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Abstract—We consider a class of wireless networks with
general interference constraints and heterogeneous transmission
rates under single-hop traffic. The delay analysis of throughput
optimal (queue length based) scheduling policies in such systems
is extremely difficult due to complex correlations arising between
the arrival, service and the queue length process. We use the un-
derlying interference constraints to obtain a fundamental lower
bound on the delay performance of any scheduling scheme for
this system. We also present upper bounds for the performance
of these networks operating under the well-known Maximum
Weighted Matching (MWM) scheduling policy.

I. INTRODUCTION

A large number of studies on wireless networks have been

devoted to system stability and throughput maximization.

These schemes are often called throughput-optimal scheduling

schemes. The delay performance of these systems, however,

has largely been an open problem. Our focus in this paper is

to analyze the expected delay for this system. To that end, we

will establish fundamental lower bound on the expected delay

of any scheduling policy. We also derive an upper bound on

the expected delay of a well-known and extensively-studied

(e.g., [1], [3], [6], [7]) throughput-optimal scheme called the

Maximum Weighted Matching (MWM).

We model the wireless network as a arbitrary graph G =
(V,E) with time varying links. Packets arrive in the system
from independent exogenous sources and are stored in separate

queues awaiting transmission. The links can have different ca-

pacities depending on the distance between the nodes, interfer-

ence etc. Channel conditions on each link very independently

every slot according to ON/OFF Bernoulli processes, so that

a link l can transmit Cl packets when it is in the ON state and

cannot transmit in the OFF state. Such ON/OFF channel states

might arise from channel fluctuations or fading. Every time-

slot, a network controller views the channel conditions and

schedules a set of non-interfering links (matching). The set of

all valid matchings in the system can be arbitrary, allowing for

any interference model. Under the MWM scheme, the weights

of each link is chosen as the product of its backlog with the

capacity of the link. With this choice of weights, the maximum

weighted matching is scheduled at every time slot.

The design of a delay optimal policy that achieves minimum

possible average delay of packets in the network for a given

routing matrix has proved to be very challenging. Except for a

delay optimal scheduling scheme for the tandem queue under

the node exclusive interference model derived in [14], no result

is known for more general systems.

The analysis of scheduling policies is difficult because of

correlations among mutually interfering queues. Moreover,

throughput optimal algorithms like MWM use the queue

length information while making the scheduling decisions.

This results in complex interactions of arrival, service, and

backlog processes and significantly complicates the analysis.

The general research on the delay analysis of scheduling

policies has progressed in the following main directions:

• Heavy traffic regime using fluid models: Fluid models
have typically been used to either establish stability of

the system or to study the workload process in the

heavy traffic regime. It has been shown in [2], [13] that

the MWM policy minimizes the workload process for a

stochastic processing network in the heavy traffic regime.

• Stochastic Bounds using Lyapunov drifts: This method is
developed in [4], [7], [11], [12] and is used to derive

upper bounds on the average queue length for these

systems. However, these results are order results and

provide only a limited characterization of the delay of

the system. For example, it has been shown in [12] that

the maximal matching policies achieve O(1) delay for
networks with single-hop traffic when the input load is

in the reduced capacity region.

• Large Deviations: Large deviation results for cellular
systems have been obtained in [8], [15], [17] to calculate

queue-overflow probability. The analysis is much harder

for the wireless network considered here, due to the

complex interactions of the arrival, service, and backlog

process.

In this paper we develop lower and upper bound on the average

delay of a packet in a wireless network with single-hop traffic

under a throughput-optimal scheme. A throughput optimal

scheme can stabilize the system whenever there exists any

other scheduling scheme which can stabilize the system.

The delay performance of any scheduling policy is primarily

limited by the interference, which causes many bottlenecks to

be formed in the network. We generalize the typical notion

of a bottleneck. In our terminology, we define a bottleneck

to be a set of links X such that no more than one of them

can simultaneously transmit. We develop an efficient technique

to reduce such bottlenecks to a single queue system fed by

appropriate arrival processes which are simple functions of

the exogenous arrival processes of the original network. The

lower bound on the system-wide average delay of a packet is

then computed by the analysis of these reduced systems and
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requires only the statistics of the exogenous arrival processes.

Our idea of bottlenecks is similar to [5], which uses cliques

in the conflict graph to characterize the capacity region of a

wireless network.

We then construct a upper bound on the delay of a variant

of MWM using the method of Lyapunov drifts which has been

developed in [4], [7], [11], [12]. By designing an appropriate

Lyapunov (potential) function we are able to ensure that the

contribution of each queue to the drift (expected decrease in

the potential) is proportional to the size of the queue. Using the

fact that the matching computed by the MWM algorithm has

the largest weight among the set of all possible matchings,

we are able to establish an upper bound on the expected

delay of the system. In the rest of the paper, we define the

system model and subsequently develop the lower bound and

the upper bound.

II. SYSTEM MODEL

We consider a wireless network, G with N links denoted

by set L. The capacity (maximum number of packets that can

be transmitted in one slot) of link l is given by Cl. Let sl(t) ∈
{ON,OFF} represent the channel state of link l during time

slot t. Assume that these channel states are i.i.d. over time-

slots and independent across channels, and let pl represent the

probability of link l to be ON .

Each link has its own exogenous arrival stream {Al(t)}
∞
t=1.

Each arrival stream is i.i.d. in time. Time is slotted. The
distribution of the number of packets, Al(t), arriving to a
link l in any given time slot t may be arbitrary but time

invariant. Each packet has deterministic service time equal to

one unit. Assume that the second moments, E[A2
l ], of the

arrival processes are finite. Different input streams may be

correlated with each other. Let A(t) = (A1(t), . . . , AN (t))
represent the vector of exogenous arrivals, where Al(t) is
the number of packets that arrive to link l during time slot

t (for l ∈ 1, . . . , N ). Let λ = (λ1, . . . , λN ) represent the
corresponding arrival rate vector.

The packets arriving at each link are queued. Let Ql(t)
denote the queue length at link l. The queue length vector

is denoted by Q(t) = (Ql(t) : l = 1, 2, . . . , N). A link can
be activated in a time slot t only if the queue is non empty.

We use the term activation (scheduling) of a link or a queue

interchangeably in the paper. After service, each packet leaves

the system. There is a slotted service structure. For each link

l, the indicator function Il(t) indicates whether or not link l

received service at time slot t. Note that

Il(t) =

{
1 if Ql(t) > 0 and l is scheduled

0 otherwise
(II.1)

The evolution of the queue is as follows,

Ql(t + 1) =(Ql(t) − Il(t)Cl(t)11{sl(t)=ON})
+

+ Al(t), l = 1, .., N
(II.2)

where

(x)+ =

{
x if x > 0
0 otherwise

Define residual capacity rl as follows.

rl(t) =

{
Cl(t) − Ql(t) if Ql(t) < Cl(t)
0 otherwise

Then, the queue evolution can be written as

Ql(t + 1) =Ql(t) − Il(t)(Cl(t) − rl(t))11{sl(t)=ON}

+ Al(t), l = 1, .., N
(II.3)

The vector of the scheduled queues is denoted by I(t) =
(In(t)) : n = 1, ..N . Because of interference, there are

constraints on the combination of links that can be activated

simultaneously. We allow these constraints to be arbitrary. I(t)
is a valid activation vector if it satisfies these constraints. Let

S be the collection of all activation vectors, Ij . At each time-

slot an activation vector I(t) is scheduled. A scheduling policy
decides which activation vector is used in every time slot.

Let ‖Y‖ denote the Euclidean norm of vector Y. The

system is considered to be stable if lim
t→+∞

E[sup ‖Q(t)‖] is

bounded. If the system is stable then the throughput is the

same as the arrival rates. A throughput vector λ is admissible

if there is some scheduling policy under which the system is

stable when the arrival rate vector is λ. Let us denote by Λ
the closure of the convex hull of the set of activation vectors,

Ij and by C the interior of the convex hull. Note that Λ is
a closed convex set. It has been shown in [6] that if each

arrival process is i.i.d. in time, and the first two moments of
all the arrival streams {Al(t)}

∞
t=1 are finite, then λ ∈ C is

a necessary condition for a stabilizing scheduling policy to

exist. It is also shown that the MWM policy, that chooses the

maximum weighted activation vector (matching), stabilizes the

system for any arrival rate satisfying the preceding condition.

MWM Scheduling Policy

I(t) = argmax
Ij∈S

N∑
i=1

QiCi11{si=ON}I
j
i (II.4)

where I
j
i is the ith component of the jth activation

vector, Ij , in set S.

Fig. 1. MWM Scheduling Policy

III. LOWER BOUND ANALYSIS

In this section, we present our methodology to derive lower

bounds on the average packet delay for a given multi-hop

wireless network. The first step is to identify the bottlenecks in

the system. We then explain how to lower bound the average

delay of the packets in a given bottleneck. Finally, we present a

greedy algorithm which takes as input, a system with possibly

multiple bottlenecks, and returns a lower bound on the system-

wide average packet delay.

Link interference causes certain bottlenecks to be formed

in the system. Define a bottleneck to be be a set of links

X ⊂ L such that no more than one of its links can be

scheduled simultaneously. Our idea of bottleneck is equivalent

to identifying cliques in the conflict graph which was used by
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[5] to estimate the capacity region of a given wireless network.

We call these sets of links, exclusive sets.
We demonstrate our methodology to derive lower bounds

on the average size of the queues corresponding to the links

that belong to an exclusive set. Then by definition,∑
i∈X

Ii ≤ 1 (III.5)

We define the weighted sum of arrival rates, λX correspond-

ing to X as follows,

λX =
∑
i∈X

λi

Ci

(III.6)

Similarly, AX and SX are defined as follows,

AX(t) =
∑
i∈X

Ai

Ci

(t) (III.7)

SX(t) =
∑
i∈X

Qi

Ci

(t) (III.8)

Reduced System: Consider a system with a single server
and AX(t) as the input. Note that we allow the inputs to this
system to be fractional. The server serves at most one packet

from the queue whenever it is non-empty and there is at least

one link state that is ON a time t. We denote the latter by

11{sX(t)=ON}. LetQX(t) be the queue length of this system at
time t. We define RX(t), the residual capacity of the reduced
system as follows,

RX(t) =

{
1 − QX(t) if QX(t) < 1
0 otherwise

The queue evolution of the reduced system is given by the

following equation.

QX(t+1) = QX(t)−11{QX(t)>0}11{sX(t)=ON}+AX(t)+RX(t)
(III.9)

where 11 is the indicator function.
We now establish that at all times t, QX(t) is smaller than

SX(t).
Theorem 3.1: For an exclusive set X in the system, at any

time T , SX under any scheduling policy is no smaller than

that of the reduced system, i.e., QX(T ) ≤ SX(T ).
Proof: Omitted for brevity.

• The above analysis captures the combinatorial interfer-

ence constraints and reduces the bottleneck to a G/D/1

system with appropriate inputs for the purpose of estab-

lishing lower bounds.

• We emphasize that AX(t) can be computed from
Eq. (III.7) and considers only the exogenous inputs to the

system. Furthermore, the lower bound on the expected

delay can be computed using only the statistics of the

exogenous arrival process and not their sample paths.

Using the above theorem it follows that,

E[SX ] ≥ E[QX ] (III.10)

We now compute a lower bound on E[QX ]. Due to the lack
of space, we omit the proof of the theorem.

Theorem 3.2: The expected queue length of the reduced

system, E[QX ] ≥
E[A2

X ] − 2λ2
X + λX

2(1 −
∏

i∈X (1 − pi)) − λX

We now present a greedy algorithm, Algorithm 1, which

computes a lower bound on the average delay for a system

containing multiple bottlenecks. The exclusive sets correspond

to cliques in the conflict graph [5]. Let M be the largest

number of links that interfere with a link l ∈ L. The time

complexity to compute all the exclusive sets is exponential in

M in the worst case.

The Algorithm 1 maintains a table T (i) which indicates the
number of times link i has been used in the bottleneck. The

value of T (i) is initialized to Ci. The algorithm proceeds by

greedily searching for a bottleneck that yields the maximum

lower bound. For each link in the chosen bottleneck, the value

of T (i) is decremented by 1 and the process is repeated
until the table T has a non zero entry. Thus it decomposes

the wireless network into several single queue systems. The

average delay of the system can then be easily computed.

Note that the decomposition obtained by the greedy algorithm

is not the optimal decomposition. The optimal decomposition

can alternately be obtained by using a dynamic programming

approach with the cost of increased computation complexity.

Algorithm 1 Computing the Lower Bound
1: for i = 1 to N do
2: T (i) ← Ci

3: end for
4: BOUND ← 0
5: repeat
6: Find the bottleneck which maximizes E[QX ]
7: BOUND ← BOUND + E[QX ]
8: for all i ∈ X do
9: T (i) ← T (i) − 1
10: end for
11: until ∀i, T (i) = 0
12: return BOUND

The lower bound may be loose on account of the following.

We assume that the queueing in the bottlenecks is independent

of each other, which may not be possible because of interfer-

ence. Moreover, in the derivation of the lower bound by the

reduction technique, we have neglected the non-empty queue

constraints by grouping the arrivals into a single queue, and

hence we underestimate the delay. Since the exclusive sets do

not completely characterize the capacity region of the network,

it may also be expected that if the input load is close to a

boundary of the capacity region C, which is different from the

boundaries generated by the exclusive sets, the lower bound

may perform poorly. Thus, in certain cases, the delay of the

system under MWM policy may be close to infinity while the

lower bound is much smaller. This motivates the development

of an upper bound for the system, which is tight in the sense

that whenever the upper bound goes to infinity, the delay of
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the system under a throughput optimal policy also becomes

infinite.

IV. DEVELOPMENT OF AN UPPER BOUND

In this section, we analyze a class of Generalized Maximum

Weighted Matching (GMWM(w)) policies, parameterized by
weights wi which is described in Figure 2. The MWM policy

is a special case, where all the weights wi are unity. We

GMWM Scheduling Policy

I(t) = argmax
Ij∈S

N∑
i=1

(wiQi)Ci11{si=ON}I
j
i (IV.11)

where I
j
i is the ith component of the jth activation

vector, Ij , in set S and wi > 0 are fixed constants.

Fig. 2. GMWM Scheduling Policy

establish the following bounds on the sum of the expected

queue lengths and the expected delay in the system.

Theorem 4.1: Given any input load vector λ ∈ C and any

vector μ ∈ C : ∀i, μi > λi, the following bound on the

expectation of the sum of lengths of queues holds true in a

system operating under the GMWM policy where the weights

wi are chosen as wi = 1
(μi−λi)

:

N∑
i=1

E[Qi] ≤

N∑
i=1

(2Ciλi + Var[Ai] − λ2
i )

2(μi − λi)
(IV.12)

The total expected network delay, D̄, satisfies:

D̄ ≤

N∑
i=1

(2Ciλi + Var[Ai] − λ2
i )

2(
∑N

i=1 λi)(μi − λi)
(IV.13)

Proof: We prove the bound on sum of expected queue
lengths in the appendix and the bound on delay follows by

Little’s law.

The above analysis naturally leads us to the question of

which μ > λ should be selected in the capacity region C

such that the upper bound is minimized. Intuitively this means

that the distance between the load vector and the service

process should be as large as possible. This can be formulated

as an optimization problem to compute the value of μ that

minimizes the upper bound.

Upper Bounding Expected Delay

Minimize

N∑
i=1

(2Ciλi + Var[Ai] − λ2
i )

2(μi − λi)

subject to μ ∈ C

Fig. 3. Optimization Problem for Minimizing the Upper Bound

The optimization problem in Figure 3 is convex because

the objective function is convex and the capacity region is

also convex, being a convex hull of the activation vectors.

The formulation of the problem is very similar to the network

utility maximization using convex optimization techniques (see

[9], [10], [16]).

V. CONCLUSIONS

We have established a fundamental lower bound on the

performance of a wireless system with single-hop traffic and

general interference constraints. This result can be used to

study the relative performance of any scheduling policy. We

have presented analysis of the GMWM type of scheduling

policies on the expected queue lengths and expected delay in

the system. The GMWM policy analyzed in the paper, uses

the information of the arrival rates to the links to achieve load

balancing by assigning higher weights wi to more congested

links. Thus, we are able to obtain a sharper upper bound on

the delay performance.
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APPENDIX

Proof of Theorem 4.1 We first design an appropriate
Lyapunov function.

V (Q(t)) =
1

2

N∑
i=1

wiQ
2
i (t) (A.14)

Note that if all the weights wi are chosen to be 1, this is exactly

the quadratic Lyapunov function used in [6]. We begin with

the calculation of the drift for any state Q(t).

Δ(Q(t))

=
1

2

N∑
i=1

wiE[(Qi(t + 1) − Qi(t))(Qi(t + 1) + Qi(t))|Q(t)]

=
1

2

N∑
i=1

wiE[(Ai(t) − (Ci − ri(t))11{si(t)=ON}Ii(t))

(2Qi(t) + Ai(t) − (Ci − ri(t))11{si(t)=ON}Ii(t))|Q(t)]

=

N∑
i=1

wiE[Qi(t)(Ai(t) − (Ci − ri(t))11{si(t)=ON}Ii(t))|Q(t)]

+
1

2

N∑
i=1

wiE[(Ai(t) − (Ci − ri(t))11{si(t)=ON}Ii(t))
2|Q(t)]

=
N∑

i=1

wiE[Qi(t)(Ai(t) − Ci11{si(t)=ON}Ii(t))|Q(t)]

+
1

2

N∑
i=1

wi(E[A2
i (t) + (C2

i + r2
i (t))11{si(t)=ON}Ii(t)|Q(t)])

+

N∑
i=1

wi(E[(Qi(t) − Ci11{si(t)=ON}Ii(t))

ri(t)11{si(t)=ON}Ii(t)|Q(t)])

+

N∑
i=1

wi(E[Ai]E[(Ci − ri(t))11{si(t)=ON}Ii(t)|Q(t)])

=

N∑
i=1

wiE[Qi(t)(Ai(t) − Ci11{si(t)=ON}Ii(t))|Q(t)]

+
1

2

N∑
i=1

wi(E[A2
i (t) + (C2

i + r2
i (t))11{si(t)=ON}Ii(t)|Q(t)])

+

N∑
i=1

wi(−E[r2
i (t)11{si(t)=ON}Ii(t)|Q(t)] + E[A2

i (t)])

=

N∑
i=1

wiE[Qi(t)(Ai(t) − Ci11{si(t)=ON}Ii(t))|Q(t)]

+
1

2

N∑
i=1

wi(E[A2
i (t)] − 2E[A2

i (t)])

+
1

2

N∑
i=1

wi(E[(C2
i − r2

i (t))11{si(t)=ON}Ii(t)|Q(t)])

(A.15)

Note that I(t) is the activation vector chosen by the GMWM
scheme at time-slot t. For any other activation vector I∗ ∈ S,

the following holds true:

N∑
i=1

wiE[Ci11{si(t)=ON}I
∗
i (t)Qi(t)|Q(t)]

≤
N∑

i=1

wiE[Ci11{si(t)=ON}Ii(t)Qi(t)|Q(t)].

Now, for a stationary randomized policy with rates μ > λ,

suppose the activation vector picked at time t is M(t). We
define another scheduling policy I∗ which schedules at time

t, all the queues scheduled by M(t) except for those whose
queues are empty. We define I∗ as follows:

I∗i (t) =

{
Mi(t) if Qi(t) > 0
0 if Qi(t) = 0

Moreover, Mi is a stationary randomized policy and we

have

E[Mi] = μi, μi ≥ λi

E[Mi(t)Qi(t)|Q(t)] = μiQi(t).

By definition of I∗ ,

E[Ci11{si(t)=ON}I
∗
i (t)Qi(t)|Q(t)] = E[Ci11{si(t)=ON}Mi(t)Qi(t)|Q(t)].

Therefore,

Δ(Q(t)) ≤

N∑
i=1

wi(λi − μi)Qi(t)

+
1

2

N∑
i=1

wi(E[A2
i (t)] − 2E[A2

i (t)])

+
1

2

N∑
i=1

wi(E[(C2
i − r2

i (t))11{si(t)=ON}Ii(t)|Q(t)]).

Now we choose wi = 1
(μi−λi)

. We now use the Lyapunov

Drift technique from [7] to obtain the following:

lim sup
t→∞

1

t

t−1∑
τ=0

E[

N∑
i=1

Qi(τ)] ≤
1

2

N∑
i=1

wi(E[A2
i (t)] − 2E[A2

i (t)])

+
1

2

N∑
i=1

wi(E[(C2
i − r2

i (t))11{si(t)=ON}Ii(t)|Q(t)])

(A.16)

Finally, we simplify the last term in the above equation as

follows,

E[(C2
i − r2

i (t))11{si(t)=ON}Ii(t)|Q(t)]

= E[(Ci + ri(t))(Ci − ri(t))11{si(t)=ON}Ii(t)|Q(t)]

≤ 2CiE[(Ci − ri(t))11{si(t)=ON}Ii(t)|Q(t)] = 2Ciλi.

(A.17)

Thus we obtain the following bound on the sum of expected

queue lengths in the system:

N∑
i=1

E[Qi] ≤

N∑
i=1

(2Ciλi + Var[Ai] − λ2
i )

2(μi − λi)
. (A.18)
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