W must use at least one of those k edges.

The value of an edge cut is the number of edges in the cut

(A k-edge cut has value k). We denote the minimum value

among all the edge cuts separating U and W as EC(U ;W ).
Then, EC(U ;W )=0 when they are already disconnected. By

convention, if U∩W 6=∅, we define EC(U ;W )=∞. We also

denote the collection of all distinct 1-edge cuts separating U
and W as 1cut(U ;W ). Please refer to [17] for more detailed

graph-theoretic definitions.

B. Algebraic Framework

Given a DAG G=(V,E), we consider the multiple-unicast

problem. For a source-destination pair (sk, dk), let lk be

the number of information symbols to be delivered. Each

information symbol is chosen from a finite field Fq with some

sufficiently large q. We use F as shorthand of Fq .

Following the widely-used instant-transmission model on a

DAG [5], we assume that each edge is capable of transmitting

one symbol in F for any given time without delay and

consider linear network coding over the entire network, i.e.,

a symbol on an edge e∈E is a F-linear combination of the

symbols on its adjacent incoming edges of In(tail(e)). The

collection of coefficients (i.e. local encoding kernels) used

for such linear combinations are represented by the network

variables x, defined as the collection of the variable xe′e′′ for

all adjacent edge pairs (e′, e′′) (i.e., head(e′)= tail(e′′)). See

[5] for the detailed discussion. Following this notation, the

channel gain me
1
;e

2
(x) from an edge e1 to an edge e2 can

be written as a polynomial in the ring of polynomials with

respect to x over F. More rigorously, it can be defined as

me
1
;e

2
(x) =

∑

∀Pe1e2
∈Pe1e2





∏

∀ e′, e′′∈Pe1e2
where head(e′)=tail(e′′)

xe′e′′





where Pe1e2
denotes the collection of all distinct Pe1e2

paths.

Only when e1� e2, me1;e2(x) is a non-zero polynomial,

and we set me1;e2(x) = 1 when e1 = e2 by convention [5].

A channel gain from a node u to a node v is defined by

an |In(v)|×|Out(u)| polynomial matrix Mu;v(x), where its

(i, j)-th entry is the channel gain from j-th outgoing edge of

u to i-th incoming edge of v. When considering source si and

destination dj , we use Mi;j(x) as shorthand for Msi;dj
(x).

We allow the precoding-based NC to code across τ num-

ber of time slots, which are termed as the precoding frame.

The network variables corresponding to each time slot t is

denoted as x(t), and the corresponding channel gain from si
to dj becomes Mi;j(x

(t)) for all t = 1, · · · , τ . Let zi∈F
li×1

be the set of to-be-sent information symbols from si. Then,

for every time slot t=1, · · · , τ , if we define the precoding

matrix V
(t)
i ∈ F

|Out(si)|×li for each source si, then each dj
receives a |In(dj)|-dimensional column vector y

(t)
j (x(t)) as

y
(t)
j (x(t)) = Mj;j(x

(t))V
(t)
j zj +

∑

∀i s.t. i 6=j

Mi;j(x
(t))V

(t)
i zi.

This system model can be equivalently expressed as

yj = Mj;jVj zj +
∑

∀i s.t. i 6=j

Mi;jVi zi (1)

where Vi is the overall precoding matrix for each source

si by vertically concatenating {V
(t)
i }τt=1, and yj is the

vertical concatenation of {y
(t)
j (x(t))}τt=1. The overall channel

matrix Mi;j is a block-diagonal polynomial matrix with

{Mi;j(x
(t))}τt=1 as its diagonal blocks, thus dependent on

the set of network variables {x(t)}τt=1.

After receiving packets for τ time slots, each destination

dj applies the overall decoding matrix Uj ∈ F
lj×τ ·|In(dj)|.

Then, the decoded message vector ẑj can be expressed as

ẑj = Ujyj = UjMj;jVj zj +
∑

∀i s.t. i 6=j

UjMi;jVi zi. (2)

We say the precoding-based NC problem is feasible

if there exists a pair of encoding and decoding matri-

ces {Vi, ∀ i} and {Uj , ∀ j} (which may be a function of

{x(t)}τt=1) such that when choosing each element of the set

of network variables {x(t)}τt=1 independently and uniformly

randomly from F, they satisfies

UjMi;jVi = I (identity) ∀ i = j

UjMi;jVi = 0 ∀ i 6= j.
(3)

Remark 1: One can easily check by the cut-set bound

that a necessary condition for the feasibility of a precod-

ing-based NC problem is given by the frame size τ ≥
maxk{lk/EC(sk; dk)}.

Remark 2: Depending on the time relationship of Vi

and Uj with respect to the network variables {x(t)}τt=1, the

precoding-based NC can be classified as causal vs. non-

causal and time-varying vs. time-invariant schemes.
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C. Comparison to the Classic NC Framework

The authors in [5] established the algebraic framework for

the linear network coding problem, which has the encoding

and decoding equations very similar to (1) and (2) with

the same algebraic feasibility conditions of (3).1 The main

difference between the precoding-based framework and the

classic framework is that the latter allows the NC designer

to control the network variables x while the former assumes

the entries of x are chosen independently and uniformly.

One can thus view the precoding-based NC as a distributed

version of classic NC that tradeoffs the ultimate achievable

performance for more practical distributed implementation

(not controlling the behavior in the interior of the network).

One challenge when using the algebraic feasibility condi-

tions (3) is that given a network code, it is easy to verify

whether (3) is satisfied or not, but it is notoriously hard

to decide the existence of a NC solution satisfying (3) [5],

[9]. Only in some special scenarios, we can convert those

algebraic conditions into some graph-theoretic conditions for

which one can decide the existence of a feasible network

code in polynomial time. For example, if there exists only a

single session in the network (s1, d1), then the existence of a

NC solution satisfying (3) is equivalent to the time-averaged

rate l1/τ being no larger than EC(s1; d1). Moreover, if

l1/τ ≤ EC(s1; d1), then we can use random linear network

coding [7] to construct the optimal network code. Another

example is when there are only two sessions (s1, d1) and

(s2, d2) with l1= l2=τ=1. Then, the existence of a network

code satisfying (3) is equivalent to the conditions that the

1-edge cuts in the network who perform the interference-

cancelling are properly placed in certain ways [8]. Based

on the above observation, the main focus of this work is to

develop new graph-theoretic conditions for a special scenario

of the precoding-based NC, the 3-unicast ANA scheme.

D. Special Example of Precoding-Based Framework: 3-ANA

Scheme

Before proceeding, we introduce some algebraic def-

initions. We say that a set of polynomials h(x) =
{h1(x), ..., hN (x)} is linearly dependent if and only if
∑N

k=1 αkhk(x) = 0 for some coefficients {αk}
N
k=1 that are

not all zeros. By treating h(x(k)) as a polynomial row vector

and vertically concatenating them together, we have an M×N
polynomial matrix [h(x(k))]Mk=1. Namely, each row is based

on the same set of polynomials h(x) but with different

variables x(k) for each row k, respectively. We say that

the polynomial matrix [h(x(k))]Mk=1 is generated from h(x).
When considering only two polynomials g(x) and h(x), we

say g(x) and h(x) are equivalent, denoted by g(x)≡h(x), if

{g(x), h(x)} is linearly dependent. Similarly, g(x) and h(x)

1The original work [5] focuses on the single time slot τ = 1, although
the results can be easily generalized for τ > 1 as well. Note that τ > 1
provides a greater degree of freedom when designing the coding matrices
{Vi,∀ i} and {Uj , ∀ j}. Such time extension turns out to be especially
critical in a precoding-based NC design as it is generally much harder to
design {Vi,∀ i} and {Uj ,∀ j} for randomly chosen x when τ = 1. An
example of this time extension will be discussed in Section III-D.

are not equivalent, denoted by g(x)6≡h(x), if {g(x), h(x)}
is linearly independent. We use GCD( g(x), h(x)) to denote

the greatest common factor of the two polynomials.

We now consider a special class of networks, called the

3-ANA network: A network G is a 3-ANA network if (i)

there are 3 source-destination pairs, {(si, di)}
3
i=1, where all

sources and destinations are distinct; (ii) the topology of

G is stable over a precoding frame; (iii) |In(si)| = 0 and

|Out(si)|= 1 ∀ i (let the only outgoing edge of si as esi .);
(iv) |In(dj)|=1 and |Out(dj)|=0 ∀ j (let the only incoming

edge of dj as edj
.); and (v) any dj can be reached from any

si. (otherwise, it becomes trivial [12].) Note that Mi;j(x)
becomes a single quantity by (iii) and (iv) (from esi to edj

),

thus we denote it as mij(x) for shorthand. We use G3ANA

to emphasize that we are focusing on this 3-ANA network.

The authors in [12], [13] applied the interference align-

ment technique to construct the precoding matrices {Vi, ∀ i}
for the above 3-ANA network. Namely, consider the fol-

lowing parameter values: τ =2n+1, l1=n+ 1, l2=n, and

l3=n for some positive integer n. The goal is thus to achieve

the rate tuple ( n+1
2n+1 ,

n
2n+1 ,

n
2n+1 ) in a 3-ANA network by

applying the following {Vi, ∀ i} construction methodology

of [11]: Define L(x) = m13(x)m32(x)m21(x) and R(x) =
m12(x)m23(x)m31(x), and consider the following 3 row

vectors of dimensions n+1, n, and n, respectively (Each

entry of these row vectors is a polynomial with respect to x

but we drop the input argument x for simplicity.):

v
(n)
1 (x) = m23m32

[

Rn, Rn−1L, ..., RLn−1, Ln
]

,

v
(n)
2 (x) = m13m32

[

Rn, Rn−1L, ..., RLn−1
]

, and

v
(n)
3 (x) = m12m23

[

Rn−1L, ..., RLn−1, Ln
]

,

where the superscript (n) is to emphasize the current n
value used in the construction. The precoding matrix for

each time slot t is thus constructed as V
(t)
i = v

(n)
i (x(t)), so

that their vertical concatenation, i.e., the overall precoding

matrix becomes (recall τ = 2n + 1) Vi = [v
(n)
i (x(t))]2n+1t=1 .

Then, the above construction achieves the desired rates

( n+1
2n+1 ,

n
2n+1 ,

n
2n+1 ) if the overall precoding matrices Vi satisfy

the following six constraints:

d1 : 〈M3;1V3 〉 = 〈M2;1V2 〉 (4)

rank(S
(n)
1 ) = rank(

[

M1;1V1 M2;1V2

]

) = 2n+1 (5)

d2 : 〈M3;2V3 〉 ⊆ 〈M1;2V1 〉 (6)

rank(S
(n)
2 ) = rank(

[

M2;2V2 M1;2V1

]

) = 2n+1 (7)

d3 : 〈M2;3V2 〉 ⊆ 〈M1;3V1 〉 (8)

rank(S
(n)
3 ) = rank(

[

M3;3V3 M1;3V1

]

) = 2n+1 (9)

where 〈A 〉 and rank(A) denote the column vector space

and the rank, respectively, of a given matrix A. Recalling the

definition of Mi;j in Section III-B, the choice of τ=2n+1
and the assumption of |Out(si)|= |In(dj)|=1 result in Mi;j

being a (2n+1)× (2n+1) diagonal matrix with the t-th
diagonal element mij(x

(t)). Thus from the stable network

assumption of (ii) and the constructed {Vi, ∀ i}, the square

matrices {S
(n)
i , ∀ i} become all row-invarint.
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The interpretation of the above constraints is straight-

forward. In order for the interference at d1 to be aligned,

the precoding matrices {Vi}
3
i=1 must be designed such that

(4) can be satisfied. Note that by simple linear algebra,

rank(M2;1V2) = rank(M3;1V3) ≤ n and rank(M1;1V1) ≤
n+1. (5) thus guarantees that rank(

[

M1;1V1 M2;1V2

]

)=
rank(M1;1V1) + rank(M2;1V2) and rank(M1;1V1) = n+1,

implying that d1 can successfully remove the aligned inter-

ference while recovering all l1=n+1 information symbols

intended for d1. Similar arguments can be used to justify (6)
to (9) from the perspectives of d2 and d3.

By noticing the special Vandermonde form when con-

structing Vi, it is trivial that (4), (6), and (8) hold simultane-

ously on the G3ANA of interest when it satisfies L(x) 6≡R(x).
The authors in [13] further derived that when L(x) 6≡R(x),
the conditions (5), (7), and (9) hold with high probability if

the following algebraic conditions are satisfied:

m11m23

n
∑

i=0

αi

(

L/R
)i

6= m13m21

n−1
∑

j=0

βj

(

L/R
)j

(10)

m22m13

n
∑

i=0

αi

(

L/R
)i

6= m23m12

n−1
∑

j=0

βj

(

L/R
)j

(11)

m33m12

n
∑

i=0

αi

(

L/R
)i

6= m32m13

n−1
∑

j=0

βj

(

L/R
)j

(12)

i.e., if the G3ANA of interest satisfies (10), (11), and (12)
∀αi, βj ∈F except all-zeros, then they are sufficient for (5),
(7), and (9), respectively, w.h.p. when L(x) 6≡R(x).

It can be easily shown that directly verifying the above

sufficient conditions is computationally intractable. The fol-

lowing conjecture is thus proposed in [13] to reduce their

computational complexity.

Conjecture (Page 3, [13]): For any n value used in the

3-ANA construction,

m11m23 6≡ m13m21 and m11m32 6≡ m12m31, (13)

m22m13 6≡ m23m12 and m22m31 6≡ m21m32, (14)

m33m12 6≡ m32m13 and m33m21 6≡ m31m23, (15)

(13), (14), and (15) are sufficient for the G3ANA of interest

to satisfy (10), (11), and (12) ∀αi, βj ∈F except all-zeros,

respectively, when L(x) 6≡R(x) holds.

Whether the above conjecture is indeed true or not remains

an open problem. (Currently, all numerical experiments sup-

port this conjecture [13].) Note that even if the conjecture is

true, we still need to check L(x) 6≡R(x), which is highly

non-trivial for large networks. One main result of this work

(Propositions 1 and 2) is to identify some graph-theoretic

condition which can be easily verified in polynomial time,

with the algebraic condition of L(x) 6≡ R(x). The second

main result (Proposition 2) is to prove the conjecture posi-

tively for the simplest case of n = 1.

Remark: In the setting of wireless interference channels,

the individual channel gains are independently and con-

tinuously distributed, for which one can easily prove that

L(x) 6≡ R(x) with close-to-one probability. For a network

setting, the channel gains Mi;j(x) are no longer independent

e1

e2

s1 s2

d1 d2

x1 x2

x5

x6

x9

s3

d3

x10

x3

x4

x7
x8

x11

x12

Fig. 1. Example G3ANA structure satisfying L(x) ≡ R(x) with x =
{x1, x2, ..., x12}.

for different (i, j) pairs and the correlation depends on the

underlying network topology, such as the 3-ANA network

example satisfying L(x)≡R(x) described in Fig. 1.

III. PROPERTIES OF PRECODING-BASED FRAMEWORK

In this section, we provide a few fundamental relationships

between the channel gains and underlying DAG G in the

precoding-based framework. These newly discovered results

will later be used to prove the graph-theoretic condition of

the 3-ANA scheme. For the ease of exposition, we begin

by simplifying the feasibility conditions of 3-ANA about the

row-invariant matrices {S
(n)
i ∀ i}.

A. From Non-Zero Determinant to Linear Independence

Theorem 1: Fix any integer N > 1. Consider a set of N
non-zero polynomials h(x) = {h1(x), ..., hN (x)} and the

polynomial matrix [h(x(k))]Nk=1 generated from h(x). Then,

assuming sufficiently large finite field size q, h(x) is linearly

dependent if and only if det([h(x(k))]Nk=1)=0.

Proof of ⇒: Suppose that h(x) is linearly dependent.

Then, there exists a set of coefficients {αk}
N
k=1 such that

∑N

k=1 αkhk(x) = 0 and at least one of them is non-zero.

Since [h(x(k))]Nk=1 is row-invariant, we can perform elemen-

tary column operations on [h(x(k))]Nk=1 using {αk}
N
k=1 to

create an all-zero column. Thus, det([h(x(k))]Nk=1)=0.

Proof of ⇐: We prove this direction by induction on

the value of N . When N = 2, det([h(x(k))]Nk=1) = 0 im-

plies h1(x
(1))h2(x

(2)) = h2(x
(1))h1(x

(2)), thereby it must be

h1(x)=h2(x) such that h(x)= {h1(x), h2(x)} is linearly

dependent. Suppose that this holds for any N<n0. When

N=n0, consider the (1,1)-th cofactor C11(x
(2), ...,x(n0)) by

removing 1st row and 1st column from [h(x(k))]n0

k=1.

Consider the following two cases. When C11 is a zero

polynomial, the induction tells us that {h2(x), ..., hn0
(x)}

is linearly dependent, thereby so is h(x) by definition.

When C11 is a non-zero polynomial, since we assume the

sufficiently large enough q, there exists an assignment from

x̂2 to x̂n0
such that C11(x̂2, ..., x̂n0

) 6= 0. But note that by

the Laplace expansion, we also have
∑n0

k=1 hk(x
(1))C1k = 0

where C1k is the (1, k)-th cofactor. By evaluating C1k with

{x̂i}
n0

i=2, we can conclude that h(x) is linearly dependent

since C11(x̂2, ..., x̂n0
) 6=0.

Remark: Theorem 1 can be rewritten such that when

N > 1, a set of N non-zero polynomials h(x) is linearly
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independent if and only if there exists some assignments

{x̂k}
N
k=1 resulting det([h(x̂k)]

N
k=1) 6=0. By the assumption

of sufficiently large field size q and Schwartz-Zippel lemma,

it is also equivalent to that det([h(x(k))]Nk=1) 6=0 w.h.p.

Theorem 1 is important in a sense that this enables us to

simplify the feasibility characterization of 3-ANA. From the

construction in Section II-D, the row-invariant matrix S
(n)
i

is in the form of S
(n)
i = [h

(n)
i (x(t))]

(2n+1)
t=1 where h

(n)
1 (x) =

[m11(x)v
(n)
1 (x), m21(x)v

(n)
2 (x)], h

(n)
2 (x)= [m22(x)v

(n)
2 (x),

m12(x)v
(n)
1 (x)], and h

(n)
3 (x)= [m33(x)v

(n)
3 (x), m13v

(n)
1 (x)].

By the assumptions of 3-ANA network, the polynomials

in the set h
(n)
i (x) are all non-zero. Then, the linear in-

dependence of h
(n)
1 (x) can be used to prove that (10) is

not only sufficient but also necessary for (5) w.h.p. when

L(x) 6≡R(x). By similar arguments on h
(n)
2 (x) and h

(n)
3 (x),

(11) and (12) are both necessary and sufficient for (7) and

(9), respectively, w.h.p. when L(x) 6≡R(x).

B. Subgraph Property of Precoding-Based Framework

Given a DAG G, recall the definition of channel gain

me1;e2(x) from e1 to e2 in Section II-B. For a subgraph

G′ ⊆ G containing e1 and e2, let me1;e2(x
′) denote the

channel gain from e1 to e2 in G′.

Theorem 2 (Subgraph Property): Given a DAG G, con-

sider an arbitrary, but fixed, finite collection of edge pairs,

{(ei, e
′
i) ∈ E2 : ei � e′i and i ∈ I} where I is a finite

index set, and two non-zero polynomial functions f : F|I| 7→
F and g : F

|I| 7→ F. Then, f({mei;e′i
(x) ∀ i ∈ I}) ≡

g({mei;e′i
(x) ∀ i∈I}) if and only if for all subgraphs G′⊆G

containing all edges in {ei, e
′
i ∀ i ∈ I}, f({mei;e′i

(x′) ∀ i ∈
I})≡g({mei;e′i

(x′) ∀ i∈I}).

Proof of ⇐: Choosing G′=G simply proves.

Proof of ⇒: Since f({mei;e′i
(x) ∀ i ∈ I})≡ g({mei;e′i

(x) ∀ i ∈ I}), we can assume f({mei;e′i
(x) ∀ i ∈ I}) =

αg({mei;e′i
(x) ∀ i ∈ I}) for some α ∈ F\{0}. Consider a

subgraph G′ containing all edges in {ei, e
′
i ∀ i ∈ I} and

the channel gain mei;e′i
(x′) on G′. Then, mei;e′i

(x′) can be

derived from mei;e′i
(x) by substituting those x variables that

are not in G′ by zero. As a result, we immediately have

f({mei;e′i
(x′) ∀ i ∈ I}) = αg({mei;e′i

(x′) ∀ i ∈ I}) for the

same α. The proof of this direction is thus complete.

Remark: By Theorem 2, the linear dependence of h
(n)
i (x)

on G3ANA is strengthened to for all subgraphs of G3ANA

containing {esi , edi
, ∀ i}, if we carefully select f(·) and g(·).

Thus, h
(n)
i (x) is linearly independent on G3ANA if and only

if there exists a subgraph of G3ANA containing {esi , edi
, ∀ i}

on which h
(n)
i (x′) is linearly independent. This has a similar

flavor to the result of the classic framework [5], [7], since

for the single multicast from a single source s to the set of

destinations {dj}, the existence of subgraph induced by the

set of edge-disjoint paths from s to dj is enough to say that

the network transfer matrix from s to dj is full-rank w.h.p.

Theorem 2 can be used to show that (13), (14), and (15)
can be satisfied by checking much simpler graph-theoretic

conditions.

Corollary 1 (Only ⇒ direction proved in [13]): Given a

G3ANA, consider the corresponding channel gains mij(x) as

defined in Section II-D. Then, EC({si1 , si2}; {dj1 , dj2})=1
if and only if mi1j1(x)mi2j2(x)≡mi2j1(x)mi1j2(x).

Proof of ⇒: It becomes trivial by taking an edge e ∈
1cut({si1 , si2}; {dj1 , dj2}) and easy manipulation.

Proof of ⇐: WLOG, (i1, i2) = (1, 2) and (j1, j2) =
(1, 3). Given a G3ANA with its network variables x, sup-

pose by contradiction that EC({s1, s2}; {d1, d3}) ≥ 2.

Then, by Theorem 2, it suffices to show the existence

a subgraph G′ ⊆ G3ANA containing {es1 , es2 , ed1
, ed3

}
which satisfies m11(x

′)m23(x
′) 6≡ m13(x

′)m21(x
′). But

EC({s1, s2}; {d1, d3}) ≥ 2 implies that there must exist

two edge-disjoint paths from {s1, s2} to {d1, d3} by min-

cut/max-flow bound [1]. The subgraph G′ induced by such

two edge-disjoint paths results in either m11(x
′)m23(x

′)6≡1
with m13(x

′)m21(x
′) = 0 or m11(x

′)m23(x
′) = 0 with

m13(x
′)m21(x

′) 6≡ 1 when they are even vertex-disjoint,

and results in m11(x
′)m23(x

′)6≡m13(x
′)m21(x

′) when they

share only vertexes. Thus the proof is complete.

C. New Channel Gain Property

With Theorems 1 and 2, checking whether S
(n)
i being full-

rank w.h.p. on G3ANA or not can be reduced to finding

one subgraph such that the resulting S
(n)
i being full-rank

w.h.p. However, the guidance on how to search for such

a subgraph of G3ANA is still missing. To proceed, we need

deeper understanding about the channel gain property in the

precoding-based framework.

Theorem 3 (Channel Gain Property): Given a DAG G
and two distinct edges es and ed where s = head(es) and

d = tail(ed), the following is true (we drop the variables x

for shorthand):

• If EC(s; d)=0, then mes;ed =0
• If EC(s; d) = 1, then mes;ed is reducible and can be

expressed as mes;ed = mes;e1

(

∏N−1
i=1 mei;ei+1

)

meN ;ed

where {ei}
N
i=1 are all the distinct 1-edge cuts between s

and d in the topological order (from the most upstream

to the most downstream). Moreover, the polynomial

factors mes;e1 , {mei;ei+1
}N−1
i=1 , and meN ;ed are all ir-

reducible, and no two of them are equivalent.

• If EC(s; d)≥2 (including ∞), then mes;ed is irreducible.

Proof: Due to space limitations, this proof is omitted.

Detailed complete proof can be found in [16].

Remark: Theorem 3 only considers a channel gain between

two distinct edges. If es = ed, then mes;ed = 1 from the

convention [5].

Corollary 2: Given a G3ANA, consider the corresponding

channel gains mij(x) as defined in Section II-D. Then,

GCD(mi1j1 ,mi2j2) 6= mi2j2 unless (i1, j1) = (i2, j2), i.e.,

any channel gain mi1j1 cannot contain the other mi2j2 .

Proof: Suppose by contradiction that (i1, j1) 6=(i2, j2)
and GCD(mi1j1 ,mi2j2) = mi2j2 . Since they discover the

disjoint portion of G3ANA, mi1j1 6≡mi2j2 . Thus mi1j1 must be

reducible and by Theorem 3, it can be expressed as product

of irreducibles, no two of which are equivalent. Then, the
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fact that mi1j1 contains mi2j2 as a factor implies that si2 is

in the downstream of si1 if i1 6= i2, and dj2 is in the upstream

of dj1 if j1 6=j2, which violates the definition of G3ANA.

IV. DETAILED STUDIES OF 3-ANA SCHEME

In Section III, we investigated the key relationships be-

tween the channel gain and the underlying DAG G. For

example, Theorem 2 can be used to check whether L(x) 6≡
R(x) holds or not on the G3ANA of interest. That is, if we

can find one subgraph containing {esi , edi
, ∀ i} of the given

G3ANA on which L(x) 6≡R(x) holds, then the original G3ANA

must also satisfy L(x) 6≡R(x).

However, Theorem 2 does not provide any graph-theoretic

guidance on how to find such a subgraph. In this section,

we answer this open challenge by characterizing graph-

theoretically the feasibility of the 3-ANA scheme.

A. New Graph-Theoretic Notations and Properties

Consider three indices i, j, and k taking values in {1, 2, 3},

for which the values of j and k must be different. Given a

G3ANA, let us define:

Si;j∩k , { e∈E\{esi} : e∈1cut(si; dj) ∩ 1cut(si; dk) },

Di;j∩k , { e∈E\{edj
} : e∈1cut(sj ; di) ∩ 1cut(sk; di) }.

When the values of indices i, j, and k are all different,

we use Si (resp. Di) as shorthand for Si;j∩k (resp. Di;j∩k).

Then, the following lemmas show some topological rela-

tionships among them. We will assume that the values of

indices i, j, and k used in the following lemmas are all

different unless noted. Due to space limitations, the proofs

to the following lemmas are omitted. Please see [16].

Lemma 1: If e′ ∈ Si and e′′ ∈ Dj , then one of the

following statements is true: e′≺e′′, e′≻e′′, or e′=e′′.

Lemma 2: (Si∩Sj)⊆Dk.

Lemma 3: For all e′∈Si\Dj and all e′′∈Dj , e′�e′′.

Lemma 4: Dj ∩ Dk 6= ∅ if and only if both Si ∩ Dj 6= ∅
and Si ∩Dk 6=∅.

Lemma 5: For all e′′∈Di∩Dj , if Si∩Sj 6=∅, then there

exists e′∗∈Si∩Sj such that e′∗�e′′.

Lemma 6: Consider four indices i, j1, j2, and j3 taking

values in {1, 2, 3} for which the values of j1, j2 and j3
must be all different. If Si;j1∩j2 6= ∅ and Si;j1∩j3 6= ∅, then

Si;j1∩j2∩ Si;j1∩j3 6=∅ thereby Si;j2∩j3 6=∅ and Si6=∅.

Remark: If we swap the roles of S and D , then the

corresponding statements from Lemma 1 to Lemma 6 still

hold. For example, Lemma 2 also implies (Di ∩Dj)⊆Sk.

We also prove some relationship between the channel

gains on G3ANA and the 1-edge cuts.

Lemma 7: Given a G3ANA, consider the corresponding

channel gains as defined in Section II-D. Consider three

indices i, j1, and j2 taking values in {1, 2, 3} for which the

values of j1 and j2 must be different. If GCD(mij1 ,mij2)6≡
1, then Si;j1∩j2 6=∅. (Similarly, if GCD(mj1i,mj2i)6≡1, then

Di;j1∩j2 6=∅.)

B. Characterizing the GTC of L(x) 6≡R(x)

We first prove the following graph-theoretic condition

which implies L(x) 6≡R(x).
Proposition 1: If there exists a pair of indices i, j ∈

{1, 2, 3} where i 6= j satisfying both Si ∩ Sj 6= ∅ and

Di ∩Dj 6=∅ on a given G3ANA, then we have L(x)≡R(x).
Proof: WLOG, suppose S1 ∩ S2 6= ∅ and D1∩D2 6= ∅

(i = 1 and j = 2). By Lemma 5, we can find two edges

e1 ∈S1∩S2 and e2 ∈D1∩D2 such that e1 � e2. Also note

that e1 ∈D3 and e2 ∈ S3 by Lemma 2. Then by Theorem

3, the channel gains mij(x), i 6= j can be expressed by (we

drop x for shorthand):

m13=mes1
;e1 me1;ed3

m12=mes1
;e1 me1;e2 me2;ed2

m32=mes3
;e2 me2;ed2

m23=mes2
;e1 me1;ed3

m21=mes2
;e1 me1;e2 me2;ed1

m31=mes3
;e2 me2;ed1

where the expressions of m12 and m21 are derived based

on Theorem 3, and the facts that e1 � e2 and both e1 and

e2 belong to 1cut(s1; d2)∩1cut(s2; d1) for example. We can

easily verify that the G3ANA of interest satisfies L≡R.

Remark: In the example of Fig. 1, one can easily see that

e1∈S1 ∩ S2 and e2∈D1∩D2. Hence, Proposition 1 proves

that the example network of Fig. 1 satisfies L(x) ≡ R(x)
without actually computing L(x) and R(x).

For the following, we will show that the graph-theoretic

condition identified in Proposition 1 is also necessary for

L(x) ≡ R(x). Before proceeding, we prove the following

graph-theoretic properties about the channel gains condition-

ing on L(x)≡R(x). We drop x for shorthand.

Lemma 8: If the G3ANA of interest satisfies L≡R, then

Si6=∅ and Dj 6=∅ for all i and j, respectively.

Proof: Suppose the G3ANA of interest satisfies L ≡
R. We first prove that EC(head(esi); tail(edj

)) = 1 for all

i 6= j. Suppose by contradiction there exists a pair i 6=
j such that EC(head(esi); tail(edj

)) 6= 1. WLOG, assume

EC(head(es1); tail(ed2
)) 6= 1 (i.e., i = 1 and j = 2).

Since we are focusing on a 3-ANA network, we must

have EC(head(es1); tail(ed2
)) ≥ 2. By Theorem 3, m12 is

irreducible. However, since L ≡ R, m12 must be a factor

of (at least) one of the three polynomials m13, m32, or

m21. This, however, contradicts Corollary 2. As a result,

EC(head(esi); tail(edj
))=1 for all i 6=j. This shows that for

all i 6=j, we can decompose the channel gain mij by

mij = m
esi

;eij
1





Nij−1
∏

k=1

m
e
ij

k
;eij

k+1



m
e
ij

Nij
;e
dj

(16)

where Nij is the number of 1-edge cuts separating si and dj ;

{eijk }
Nij

k=1 list all those 1-edge cuts from the most upstream to

the most downstream one but not counting esi and edj
; and

m
esi

;eij
1

, {m
e
ij

k
;eij

k+1

}
Nij−1
k=1 , and m

e
ij

Nij
;edj

are all irreducible

polynomial and no two of them are equivalent to each other.

We now show that for any three distinct index values i1,

i2, and j, we must have GCD(mi1j ,mi2j)6≡1. We prove this

statement by contradiction. Suppose, say GCD(m21,m31)6≡
1. Then by the assumption that L ≡ R, we must have
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GCD(m21,m12m23) =m21. As a result, all the irreducible

factors of m21, see (16), must also be factors of m12m23.

For example, the irreducible factor me21
N21

;e
d1

of m21 must

be a factor of m12m23. By Theorem 3, this is possible only

when ed1
is a 1-edge cut separating either {s1} and {d2} or

{s2} and {d3}. However, this contradicts the 3-ANA network

assumption that |Out(d1)|=0.

By Lemma 7 and the above discussion, we must have

Dj 6= ∅ for all j. By repeating the symmetric arguments for

Si, the proof is complete.

We now prove the necessity counterpart of Proposition 1.

Proposition 2: If the G3ANA of interest satisfies L(x) ≡
R(x), then there exists a pair of indices i, j∈{1, 2, 3} where

i 6=j satisfying both Si∩ Sj 6=∅ and Di∩Dj 6=∅.

Proof: Suppose the G3ANA of interest satisfies L≡R.

By Lemma 8, we knew that each channel gain mij (i 6= j)

in the expression of L≡R can be expressed as in (16). In

addition, Si6=∅ and Dj 6=∅ for all i and j.

Case 1 when Si ∩Dj=∅ for some i 6= j :

WLOG, assume S2∩D1= ∅ (i = 2 and j = 1). Let e∗2
denote the most downstream edge in S2 and let e∗1 denote

the most upstream edge in D1. Since S2∩D1= ∅, edge e∗2
must not be in D1. By Lemma 3, we must have e∗2≺e∗1.

We fisrt show that {e∗2, e
∗
1}⊂1cut(s1; d2). We first notice

that by definition, e∗2 ∈ S2 ⊆ 1cut(s2; d1) and e∗1 ∈ D1 ⊆
1cut(s2; d1). Therefore, when rewriting m21 by (16), both

e∗2 and e∗1 must participate in the form of e∗2 = e21
N̂21

and

e∗1 = e21
Ñ21

for two integers N̂21 and Ñ21 satisfying 1 ≤

N̂21<Ñ21≤N21. Define temporarily:

me∗
2
;e∗

1
=

Ñ21−1
∏

k=N̂21

me21
k

;e21
k+1

where me∗
2
;e∗

1
6≡1 by our construction of e∗2≺e∗1.

We now claim that GCD(me∗
2
;e∗

1
,m23m31) ≡ 1, i.e.

m23m31 cannot contain any irreducible factor of me∗
2
;e∗

1
.

Suppose by contradiction that m23 contains any irreducible

factor of me∗
2
;e∗

1
, say me21

k̃
;e21

k̃+1

where N̂21 ≤ k̃ ≤ Ñ21 − 1.

Then, by Theorem 3, e21
k̃+1

must belong to 1cut(s2; d3).

Since e21
k̃+1

∈1cut(s2; d1), this implies that e21
k̃+1

∈S2. This,

however, contradicts the assumption that e∗2 = e21
N̂21

≺ e21
k̃+1

is the most downstream edge in S2. As a result, m23 must

not contain any irreducible factor of me∗
2
;e∗

1
. By a symmetric

argument, we can also show that m31 must not contain

any irreducible factor of me∗
2
;e∗

1
. Since the assumption of

L≡R implies that GCD(me∗
2
;e∗

1
, R ) = me∗

2
;e∗

1
, we thus must

have GCD(me∗
2
;e∗

1
,m12) =me∗

2
;e∗

1
. Note that m12 6≡me∗

2
;e∗

1
,

otherwise s1 will be a downstream node of s2. By Theorem

3, both e∗1 and e∗2 must belong to 1cut(s1; d2).
We prove that e∗2 ∈ 1cut(s1; d3) and e∗1 ∈ 1cut(s3; d2).

Take an arbitrary P21 path from s2 to d1. Since {e∗2, e
∗
1}⊂

1cut(s2; d1), both e∗2 and e∗1 must be used by P21. Since

e∗2 ∈ 1cut(s1; d2) implies s1 ≺ tail(e∗2), and e∗2 ∈ S2

implies head(e∗2) ≺ d3, we can construct an arbitrary path

P13 from s1 to d3 passing through e∗2. Furthermore, since

e∗1 ∈D1 implies s3 ≺ tail(e∗1), and e∗1 ∈ 1cut(s1; d2) implies

head(e∗1)≺d2, we can construct an arbitrary path P32 from

s3 to d2 passing through e∗1. Then, using these constructed

paths P21, P13, and P32 and the fact that both e∗2 and e∗1
belong to 1cut(s1; d2), we will prove that e∗2 ∈ 1cut(s1; d3)
and e∗1∈1cut(s3; d2).

We show that e∗2∈1cut(s1; d3). By contradiction, suppose

that there exists a path Q13 from s1 to d3 not passing through

e∗2 (assume e∗2 6∈1cut(s1; d3)). Consider P32 and P21 above.

As constructed before, e∗1 is used by both paths. Consider the

set of nodes that both paths pass through (including tail(e∗1)
and head(e∗1)), and denote its most downstream node as w.

In addition, denote ew∈P21 where tail(ew) = w. WLOG, let

w≻ head(e∗1). Then, Q13 must be vertex-disjoint with both

the path segment head(e∗2)P21w and P32, otherwise we can

construct a path from s1 to d2 not passing through e∗2, which

violates e∗2∈1cut(s1; d2). Furthermore, Q13 must be vertex-

disjoint with the path segment s2P21tail(e∗2), otherwise we

can construct a path from s2 to d3 not passing through e∗2,

which violates e∗2 ∈ S2. However, Q13 may or may not be

vertex-disjoint with the path segment head(ew)P21d1. Then,

the subgraph induced by {Q13, P32, P21} (where L 6≡ 1)

satisfies L 6≡ R because there are no paths from s1 to d2
resulting m12(x

′)=0 thereby R=0 on that subgraph, which

contradicts the assumption that G3ANA satisfies L ≡ R by

Theorem 2. Thus, e∗2∈1cut(s1; d3).
By a similar argument using the constructed paths P13 and

P21, and any arbitrary path Q32 from s3 to d2 not passing

through e∗1, we can prove that e∗1∈1cut(s3; d2).
Therefore, with the argument that e∗2 ∈ 1cut(s1; d2) and

e∗1∈1cut(s1; d2) when G3ANA satisfies L≡R and S2 ∩D1=
∅, we showed that e∗2 ∈ 1cut(s1; d3) and e∗1 ∈ 1cut(s3; d2),
which implies that e∗2 ∈ S1 and e∗1 ∈ D2. Since e∗2 ∈ S2

and e∗1 ∈D1 by assumption, we prove that S1 ∩ S2 6= ∅ and

D1 ∩D26=∅. The proof of Case 1 is thus complete.

Case 2 when Si ∩Dj 6=∅ for all i 6= j :

By Lemma 4, we must have Si ∩ Sj 6=∅ and Di ∩Dj 6=∅
∀ i 6= j. The proof of Case 2 is complete.

C. GTC of the Feasibility of 3-ANA with n=1

Propositions 1 and 2 provide the graph-theoretic condition

that characterizes whether the G3ANA of interest satisfies

L(x) 6≡ R(x) or not. However, to ensure the feasibility of

the 3-ANA scheme, h
(n)
i (x) must be linearly independent on

G3ANA for all i. In this subsection, we prove a graph-theoretic

characterization characterizing the linear independence of

h
(n)
i (x) for the simplest case of n=1.

Consider the following graph-theoretic conditions:

Si∩Sj=∅ or Di∩Dj=∅ ∀{i, j} ⊂ {1, 2, 3} (17)

EC({s1, s2}; {d1, d3})≥2, EC({s1, s3}; {d1, d2})≥2 (18)

EC({s1, s2}; {d2, d3})≥2, EC({s2, s3}; {d1, d2})≥2 (19)

EC({s1, s3}; {d2, d3})≥2, EC({s2, s3}; {d1, d3})≥2 (20)

Proposition 3: 3-ANA with n=1 is feasible on the G3ANA

of interest if and only if G3ANA satisfies (17-20).

Proof: By Proposition 1 and 2, the first feasibility

condition of 3-unicast ANA (G3ANA satisfies L 6≡ R) is
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equivalent to (17). By Theorem 1, det(S
(n)
i ) 6= 0 ∀ i w.h.p.

whenever h
(n)
1 (x), h

(n)
2 (x), and h

(n)
3 (x) is linearly indepen-

dent on G3ANA, respectively. Also by Corollary 1, G3ANA

satisfies both m11m23 6≡ m13m21 and m11m32 6≡ m12m31

if and only if (18) holds on G3ANA. (Similarly, jointly

m22m136≡m23m12 and m22m316≡m21m32 are equivalent to

(19), and jointly m33m126≡m32m13 and m33m216≡m31m23

are equivalent to (20).)
Thus for a G3ANA satisfying L 6≡R, we need to show that,

(a) h
(n)
1 (x) is linearly independent if and only if m11m236≡

m13m21 and m11m326≡m12m31.

(b) h
(n)
2 (x) is linearly independent if and only if m22m136≡

m23m12 and m22m316≡m21m32.

(c) h
(n)
3 (x) is linearly independent if and only if m33m126≡

m32m13 and m33m216≡m31m23.

We prove only (a). The proof for (b) and (c) will be

followed similarly. When n=1,

h
(1)
1 (x) = {m11v

(1)
1 , m21v

(1)
2 }

= {m11m23m32R, m11m23m32L, m21m13m32R}

Proof of (a), ⇒: By contradiction, suppose G3ANA satisfies

either m11m23≡ m13m21 or m11m32≡ m12m31 or both.

Then, it is easy to see that h
(1)
1 (x) is linearly dependent.

Proof of (a), ⇐: This proof is omitted due to space

limitations. Please refer to [16].

The problem of finding the graph-theoretic condition for

general n ≥ 2 remains an open problem. On the other

hand, we prove the following corollary which shows that the

feasibility conditions for n=1 case turns out to be necessary

for the cases of general n values.

Corollary 3: For the G3ANA of interest, if 3-ANA with

n≥ 2 is feasible on G3ANA, then 3-ANA with n=1 is also

feasible on G3ANA.

Proof: If 3-ANA with n≥2 is feasible on a G3ANA, then

h
(n)
i (x) is linearly independent on G3ANA for i∈{1, 2, 3} by

Theorem 1, along with that G3ANA satisfies L(x) 6≡ R(x).

If h
(n)
i (x) is linearly independent, then h

(1)
i (x), a subset of

the original polynomials, is linearly independent as well. By

Theorem 1, 3-ANA with n=1 is feasible on that G3ANA.

Fig. 2 summarizes our knowledge about the graph-

theoretic characterization of the 3-ANA scheme, in which

three arrows have been established, except the right one.

That is, we have developed necessary and sufficient graph-

theoretic condition for the 3-ANA schemes with n = 1. In

our future work, we will investigate graph-theoretic charac-

terization problem for general n≥2.

V. CONCLUSION AND FUTURE WORKS

The main subject of this work is the general class of

precoding-based NC schemes, which focus on designing

the precoding and decoding mappings at the sources and

destinations while using randomly generated local encoding

kernels within the network. Such a precoding-based structure

includes the 3-ANA scheme, originally proposed in [12],

[13], as a special case. In this work, we have identified new

supports 

3-ANA with n=11

supports 3-ANA 

with arbitrary n>=2

satisfies the graph-theoretic conditions (17 � 20)

answered 
by 

Corollary 3 
answered by 

Propositions 1, 2, and 3 ?

Fig. 2. Current understanding of 3-ANA graph-theoretic characterization.

graph-theoretic vs algebraic relationship for the precoding-

based NC solutions. Based on the findings on the general pre-

coding-based NC, we have further characterized the graph-

theoretic feasibility conditions of the 3-ANA scheme for the

simplest case of n=1, which includes proving the open con-

jectures of the existing results for n=1. We believe that the

fundamental analysis in this work will serve as a precursor to

fully understand the notoriously challenging multiple-unicast

NC problem and design practical, distributed NC solutions

based on the precoding-based framework.
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