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Abstract—This paper takes a philosophically new approach to
throughput-optimal scheduling queueing systems with interfer-
ence. All existing popular approaches (e.g. max-weight, greedy,
”pick-and-compare” etc.) focus on the weights of individual
queues. We take an alternative approach, by focusing instead
on the aggregate queues of bottlenecks. A bottleneck is a set of
mutually-interfering queues; a schedule drains a bottleneck if it
removes a packet from any one of its queues.

We consider (the standard) switch scheduling problem, where
the bottlenecks are the nodes. We establish the following phase-
transition (1) ensuring only that the very heaviest nodes are
drained is not enough for throughput optimality, but (2) ensuring
scheduling for all nodes with weight within (1 − α) of the
heaviest is enough for throughput optimality, for any α > 0. The
proof uses a new Lyapunov function: the weight of the critical
bottleneck.

Our alternate node-focused view also enables the development
of new algorithms for scheduling. We show (a) how any policy can
be made throughput-optimal by doing a small number of extra
operations, (b) a new algorithm – Maximum Vertex-weighted
Matching (MVM) – has (empirical) delay performance better
than the current state of the art, and lower complexity than
Max-(edge)weighted Matching, and (c) a class o f throughput-
optimal policies that trade off between complexity and delay.

I. INTRODUCTION

Popular approaches in the theory and practice of scheduling

in the presence of interference focus on determining schedules

based on the weights, i.e. queue lengths, of individual links;

examples include the ”max-weight” rule and its variants,

greedy maximal scheduling, randomized algorithms based on

the ”pick and compare” idea etc. This paper advocates the

exploration of an alternate viewpoint, by focusing instead on

the aggregate queues of system bottlenecks.

A bottleneck is a set of queues such that the service of any

one of them precludes the simultaneous service of another.

In terms of the ”conflict graph” of the queues, a bottleneck

represents a maximal clique. This paper is based on the

intuition that if we can drain, i.e. decrease the aggregate

number of packets in, the heaviest / critical bottlenecks, then

we should be able to obtain throughput optimality. We consider

the first, simple case of scheduling in switches. At a high level,

we show that

• Schedules determined based on the weights of the ports

/ nodes (where weight = total queue at that port) have

several appealing algorithmic and delay properties.

• Analysis involves a new Lyapunov function: the weight

of the heaviest bottleneck.
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Fig. 1. Class of scheduling policies for switches.

We show a peculiar phase transition behavior: while

scheduling all the critical bottlenecks, with highest weight, is

not enough for throughput optimality, scheduling a maximal

subset of the nodes that are within (1 − α) of the heaviest

is throughput optimal, for any α > 0. We define a class of

polices – LHPF-α – that are all throughput optimal, and can

trade-off between throughput and delay based on the choice

of α. Figure 1 summarizes the performance of our, and other

known policies.

A. Related Work

In this paper we restrict our attention to the development

of online algorithms, which attempt to schedule traffic by

computing a matching every time slot. One such policy is the

famous MWM policy which computes the maximum weight

matching and is known to be throughput optimal. The proof for

stability can be provided either in the fluid limits [2] or in the

stochastic sense [18]. But essentially it hinges on a quadratic

Lyapunov function and ensuring that the drift is negative.

The Maximum Size Matching (MSM) policy schedules

the maximum size matching and hence maximizes the

instantaneous throughput in each time slot. However it is

known that if ties are broken randomly, MSM does not

achieve 100% throughput for all admissible Bernoulli traffic

patterns [11], [13]. It is possible that if the ties are broken

carefully, a special MSM might be stable. Among the class

of MSM policies, there are two polices that have been

proposed in the literature to be throughput optimal: MVM

and MWM-0+.

MVM is known to be throughput optimal [14]. The proof of
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throughput optimality in [14] uses the fact that a MVM on a

graph G is a MWM on a graph G
′

, where edge weights have

been selected carefully. The technique to prove throughput

optimality of MVM is essentially the same as that for MWM.

The proof provided in this paper serves as a alternate, since

MVM is a member of the LHPF-α class of policies.

MWM-0+ : At each time slot, consider all matchings which

have maximal size. Among these choose one which has

maximum weight, with weight function log. Break ties

arbitrarily. This is conjectured to be throughput optimal in

[16].

It is useful to also consider online scheduling according

to maximal matches, which are matchings where no new

edges can be added without sharing a node with an already

matched edge. Maximal matchings can be found with O(N2)

operations and the computation is easily parallelizable to O(N)

complexity [19]. Greedy weighted maximal matching (GMM)

is a scheduler that tries to schedule the heavy edges. The GMM

policy has been analyzed for the general class of networks

with interference constraints [4] where it is shown that they

achieve full throughput in a network that satisfies the local

pooling condition. In simple terms, the local pooling condition

means that a vector λ in the capacity region cannot dominate

another vector µ in the capacity region in all the coordinates.

This result can be generalized [1], [7], [8] to show that GMM

achieves at least a certain fraction of the capacity region given

by the local pooling factor. Although our Lyapunov function

looks similar to that in [1], [4], [7], [8] it is based on node

weights as opposed to weights on the individual edges in

the graph. Moreover, we can show that the LHPF-α class of

policies are not even required to be maximal in every time-slot

whereas the policies considered in [1], [7], [8] are.

As noted in [14], the MVM policy combines the benefit a

maximum size algorithm, with those of a maximum weight

algorithm, while lending itself to simple implementation in

hardware. In MVM, each weight is a function of queue lengths

(sum of all edges that touch a node) and hence it has an

advantage of both the maximum size matchings with high

instantaneous throughput while guaranteeing high throughput,

even when the arrival traffic is non-uniform. We have in

fact characterized a class of policies much larger than the

MVM policy and potentially lower complexity and equivalent

performance benefits.

II. PRELIMINARIES

Switches: This paper considers scheduling in (the standard)

input-buffered crossbar switches, which we now briefly de-

scribe. An N1 × N2 input-buffered crossbar switch contains

N1 input ports and N2 output ports. The system operates in

discrete time slots. In each slot, packets may arrive at the input

ports; each packet has an output port it needs to be transferred

to. Packets have to be transferred from inputs to outputs, under

the following constraint: in any one time slot each input port

can send at most one packet to at most one output port, and

each output port can receive at most one packet from at most

one input port. The scheduling problem is to determine how

to transfer packets subject to these constraints.

Notation: Switch scheduling can be modeled as the problem

of finding matchings in bipartite graphs, one in every time slot.

Consider G(s) the graph at slot s. G(s) is a bipartite graph

with input ports on one side and output ports on the other. As

mentioned in the introduction, we will use “nodes” and “ports”

interchangeably. There is an edge (i, j) in G(s) if and only if

there is at least one packet at input i that has output j as its

destination. The scheduling algorithm finds a matching M(s)
in G(s); then, for every edge (i, j) ∈ M(s) one packet is then

transferred from i to j. These packets are then considered to

have left the system. A scheduling policy is a rule to pick

the matching M(s), in every slot s, based on the state of the

system. For any input port i, qi(s) denotes the total number

of packets at i. Similarly, for any output port j, qj(s) denotes

the total number of packets in the system (i.e. all inputs) that

are waiting to be transferred to j. We will not need to refer to

the queues on individual edges. We will however often refer to

the total queue at a port as the “weight” of that port; “heavy”

ports have more packets in their queues than “lighter” ports.

We now state a couple of well-known results, from [6], [12],

[15] which we will use in the proofs of this paper.

Lemma 1 (Hall’s Condition): Let G be any bipartite graph,

with the two partitions being V1 and V2. Let S1 ⊂ V1 be any

subset of one partition. Then, there exists a matching in G that

matches every node in S1 if and only if for every further subset

S ⊂ S1, we have that |N (S)| ≥ |S|. Here the neighborhood

N (S) is all nodes in V2 that have an edge to some node in S.

Lemma 2: Let G be any bipartite graph, with the two

partitions being V1 and V2. Let S1 ⊂ V1, and suppose there

exists a matching M1 that matches all nodes in S1. Similarly,

let S2 ⊂ V2 and there exist and M2 that matches all nodes in

S2. Then there exists a matching M that matches all nodes in

both S1 and S2.

Note that in Lemma 2, M may not match the nodes in the

two sets to each other; just that each node in S1 ∪ S2 will be

matched to some node in the graph.

Graph-theoretic preliminaries:

We now formally define the terms we will use. All are stan-

dard, except for the definition of “absorbing paths”. Through-

out, we consider a node-weighted graph. The length of a

path is the number of edges it contains. The weight w(M) of

a matching M is the total weight of all the nodes it matches.

For any two matchings M1 and M2, the symmetric difference,

denoted by M1△M2, is the set of edges in one of the two

matchings, but not in both. It is well known that M1△M2

is always the node-disjoint union of paths and even-length

cycles. Finally, given a matching M and path P , the set

M ⊕ P = M − (M ∩ P ) + (M c ∩ P ) denotes the edges

obtained by “flipping” the edges in P . We now define the two

scenarios of our interest where the resulting set M ⊕P is also

a matching.

Given a matching M , and any node i not matched by M ,

1) An augmenting path from unmatched node i is any odd-

length path P whose every alternate edge is in M , has
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Fig. 2. Augmenting and absorbing paths. Edge (b, i) is in the matching M.
a − i − b is an absorbing path. a − i − b − j is an augmenting path.

i as one endpoint, and ends at an unmatched node (say

j).

2) An absorbing path from unmatched node i is any even-

length path P whose every alternate edge is in M , has i
as one endpoint, and whose last endpoint – say j – has

weight wj < wi.

Note: w(M ⊕ P ) > w(M) for any matching M and any

augmenting or absorbing path P . Fig. 2 illustrates the idea of

augmenting and absorbing paths. a−i−b is an absorbing path

from a since it is an even-length path ending in a node with

smaller weight. a − i − b − j is an augmenting path from a
since it is a odd-length path and ends in an unmatched node

j.

III. LHPF-α POLICIES

We now define the class of policies – Lazy Heaviest Port

First (LHPF) -α – that we will be considering, and investigate

algorithmic implementations. The next section proves their

throughput-optimality (our main result).

Definition: Let h = maxi qi be the weight of the heaviest

port. Any port i whose weight satisfies qi ∈ [(1 − α)h, h] is

an α-heavy port. A matching M is LHPF-α if it schedules as

many of the α-heavy nodes as possible, with heavier nodes

taking strict priority over lighter ones. A policy is LHPF-α if

in every time slot it picks an LHPF-α matching in every time

slot.

The main result of this paper is that any LHPF-α policy is

throughput-optimal, for any α > 0. This is stated and proved

in Section IV. Additional properties (elaborations for each

follow):

(1) α = 0 corresponds to critical port policies: those that

only guarantee the scheduling of the very heaviest ports, with

weight equal to h. These can evacuate optimally, but are not

troughput-optimal.

(2) Any LHPF-α matching (and hence policy) is also a LHPF-

β matching (policy) for β < α.

(3) α = 1 corresponds to the MVM – Maximum Vertex-

weighted Matching – policy. This has lower worst-case com-

plexity than the popular Max-(edge)weight matching, and

simulations show that it also has lower delays.

(4) Note that for α < 1, the policy may not even be maximal.

In fact small α can be expected to result in very few nodes

being scheduled most of the time. This is why we call our

class of policies ”lazy”.

(5) α trades off between complexity and delay, while re-

maining throughput-optimal. Lower α corresponds to lower

complexity, but higher delays.

(6) Augmenting and absorbing paths are key to forming LHPF-

α matchings in node-weighted graphs, just as augmenting

paths are for edge-weighted matchings.

(7) Any matching (and hence any policy) can be post-

processed to become LHPF-α. This allows us to con-

vert low-complexity but non-throughput-optimal policies into

throughput-optimal ones via few extra operations.

A. Algorithms

Just as algorithms for edge-weighted matchings are based

on augmenting paths, those for node weighted matchings are

based on alternating and augmenting paths:

Lemma 3: M is an LHPF-α if and only if none of the

unmatched α-heavy nodes has an augmenting or absorbing

path.

This immediately leads to an algorithm to convert a given

(possibly empty) matching into an LHPF-α matching.

Procedure for LHPF-α

INPUT: a node-weighted graph, and any initial matching

M0 (which could be empty, or generated by some other

algorithm)

OUTPUT: M∗, an LHPF-α matching

• Set l = 1
• At iteration l,

– IF Ml−1 matches all heavy nodes, set M∗ = Ml−1

and BREAK.

– Pick any unmatched heavy node i in Ml−1, and try

to find an augmenting or absorbing path P from i.
– IF such a P can be found, set Ml = Ml−1 ⊕ P and

l = l + 1.

– ELSE set M∗ = Ml−1, and BREAK loop.

Remarks: The above description is just a conceptual pro-

cedure; efficient implementations could potentially rely on

optimizations (e.g. like parallelism, as was done in [9] for

max-cardinality matching). We emphasize, rather, a more

interesting aspect of the above procedure: is that it allows us

to make LHPF-α matchings out of non-LHPF ones via post-

processing. In particular, the initial matching M0 could be

generated by a very simple algorithm (e.g. maximal matching,

or edge-based greedy); the above algorithm would then convert

it into LHPF-α. Lemma 3 implies that LHPF defines a nested

class of matchings / policies.

Lemma 4: Let M be a LHPF-α matching. Then for any

β < α, M is also an LHPF-β matching.

For clarity, we now describe a policy that is not an LHPF-α
policy. Suppose we do the following: go down the sequence

of ports, recursively matching nodes if any neighbor is free,

but not changing the edges already previously matched. Even

if we go all the way to the end, this policy is not LHPF-α
because it may exclude a port that would have been possible

to schedule by changing the matchings of heavier ports that
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came before it. It is thus important that the ports are added

via augmenting or absorbing paths.

B. Maximum Vertex-weighted Matching

α = 1 corresponds to Maximum Vertex-weighted Matching

(MVM) problem: find the matching with the highest node

weight.

Lemma 5: M is an MVM if and only if there is no

augmenting path or absorbing path from any of its unmatched

nodes.

The complexity of MVM is O(N2.5log(N)) [17] and the

policy is simple to implement in hardware [14]. Many heuris-

tics have been developed for MSM and they can be readily

tuned to compute approximate MVMs. with the characteriza-

tion of LHPF-α policies, which is a much bigger class, we

expect that it would be much easier to develop heuristics for

LHPF-α matchings.

C. Critical Port Policies

A port i is a critical port if it has the heaviest weight – i.e.

qi = h = maxj qj .

Lemma 6: In any switch configuration (i.e. where node

weights are total queues at the ports), all the critical ports

can always be simultaneously matched.

The proof follows from the Birkhoff-VonNeumann theorem.

This leads us to consider the class of critical port policies: a

policy is a critical port policy if it schedules every critical port

in every time slot.

Lemma 7 (Optimal Evacuation): Consider a switch with an

initial loading and no further arrivals. Then, a policy evacuates

the system (i.e. tranfers every packet) in minimum time if and

only if it is a critical port policy.

While evacuation-time optimality is a very appealing short-

term property, critical port policies do not have good long-term

performance. In particular, they are not throughput optimal. To

see this, consider a 2x2 switch with the sequence of arrivals

shown in Table I, where the scheduler schedules only the

critical ports. aij represents the number of packets arriving

at link (i, j) at that time, and qij represents the queue lengths

under a policy that only schedules critical ports. As can be

seen from the table, if the same arrival pattern continues, the

value of q11 and q22 will keep on increasing with time and

will eventually become unbounded. Note that the average load

in the system is within the capacity region and the arrival

sequences also satisfies the law of large numbers. Hence

we conclude that scheduling only the critical ports is not

enough. In general, to achieve throughput optimality, we have

to schedule “enough” heavy ports.

IV. THROUGHPUT OPTIMALITY OF LHPF-α POLICIES

Theorem 1: Any LHPF-α policy is throughput optimal, for

any α > 0.

Proof:

Let the system be empty at time 0. Let ai(n) denote the

cumulative number of packets that have arrived at an input port

i up to time slot n. Similarly, aj(n) denotes the cumulative

TABLE I
CRITICAL-PORT POLICIES ARE NOT THROUGHPUT OPTIMAL.

T a11, a12, a21, a22 q11, q12, q21, q22

0 0, 0, 0, 0 0, 0, 0, 0
1 0, 0, 0, 2 0, 0, 0, 2
2 2, 0, 0, 0 2, 0, 0, 1
3 1, 0, 0, 0 2, 0, 0, 1
4 0, 0, 0, 1 1, 0, 0, 2
5 0, 0, 0, 2 1, 0, 0, 3
6 2, 0, 0, 0 3, 0, 0, 2
7 1, 0, 0, 0 3, 0, 0, 2
8 0, 0, 0, 1 2, 0, 0, 3
9 0, 0, 0, 2 2, 0, 0, 4
10 2, 0, 0, 0 4, 0, 0, 3
11 1, 0, 0, 0 4, 0, 0, 3
12 0, 0, 0, 1 3, 0, 0, 4
13 0, 0, 0, 2 3, 0, 0, 5
14 2, 0, 0, 0 5, 0, 0, 4
15 1, 0, 0, 0 5, 0, 0, 4
16 0, 0, 0, 2 4, 0, 0, 6

number of packets that have arrived in the system, destined for

output port j up to time slot n. For each edge in the matching,

one packet is removed at both the nodes touching the edge.

With this understanding, henceforth, we shall not distinguish

between an output and input port. We assume the convention

that ai(0) = 0. We assume that the arrival processes ai(.)
satisfy a strong law of large numbers (SLLN): with probability

one,

lim
n→∞

ai(n)

n
= λi (1)

For any port, input or output, let λi be the average rate of

arrival of packets to port i. Define

ǫ∗ = min
i

(1 − λi)

The capacity region is {λ : λi < 1 for all i}, which means

that ǫ∗ > 0.

Fluid Model

We develop a fluid limit model following the development

in [2]. Let qi(n) denote the weight at port i and di(n) be the

number of packets that departed from port i by time slot n.

Let hM (n) be the number of slots in which matching M ∈ M
has been scheduled, where M is the set of all matchings (not

necessarily maximal). Then hM is a non-decreasing function.

Also note that by definition of G(n), M can schedule only

non-zero edges in the system. Mi indicates if matching M
schedules port i. Note that qi(.) and di(.) evolve according to

the following:

qi(n) = qi(0) + ai(n) − di(n)

di(n) =
∑

M∈M

n∑

l=1

Mi(hM (l) − hM (l − 1))

∑

M∈M

hM (n) = n

We define ai(t) for a non-negative real number t by inter-

polating the value of ai between time ⌊t⌋ and ⌊t⌋+1. We also

define qi(t) and di(t) in the same way by linear interpolation
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of the corresponding values at time ⌊t⌋ and ⌊t⌋ + 1. Then,

by using the techniques of Theorem 4.1 of [3], we can show

that, for almost all sample paths and for all positive sequence

xk → ∞, there exists a subsequence xkl
with xkl

→ ∞ such

that the following convergence holds uniformly over compact

intervals of time t:
For all i,

ai(xkl
t)

xkl
t

→ λit
qi(xkl

t)

xkl

→ Qi(t) (2)

di(xkl
t)

xkl

→ Di(t)
hi(xkl

t)

xkl

→ Hi(t) (3)

(4)

The system (D,H,Q) is called the fluid limit and queues

evolve in the fluid limit as follows:

Qi(t) = Qi(0) + λi(t) − Di(t)

d

dt
Di(t) =

∑

M∈M

Mi
d

dt
HM (t)

∑

M∈M

HM (t) = t

D,H and Q are absolutely continuous functions and are

differentiable at almost all times t ≥ 0 (called regular times).

It follows that

d

dt
Qi(t) = λi −

d

dt
Di(t)

= λi −
∑

M∈M

Mi
d

dt
HM (t)

(5)

The following lemma from [2] establishes the connection

between the stability of the switch and the fluid model.

Lemma 8: A switch operating under a matching algorithm

is rate stable if the corresponding fluid model is weakly stable.

Lemma 9: The fluid model of a switch operating under a

matching algorithm is weakly stable if for every fluid model

solution D, T, Q with Q(0)=0, Q(t)=0 for almost all t ≥ 0.

Define Lyapunov function

V (Q(t)) = max
i

Qi(t)

Note that in the definition of V the maximum is taken over

all ports, input and output.

Remarks

• The Lyapunov function used by [4] for the analysis of

GMM policy also looks at the maximum queue length.

The novelty of our proof is that we do not need to look

at the individual queue lengths. Our Lyapunov function

is based on port weights. Another difference is that while

the analysis in [4] depends on the fact that GMM is

a maximal matching, our proof works for all LHPF-α
policies which are not even required to be maximal, in

general.

• Our proof of stability is more subtle than the proof

of stability for the MWM policy [2]. Note that the

maximum weight matching in the graph remains the

maximum weight matching in the corresponding fluid

model. However, the ports that are critical in a given

interval of time (t, t + δ) in the fluid model may not

be critical on a slot by slot basis in the actual system.

Hence, for example, a critical port policy may not be

able to schedule all the ports that are critical in the fluid

model.

Proof Intuition

Our proof is based on the observation that all the ports that are

critical (heaviest) in the fluid limit, may not remain heaviest

in the neighborhood of time t, but they continue to be above

a certain threshold. We show that all ports that are critical in

the fluid limit are scheduled in every time-slot around t by

any LHPF-α policy for α > 0. We prove this in Lemma 10.

Note that the LHPF-α policy does not need to know which

ports are critical in the fluid limit.

Theorem 2: Any LHPF-α policy is throughput optimal.

Proof:

Since V(Q(t)) is a non-negative function, to show that

V (t) = 0 for almost all t ≥ 0, it is enough to show that,

if t is a regular time and V (t) > 0 then V(Q(t)) decreases at

least at a given rate.

We prove that for all regular times t such that V (Q(t)) > 0,

for a system operating under any LHPF-α policy for α > 0,

d

dt
V (Q(t)) ≤ −ǫ∗

Fix time t and let γ = V (Q(t)) = maxi Qi(t). Also, define

C = {i : Qi(t) = γ}

to be the set of heaviest ports at t. Also, let γ̃ = maxi/∈C Qi(t)
be the heaviest of the remaining ports. Since the number

of ports is finite, γ̃ < γ. Choose β small enough so that

(a) γ̃ < γ − 3β, and (b) β < min{γα
2 , γ

2N+1}. Here

N = max{N1, N2}. Note that this implies that

(γ − β) > (γ + β)(1 − α) (6)

and also (
N + 1

N

)
(γ − β) > (γ + β) (7)

Recall that Q(t) is absolutely continuous. This means that

there exists a δ small enough, so that at all times τ ∈ (t, t+δ)
the queues satisfy the following conditions

(C1) Qi(τ) ∈ (γ − β
2 , γ + β

2 ) for all i ∈ C
(C2) Qi(τ) < γ − 5β

2 for all i /∈ C

Let xkl
be a positive subsequence for which the convergence

to the fluid limit holds. Consider l large enough so that

|
qi(xkl

t)

xkl

− Qi(t)| < β
2 .

Consider time slots T := {⌈xkl
t⌉, ⌈xkl

t⌉+1, . . . ⌊xkl
(t+δ)⌋}.

The following lemma shows that all critical ports that are

critical at the fixed time t in the fluid limit will be scheduled

at all time slots n ∈ T . The conditions (C1) and (C2) can be

rewritten as follows for the original switching system.
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(C1*) qi(n) ∈ [xkl
(γ − β), xkl

(γ + β)] for all i ∈ C
(C2*) qi(n) ≤ xkl

(γ − 2β) for all i /∈ C

We state a lemma. We prove it immediately after the current

proof.

Lemma 10: For all times n ∈ T , any LHPF-α policy with

α > 0 will match all ports that are in C at time t in the fluid

limit.

Now, assuming that a LHPF-α policy indeed schedules

every port i ∈ C at all times n ∈ T ,

∑

M∈M

Mi(hM (⌊xkl
(t+δ)⌋)−hM (⌈xkl

t⌉)) = ⌊xkl
(t+δ)⌋−⌈xkl

t⌉

(8)

Now by dividing both sides by xkl
and let l → ∞, we

obtain:

1 ≥

∑
M∈M Mi(hM (xkl

(t + δ)) − hM (xkl
t)

xklδ

≥
⌊xkl

(t + δ)⌋ − ⌈xkl
t⌉

xklδ
→ 1

(9)

Hence for δ → 0,

∑

M∈M

Mi
d

dt
HM (t) = lim

δ→0

∑

M∈M

Mi
HM (t + δ) − HM (t)

δ

= lim
δ→0

lim
l→∞

∑
M∈M Mi(hM (xkl

(t + δ)) − hM (xkl
t)

xkl
(δ)

→ 1 by Eq. (9)

(10)

So, by Eq. (5) it follows that, ∀i ∈ C,

dQi(t)

dt
= −(1 − λi) ≤ −ǫ∗. (11)

Also, every port i /∈ C has weight strictly lower than every

port in C, for the entire duration (t, t+δ). Thus it follows that

d

dt
V (Q(t)) ≤ − ǫ∗

This proves the theorem. ¥

Proof of Lemma 10:

We first note that all the ports in C are heavy ports for the

LHPF-α policy on account of conditions (C1*) and Eq. (6).

Let C1 ⊂ C be the set of input ports in C, and C2 ⊂ C the

set of output ports. We will first show that all ports in C1

can be matched, by showing that Hall’s condition (given in

Lemma 1) holds for this set. By symmetry, all ports in C2 can

be matched and by Lemma 2 we conclude that all ports in C
can be matched.

Fix time n ∈ T , and for any subset S ⊂ C1 let Nτ (S) be

its neighborhood at time n. Suppose now that S fails Hall’s

condition, i.e. that |S| ≥ |Nn(S)| + 1. Now, each i ∈ S has

qi(n) > xkl
(γ − β), by condition (C1). This means that

∑

i∈S

qi(n) > |S|xkl
(γ − β) ≥ (|Nn(S)| + 1) xkl

(γ − β)

Now, each packet in qi(n), i ∈ S is destined for one node in

Nn(S), which means that
∑

j∈Nn(S)

qj(n) ≥
∑

i∈S

qi(n)

(LHS and RHS may not be equal because there might be other

input ports with packets for ports in Nn(S)). This means that

there exists one node j∗ ∈ Nn(S) with queue

qj∗(n) ≥
1

|Nn(S)|

∑

j∈Nn(S)

qj(n)

>

(
|Nn(S)| + 1

|Nn(S)|

)
xkl

(γ − β)

Further, |Nn(S)| ≤ N , so we have that

|Nn(S)| + 1

|Nn(S)|
≥

N + 1

N

which gives, from (7),

qj∗(n) >

(
N + 1

N

)
xkl

(γ − β) > xkl
(γ + β)

However, this means that j∗ violates the fact, implied by (C1*)

and (C2*), that qj(n) < xkl
(γ + β) for all ports j. This is a

contradiction, and thus it has to be that Hall’s condition is

satisfied at n.

Thus, there exists a matching that matches all input ports

in C1. Similarly, it can be shown there exists a matching that

matches all output ports in C2. By Lemma 2, this means there

exists a matching that matches all ports in C. From conditions

(C1*) and (C2*), it follows that this matching matches all

ports with weight greater than γ − β.

Since β < γα, all the ports with weight above γ−β, i.e. all

ports in C will be simultaneously scheduled by the LHPF-α
policy. ¥

V. SIMULATIONS

In this section we study the performance of LHPF-α poli-

cies as a function of α. We also study the performance of

the LHPF-α policies obtained by post-processing a maximal

schedule and compare its delay performance with MWM-α
algorithms. MVM lies in the class of LHPF-α policies.

We implemented a packet level simulator in Java. The

simulations are run long enough so that the half-width of the

99% confidence interval is within 1% of the mean.

We simulate a 8 × 8 switch with symmetric loading on each

edge. We simulate two types of arrival processes, Bernoulli

and a more bursty arrival process. Each arrival stream injects

packets independently in the system. Clearly, these processes

satisfy strong law of large numbers and the switch is guaran-

teed to be stable. The model of the bursty arrival process is

described below.

Bursty Arrival Processes: The arrival stream is a series of

active and idle periods. During the active periods, the source

injects one packet into the queue in every time slot. The

length of the active periods (denoted by random variable a)

are distributed according the Zipf law with power exponent
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Fig. 3. Average Delay in a 8 × 8 switch under LHPF-α policy under
symmetric Bernoulli traffic at system utilzation ρ = 0.45.

α

E
x

p
e

c
te

d
 D

e
la

y
 (

s
lo

ts
/p

a
c

k
e

t)

 

 

0 0.2 0.4 0.6 0.8 1

100

200

300

400

500

600

700

800

900

1000
LHPF−α

MWM−α=0.1

Greedy

Fig. 4. Delay of a 8 × 8 switch under LHPF-α policy under symmetric
Bernoulli traffic at system utilzation ρ = 0.95.

1.25 and support [1,2,3,. . . ,100]. Heavy tailed distributions

like Zipf, have been found to model the Internet traffic [5].

During the active period the source generates one packet every

time-slot. The idle periods are geometrically distributed with

mean p. The mean arrival rate of a source can be controlled

by changing the value of p.

We first study the performance of the LHPF-α policies

as a function of α. In this study, we generate the LHPF-

α matchings from scratch, i.e. we post-process an empty

matching and schedule only from the set of heavy nodes for

the particular value of α. The average delay of packets in the

system for symmetric Bernoulli traffic is shown in Figs. 3 and
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Fig. 5. Delay of a 8 × 8 switch under post-processed maximal matching
policy (with LHPF-α) under symmetric Bernoulli traffic at system utilzation
ρ = 0.95.

4 for a system utlization ρ, 0.45 and 0.95 respectively. We

observe that the delay is inversely proportional to the value of

α and is especially large for small values of α.

This can be thought of as a trade-off between the computa-

tional complexity of the scheduler and the delay performance

of the system. The computational complexity of the scheduler

is as small as O(N2.5) for α < 1/N while it is as large as

O(N2.5logN ) for α = 1. While small value of α leads to large

delays, the delay is much smaller for α = 1 at the cost of

increased computational overheads per slot. We also observe

that the delay increases with system utilization ρ.

Post-processing provides an interesting alternate to circum-

vent the above trade-off between computational complexity

and delay performance. It is well known from the simulation

studies that in most cases, computationally simple algorithms

like maximal matching, greedy maximal matchings etc. have

good delay performance. However, they are not throughput

optimal and thus can have bad delay performance in some

cases. By post-processing a matching and making it LHPF-α,

we can guarantee throughput optimality with small computa-

tional overhead.

We study the delay performance of LHPF-α matchings

obtained by post-processing maximal matchings. The average

delay of packets in the system as a function of α for symmetric

Bernoulli traffic is shown in Fig. 5. By comparing the results

in Fig. 5 and 4, we conclude that post-processing offers

significant gains both in complexity and in delay performance.

We compare the performance of LHPF-α policies with

that of MWM-α policies for Bernoulli traffic. The delay

performance of LHPF-(α = 0.3) is similar to that of the

MWM policy for significantly less computational overhead.

The value of α serves as a tunable parameter that increases

the delay efficiency at the cost of increased computational
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overhead. Moreover, the results in Fig. 6 show that the delay of

MVM policy is smaller than that of the MWM policy. MWM-

α policies have been studied in the literature [10], [16] and

have been reported to incur smaller delay as the value of α
goes to zero. Our simulations confirm this observation and

also show that the delay performance of the MVM policy is

no worse than the MWM-α policies even for small values of

α.

Fig. 7 shows the delay for the bursty arrival process de-

scribed above. The delay is significantly higher for the more

bursty arrival process as compared to Bernoulli traffic. It seems

that although the MVM and MWM-0+ policies have different

tie-breaking rule, their delay performance is actually quite

similar.
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