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Abstract—We study the optimal control of communication
networks in the presence of heterogeneous traffic require-
ments. Specifically, we distinguish the flows into two crucial
classes: inelastic for modeling high-priority, delay-sensitive, and
fixed-throughput applications; and elastic for modeling low-pri-
ority, delay-tolerant, and throughput-greedy applications. We note
that the coexistence of such diverse flows creates complex interac-
tions at multiple levels (e.g., flow and packet levels), which prevent
the use of earlier design approaches that dominantly assume
homogeneous traffic. In this work, we develop the mathematical
framework and novel design methodologies needed to support
such heterogeneous requirements and propose provably optimal
network algorithms that account for the multilevel interactions
between the flows. To that end, we first formulate a network
optimization problem that incorporates the above throughput and
service prioritization requirements of the two traffic types. We,
then develop a distributed joint load-balancing and congestion
control algorithm that achieves the dual goal of maximizing the
aggregate utility gained by the elastic flows while satisfying the
fixed throughput and prioritization requirements of the inelastic
flows. Next, we extend our joint algorithm in two ways to fur-
ther improve its performance: in delay through a virtual queue
implementation with minimal throughput degradation and in
utilization by allowing for dynamic multipath routing for elastic
flows. A unique characteristic of our proposed dynamic routing
solution is the novel two-stage queueing architecture it introduces
to satisfy the service prioritization requirement.

Index Terms—Cross-layer optimization, dynamic load bal-
ancing, flow rate control, heterogeneous traffic, routing, sched-
uling, utility maximization.

I. INTRODUCTION

O VER the last several years, we have witnessed the de-
velopment of increasingly sophisticated optimization and

control techniques to address a variety of resource allocation
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problems for communication networks (e.g., [1], [2], [6], [7],
[11], [12], [14], [16], [19], [21], [24], and [27]; see [9] and [18]
for an overview). Much of this investigation has focused pri-
marily on optimizing functions of long-term performance met-
rics such as throughput subject to network stability. Two types
of traffic can be distinguished: elastic traffic with controllable
packet injection rates generated by file transfer or other delay-
tolerant applications, and inelastic traffic with fixed packet in-
jection rates generated by delay-sensitive applications. Much of
the existing work focuses on the existence of either the inelastic
(e.g., [8], [22], and [28]) or the elastic (e.g., [6], [7], [12], [17],
and [21]) traffic alone. The integration of elastic and inelastic
flows in single-hop wireless systems has been studied in [3],
[23], and [25] and has been extended to a multiple-hop network
in [10], [14], and [27], however with the restriction of every flow
having a single route. In [27], the coexistence of inelastic and
elastic flows has also been considered in a more general setup.

However, previous utility maximization-based solutions
do not distinguish inelastic packets and elastic packets at the
packet level. Thus, the inelastic packets need to compete with
elastic packets for link bandwidths, so these two types of
flows have comparable delay performance. Yet, inelastic flows
model delay-sensitive traffic and must be served with higher
priority as they traverse the network. Our framework differs
from earlier utility maximization-based approaches in that we
give strictly higher service priority to inelastic packets, i.e., at
every link, elastic packets can be transmitted only when there
are no inelastic packets waiting for service. This prioritization
decouples the inelastic packets and elastic packets at the link
(or, equivalently, packet) level and will result in small delays
for inelastic flows. Note that even though two types of flows
are decoupled at the link level, to provide high utilization for
elastic traffic, the inelastic flows must smartly distribute their
load among their available routes. To that end, we developed
our algorithm to maximize the network utility defined by elastic
flows under the prioritization, which provides new coupling
methods at the flow level that are different from previous utility
maximization-based solutions.

We believe the main contributions of this work to be the
following.

• The mathematical formulation of the utility maximization
problem for elastic rate control subject to inelastic traffic
requirements of fixed rate and service prioritization.

• The development of a distributed joint load-balancing and
rate-control algorithm that gives strict service priority to
inelastic packets while guaranteeing optimal resource uti-
lization for elastic traffic. The description and the opti-
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mality of this algorithm are provided for both the fluid
model and the actual stochastic network.

• The extension of the base algorithm to a virtual queue-
based operation that enables further delay reduction for
both traffic types with a nominal and controllable sacrifice
in the network utilization.

• The relaxation of the static route assumption for the elastic
flows to achieve higher utilization of the network resources
through dynamic, multipath routing while maintaining the
prioritization requirements. This leads to a novel two-stage
queueing architecture that complies with the prioritization
requirements of the design.

The rest of the paper is organized as follows. We introduce
our system model and formulate the main stochastic network
optimization problem in Section II. In Section III, we first an-
alyze a simple fluid version of the problem, and then using the
insights gained to extend the solution to the stochastic scenario.
In Section IV, we extend the algorithm in two practically im-
portant directions that improve delay performance and allow for
dynamic multipath routing for elastic traffic. The simulation re-
sults and our concluding remarks are provided in Sections V and
VI, respectively.

II. SYSTEM MODEL AND OBJECTIVES

We consider a fixed network represented by a graph
, where is the set of nodes and is the set of directed

links. We assume that the capacity of link is , and define
the vector of link capacities as . Time is slotted in
our system, and the external packets arrive at the beginning of
each time slot.

We consider the scenario where the network resources are
shared by a set of inelastic and elastic flows, where a flow is
defined by its source node and destination node. While the in-
elastic flow represents traffic with fixed rates and stringent delay
constraints such as voice and video streaming, the elastic flow
represents delay-tolerant traffic with adaptive rates such as non-
real-time file sharing and e-mail applications. The set of all
flows in the network is denoted by , which is partitioned into
two subsets, and , where is the set of elastic flows and

is the set of inelastic flows. Next, we describe the character-
istics of inelastic and elastic flows in more detail.

Inelastic Flow: We let denote an inelastic flow in the net-
work with source and destination . Each inelastic flow is
associated with a fixed set of routes . The th route of this set
is described by a vector such that if link
is on that route, and zero otherwise. Let be the number
of injected packets on the th route of flow at time slot ,

and let be the vector of inelastic flow

packets injected on each route in slot . Note that we slightly
abuse our notation by using to denote rate vector of all in-
elastic flows, while stands for the rate of flow over
route . We assume that the packet arrivals of the inelastic
flow follow a stochastic process that is identically and
independently distributed (i.i.d.) over time with a fixed mean
rate, denoted by , and a finite second moment,
i.e., .

To clarify the difference between and ,

we note that denotes the number of packets generated by

flow while describes the number of packets in-

jected into the network to traverse each of the available routes
of flow . Thus, is an uncontrollable stochastic process

describing exogenous arrivals, whereas is con-

trollable by the network algorithm.
For notational convenience, we define

to denote the total number of inelastic packets on link for a
given .

Elastic Flow: We let denote an elastic flow in the network
with source and destination . In Section IV-B, we will con-
sider dynamic routing for the elastic flow, but for now we will
concentrate on the fix route case to get some insight about the
load balancing. Here, we assume that each elastic flow is as-
sociated with a single route , and we let be the number
of injected packets of flow in slot . Similar to the inelastic
case, we also define to be the vector of
elastic flow rates in slot , and

to denote the total number of elastic packets on link . Associ-
ated with each elastic flow , there exists a utility function
that measures the “satisfaction” of that flow as a function of its
mean injection rate . We also as-
sume that the sources of the elastic flows are always infinitely
backlogged.1

In the text, we use to denote the vector of
inelastic and elastic packets injected into the network in slot .
Next, we provide a set of assumptions to be used later in the
analysis.

Assumption 1: The elastic routing matrix has full
row rank, which guarantees that given , there exists a unique

such that .
Assumption 2: The inelastic arrival process is

such that there exists a vector satisfying

and

This condition implies that the inelastic flows are supportable
by the network, i.e., there exists a rate division of the inelastic
flow rates over their available routes that can support the arriving
traffic.

Assumption 3: The utility functions are strictly
concave, twice differentiable, and increasing functions. Such an
assumption is commonly used to capture the diminishing returns
to the elastic flows of an increase in the service rate.

1We note that the rate controller with source reservoir as in [21] that considers
arbitrary load scenario can be added on top of our algorithm.
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Assumption 4: For each elastic flow , its utility
function satisfies the following: For each and

, there exists , , , and , with
, , satisfying ,

, for all
We note that Assumption 1 is not critical in the proof of sta-

bility, but will simplify our proof, and we will eventually relax
the single-route constraint on the elastic flows in Section IV-B.
Also note that Assumptions 3 and 4 on the utility functions are
not restrictive and hold for the following class of utility func-
tions , for , which is
known to characterize a large class of fairness concepts such as
max-min fairness and weighted-proportional fairness (see [26]
and the references therein).

In subsequent discussions, when the distinction between real
and nonreal-time routes is unnecessary, we will simply refer to a
route as without any subscripts. Furthermore, for simplicity,
we will use for and for .

Queueing Architecture and Evolution: In our system, for
each link , a single-priority queue is maintained at the
transmitting node , which holds all the packets whose routes
traverse . Since the inelastic flows are expected to have
more stringent delay constraints, their packets are always stored
ahead of those of the elastic flows, giving inelastic traffic full
priority over its elastic counterpart. We let denote the queue
length of the buffer associated with link at the beginning of
slot , and define

to be the total queue length on route . Notice that and
counts both the inelastic and elastic flows’ packets.

During each time slot, the queue evolves as

(1)

where . This evolution is based on a link-cen-
tric decomposition ([18]) and implicitly assumes that packets
injected into the source nodes by the flows, denoted by , ar-
rive at the downstream nodes instantaneously. In reality, packets
will reach downstream nodes only after a queueing and propaga-
tion delay incurred in the intermediate nodes. It is shown in prior
works [5], [18], [29], [30] that the inclusion of these dynamics
does not affect the long-term stability and fairness characteris-
tics of the system. In particular, a regulator queue for each flow
can be added to our queueing architecture before the queues as-
sociated with each link as the same architecture in [5]. The pri-
oritization in the per-link queue does not affect the queue evo-
lution, hence the results in [5] apply in our model with priority.
Thus, in this work we use the evolution in (1), which possesses
a more tractable and cleaner form.

Definition 1 (Stability): We say that a queue is stable if

(2)

where is some finite positive value. We say that the network is
stable if all aggregate queues for both inelastic and elastic
flows are stable.

Given this network and traffic model, we aim to do the fol-
lowing.

• Develop a mechanism that maximizes the total utility
achieved by elastic flows while giving strict priority to
and satisfying the rate demands of the inelastic traffic.
To that end, we design a joint congestion control and
load-balancing algorithm in Section III.

• Investigate means of extending our mechanism to improve
the delay performance of both types of flows. To that end,
we extend our joint algorithm in Section IV-A by adding
appropriately constructed virtual queues with controllable
parameters into the framework to achieve delay improve-
ments.

• By relaxing the single-route constraint (and thus removing
Assumption 1) on the elastic flow and adapting a new
queueing architecture, we develop a joint congestion
control, dynamic routing, and load-balancing algorithm in
Section IV-B.

Before addressing these goals, we note that the load-bal-
ancing component of our joint algorithm will dynamically
control the distribution the inelastic flow rates over its available
routes. Thus, the effect of inelastic traffic on the elastic traffic
cannot be simply modeled as a constant decrease in the capacity
of the network, and a more sophisticated approach is needed.
In particular, the inelastic flow rates on each route must be
balanced optimally to allow for the maximum utilization of the
network resources by the competing elastic flows. We develop
such an algorithm in Section III.

III. JOINT CONGESTION CONTROL AND LOAD BALANCING

In this section, we address our first main objective, i.e., that of
developing an algorithm that provides maximum utilization of
elastic traffic while guaranteeing the support of inelastic traffic.
We start by describing our objective mathematically in the form
of a stochastic optimization problem.

Stochastic Network Optimization (SNO) Problem:

Queue Evolution as in

Network Stability as in

(3)
We solve this problem by first analyzing a simpler deter-

ministic fluid model in Section III-A. The solution to this fluid
model will help in exposition as well as in providing insights
on the solution of the above more complex problem. Then, we
return in Section III-B to the stochastic problem.

A. Heuristic Fluid Model

In the fluid model scenario, all the dynamics and random-
ness are ignored, and the stochastic constraints are replaced with
static constraints. In particular, the inelastic flow is assumed
to have a fixed arrival rate , and the network stability condi-
tion is replaced by a condition on total link rate being no more
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than capacity. Then, the SNO problem reduces to the following
problem in this scenario.

Fluid Network Optimization (FNO) Problem:

(4)

(5)

In our discussion, we will abbreviate the aggregate elastic
and inelastic rates, and , with and for brevity.
We note that condition (4) aims to capture the network stability
condition in the fluid model by guaranteeing that the total load
on a link is below the link capacity, and condition (5) guarantees
that inelastic flows receive enough bandwidth to satisfy its rate
demands. Thus, the optimization problem is to maximize the
sum of utilities of elastic flows when guaranteeing that inelastic
flows are supported.

It is not difficult to show that the optimum value of FNO is
an upper bound for the optimum value of SNO. To see this, note
that any solution that solves SNO must also satisfy

, where , and is
defined similarly. Otherwise, the queue cannot be stable. This
is equivalent to condition (4) in FNO. Thus, FNO contains all
the feasible points of SNO. In Section III-B, we will design an
algorithm under which SNO can get arbitrarily close to the FNO
solution, and thus guarantees the optimality of SNO.

We start by showing that there exists a unique
that solves the FNO problem under Assumptions 2

and 3.2

Proposition 1: If Assumptions 2 and 3 hold, then the
that solves the network optimization problem

is unique.
Proof: The optimization problem has a unique solution be-

cause the utility functions are strictly concave, and constraints
(4) and (5) are linear.

To solve the FNO problem, we construct a partial Lagrangian.
Define to be the Lagrange multipliers associated with con-
straint (4). Then, the partial Lagrangian can be written as

Since the FNO problem satisfies Slater’s condition [4] due to
Assumption 2, the strong duality holds. We can then conclude
that there exists , and such that:

• solves the FNO problem;
• .

2We note that the strict concavity assumption in Assumption 3 can be relaxed,
and our results can be extended to state that the elastic rates converge to the set
of optimal rates rather than the unique optimum rate.

Note that

where . This decomposition suggests the
following conditions.

(i) The elastic flow should allocate its rates such that

(6)

(ii) The inelastic flow should distribute its packets over its
available routes such that

(7)

Since the optimization problem (7) has a linear objective, the
following lemma holds [4].

Lemma 1: For any , we have:
• if and ;

• if and .

This lemma implies that considering an inelastic flow , all
routes in the optimal solution with a positive flow have the same
value of .

We note that of FNO is closely associated with the queue
length of SNO, and correspondingly of FNO is closely
associated with the aggregate queue length on a route of
SNO. Such connections are revealed and exploited in several
earlier works for designing different network algorithms (e.g.,
[6], [7], [16], [17], and [27]). The following algorithm is a con-
tinuous-time version of the Lagrangian method for finding the
optimum solution of FNO. This algorithm will later be used to
solve the SNO. To distinguish the continuous-time evolution
from the discrete-time evolution, we use to denote contin-
uous-time index, while denotes discrete-time index.

Joint Congestion Control and Load-Balancing Algorithm
for the FNO Problem:

• Queue evolution for link

where is zero if and ; and
otherwise.

• Congestion controller for elastic flow

• Load balancing implemented for inelastic flow

(8)



LI et al.: UNIFIED APPROACH TO OPTIMIZING PERFORMANCE IN NETWORKS SERVING HETEROGENEOUS FLOWS 227

where satisfies

(9)

and .

Remark: Note that the congestion control algorithm is moti-
vated by equality (6). The load-balancing algorithm (8) is mo-
tivated by Lemma 1. In particular, for each inelastic flow ,
when the system reaches the equilibrium, we have
for all . This implies that for and

for . Thus, at the equilibrium point,

satisfies Lemma 1. Furthermore, from (9), it is easy to
see that

for all (10)

The intuition behind the load-balancing algorithm described
above is to shift the inelastic flows to less heavily loaded routes
to allow for the maximum network utilization for elastic flows.
In the algorithm, a source needs all the queue information
along its route. However, as we mentioned in Section II, we can
send queue information hop by hop and still achieve stability
even if this information is delayed. Thus, this algorithm can be
implemented fully distributed.

Next, we will show the stability and optimality of our joint
congestion control and load-balancing algorithm.

Proposition 2: Under Assumptions 1–3, the joint congestion
control and load-balancing algorithm is globally asymp-
totically stable, i.e.,

, where is an optimal
prime-dual solution to the FNO problem. Furthermore, (10)
holds.

Proof: The proof is provided in Appendix A.

B. Stochastic Model

We now return to the original SNO problem with a minor
variation.

SNO Problem with Parameter K (SNO-K):

Queue Evolution as in

Network Stability as in

where is a positive design parameter. We will see that -pa-
rameter is critical in eliminating the effect of randomness in the
stochastic system on the long-term performance. Note that the
solution to the SNO-K problem is independent of the value of

, and its optimum solution is identical to the solution of the
SNO problem.

Motivated by the analysis in the fluid model, we propose
the following joint congestion control and load-balancing
algorithm.

Joint Congestion Control and Load-Balancing Algorithm
for the SNO-K Problem:

• Scheduling with Strict Prioritization:
For each link , we serve packets from , with
strict priority to inelastic packets, which leads to the
following queue evolution:

• Congestion controller for elastic flow

where is a positive constant satisfies
.

• Load balancing implemented for inelastic flow

or equivalently

where satisfies

and .

Remark: The factor in the congestion control equation
comes from the factor in the optimization problem. It can be
interpreted as the aggressiveness factor of the elastic flow, as the
congestion controller is inclined to inject more packets into the
network with larger . Also note that the load-balancing imple-
mentation is slightly different from the fluid model version to ac-
commodate the randomness in the arrival processes for inelastic
flows. The update is modified to ensure that

holds for all .
The next proposition establishes the stability and optimality

of the joint algorithm for the stochastic system.
Proposition 3: Under Assumptions 1–4, the joint congestion

control and load-balancing algorithm stabilizes the system in
the sense that the Markov chain is positive recurrent
with

and guarantees that the rate allocation satisfies
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Here, is the optimal solution to the SNO-K problem, is
an arbitrarily chosen positive constant, and and are positive
values.

Proof: See [15] for the proof.
Note that as the design parameter increases, the rate con-

verges to the optimal allocation at the cost of increased equi-
librium queue-length levels. While such tradeoffs between op-
timality and delay are observed in earlier works under a single
type of traffic (e.g., [7] and [21]), in this work a new interac-
tion is observed between inelastic and elastic traffic through the
parameter . In particular, larger values of result in more
aggressive elastic flows, resulting in larger queue lengths on the
links they traverse. This forces the inelastic flows to redistribute
their flows to less loaded routes. This increases the utilization
of the network, while causing more delay to inelastic flows.
In order to provide better delay performance to both types of
traffic, in the next section we extend our base algorithm by using
virtual queues.

IV. EXTENSION OF THE ALGORITHM

In this section, we extend our joint congestion control and
load-balancing algorithm in two important directions. We first
provide a virtual queue-based solution that reduces the overall
queue length with a negligible sacrifice in capacity. We then
provide a solution that allows the dynamic routing for the elastic
flow.

A. Virtual Queue Algorithm

Inelastic applications are delay-sensitive, hence we assume
that packets from inelastic flows have strict priority over their
elastic counterparts. Thus, the inelastic flows do not see the
elastic flows in the queues they traverse. However, in some cases
a link might be critically loaded by the inelastic traffic itself,
thus resulting in large delays. Also, elastic traffic may have some
delay constraints that are nonnegligible.

An effective way of reducing the experienced delay is by in-
cluding virtual queues that are served at a fraction of the ac-
tual service rate and by using the virtual queue-length values
as prices [13]. To that end, we introduce two types of virtual
queues with parameters to the previous optimization problem,

and , which control the total load and the inelastic flow
load, respectively.

Here for simplicity, we go back to the fluid model to design
and analyze the joint congestion control and load-balancing al-
gorithm using virtual queues. We would like to have

solve the following optimization problem.
FNO Problem With Virtual Queues (FNO-VQ):

(11)

where .

To guarantee the feasibility of this optimization problem, we
replace our earlier Assumption 2 with Assumption 5.

Assumption 5: There exists an such that

and

This can be viewed as admission control is done for the inelastic
flow after we choose the parameter to ensure the feasibility
of the problem.

To solve the FNO-VQ problem, we first introduce virtual
queues for elastic and inelastic flows on each link, respectively.
The virtual queue length for elastic flows evolves as
follows:

The virtual queue length for inelastic flows evolves as
follows:

Note that when the total instantaneous traffic load is larger than
or the inelastic traffic load is larger than , the virtual

queues will build up, and the network controller will reduce the
traffic load.

Based on this virtual queue scheme, we have the following
joint congestion control and load-balancing algorithm.

Joint Congestion Control and Load-Balancing Algorithm
for FNO-VQ Problem:

• Virtual queue evolution for a link

Elastic flows:

Inelastic flows:

• Congestion controller for elastic flow

where is the aggregated virtual
queue length of the elastic flow.

• Load balancing implemented for inelastic flow

where , satisfies

and .
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Remark: In the above algorithm, note that the congestion
control algorithm only responds to the virtual queues for elastic
flows, but the load-balancing algorithm responds to both the vir-
tual queues for elastic flows and inelastic flows. Furthermore,
the actual queue length is not used in the algorithm.

In the following proposition, we show the equilibrium point
of the algorithm with virtual queue is the optimal solution of
(11).

Proposition 4: Under Assumptions 1, 3, and 5, the virtual
system under the joint congestion control and load-balancing
algorithm for the FNO-VQ problem is globally asymp-
totically stable, i.e.,

, where is an optimal
primal-dual solution of the network optimization problem
(11).

Proof: See [15] for the proof.
Remark: Proposition 4 implies the stability of the virtual

system. Since the virtual system is run in a network with smaller
link capacity, it is intuitively reasonable to expect the real queue
lengths be stable. While this intuition is confirmed in numerical
studies, we do not claim the stability of the real system under
this algorithm.

The extension of this result to the stochastic scenario is
omitted since it follows the same line of reasoning as in
the joint congestion control and load-balancing algorithm of
Section III.

B. Dynamic Routing for Elastic Flows

Here, we keep the assumptions of the inelastic flows and relax
the single-route constraint on the elastic flows. Each elastic flow

now is associated with a source node and a
destination node . The injection rate of the flow is
denoted by , and is the utility function.

In this model, we adapt a new queueing architecture. Each
node maintains both real queues and virtual queues (coun-
ters), which are identical structural-wise. We focus on the virtual
queues, which are neater to analyze.

Within the virtual queues, there are two levels of queues.
The first level of the virtual queues are for each destination for
elastic flows, denoted by , each node maintains such
queues. Let denote the promised service rate to elastic
flows that are destined to on link , and let

denotes the total promised service of elastic flows on link .
These counters evolve as

(12)
The second level of virtual queues consists of a virtual queue

for each outgoing link, denoted by where ,
which counts packets from both inelastic and elastic flows.

Fig. 1. Queueing architecture for dynamic routing.

Packets of the inelastic flows are always “stored” ahead of
those of the elastic flows. These counters evolve as

(13)

Remark 1: Note that in the virtual queues (counters),
virtual packets “bypass” the queueing in the second level of vir-
tual queues and directly enter the corresponding first-level vir-
tual queues of the next node, while actual packets are for-
warded within the node to the second level of queues, waiting
to be transmitted onto the corresponding link to the downstream
node. The decisions made by the algorithm are based on the
virtual queue information, which is a “prediction” of the actual
queue lengths. We will see that the actual queues evolve in the
same way when the system reaches its equilibrium point.

Remark 2: The evolution of given in (13) implicitly as-
sumes that the inelastic packets injected into the source nodes ar-
rive at the downstream nodes immediately. Prior works [5], [18],
[29], [30] show that this assumption does not affect the long-
term performance of the system. Since the inelastic traffic en-
ters the second-level queues directly, the results of those works
still apply to the inelastic flows. In particular, a regulator queue
for each inelastic flow can be added to our queueing architec-
ture before the second-level queues associated with each link
following the same approach as in [5].

The queueing architecture described is illustrated in Fig. 1.
For simplicity, we consider the fluid model scenario for dy-

namic routing.
FNO Problem With Dynamic Routing (FNO-DR):

(14)

(15)

(16)

(17)

(18)

where (17) is the flow conservation constraint, and (18) is a fixed
bound on , where .

Based on the new queueing architecture and the FNO-DR
problem, using the Lagrange multiplier approach, we have the
following joint congestion control, dynamic routing, and load-
balancing algorithm.
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Joint Congestion Control, Dynamic Routing, and
Load-Balancing Algorithm for the FNO-DR Problem:

• Virtual queue evolution

• Congestion controller for elastic flow

• Dynamic routing for elastic flow

if

if

if

• Load balancing for inelastic flow

where , and satisfies

and .

Remark: In the algorithm above, the rate control of the elastic
traffic only needs the virtual queue information of the source
node, while the load balancing of the inelastic uses the virtual
queue information on the whole route. The dynamic routing al-
gorithm for elastic traffic is similar to the back-pressure algo-
rithm, while the backlog difference between the two nodes of a
link is offset by , discouraging the elastic flows from
using the links that are in the route of the inelastic flows. Also,
we note that this back-pressure-like algorithm is applied to the
elastic traffic only, and the strict priority of the inelastic traffic
is still maintained.

In the following proposition, we show the equilibrium point
of the algorithm for dynamic routing is the optimal solution of
(14).

Proposition 5: Under Assumptions 2 and 3, the virtual
system under the joint congestion control, dynamic routing, and
load-balancing algorithm for the FNO-DR problem is globally
asymptotically stable, i.e.,

where is an optimal
primal-dual solution of the network optimization problem
(14).

Proof: The proof is provided in Appendix B.
Remark: Note that the virtual system will evolve to the op-

timal point according to the equations above, while the actual
system may follow a slightly different trajectory. This is because
during the transient period of evolution, the total incoming rate

Fig. 2. Topology of the network.

of inelastic flow and the elastic flow into the second
level of the queue (cf. Fig. 1) is allowed to be larger than the
capacity of the link. Thus, when the system made routing de-
cisions according to the virtual values (the estimated number
of packets in the queues), there may not be enough packets to
transmit in the actual queues. However, when the virtual system
converges to its equilibrium point, the assigned service rate
will be feasible as shown in Proposition 5, and therefore the ac-
tual system will also be able to provide the same rate as the
virtual one. Thus, at the equilibrium point, the stability of the
virtual system implies the stability of the actual system.

V. SIMULATION RESULTS

In this section, we provide the simulation results for our al-
gorithms under the stochastic model where the arrival process
of the inelastic flow is such that is Poisson-distributed
with mean for each .

A. Effect of the Aggressiveness of the Inelastic Flow

We noted in Section III-B that the factor represents the
“aggressiveness”’ of the elastic flows. Also, it is revealed in
Proposition 3 that can be used to control the proximity to
the optimal allocation. Here, we test these results for the case
of proportionally fair allocation, which corresponds to having
the utility function is chosen as [26]: , and thus

.
In this first set of simulations, we considered the network

shown in Fig. 2 with the indicated link capacities and inelastic
and elastic flows. Note that the arrival rate of the inelastic flow
is to be distributed over the two dashed routes.

The joint algorithm for the SNO-K problem is implemented
for this network, and the mean elastic rate allocation is com-
puted for different values of . Fig. 3 illustrates the effect of
on the rates of the elastic flow and the distribution of the inelastic
flow’s rate over its available routes. We see that as the elastic
flow becomes more aggressive, it achieves a higher throughput
and thus consumes greater resource on the bottleneck link (2,5).
As a reaction to the increased contention from the elastic flow,
the load-balancing mechanism of the inelastic flows automat-
ically pushes more and more traffic of the inelastic flow onto
route 1.

Note that although increasing the aggressiveness of the
elastic flow will increase the utilization of the network, it will
result in more delays on the network flows as the queue length
over the whole network grows, as shown by Proposition 3.
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Fig. 3. Effect of� on the average rates on each route of Fig. 2.

Fig. 4. Phase 1: Two inelastic flows with disjoint routes.

Proposition 3 also suggests that larger resulting better con-
vergence to the optimal operating point, which is confirmed in
the above simulation.

B. More Complex Topology

To illustrate other facets of our algorithm, we conducted our
simulation in a more complicated network with different flow
assignments. The topology of the network is shown in Fig. 4.
The capacity of all the links in the network is 20, and we used
elastic flows with identical utility functions and in our
simulation, expecting close-to-optimal utilization (as shown in
Fig. 3).

We simulate a sequence of scenarios discussed in five phases.
In Phase 1, two disjoint inelastic flows with the routes as shown
in Fig. 4 share the network, having rates and .
The average rates provided on each route by our joint algorithm
are given in Fig. 4.

When the two inelastic flows share a common bottleneck link
in Phase 2, the load-balancing algorithm will shift part of the
traffic from the bottleneck link to yield the average rates given
in Fig. 5.

In Phase 3, an elastic flow enters the system and shares a link
with as in Fig. 6. We can see from the average rates given in
the figure that this elastic flow not only has an effect on , but
also shifts the rate of . Here, it can be seen that the interaction
between the flows becomes complex even for small networks,
and it is not clear what the best allocation is. Yet, through our
joint algorithm, is able to operate dynamically close to the
full capacity of all the resources available to it.

Fig. 5. Phase 2: Two inelastic flows with intersecting routes.

Fig. 6. Phase 3: Two intersecting inelastic flows, and one elastic flow that in-
teracts with them.

Fig. 7. Phase 4: Two intersecting inelastic flows, and two elastic flows with
disjoint routes.

Fig. 8. Phase 5: A third elastic flow enters, which intersects with two inelastic
flows.

After adding another elastic flow into the network, which
is disjoint with all other flows in Phase 4 shown in Fig. 7, we
can see that it has no effect on the rates of all other routes, and
it fully utilizes that route.

In Phase 5, a third elastic flow enters and shares common
links with both and , as shown in Fig. 8. We can see that
since also shares links with , also has effect on it.
It can be easily verified that is the optimal
operating point, and the average rates achieved by our algorithm
are very close to optimal as predicted by Proposition 3.

To study the importance of dynamic load balancing, we also
simulated a static rate distribution algorithm as a basis for com-
parison. This algorithm equally splits the inelastic traffic onto
each of its routes (assume it is feasible in the network) and does
the congestion control of the elastic flows in the same manner as
in our algorithm. This algorithm is implemented for the scenario
in Phase 5 with the average rates indicated in Fig. 9. We see that
due to the absence of dynamic load balancing, the elastic flows
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Fig. 9. Performance under static rate distribution for inelastic traffic.

Fig. 10. Injection rate on each route.

Fig. 11. Network topology for simulating the virtual queue algorithm.

cannot utilize the network fully since the rates assigned to the
inelastic flows are fixed. Under the logarithm utility function,
this approach achieves a utility of , while our algorithm
achieves on the elastic flow .

In this sequence of simulations, we see complex interactions
between the elastic and inelastic flows and observed that our
algorithm achieves optimal performance distributively. While
we have so far focused on the average achieved rates, in Fig. 10,
we also show the time evolution of the flow rates on each route
as the network goes through the five phases. We see in this figure
that the rates converge to their optimal value quickly, which may
be important under dynamic conditions.

C. Simulation Using the Virtual Queue Algorithm

In this simulation, we use the joint congestion control and
load-balancing algorithm with virtual queue to show the impact
of the virtual queue implementation on delay. The simulation is
conducted in the network showing in Fig. 11. The parameter
was set to 0.95, and was set to 0.9, over all links.

TABLE I
RATE AND DELAY ON EACH ROUTE

Table I compares the performance with and without virtual
queues. First, we note that on link (2,3), though it is critically
loaded by two types of flows, the inelastic flow has a much
smaller delay compared to the elastic flow due to the strict pri-
oritization. Also, as we can observe, under the original algo-
rithm, route 1 is critically loaded by inelastic flow, resulting in a
large delay. With the virtual queue implementation, we manage
to decrease the rate on route 1, thus dropping the delay signif-
icantly. As one can observe from the table, the delay is greatly
reduced for both elastic and inelastic traffic without a signif-
icant degradation in the rate of the elastic traffic. Thus, espe-
cially under critical loaded scenarios, virtual queue implemen-
tation can achieve significant delay improvements.

Also, for the elastic flows, the delay drops significantly in the
tradeoff of a small loss in utilization.

VI. CONCLUSION

In this work, we consider the optimal control of networks
that serve heterogeneous traffic types with diverse demands,
namely inelastic and elastic traffic. We formulated a new net-
work optimization problem, proposed a novel queueing archi-
tecture, and developed a distributed load-balancing and conges-
tion control algorithm with provably optimal performance. We
also provided an important improvement to our joint algorithm
to achieve better delay performance by introducing new design
parameters together with a set of virtual queues. We
have also extended our algorithm to the case of allowing elastic
flows to choose their routes dynamically, which will further uti-
lize the resource available in the network.

Future research of this topic includes the following. 1) One
future direction is to extend our results to multihop wireless
networks with fading channels and interference and develop
joint load-balancing/congestion control/routing/scheduling al-
gorithms. 2) Here, we considered a time-slotted system and as-
sumed that the network is perfectly synchronized. The impact
of possible asynchronism on the algorithm performance needs
to be studied. 3) We adopted a link-centric formulation, which
assumes instantaneous arrivals of the packets at all the links on
their routes. An alternative is to consider a node-centric formu-
lation, where packets are sequentially transferred, and a source
only requires the information of the queues at the source. 4) So
far, we have focused on the stability and long-term guarantees
for the traffic types. We aim to investigate oscillatory behavior
[20] and delay characteristics in our future work. 5) In this work,
we assume the routes and the supportability of the inelastic
flow are given. Developing corresponding routing and admis-
sion control mechanism will make it complete.
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APPENDIX A
PROOF OF PROPOSITION 2

Define a Lyapunov function

(19)

where and satisfy conditions (i) and (ii). Note that and
may not be unique. Then, we have

Next, we show the negativity of the drift term by term. First, we
have

(20)

where the first inequality holds because for any
, and if , if and only if

; the second equality holds due to Assumption 1.
Without loss of generality, we assume that for all
, then we have

(21)

where inequality (a) holds due to Lemma 1, and equality (b)
holds due to the equality (10).

Thus, from inequalities (20) and (21), we can conclude that

for all . Further more, from inequality (20), we also know that
, if and only if .

APPENDIX B
PROOF OF PROPOSITION 5

We construct a partial Lagrangian to solve the FNO-DR
problem. Let and be the Lagrange multipliers associated
with the constraints (15) and (17), respectively. Furthermore,
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let and be the respective vectors; the
partial Lagrangian can be written as

This problem satisfies Slater’s condition, thus strong duality
holds. From the optimality conditions, we know that the optimal
solution must satisfy the following conditions:

(22)

(23)

(24)

(25)

(26)

(27)

where (22) and (23) are the primal feasibility, (24) and (25) are
the primal optimality condition, and (26) and (27) are the com-
plementary slackness condition.

Define a Lyapunov function

Then, its drift is given by the following (from here, we omit the
time index for brevity):

(28)

(29)

(30)

(31)

(32)

Next, we show the negativity of the drift. First, from the proof
of the fixed route scenario, we know that follows
the same reasoning there

(33)

(34)

(35)

Notice that

and the assumption that the utility function is a concave
function, we have . By adding and subtracting the same
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term to the rest of the terms,
we get

(36)

(37)

(38)

(39)

(40)

(41)

Note that by (27). Combine the first term in (36)
with (38), the third term with (41) and (37) with (40), and we
get

where (a) holds since maximizes
over all , thus

and (b) holds follow from (23).
Thus, we conclude that

for all , and the equality holds if and only if .
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[1] E. Altman, T. Başar, and R. Srikant, “Congestion control as a sto-
chastic control problem with action delays,” Automatica, vol. 35, pp.
1937–1950, 1999.

[2] J. Bolot and A. Shankar, “Dynamic behavior of rate-based flow cntrol
mechanisms,” ACM Comput. Commun. Rev., vol. 20, no. 2, pp. 35–49,
1992.

[3] S. Borst and N. Hegde, “Integration of streaming and elastic traffic
in wireless networks,” in Proc. IEEE INFOCOM, May 2007, pp.
1884–1892.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge,
U.K.: Cambridge Univ. Press, 2004.

[5] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu, “Joint asynchronous con-
gestion control and distributed scheduling for wireless networks,” in
Proc. IEEE INFOCOM, 2006.

[6] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless net-
works using queue-length based scheduling and congestion control,” in
Proc. IEEE INFOCOM, Miami, FL, Mar. 2005, vol. 3, pp. 1794–1803.

[7] A. Eryilmaz and R. Srikant, “Resource allocation of multi-hop wire-
less networks,” in Proc. Int. Zurich Seminar Commun., Feb. 2006, pp.
90–93.

[8] A. Eryilmaz, R. Srikant, and J. R. Perkins, “Stable scheduling policies
for fading wireless channels,” IEEE/ACM Trans. Networking, vol. 13,
no. 2, pp. 411–425, Apr. 2005.

[9] L. Georgiadis, M. J. Neely, and L. Tassiulas, Resource Allocation
and Cross-Layer Control in Wireless Networks, ser. Foundations and
Trends in Networking. Hanover, MA: now, 2006.

[10] P. Hande, S. Zhang, and M. Chiang, “Distributed rate allocation for in-
elastic flows,” IEEE/ACM Trans. Netw., vol. 15, no. 6, pp. 1240–1253,
Dec. 2007.

[11] K. Kar, S. Sarkar, and L. Tassiulas, “A simple rate control algorithm for
maximizing total user utillity,” in Proc. IEEE INFOCOM, Anchorage,
AK, 2001, vol. 1, pp. 133–141.

[12] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: Shadow prices, proportional fairness and stability,” J. Oper.
Res. Soc., vol. 49, pp. 237–252, 1998.

[13] S. Kunniyur and R. Srikant, “An adaptive virtual queue (AVQ) algo-
rithm for active queue management,” IEEE/ACM Trans. Netw., vol. 12,
no. 2, pp. 286–299, Apr. 2004.

[14] J. Lee, R. R. Mazumdar, and N. Shroff, “Non-convex optimization and
rate control for multi-class services in the internet,” IEEE/ACM Trans.
Netw., vol. 13, no. 4, pp. 827–840, Aug. 2005.

[15] R. Li, A. Eryilmaz, L. Ying, and N. B. Shroff, “A unified approach to
optimizing performance in networks serving heterogeneous flows,” in
Proc. IEEE INFOCOM, 2009, pp. 253–261.

[16] X. Lin and N. Shroff, “Joint rate control and scheduling in multihop
wireless networks,” in Proc. IEEE CDC, Paradise Island, Bahamas,
Dec. 2004, vol. 2, pp. 1484–1489.

[17] X. Lin and N. Shroff, “The impact of imperfect scheduling on cross-
layer rate control in multihop wireless networks,” in Proc. IEEE IN-
FOCOM, Miami, FL, Mar. 2005, vol. 3, pp. 1804–1814.

[18] X. Lin, N. B. Shroff, and R. Srikant, “A tutorial on cross-layer opti-
mization in wireless networks,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1452–1463, Aug. 2006.

[19] S. H. Low and D. E. Lapsley, “Optimization flow control, I: Basic al-
gorithm and convergence,” IEEE/ACM Trans. Netw., vol. 7, no. 6, pp.
861–875, Dec. 1999.



236 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 1, FEBRUARY 2011

[20] E. Mallada and F. Paganini, “Stability of node-based multipath routing
and dual congestion control,” in Proc. 47th IEEE CDC, Dec. 2008, pp.
1398–1403.

[21] M. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic con-
trol for heterogeneous networks,” in Proc. IEEE INFOCOM, Miami,
FL, Mar. 2005, pp. 1723–1734.

[22] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation and
routing for time varying wireless networks,” in Proc. IEEE INFOCOM,
Apr. 2003, pp. 745–755.

[23] S. Patil and G. Veciana, “Managing resources and quality of service in
heterogeneous wireless systems exploiting opportunism,” IEEE/ACM
Trans. Netw., vol. 15, no. 5, pp. 1046–1058, Oct. 2007.

[24] D. Qiu and N. B. Shroff, “A predictive flow control scheme for efficient
network utilization and QoS,” IEEE/ACM Trans. Netw., vol. 12, no. 1,
pp. 161–172, Feb. 2004.

[25] S. Shakkottai and A. Stolyar, “Scheduling algorithms for a mixture of
real-time and non-real-time data in hdr,” in Proc. 17th ITC, 2001, pp.
793–804.

[26] R. Srikant, The Mathematics of Internet Congestion Control. Boston,
MA: Birkhäuser, 2004.

[27] A. Stolyar, “Maximizing queueing network utility subject to stability:
Greedy primal-dual algorithm,” Queue. Syst., vol. 50, no. 4, pp.
401–457, 2005.

[28] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Trans. Autom. Control, vol. 36, no. 12,
pp. 1936–1948, Dec. 1992.

[29] X. Wu and R. Srikant, “Regulated maximal matching: A distributed
scheduling algorithm for multi-hop wireless networks with node-ex-
clusive spectrum sharing,” in Proc. IEEE CDC, 2005, pp. 5342–5347.

[30] L. Ying, R. Srikant, A. Eryilmaz, and G. E. Dullerud, “Distributed fair
resource allocation in cellular networks in the presence of heteroge-
neous delays,” in Proc. WiOPT, 2005, pp. 96–105.

Ruogu Li (S’10) received the B.S. degree in
electronic engineering from Tsinghua University,
Beijing, China, in 2007, and is currently pursuing the
Ph.D. degree in electrical and computer engineering
at the Ohio State University, Columbus.

His research interests include optimal net-
work control, wireless communication networks,
low-delay scheduling scheme design, and cross-layer
algorithm design.

Atilla Eryilmaz (S’00–M’06) received the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Illinois at Urbana-Champaign
in 2001 and 2005, respectively.

Between 2005 and 2007, he worked as a Post-Doc-
toral Associate with the Laboratory for Information
and Decision Systems, Massachusetts Institute of
Technology, Cambridge. He is currently an Assistant
Professor of electrical and computer engineering
with the Ohio State University, Columbus. His
research interests include communication networks,

optimal control of stochastic networks, optimization theory, distributed algo-
rithms, stochastic processes, and network coding.

Dr. Eryilmaz received the National Science Foundation CAREER Award in
2010.

Lei Ying (M’07) received the B.E. degree from
Tsinghua University, Beijing, China, in 2001, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Illinois at Urbana-Champaign
in 2003 and 2007, respectively.

During Fall 2007, he worked as a Post-Doctoral
Fellow with the University of Texas at Austin. He is
currently an Assistant Professor with the Department
of Electrical and Computer Engineering, Iowa State
University, Ames, where he is named the Litton As-
sistant Professor for 2010–2011. His research interest

is broadly in the area of information networks, including wireless networks, mo-
bile ad hoc networks, P2P networks, and social networks.

Dr. Ying received a Young Investigator Award from the Defense Thread Re-
duction Agency (DTRA) in 2009, and a National Science Foundation CAREER
Award in 2010.

Ness B. Shroff (S’91–M’93–SM’01–F’07) received
the Ph.D. degree from Columbia University, New
York, NY, in 1994.

He is currently the Ohio Eminent Scholar of
Networking and Communications and a Professor
of electrical and computer engineering (ECE) and
computer science and engineering with the Ohio
State University, Columbus. He also currently
serves as a Guest Chaired Professor of wireless
communications with the Department of Electronic
Engineering, Tsighnua University, Beijing, China.

Previously, he was a Professor of ECE with Purdue University, West Lafayette,
IN, and the Director of the Center for Wireless Systems and Applications
(CWSA), a university-wide center on wireless systems and applications. His
research interests span the areas of wireless and wireline communication net-
works, where he investigates fundamental problems in the design, performance,
pricing, and security of these networks.

Dr. Shroff has received numerous awards for his networking research,
including the National Science Foundation CAREER award, the Best Paper
awards for IEEE INFOCOM 2006 and 2008, the Best Paper Award for IEEE
IWQoS 2006, the Best Paper of the Year Award for Computer Networks, and
the Best Paper of the Year Award for the Journal of Communications and
Networks (his IEEE INFOCOM 2005 paper was one of two runner-up papers).


