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Abstract— Scheduling has been extensively studied in vari-
ous disciplines in operations research and wireline networking.
However, the unique characteristics of wireless communication
systems – namely, timing-varying channel conditions and multi-
user diversity – means that new scheduling solutions need to
be developed that are specifically tailored for this environment.
In this paper, we summarize various opportunistic scheduling
schemes that exploit the time-varying nature of the radio envi-
ronment to improve the spectrum efficiency while maintaining
a certain level of satisfaction for each user. We also discuss the
advantages and costs associated with opportunistic scheduling,
and identify possible future research directions.

I. INTRODUCTION

Transmission scheduling for wireless networks has recently
attracted a lot of research interests. First, scheduling policies
of wireline networks are extended to wireless networks, where
the burst of errors in wireless channels is taken into account.
To elaborate, a wireless channel is modeled by a two-state
Markov chain [1]: a user experiences error-free transmission
when it observes a “good” channel, and unsuccessful trans-
mission in a “bad” channel. Using such a channel model,
wireless fair scheduling policies have been studied [2], [3],
[4], [5]. These works provide various degrees of performance
guarantees, including short-term and long-term fairness, as
well as short-term and long-term throughput bounds. A survey
of these algorithms can be found in [6]. The limitation of these
works is that channels are modeled as either “good” or “bad,”
which is too simple to characterize realistic wireless channels,
especially for data services.

The IS-856 system, which is also known as High Data Rate
(HDR) [7], has been developed at Qualcomm to provide a
versatile wireless Internet solution [8]. The scheduler in IS-
856 is proportional fair [9], [10]. To elaborate, the propor-
tional fairness (PF) scheduler maximizes the product of the
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throughput delivered to all the users. In other words, the set
of throughput achieved by different users is proportionally fair
if increasing the throughput of one user from the current level
by x% requires a cumulative percentage decrease in all the
users of more than x%. Suppose that there are N users and
Ci(t) is the estimate of the average rate for user i at time-slot
t, i = 1, · · · , N . Also, suppose that at time-slot t, the current
achievable data rate of user i is Ri(t), i = 1, · · · , N . The
algorithm works as follows:

• Scheduling: The user with the highest ratio of
Ri(t)/Ci(t) of all N users will receive transmission at
each decision time. Ties are broken randomly.

• Update average rate: For each user i,

Ci(t + 1) = (1 − 1/tc)Ci(t) + 1/tc × Ri(t) × 1i,

where 1i = 1 if user i is chosen to transmit, otherwise
1i = 0.

The value of parameter tc used by the scheduling algorithm
is related to the maximum amount of time for which an
individual user can be starved [11]. The PF scheduling scheme
is analyzed in [12], [13].

In [14], [15], [16], the authors study scheduling algorithms
for the transmission of data to multiple users. Both delay and
channel conditions are taken into account. Roughly speaking,
the algorithm can be described as argmax ρiWiRi, where Wi

is the head-of-the-line packet delay for queue i, Ri is the
data rate of user i, and ρi is some constant. The proposed
scheduler achieves throughput optimality, defined in [14] as
follows: a scheduling algorithm is throughput optimal if it is
able to keep all queues stable if this is at all feasible to do with
any scheduling algorithm. Further, in [17], [18], the authors
propose a scheduling scheme with an exponential rule that well
balances the tradeoff between queue length and throughput.
The exponential-rule scheduler is also throughput optimal.

The authors of [19] investigate a scheduling algorithm to
maximize the minimum (weighted) throughput of users. The
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optimal solution is in the form of argmaxi ciRi(t), where ci

can be interpreted as the shadow price or reward, whose value
depends on the distributions of Ri. The authors also propose
an adaptive algorithm to determine the parameters, and study
the transient behavior.

Opportunistic scheduling exploits the channel fluctuations
of users. Hence, the larger the channel fluctuation, the higher
the scheduling gain. Thus a natural question to ask is what
we should do in environments with little scattering and/or
slow fading. In [20], the authors use multiple transmission
antennas to “induce” channel fluctuations, and thus exploit
multi-user diversity in a slow fading environment. Specifi-
cally, the antennas are fed with randomly picked phase and
amplitude to “induce” channel fluctuation. Each user feeds
back the overall SINR of its “induced” channel to the base
station. The base station selects the user with a large peak
value of SINR to transmit according to a certain scheduling
rule. When there are a large number of users, the base station
can always find a user with its peak SINR to transmit. Hence,
the system performance is asymptotically as good as a solution
with an optimal beam-forming configuration, while using only
the overall SINR as feedback. Further, such a scheme can also
be used opportunistically to null intercell interference.

In [21], the author studies the opportunistic scheduling from
a flow-level. Instead of assuming infinite backlogs, the author
studies the dynamic case where users have random finite-
size service demands. The authors shows that under certain
assumptions, the user-level performance can be approximated
by a multi-class Processor-sharing model where the total
service rate varies with the total number of users.

In [22], power consumption of users in a fading channel is
considered. In general, by varying the transmission rate and
power, based on the current fading level, a user in the wireless
network can utilize the available energy more efficiently.
However, such an approach can lead to long delays or buffer
overflows. In [22], the tradeoffs between the required power
and various notions of delay are analyzed.

In [23], the authors study scheduling problems for real-time
traffic with fixed deadlines. The authors propose a greedy al-
gorithm that chooses the request with the largest revenue in the
current time-slot to serve, and show that the greedy algorithm
is 1/2 competitive against the offline optimal algorithm; i.e.,
the throughput of the greedy algorithm is at least 1/2 of that
of the offline optimal algorithm. Further, they show that no
deterministic online algorithm can achieve a competitive ratio
higher than 1/2.

Downlink scheduling in CDMA systems for data trans-
mission is also studied in [24]. The work considers a per-
formance metric called “stretch”, which can be considered
as the normalized delay. A near optimal, offline, polynomial
time algorithm is proposed to minimize the maximum stretch
under the assumption of continuous rates, and various online
algorithms for continuous-rates/discrete-rates are studied with
simulations.

In [25], the authors study transmission schemes for time-
varying wireless channels with partial state information. The
objective is to minimize a discounted infinite-horizon cost
function, which can be used to indicate the balance between

power cost and throughput. The resulting optimal solution is
a threshold back-off scheme.

In [26], the authors present a framework for opportunisti-
cally scheduling user transmissions to exploit the time-varying
channel conditions in wireless communication systems. The
objective is to maximize the wireless system performance
while satisfying various QoS requirements. The framework
enables us to investigate different categories of scheduling
problems involving two fairness requirements (temporal fair-
ness and utilitarian fairness) and a minimum-performance
requirement. In particular, temporal fairness means that each
user obtains a certain portion of the resource (e.g., time-
slots). Utilitarian fairness means that each user obtains a
certain portion of the overall system performance. Last, a
user can also have a minimum-performance requirement (e.g.,
a data rate of 100Kbps). The optimal scheduling solutions
for these scheduling problems turn out to be index policies,
and a stochastic-approximation-based algorithm can be used
to efficiently estimate the key parameters of the scheduling
schemes on-line. The feasibility problem of a network with
minimum-performance requirements is also studied.

II. A NON-PROBABILISTIC APPROACH

In many previous problem formulations, only stationary
policies are considered. (A policy is a stationary policy if it is
not a function of time.) In this section, we use the temporal
fairness scheduling problem as an example to show how to
generalize the result to more general cases. Similar extensions
hold for other scheduling problems.

Let Uk
i be the performance value of user i at time k. An

example of the performance value is the data rate. Let Q be a
general policy whose value at time k may depend on the entire
performance value sequence {�Uk, k = 1, 2, · · · } and the time.
Let FK

i (Q) be the average performance value of user i up to
time K and TK

i (Q) be the average resource consumption of
user i up to time K. To elaborate,

FK
i (Q) =

1
K

K∑
k=1

Uk
i 1{Qk=i}, i = 1, 2, · · · , N

TK
i (Q) =

1
K

K∑
k=1

1{Qk=i}, i = 1, 2, · · · , N,

where Qk = Q({�U t, t = 1, 2, · · · }, k), and Qk = i means
that user i is scheduled to transmit at time k. The temporal
fairness constraint is formulated as:

lim inf
K→∞

T k
i (Q) ≥ ti, i = 1, 2, · · · , N,

where ti is a predetermined fairness parameter, ti ≥ 0, and∑N
i=1 ti ≤ 1. It says, in the worst case, at least ti portion of

the resource (time-slots) is allocated to user i asymptotically.
Let FK(Q) =

∑N
i=1 FK

i (Q); i.e., FK(Q) is the average
system performance up to time K. We define

F (Q) = lim sup
K→∞

FK(Q),

which can be considered as the asymptotic best-case system
performance of policy Q.
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Let Θ be the set of all scheduling policies, including
non-stationary policies and non-causal policies. The temporal
scheduling problem is formulated as:

maximize
Q∈Θ

F (Q)

subject to lim inf
K→∞

TK
i (Q) ≥ ti, i = 1, 2, · · · , N. (1)

We state our policy Q∗ as follows:

Q∗(�Uk) = argmax
i

(Uk
i + v∗

i ), (2)

where the v∗
i s are chosen such that:

1) mini(v∗
i ) = 0

2) lim infK→∞ TK
i (Q∗) ≥ ti for all i

3) For all i, if lim infK→∞ T k
i (Q∗) > ti, then v∗

i = 0.

Proposition 1: If limK→∞ TK
i (Q∗) exists for all i for the

Q∗ defined in (2), then the policy Q∗ is a solution to the
problem defined in (1).

Before we prove the above proposition, we explain the
proposition under various scenarios.

• Suppose that {�Uk, k = 1, 2, · · · } is stationary and er-
godic. Because Q∗ is a stationary policy, TK

i (Q∗) and
FK

i (Q∗) converge to a constant almost surely. Thus, Q∗

is a solution to the problem defined in (1). Furthermore,
we have

lim inf
K→∞

FK(Q∗) = lim sup
K→∞

FK(Q∗). (3)

This equation is critical. It states the important
fact that the asymptotic worst-case system perfor-
mance of our policy Q∗ (lim infK→∞ FK(Q∗)) is the
same as its asymptotic best-case system performance
(lim supK→∞ FK(Q∗)). Thus, the worst-case perfor-
mance of Q∗ asymptotically bounds the best-case sys-
tem performance of an arbitrary policy that satisfies the
temporal fairness constraint.

• Suppose that {�Uk, k = 1, 2, · · · } is stationary and er-
godic. Then many policies have the nice property that
FK

i (Q) and TK
i (Q) converge (to a random variable

almost surely). Examples of such policies are stationary
policies and periodic policies1. However, there exist poli-
cies such that

lim sup
K→∞

FK
i (Q) > lim inf

K→∞
FK

i (Q).

In this case, even if the policy Q is a solution to the
problem defined in (1), it is not a “good” solution because
only its asymptotic best-case performance bounds that
of others. On the contrary, the asymptotic worst-case
performance of Q∗ (defined in (2)) bounds the asymptotic
best-case performance of others.

• The proposition holds without the assumption that
{�Uk, k = 1, 2, · · · } is stationary and ergodic. However, in
this case, we may not be able to estimate the parameters
(v∗

i ) used in Q∗ in practice.
• A round-robin policy is often used as an example of

non-opportunistic policies for comparison. To be spe-
cific, round-robin is a non-stationary non-opportunistic

1This can be shown by directly applying Birkoff’s ergodic theorem.

scheduling policy. If {�Uk, k = 1, 2, · · · } is stationary,
then the expectation of the long-term average of the
performance value of a round-robin policy is equivalent
to that of a non-opportunistic policy (i.e., E(Ui) for user
i).

Proof: For technical simplicity, we assume that v∗
i s are

bounded. Furthermore, if
∑N

i=1 v∗
i = 0, then v∗

i = 0 for all i.
In this case, Q∗ always chooses the user with the maximum
performance value to transmit, and thus the result is trivial.
Now we consider the case where

∑N
i=1 v∗

i > 0.
If policy Q satisfies the fairness constraints; i.e.,

lim infK→∞ TK
i (Q) ≥ ti for all i, then for any ε > 0, there

exists L1, such that for any K > L1, we have

TK
i (Q) > ti − ε

2
∑N

i=1 v∗
i

, i = 1, 2, · · · , N. (4)

Because of the hypothesis that limK→∞ TK
i (Q∗) exists and

the condition 3 above to choose v∗
i s, we have

v∗
i

(
lim

K→∞
TK

i (Q∗) − ti

)
= 0, i = 1, 2, · · · , N.

Hence, for the ε in (4), there exists L > L1, such that for
K > L, we have

|v∗
i (TK

i (Q∗) − ti)| <
ε

2N
, i = 1, 2, · · · , N.

Then for K > L, we have

FK(Q)

≤ FK(Q) +
N∑

i=1

v∗
i

(
TK

i (Q) − ti +
ε

2
∑N

i=1 v∗
i

)

=
N∑

i=1

1
K

K∑
k=1

(Uk
i + v∗

i )1{Qk=i} −
N∑

i=1

v∗
i ti +

ε

2
.

By the definition of Q∗, we have

N∑
i=1

(Uk
i + v∗

i )1{Qk=i} ≤
N∑

i=1

(Uk
i + v∗

i )1{Q∗(�Uk)=i}.

Thus,

FK(Q)

≤
N∑

i=1

1
K

K∑
k=1

(Uk
i + v∗

i )1{Q∗(�Uk)=i} −
N∑

i=1

v∗
i ti +

ε

2

= FK(Q∗) +
N∑

i=1

v∗
i

(
TK

i (Q∗) − ti
)

+
ε

2

≤ FK(Q∗) + ε.

Because ε is chosen arbitrarily, we have

lim sup
K→∞

FK(Q) ≤ lim sup
K→∞

FK(Q∗),

which completes the proof. �
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III. DISCUSSIONS

To meet the increasing demand for wireless services, espe-
cially affordable wireless Internet services, wireless spectrum
efficiency is becoming increasingly important. In wireless
networks, users experience unreliable, location-dependent, and
time-varying channel conditions. Traditionally, the channel
variation is considered as a negative factor for reliable com-
munication, and should be mitigated by methods such as time
interleaving, power control, and multiple antennas. On the
other hand, opportunistic scheduling is designed to exploit the
variation of channel conditions to improve spectrum efficiency.
It adds an additional degree of freedom to the system: time-
domain diversity or also called multiuser diversity. It im-
proves spectrum efficiency, especially for delay-tolerant data
transmissions. Various opportunistic scheduling schemes have
been studied. A common objective is to improve/maximize
system performance (e.g., throughput) under various fairness
and QoS constraints. In many cases, the optimal policies are
given in a simple parametric form, hence lending themselves
to easy implementations. The advantages of opportunistic
scheduling also include the ability to work with other resource
management mechanisms. A good example of this is the joint
scheduling and power-allocation scheme [27].

However, nothing comes for free. Opportunistic scheduling
also has its own costs and limitations. Many

• There are signaling costs involved in all opportunistic
scheduling schemes because scheduling decisions inher-
ently depend on channel conditions (and/or queueing
status). Users need to constantly estimate their channel
conditions and report to the base station. Hence, the actual
scheduling gain should take into account the signaling
costs.

• Because users need to estimate the channel conditions, es-
timation errors occur in all scheduling schemes. There are
various sources of estimation errors: errors of estimations
of channels, errors of estimations of parameters involved
in scheduling schemes, and errors caused by various
delays such as transmission delay, estimation delay, and
restriction of time-slots, etc. In general, if the variation of
channel conditions is relatively slow, then the estimation
is good. We recommend a rigorous study on this problem,
especially in the case of fast fading.

• Opportunistic scheduling exploits the fluctuation of chan-
nel conditions, and thus scheduling gain inherently de-
pends on the amplitude of the variations of channels. In
general, the greater the fluctuation of channel conditions,
the larger the number of users, the better the performance
gain.

• Another concern in opportunistic scheduling is the time
scale of fluctuation. The fluctuation of channels should
be slow enough for user to estimate it and exploit it. On
the other hand, the fluctuation should be fast enough, so
that users won’t experience extreme long delays. (Though
many data users are delay-tolerant, extreme delays may
cause upper-layer problems such as TCP timeout.)

• There is a tradeoff between scheduling gain and short-
term performance. In general, the stronger the time-

correlation of channel conditions (i.e., the slower the
channel fluctuation), the worse the short-term perfor-
mance, and the greater the improvement in the short-term
performance, the less the scheduling gain.

• It is reported that the scheduling gain may decrease when
there are multiple antennas. Because smart antennas,
including MIMO, are promising technologies in future
generation wireless networks, the relationship between
opportunistic scheduling and antennas arrays should be
further studied.

In summary, opportunistic scheduling presents a new design
approach, especially for delay-tolerant data traffic. It has its
own advantages and limitations. Many interesting problems
are yet to be resolved in this area. We discuss some possible
research problems in the next section.

IV. POSSIBLE RESEARCH DIRECTIONS

Various long-term fairness criteria, such as proportional
fairness, temporal fairness, and utilitarian fairness, have been
studied for scheduling problems in wireless networks. How-
ever, there is a need for general short-term fairness criteria
tailored to wireless networks and dealing with the short-term
performance in depth. References related to the subject include
[14], [15], [16], [17], [18], where queueing status is a part of
scheduling decisions.

A problem related to improving short-term performance
is to schedule traffic with deadlines, i.e., real-time traffic.
Specifically, upon arrival, each real-time packet has a delay
deadline, and packets that cannot be transmitted before their
deadlines are dropped/marked. Research on scheduling with
deadlines in the wireline setting has led to various approaches.
The goal is typically to minimize some measure of the number
of deadline misses (including weighting such misses according
to packet classes, also called weighted loss). The additional
challenge in wireless networks is due to the time-varying
channel conditions. In this type of problems, the objective is
to improve system performance (with or without fairness/QoS
constraints) by exploiting multi-user diversity. Approaches to
these problems may include off-line optimal solutions with
the assumption of entire traffic and channel information, on-
line model-based solutions, and heuristic/greedy algorithms
[23]. Heuristic algorithms play an important role in real-
time scheduling problems because (typically) the optimal
scheduling problem is NP-complete and simplicity is a de-
sirable feature. In the wireline world, it is sometimes the case
that complicated scheduling schemes do not have significant
performance gains over simple schemes, such as static priority
or earliest-deadline-first. A similar situation may be expected
to hold for wireless networks.

The opportunistic scheduling is based on the premise that
the wireless channel is time-varying, and we can schedule
users to transmit at those times that are opportunistically
“relatively good.” This idea can be extended to the frequency
domain: we opportunistically schedule users to frequencies
(and time) that are relatively good [28]. An example of such
systems is an OFDM system. A concern of opportunistic
scheduling in such systems is the signaling cost. Because each
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subcarrier is very narrow in OFDM systems, signaling should
be carefully designed to ensure good channel estimation of
users on different subcarriers while avoiding significant sig-
naling overhead.

The opportunistic scheduling scheme in its current form is
a network-layer problem. However, its performance is closely
related to physical-layer designs. As explained earlier, esti-
mation errors occur in all opportunistic scheduling schemes.
On one hand, we need better understandings of the effect of
channel estimation errors on scheduling schemes. On the other
hand, it calls for better channel estimation techniques and
smart coding schemes (e.g., incremental redundancy transmis-
sion schemes with turbo codes). Further, it is also important
to study the performance of opportunistic scheduling in mul-
tiple antenna systems. In summary, a better understanding of
physical-layer technologies or even layer-breaking designs can
be potentially beneficial.

In general, the scheduling gain increases as the number
of users increases. However, the normalized scheduling gain
(scheduling gain over number of users) decreases with the
increase of the number of users. For example, if Uis are
i.i.d. with exponential distribution, then the scheduling gain
is O(log(n)) [20]. On the other hand, the signaling cost per
user remains the same. Hence, it is a question of practical
importance to decide the number of users sharing a same
channel.

The opportunistic scheduling problems studied have the
net effect of increasing the overall effective capacity of the
wireless network. This means that the network can now
accommodate more users or higher-data-rate users. Thus, we
know that keeping all else constant, the admissible region
of the wireless network will increase by using opportunistic
scheduling schemes. A challenging problem that still remains
is making intelligent admission control decisions of whether
or not to allow a new user into a cell. Although admission
control is a difficult problem in wireless systems whether or
not opportunistic scheduling is used, it is more challenging in
the context of opportunistic scheduling because opportunistic
scheduling increases the system dynamics.

Most of the current research on opportunistic scheduling
focus on the downlink of a cellular system. In such a system,
there exists a natural central controller, the base station. An
interesting question is whether and how to exploit the time-
domain diversity in a distributed environment, such as an
ad-hoc network [29]. Another challenging question is how
to implement opportunistic scheduling in the upper-link of a
cellular system.
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